
UCLA
UCLA Electronic Theses and Dissertations

Title
Studies in Hyperparameter Tuning, Design Selection and Optimization

Permalink
https://escholarship.org/uc/item/6xg133qp

Author
Onyambu, Samuel Onyancha

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xg133qp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Studies in Hyperparameter Tuning, Design Selection and Optimization

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Samuel Onyancha Onyambu

2024

© Copyright by

Samuel Onyancha Onyambu

2024

ABSTRACT OF THE DISSERTATION

Studies in Hyperparameter Tuning, Design Selection and Optimization

by

Samuel Onyancha Onyambu

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2024

Professor Hongquan Xu, Chair

This dissertation explores advanced optimization techniques, focusing on hyperparame-

ter tuning, design strategy selection, and novel optimization methods. First, we investigate

a modified Differential Evolution (DE) algorithm for generating uniform projection designs,

emphasizing the importance of hyperparameter configuration. We analyze the surface struc-

ture of these hyperparameters and provide guidelines for optimizing settings under various

conditions. Next, we examine the role of initial design choices in prediction and sequen-

tial optimization using Efficient Global Optimization (EGO), demonstrating that uniform

projection designs outperform traditional strategies such as maximin distance designs, par-

ticularly in high-dimensional spaces. Finally, we introduce a Kriging-based sequential region

shrinking method that integrates EGO to efficiently reduce the search space by targeting

promising data points. Comparative results show that this method not only requires fewer

computational resources than conventional tuning techniques like grid and random search

but also outperforms other Bayesian optimization methods such as TREGO. These findings

offer significant contributions to the optimization field, enhancing both theoretical under-

standing and practical applications.

ii

The dissertation of Samuel Onyancha Onyambu is approved.

Mark S. Handcock

Jingyi Jessica Li

Qing Zhou

Hongquan Xu, Committee Chair

University of California, Los Angeles

2024

iii

To my parents, Joseph and Jane, —

my siblings, Tabitha, Naomi, Jasper, and Lilian,—

and my dear friends, Taylor and Justin,—

who among so many other things ensured that I gave my all to accomplish this task.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Introduction to Optimization Algorithms 1

1.2 Metaheuristic Algorithms . 2

1.2.1 Evolutionary Algorithms . 3

1.2.2 Swarm intelligence (SI) . 8

1.2.3 Simulated Annealing (SA) . 10

1.3 Bayesian Optimization . 12

1.4 Leveraging Differential Evolution and Bayesian Optimization 13

2 Tuning Differential Evolution Algorithm for Constructing Uniform Pro-

jection Designs . 17

2.1 Introduction . 17

2.2 Differential Evolution Algorithm . 19

2.3 Designs for Hyperparameter Settings . 22

2.4 Modeling . 26

2.5 The Data Generation Process . 29

2.6 Results and Analysis . 33

2.7 Factor Importance and Optimal Settings . 36

2.8 Conclusion . 42

3 Evaluating Space-Filling Designs for Prediction and Sequential Optimiza-

tion . 48

3.1 Introduction . 48

v

3.2 Background . 50

3.2.1 The surrogate model . 50

3.2.2 The expected improvement (EI) . 51

3.2.3 The Efficient Global Optimization (EGO) Algorithm 53

3.3 Space-Filling Designs . 54

3.4 Test Functions . 57

3.4.1 Prediction Functions . 57

3.4.2 Minimization Functions . 60

3.5 Numerical Experiments . 66

3.5.1 Prediction results . 69

3.5.2 Minimization results . 76

3.6 Concluding Remarks . 79

4 Kriging Based Sequential Region Shrinkage with EGO for Hyperparame-

ter Optimization . 81

4.1 Introduction . 81

4.2 Background Theories . 83

4.2.1 Related Work . 83

4.2.2 The Efficient Global Optimization (EGO) Algorithm 84

4.2.3 The Trust Region EGO (TREGO) 84

4.3 The Proposed Algorithm . 85

4.3.1 Region of Interest (ROI) Determination 88

4.3.2 Difference between RSO and TREGO 90

4.4 Numerical Experiments . 91

vi

4.5 Application in Generating Uniform Projection Designs 95

5 Conclusion and Future Directions . 101

5.1 Key Findings Across the Studies . 101

5.1.1 Optimizing Hyperparameters in Differential Evolution for UPD Gen-

eration . 101

5.1.2 Efficiency and Robustness of UPDs in High-Dimensional Prediction

and Optimization Tasks . 102

5.1.3 Introducing a Sequential Shrinking Approach to Bayesian Optimiza-

tion for Resource-Efficient Tuning . 103

5.2 Implications for Optimization Strategies and Practical Applications 104

5.3 Limitations and Future Directions . 104

5.4 Final Remarks . 106

References . 107

vii

LIST OF FIGURES

2.1 Geometric illustration of a 23 full factorial design 23

2.2 CCD for m = 2 and m = 3 . 24

2.3 Density plots of the ϕ(D) values with target size 50× 5 32

2.4 Comparison of RMSE with target size 30× 3 34

2.5 Histogram of the distances from design points to the design center 37

2.6 Interaction plots involving pMut based on the 45 FFD and target size 30× 3. . 40

2.7 Contour plots of pMut and pCR while fixing other hyperparameters at high

levels. Top row uses CCD as the training data; bottom row uses OACD as

training data. 41

2.8 Performance of the DE algorithms under three setttings: DE1, DE4 and DEoptim

(optimal settings) . 43

2.9 Comparison of RMSE with target size 50× 5 44

2.10 Comparison of RMSE with target size 70× 7 46

3.1 Branin Function . 61

3.2 Camel Six-Hump Function . 62

3.3 Goldstein-Price Function . 62

3.4 Ackley function . 63

3.5 Levy function . 64

3.6 Michalewicz function . 65

3.7 Comparison of 100 80× 8 LHDs using various criteria 67

3.8 Normalized RMSEs for various test functions and 64× 15 designs 71

3.9 Normalized RMSEs for various test functions and 128× 31 designs 73

viii

3.10 Normalized RMSEs for Currin and Wing Weight functions without the outliers 75

3.11 Minimization path for 2 dimensional test functions 76

3.12 Minimization path for test functions with varying dimensions 78

4.1 ROI determination using the top 30% of total points. The top points are labeled

1-5. 89

4.2 Comparison of 3 methods for different test functions 94

4.3 Minimization path for 3 methods in the construction of UPDs using DE 96

4.4 Comparison of optimal results from 3 methods 96

4.5 Distribution of optimal hyperparameter settings 96

4.6 Correlation plot of the optimal hyperparameter settings 97

4.7 Scatter plots showing the relation between pMut and pCR 98

4.8 Comparison of six methods for constructing UPDs 99

ix

LIST OF TABLES

2.1 Comparison of designs and model evaluations with target size 30× 3 33

2.2 Statistical models . 38

2.3 Comparison of designs and model evaluations with target size 50× 5 45

2.4 Comparison of designs and model evaluations with target size 70× 7 47

3.1 Comparison of 100 80× 8 designs using various criteria 68

3.2 Means and medians of normalized RMSEs for 64× 15 designs 72

3.3 Means and medians of normalized RMSEs for 128× 31 designs 74

4.1 Parameters for the Hartmann functions . 92

4.2 Number of function evaluations to achieve the desired tolerance level 93

4.3 Optimal hyperparameter settings for each target design with 1024-run LHD . . 99

4.4 Optimal hyperparameter settings for each target design with 45 FFD 99

4.5 Optimal hyperparameter settings for each target design using RSO 99

x

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Dr. Hongquan Xu,

for his invaluable guidance and support throughout my PhD journey. His insights and

encouragement have been essential in shaping this dissertation.

I am also thankful to my committee members for their helpful feedback and advice. I

extend my thanks to my colleagues for their collaboration and to my friends and family for

their unwavering support during this time.

Special thanks to the Civil and Environmental Engineering Department at UCLA for

providing financial support through the Graduate Student Researcher (GSR) position, under

the supervision of Professor Dr. Tierra Bills.

xi

VITA

2011–2015 B.S. (Statistics and Programming), Kenyatta University, Nairobi, Kenya.

2016–2018 M.S. (Statistics), California State University, Fullerton (CSUF).

2016–2018 Teaching Assistant, Mathematics Department, CSUF.

2018–2019 Dorothy Radcliffe Dee Fellowship

2018-2020 Irma Polaski Fellowship

2019–2021 Teaching Assistant, Statistics Department, UCLA.

2021 Summer Mentored Research Fellowship

2021–2022 Teaching Associate, Statistics Department, UCLA.

2022 Summer Graduate Student Researcher, Department of Statistics, UCLA.

2022–2023 Teaching Fellow, Statistics Department, UCLA.

2023–2024 Graduate Student Researcher, Civil and Environmental Engineering De-

partment, UCLA.

2024 Summer Graduate Student Researcher, Department of Statistics, UCLA.

xii

PUBLICATIONS

Laxman Dahal, Henry Burton, and Samuel Onyambu (2022). “Quantifying the effect of

probability model misspecification in seismic collapse risk assessment”. In: Structural Safety

96, p. 102185

xiii

CHAPTER 1

Introduction

1.1 Introduction to Optimization Algorithms

Optimization algorithms are computational techniques designed to identify the best possi-

ble solution to a given problem by minimizing or maximizing an objective function. These

algorithms play a vital role in solving complex real-world tasks across diverse fields, such as

engineering, machine learning, logistics, and healthcare. By improving resource allocation,

refining system designs, or enhancing predictive model performance, they help address prob-

lems of practical significance. To achieve this, optimization algorithms iteratively explore

and evaluate solutions within a defined search space, aiming to find the most effective or

efficient outcome (Weise 2009).

These algorithms can be classified based on various criteria, including their method of

operation and properties (Weise 2009). One common classification under the method of

operation distinguishes between deterministic and probabilistic algorithms (Weise 2009), as

well as between gradient-based and gradient-free methods. Gradient-based algorithms rely

on the gradient (first derivative) and/or the hessian (second derivative) of the objective

function to determine the direction of steepest ascent or descent and the necessary step.

This approach makes them highly effective for smooth and differentiable problems, but their

reliance on derivative information limits their application in non-smooth or noisy scenarios.

Examples of methods that fall under this category include the Gradient Descent, Newton-

Raphson, Conjugate Gradient and Adaptive Moment Estimation methods. In contrast,

1

gradient-free algorithms circumvent the need for gradient information and instead utilize

sampling, heuristics, or stochastic processes to explore the search space and identify optimal

solutions.

Within gradient-free algorithms, metaheuristic methods are particularly notable for their

flexibility and effectiveness. These algorithms draw inspiration from natural processes such

as evolution, swarm behavior, or physical phenomena. Popular examples include Differen-

tial Evolution, Genetic Algorithms, Particle Swarm Optimization, and Simulated Annealing.

Their stochastic nature and population-based search strategies allow them to efficiently ex-

plore vast, complex solution spaces, escape local optima, and adapt to diverse problem

landscapes. Another gradient-free approach, Bayesian optimization, takes a probabilistic

perspective, using surrogate models like Gaussian processes to approximate the objective

function. By balancing exploration and exploitation, Bayesian optimization achieves effi-

ciency in scenarios where function evaluations are expensive.

These gradient-free approaches, particularly Differential Evolution and Bayesian opti-

mization methods, form the foundation of my research. Their robust, adaptable nature

makes them well-suited for addressing challenges in experimental design construction and

data-driven model optimization. By leveraging these methods, I aim to develop effective

solutions for navigating complex problem spaces and achieving optimal outcomes in my

work.

1.2 Metaheuristic Algorithms

Metaheuristic algorithms are high-level problem-solving frameworks designed to find optimal

or near-optimal solutions to complex optimization problems. These algorithms are particu-

larly useful for problems where traditional optimization methods may struggle due to factors

like high-dimensional search spaces, non-linearity, discontinuity, or multimodality. The key

characteristics of metaheuristic algorithms include:

2

1. General-Purpose: Applicable to a wide range of problems without requiring problem-

specific knowledge.

2. Approximate Solutions: Focus on finding good-enough solutions in a reasonable

time rather than guaranteed optimal solutions.

3. Stochastic Nature: Often incorporate randomization to explore the search space

and avoid local optima.

4. Iterative Process: Evolve candidate solutions over several iterations using a combi-

nation of exploration (searching broadly) and exploitation (refining promising areas).

1.2.1 Evolutionary Algorithms

Evolutionary algorithms are a family of optimization techniques inspired by the principles

of natural evolution, such as selection, mutation, recombination or crossover, and survival

of the fittest. These algorithms operate on a population of candidate solutions, iteratively

improving them based on a defined fitness function. Common examples include Genetic

Algorithms (GA), Differential Evolution (DE), and Evolution Strategies (ES), each with

unique mechanisms for generating and selecting solutions.

Genetic Algorithm (GA)

Genetic Algorithms (GAs) are search heuristics inspired by the principles of natural selection

and genetics, first introduced by Holland (1975). In GAs, a population of candidate solutions,

called chromosomes, evolves over iterations, or generations, through processes like selection,

crossover, and mutation. The algorithm aims to find an optimal or near-optimal solution

to a given problem by mimicking the survival-of-the-fittest principle in biological systems

(Mitchell 1998).

The GA process begins with the initialization of a population, typically generated ran-

domly within the solution space. Each chromosome in the population is evaluated using

3

a fitness function, which quantifies the quality of the solution it represents. Based on fit-

ness scores, a selection mechanism such as roulette wheel or tournament selection is used

to choose parent chromosomes for reproduction. The better the fitness, the more likely a

chromosome is selected, promoting better solutions (Kawachi and Ando 1992).

Reproduction involves crossover, where segments of parent chromosomes are combined

to produce offspring. Common crossover methods include single-point, two-point, and uni-

form crossover. This recombination introduces new solution candidates into the population.

Additionally, mutation is applied to offspring with a small probability to alter random genes,

maintaining diversity and preventing premature convergence to local optima (De Jong 1975).

The GA process iterates through selection, crossover, mutation, and fitness evaluation un-

til a termination criterion is met, such as a maximum number of generations or convergence

to a solution. GAs have been successfully applied to various optimization problems, in-

cluding scheduling, engineering design, and machine learning hyperparameter tuning. Their

adaptability and ability to handle complex, non-linear problems have made them a popular

choice in optimization research (Whitley 1994).

However, GAs face challenges like computational cost due to their population-based

nature and sensitivity to parameter settings, such as mutation rate, crossover probability, and

population size. Hybrid approaches combining GAs with other optimization methods, like

local search or simulated annealing, have been developed to address these issues, enhancing

convergence and efficiency (Michalewicz 2013).

Differential Evolution (DE)

Differential Evolution (DE) is a population-based optimization algorithm introduced by

Storn and Price (1997), specifically designed for continuous optimization problems. Unlike

GAs, DE focuses on vector differences to guide its search, making it particularly effective

for high-dimensional and non-linear optimization tasks. DE is simple yet powerful, with few

parameters to tune (Price, Storn, and Lampinen 2006).

4

The DE process starts with initializing a population of candidate solutions as vectors

within the solution space. Each vector is evaluated using an objective function to determine

its fitness. The algorithm then generates trial vectors for each population member through

mutation, crossover, and selection. Mutation in DE involves creating a donor vector by

adding the scaled difference between two randomly chosen population vectors to a third

vector, a strategy unique to DE (Mezura-Montes, Velázquez-Reyes, and Coello Coello 2006).

Crossover combines the donor vector with the target vector to produce a trial vector. This

process can be uniform or binomial, depending on whether crossover is controlled by a fixed

or probabilistic scheme. The trial vector is evaluated, and if it outperforms the target vector

in terms of fitness, it replaces the target in the population for the next generation. This

selection mechanism ensures steady improvement in the population’s quality over iterations

(Das and Suganthan 2010).

DE’s strength lies in its robustness and ability to balance exploration and exploitation

through its mutation and selection strategies. Its simple structure and limited parameter

requirements, primarily the mutation factor and crossover rate, make it easy to implement

and tune. DE has been applied to diverse areas, including function optimization, neural

network training, and control system design (Miettinen 1999).

Despite its effectiveness, DE may face challenges in multimodal optimization problems,

where it can become trapped in local optima. Variants of DE, such as adaptive DE and

self-adaptive DE, have been developed to address these issues by dynamically adjusting

parameters during the search process. Hybrid approaches integrating DE with other tech-

niques, like gradient-based methods, have also shown promise in improving convergence and

tackling complex optimization problems (Qin, Huang, and Suganthan 2008).

Evolution Strategies (ES)

Evolution Strategies (ES) are a prominent subclass of evolutionary algorithms tailored for

optimizing real-valued continuous functions. Developed in the 1960s by Ingo Rechenberg and

5

Hans-Paul Schwefel, these algorithms are inspired by natural evolution, focusing on adap-

tation and mutation while eschewing crossover mechanisms typical in other evolutionary

approaches like Genetic Algorithms (Schwefel 1977; Vent 1975). ES are population-based,

relying on iterative cycles of mutation, selection, and reproduction to refine candidate so-

lutions. Their robustness, simplicity, and adaptability make them particularly effective for

solving high-dimensional, noisy, or non-linear optimization problems (Beyer and Schwefel

2002).

The standard ES workflow begins with a population of candidate solutions, each repre-

sented as a vector of real-valued parameters. Mutation, the core variation operator, intro-

duces randomness by perturbing these parameters using Gaussian noise. Selection mecha-

nisms, such as (µ+λ) or (µ, λ), then choose the fittest individuals to form the next generation.

While (µ + λ) strategies retain both parents and offspring for survival, promoting stability,

(µ, λ) strategies consider only offspring, encouraging greater exploration of the search space

(Schwefel 1993). These mechanisms make ES versatile in balancing exploration and exploita-

tion.

A significant extension of ES is the Directed Variation, introduced by Zhou and Li (2003),

which enhances the mutation process by guiding it with directional information derived from

the problem landscape (Zhou and Li 2003). Unlike standard random isotropic mutations,

directed variation biases mutation steps toward promising regions of the search space. Zhou

and Li proposed frameworks for incorporating directional probabilities or fitness gradients

into the mutation process, improving convergence rates and solution quality in complex opti-

mization problems. This refinement allows ES to adapt dynamically to the fitness landscape,

avoiding premature convergence while maintaining effective exploration.

The self-adaptation mechanism in ES, developed in earlier works (Schwefel 1981), com-

plements directed variation by evolving strategy parameters, such as mutation step sizes,

alongside candidate solutions. This approach enables the algorithm to adjust its search be-

havior based on the landscape’s characteristics. When combined with directed variation,

6

self-adaptation can achieve even better convergence properties by synergizing global explo-

ration with locally informed refinement (Beyer and Arnold 2001). Directed variation thus

enriches the evolutionary process by incorporating both dynamic parameter adjustment and

problem-specific guidance.

Directed variation is particularly advantageous in applications involving constrained or

multi-modal optimization. Zhou and Li’s work highlights its efficacy in improving optimiza-

tion outcomes for tasks with complex, irregular landscapes (Zhou and Li 2003). By biasing

mutations toward beneficial directions, ES with directed variation can escape local optima

and converge efficiently to global optima. This capability has been demonstrated in fields

such as engineering design, robotics, and neural network training.

The theoretical foundation of directed variation draws on insights from gradient-based

optimization while retaining the flexibility of stochastic methods. Zhou and Li’s approach

blends deterministic directional cues with stochastic exploration, bridging the gap between

classical optimization techniques and evolutionary computation. This hybrid methodology

underscores the broader adaptability of ES, allowing it to tackle a diverse range of optimiza-

tion challenges (Beyer and Schwefel 2002; Zhou and Li 2003).

Another notable advancement is Covariance Matrix Adaptation (CMA-ES), introduced

by Hansen and Ostermeier (2001). CMA-ES dynamically adjusts the covariance matrix of

the mutation distribution to align with the topology of the fitness function. This technique

enables ES to search more effectively along relevant dimensions of the landscape, particularly

in ill-conditioned or anisotropic problems.

In summary, ES, enriched with innovations like directed variation, self-adaptation, and

CMA-ES, offer a robust and versatile framework for optimization. Together, these advance-

ments have solidified ES as a cornerstone of evolutionary computation, enabling it to excel

in solving real-world problems with complex, high-dimensional, and noisy landscapes.

7

1.2.2 Swarm intelligence (SI)

Swarm intelligence algorithms are optimization techniques inspired by the collective behav-

ior of decentralized, self-organized systems in nature, such as flocks of birds, schools of fish,

or ant colonies. These algorithms use the interaction of simple agents to solve complex prob-

lems without central control. Swarm intelligence models excel in parallelism, adaptability,

and robustness, making them well-suited for solving optimization problems across diverse

domains, including engineering, scheduling, and machine learning (Kennedy and Eberhart

1995).

Particle Swarm Optimization (PSO)

Introduced by Kennedy and Eberhart (1995), PSO is inspired by the flocking behavior of

birds and schooling of fish. In PSO, each individual in the swarm, called a particle, represents

a candidate solution. The particles explore the solution space by updating their positions

based on their own best-known position, the best-known position of their neighbors, and the

overall global best position. These updates are guided by two key parameters: cognitive and

social components, which balance personal learning and group influence.

The mathematical foundation of PSO lies in velocity and position updates. A particle’s

velocity is influenced by three components: inertia, which maintains momentum; the cogni-

tive term, which pulls the particle toward its own best position; and the social term, which

attracts the particle toward the global best position. By iteratively updating positions and

velocities, PSO achieves convergence to near-optimal solutions. Its simplicity and efficiency

have made it popular for a wide range of problems, from neural network training to resource

allocation (Clerc and Kennedy 2002).

One of the primary advantages of PSO is its ease of implementation, as it requires fewer

hyperparameters compared to other optimization algorithms. However, it faces challenges

such as premature convergence, especially in high-dimensional or multimodal optimization

8

problems. Variants of PSO, such as constriction coefficient PSO and adaptive PSO, have

been developed to address these limitations and improve exploration and exploitation (Shi

and Eberhart 1998).

Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO), another prominent SI algorithm, was introduced by Dorigo

(1996) and is inspired by the foraging behavior of ants. Ants use pheromone trails to com-

municate and collectively find optimal paths between their nest and a food source. In ACO,

artificial ants construct solutions by traversing a graph representation of the problem, de-

positing pheromones on paths to indicate their quality.

The algorithm operates iteratively, where ants build solutions based on probabilistic

rules influenced by pheromone levels and heuristic information, such as edge lengths or

costs. After constructing solutions, pheromones are updated: stronger paths receive more

pheromone reinforcement, while weaker paths evaporate over time. This dynamic update

mechanism balances exploration of new paths and exploitation of promising ones, allowing

ACO to identify optimal or near-optimal solutions (Dorigo 2007).

ACO has been successfully applied to combinatorial optimization problems, such as the

Traveling Salesman Problem, vehicle routing, and scheduling. Its strengths lie in its adapt-

ability and ability to integrate heuristic knowledge. However, ACO’s performance depends

on parameters like evaporation rate, pheromone influence, and heuristic weighting, which

require careful tuning to avoid premature convergence or excessive exploration (Blum 2005).

Despite their differences, both PSO and ACO share a reliance on decentralized control

and emergent behavior to solve problems. While PSO excels in continuous optimization

due to its particle dynamics, ACO is better suited for discrete optimization tasks because

of its graph-based representation. Hybrid approaches combining PSO and ACO have been

developed to leverage the strengths of both algorithms, particularly for problems with mixed

discrete and continuous variables (Talbi 2009).

9

Swarm intelligence algorithms, including PSO and ACO, are inherently parallelizable,

making them attractive for large-scale optimization problems. Their ability to balance ex-

ploration and exploitation is a key factor in their success. Recent research has focused on

adapting these algorithms to dynamic and multi-objective optimization problems, where

solution landscapes change over time or involve conflicting objectives (Coello, Pulido, and

Lechuga 2004).

One challenge in swarm intelligence algorithms is their computational complexity, espe-

cially for high-dimensional problems or large populations. To address this, researchers have

developed variants like distributed swarm intelligence and hybrid metaheuristics. These ap-

proaches aim to reduce computational cost while maintaining solution quality, enabling the

application of swarm intelligence in fields like robotics, logistics, and bioinformatics.

Moreover, advances in hardware, such as GPUs and parallel computing platforms, have

further enhanced the scalability of swarm intelligence algorithms. These developments al-

low for real-time applications in domains such as autonomous navigation, sensor networks,

and real-time scheduling, where traditional optimization methods may fall short (Yang and

Karamanoglu 2013).

In conclusion, swarm intelligence algorithms like PSO and ACO have revolutionized opti-

mization by drawing inspiration from nature. Their versatility, adaptability, and robustness

have enabled solutions to a wide range of complex problems. With ongoing advancements

in hybridization, parameter tuning, and computational power, swarm intelligence continues

to be a cornerstone of modern optimization research.

1.2.3 Simulated Annealing (SA)

Simulated Annealing (SA) is a probabilistic optimization technique inspired by the annealing

process in metallurgy, where materials are heated and slowly cooled to alter their physical

properties. Proposed by Kirkpatrick, Gelatt Jr, and Vecchi (1983), SA solves complex op-

timization problems by mimicking this physical process, exploring a solution space to find

10

near-optimal or global optima. Unlike traditional optimization methods, it allows tempo-

rary acceptance of worse solutions to escape local minima, making it especially effective for

problems with rugged landscapes.

The algorithm operates by iteratively modifying a candidate solution and evaluating

its quality using a predefined objective function. A key feature of SA is its acceptance

criterion, which is governed by a probabilistic function dependent on temperature and the

difference in solution quality. This function, often based on the Metropolis criterion, reduces

the likelihood of accepting worse solutions as the temperature decreases. This simulated

”cooling” process, if managed properly, ensures convergence to an optimal solution while

maintaining exploration of the solution space early on (Aarts and Korst 1989).

Temperature scheduling plays a critical role in SA’s effectiveness. Commonly, exponential

decay is used, where the temperature decreases geometrically over iterations. However,

alternative cooling schedules like linear or logarithmic decay can also be employed, each

with unique trade-offs in convergence speed and solution quality. The choice of cooling

schedule and initial temperature significantly affects performance, as improper tuning may

lead to suboptimal solutions or slow convergence.

SA has been successfully applied to a wide range of problems, including combinatorial

optimization tasks like the Traveling Salesman Problem (TSP), job scheduling, and graph

partitioning. For instance, Johnson et al. (1991) demonstrated SA’s efficiency in solving the

TSP by leveraging its capability to explore and exploit the problem’s complex search space.

In continuous optimization, modifications to the algorithm have enabled its use in problems

like parameter estimation and engineering design.

While SA has many strengths, it also faces challenges, such as the need for careful

parameter tuning and the potential for slow convergence. Hybrid approaches combining SA

with other optimization techniques, such as genetic algorithms or gradient-based methods,

have been proposed to address these issues. Such hybrid algorithms often leverage SA’s

exploration capabilities while benefiting from the exploitation strengths of complementary

11

methods (Yang 2010).

Theoretical work on SA has shown that it can asymptotically converge to the global op-

timum under certain conditions. Specifically, if the cooling schedule is sufficiently slow, the

algorithm can theoretically explore all possible solutions and guarantee convergence. How-

ever, these conditions are often impractical due to computational constraints, necessitating

heuristic adjustments in real-world applications (Hajek 1988).

In conclusion, simulated annealing remains a versatile and robust optimization technique

suitable for a wide array of applications. Its success lies in its balance between exploration

and exploitation, as well as its capacity to escape local minima. Advances in hybrid ap-

proaches and theoretical insights continue to expand its scope and effectiveness, making it

a critical tool in modern optimization practices.

1.3 Bayesian Optimization

Beyond the metaheuristic optimization methods lies the notion of Bayesian Optimization.

Bayesian optimization has become a widely adopted approach for black-box optimization

problems, particularly for its sequential nature in handling noisy and non-convex func-

tions commonly encountered in real-world scenarios. The framework often relies on Efficient

Global Optimization (EGO), a sequential strategy that iteratively searches for optimal solu-

tions by balancing exploration of the search space and exploitation of known high-performing

regions (Jones, Schonlau, and Welch 1998). At each step, Bayesian optimization evaluates

new points based on their potential to improve the objective function while accounting for the

uncertainty of the model predictions. This iterative, or sequential, nature allows Bayesian

optimization to progressively refine its estimates, focusing on promising regions and thereby

enhancing efficiency.

In Bayesian optimization, a Gaussian Process (GP) is typically used as the surrogate

model, offering a flexible and powerful approach for modeling complex functions (Rasmussen

12

and Williams 2006). GPs are particularly valuable because they predict the objective func-

tion’s value at unexplored points and provide an estimate of prediction uncertainty, which

can guide decisions on where to sample next. The choice of acquisition function, also known

as the utility function, is central to Bayesian optimization, as it defines the criteria for

selecting the next sample point. Common acquisition functions include Probability of Im-

provement (PI), Expected Improvement (EI), Upper Confidence Bound (UCB), and Lower

Confidence Bound (LCB), each designed to guide the search process differently depending

on the optimization strategy.

The Probability of Improvement (PI) function, for instance, favors points likely to outper-

form the current best-known solution, focusing on regions with high potential for incremental

gains. Expected Improvement (EI), on the other hand, seeks points that offer the highest

potential for improvement by integrating both the predicted mean and the uncertainty of

the GP model, balancing exploration and exploitation more effectively (Mockus 1994). The

Upper Confidence Bound (UCB) and Lower Confidence Bound (LCB) functions apply a de-

gree of confidence to the GP predictions, where UCB emphasizes exploration by targeting

areas with high uncertainty, while LCB may be used to address risk-averse or cost-sensitive

problems by minimizing potential loss (Srinivas et al. 2009).

These acquisition functions collectively enable Bayesian optimization to adapt dynam-

ically based on the task requirements. Each function aligns with different optimization

objectives, allowing Bayesian optimization to tailor its approach to complex landscapes and

focus computational resources on the most promising areas of the search space. This adapt-

ability, coupled with the sequential nature of EGO, makes Bayesian optimization a powerful

method for tackling diverse and challenging optimization problems.

1.4 Leveraging Differential Evolution and Bayesian Optimization

As previously discussed, Differential Evolution (DE) is a versatile metaheuristic algorithm

primarily used for optimizing continuous functions. Its simplicity and efficiency make it

13

appealing across a wide range of applications, including experimental design. Notably, its

strong global search capabilities, robust performance, and flexibility across diverse prob-

lem domains (Storn and Price 1997), combined with its high convergence speed for specific

challenges (Babu and Jehan 2003) and inherent parallelizability (Kukkonen and Lampinen

2006), have established it as a highly favorable choice for design construction.

However, using Differential Evolution for discrete data tasks, such as experimental de-

sign construction, presents challenges. Applying DE in such cases requires modifications to

its foundational structure to effectively manage discrete variables and discrete search space.

Recent work by Stokes, Wong, and Xu (2024)introduced a modified DE algorithm specifi-

cally tailored for these discrete tasks, highlighting the need for adaptations to extend DE’s

functionality beyond continuous domains. Despite these advancements, the algorithm’s per-

formance remains highly sensitive to several hyperparameters, which play a critical role in

influencing outcomes.

This sensitivity to hyperparameters emphasizes the importance of understanding and

exploring the hyperparameter landscape. Developing optimized settings across different

problem setups is essential for achieving reliable and efficient performance. Tailoring hyper-

parameters for specific tasks or datasets can greatly improve outcomes, but doing so requires

a structured approach to hyperparameter tuning. As such, there is a need for strategies that

systematically optimize hyperparameter configurations to align with varied and complex

problem requirements.

In this dissertation, we employ the DE algorithm and a novel localized region shrinkage

Bayesian optimization in the construction of the uniform projection designs. Three studies

are done and the structure of these studies is laid as follows.

The first study delves into the construction of space-filling designs focusing mainly on

Uniform Projection Designs (UPDs) by investigating the surface structure of DE’s hyper-

parameters and their respective contributions. UPDs, introduced by Sun, Wang, and Xu

(2019), are a special class of space-filling designs that ensure an even distribution of sample

14

points across all lower-dimensional projections of a high-dimensional design space. By an-

alyzing the impact of hyperparameters on the performance of the modified DE algorithm,

the study aims to derive optimal settings for generating efficient UPDs using a second-order

model. Through comparisons of various experimental designs and surrogate models, the

research provides crucial guidelines for enhancing DE’s performance. The insights gained

from this study are intended to equip practitioners with effective strategies for optimizing

hyperparameter configurations in practical applications.

Another critical aspect of optimization algorithms is the initial design choices, which can

significantly impact both prediction accuracy and the efficiency of sequential optimization

processes. The second study utilizes gaussian process and various initial experimental designs

to model test functions determining the prediction power of the initial design. In addition, the

effect of the initial design on the optimization performance via active learning is evaluated.

This study highlights how initial design strategies greatly influence prediction prowess and

early optimization results, with their effects diminishing as iterations proceed toward the

global optimum. In particular, the research demonstrates that distance-based designs, like

maximin distance designs, struggle in high-dimensional settings, whereas Uniform Projection

Designs consistently perform well across varying dimensionalities.

In response to the challenges associated with traditional optimization approaches, the

third study introduces a novel Kriging-based sequential region shrinking method, which ef-

fectively incorporates the EGO algorithm. This innovative method aims to progressively

reduce the region of interest by focusing on the most promising data points during each

iteration. The efficiency of this approach is validated through its application to various well-

known physical test functions, where it significantly reduces the computational resources

required compared to traditional hyperparameter tuning techniques like grid and random

search. Furthermore, it demonstrates advantages over other Bayesian optimization strate-

gies, such as TREGO, highlighting its practicality in resource-constrained environments.

Together, these studies provide a comprehensive exploration of advanced optimization

15

techniques, ranging from hyperparameter tuning in DE to effective design strategy selection,

culminating in novel optimization methods. The findings contribute valuable insights to

both theoretical research and practical applications, showcasing the evolving landscape of

optimization strategies. By bridging the gaps in existing methodologies, this work aims to

enhance the efficacy of optimization processes across diverse fields, ultimately leading to

more robust and efficient solutions for complex challenges.

16

CHAPTER 2

Tuning Differential Evolution Algorithm for

Constructing Uniform Projection Designs

2.1 Introduction

Experimental design construction is a fundamental aspect of research and data-driven in-

quiry, aimed at organizing experimental runs to extract maximum information while mini-

mizing resource use. By strategically selecting input combinations, well-constructed designs

ensure that researchers can identify key factors, estimate model parameters, and predict

responses accurately (Montgomery 2017). The primary goal is to balance efficiency and

comprehensiveness, whether in exploring high-dimensional spaces, optimizing processes, or

assessing system robustness. Central to this process is the notion of space-filling, where

design points are distributed to capture variations across the entire experimental domain,

providing a solid foundation for modeling and inference (Santner et al. 2003).

Different design strategies address diverse experimental objectives and constraints. For

instance, factorial and fractional factorial designs are widely used to study the main effects

and interactions of factors systematically, while response surface designs, such as central

composite and Box-Behnken designs, support optimization and curvature estimation (My-

ers, Montgomery, and Anderson-Cook 2016). In other cases, non-traditional approaches like

space-filling designs (e.g., Latin hypercube or maximin designs) and discrepancy-based de-

signs (e.g., maxpro or uniform designs) are preferred for high-dimensional and computational

experiments (Joseph 2016). Each method offers unique strengths, and the choice depends on

17

the experimental goals, computational resources, and the nature of the underlying system

being studied. Through thoughtful design construction, researchers can ensure that their

experiments are not only scientifically rigorous but also cost-effective and impactful.

In the quest for robust experimental designs, Uniform Projection Designs (UPDs) have

emerged as a powerful tool for ensuring uniformity across all low-dimensional projections

of the design space (Sun, Wang, and Xu 2019). UPDs, introduced by Sun, Wang, and

Xu (2019), are specialized space-filling designs characterized by robust performance across

various design criteria and impressive space-filling properties in multiple dimensions. These

designs are particularly valuable in high-dimensional settings where relationships between

subsets of factors often carry critical information. However, existing algorithms for gener-

ating UPDs remain underexplored, highlighting an important area for further research. To

construct UPDs, we leverage the use of Differential Evolution (DE)

Recently, Stokes, Wong, and Xu (2024) proposed a DE-based approach for constructing

order-of-addition designs, showcasing its efficiency compared to other metaheuristic algo-

rithms, such as Simulated Annealing, Threshold Accepting, Genetic Algorithms, and Parti-

cle Swarm Optimization. Inspired by their findings, we adapt and extend their modified DE

algorithm for the construction of UPDs.

The performance of the DE algorithm is significantly influenced by its hyperparameters,

which dictate the learning process of the optimization (Price, Storn, and Lampinen 2006).

An inappropriate setting of these hyperparameters can lead to suboptimal performance of

the DE algorithm. While the DE algorithm proposed by Stokes, Wong, and Xu (2024)

encompasses several hyperparameters, their effects remain largely unexamined. Therefore,

we aim to conduct a comprehensive study of the hyperparameters to elucidate their impacts

on the algorithm’s performance, providing insights that could enhance its effectiveness.

The challenge of determining the optimal hyperparameter settings for any learning pro-

cess has been widely studied. Two primary frameworks dominate this landscape: the model-

based framework and the model-free framework. Model-based hyperparameter optimization

18

focuses on tuning hyperparameters by approximating the true learning algorithm, while

model-free methods approach the optimization problem without parametric assumptions.

Relevant literature on model-based hyperparameter optimization includes works by Falkner,

Klein, and Hutter (2018), Hutter, Hoos, and Leyton-Brown (2011), Li et al. (2018), Lujan-

Moreno et al. (2018), Mockus, Tiesis, and Zilinskas (1978), Snoek, Larochelle, and Adams

(2012), Wu, Chen, and Liu (2020), and Zoph and Le (2016). In contrast, model-free frame-

works encompass techniques such as manual search, grid search, random search, genetic

algorithms, and orthogonal array tuning methods (Liashchynskyi and Liashchynskyi 2019).

Our approach leverages various types of designs and models to investigate the effec-

tiveness of DE in constructing UPDs. Specifically, we aim to address three objectives: (i)

identifying useful design types in understanding the surface structure extended by the DE

hyperparameters, (ii) determining the most effective models, and (iii) developing an efficient

algorithm for the construction of UPDs. We employ different types of models to evaluate

the performance of different designs, enabling us to visualize the response surface of the

DE algorithm’s hyperparameters. This framework outlines the data generation, modeling,

and analysis procedures. The insights gained from our analysis provide a general guideline

for optimal hyperparameter settings necessary for generating superior uniform projection

designs.This approach is quite different from the Lujan-Moreno et al. (2018) method which

used a 2k factorial design with the response surface method (RSM) and ridge regression for

screening to select the important factors in the data. While Lujan-Moreno et al. (2018)

focuses on factor screening and selection with the traditional RSM approach, we emphasize

on the comparisons of different types of designs and surrogate models in approximating the

surface structure of the DE algorithm.

2.2 Differential Evolution Algorithm

Originating from the pioneering work of Storn and Price (1997), Differential Evolution (DE)

has emerged as a powerful heuristic optimization algorithm, drawing inspiration from the

19

mechanisms of biological evolution. To simulate survival-of-the-fittest dynamics, DE treats

each candidate or agent as a chromosome made up of several genes and implements muta-

tion and crossover procedures that allow beneficial genes to persist into future generations

(Storn and Price 1997). DE operates on the principle of population-based search, where a set

of candidate solutions evolves over successive generations towards optimal or near-optimal

solutions. At its core, DE employs mutation, crossover, and selection operators to itera-

tively improve the quality of solutions. The algorithm’s efficacy stems from its robustness,

simplicity, and ability to handle non-linear, non-convex, and noisy optimization landscapes.

Without loss of generality, we assume that we want to minimize a real-valued objective

function ϕ over an m-dimension space Ω. It has five steps

1. Genetic Representation: Let π1, . . . , πN be the initial population, where each agent

πi = (πi1, . . . , πim) is randomly chosen from Ω.

2. Mutation: Mutation expands the search space of the current population. For each

i = 1, . . . , N , mutation produces a potential donor νi in Ω by adding the weighted

difference of two agents to a third, all randomly chosen and distinct from the target

(πi), that is,

νi = πa + w(πb − πc) (2.1)

where a ̸= b ̸= c are randomly chosen three distinct numbers from 1, . . . , N , and they

are all different from i.

3. Crossover: Crossover blends the current generation of agents with the population of

potential donors in order to form candidates for the next generation known as trial

agents. For each i = 1, . . . , N , one of the m variables of νi is randomly selected to

directly enter the trial agent ui. In this way, one variable is forced to change so that

each ui will certainly differ from its original target πi. Next, with probability pCR,

more variables are taken from ui and placed in the trial agent. Whichever variables do

not take their value from the donor inherit their original value from πi. Assuming j0 is a

20

random number from 1, . . . ,m, this process can be written as follows: for j = 1, . . . ,m,

uij =


νij with probability pCR or if j = j0,

πij otherwise

4. Selection: Selection creates the next generation of agents by comparing each target

to its respective trial agent. The trial agent is adopted if it leads to an improvement

and is discarded otherwise. For minimization problems, this process is given by,

πi =


ui if ϕ(ui) < ϕ(πi)

πi otherwise

5. Repeat: Repeat steps 2 through 4 over many generations until a specified stopping

condition is satisfied.

Though quite simplistic, its ability to balance exploration and exploitation makes it ideal

for solving non-linear and multimodal problems.

Since experimental designs lie on a discrete and constrained space, we leverage the modi-

fied DE by Stokes, Wong, and Xu (2024). This is to ensure that the resulting mutated design

is feasible. The proposed method modifies the mutation step by using the swap mutation

(Michalewicz 2013), one of the structural mutation operators in genetic algorithm. In this

operator, two positions in a solution are randomly selected, and their values are exchanged.

This maintains the feasibility of the solution by preserving its permutation structure while

introducing variation to explore the search space. The swap mutation is computationally

efficient and effective at diversifying the population, reducing the risk of premature conver-

gence. The mutation step is controlled by mutation rate pMut which is the probability of

swapping two elements. In addition borrowing from PSO, they induced the influence of the

global best solution with a probability pGBest. This yielded an algorithm which contained

the following hyperparameters:

• NP - The size of the population (N).

21

• itermax - the maximum number of iterations/generations used.

• pCR - Probability of crossover.

• pMut - Probability of mutation.

• pGBest - Probability of using the global best for mutation.

• pSelf - Probability of using the current agent for mutation.

They proposed three different choices of the initial agent to be mutated to obtain the

proposal agent. This lead to three different variants which they referred to as DE1 which

uses the global best, DE2 which uses the current agent and DE3 which uses a random agent.

Regarding the hypermarameters, the first two, NP and itermax, determine the budget

size, whereas the other four hyperparameters affect the evolution process. The hyperpa-

rameters, pGBest and pSelf , determine the probability of using the global best and the

current agent in the mutation process, respectively. There is a constraint between these

two hyperparameters, that is, pGBest + pSelf ≤ 1. The question that arises is how these

hyperparameters interact with each other. Also whether we can do better than the proposed

fixed probabilities to obtain the better settings for the DE algorithm for design generation.

In this study, we shall consider values between [10, 100] for NP , [500, 1500] for itermax,

and [0.05, 0.95] for pCR, pMut and pGBest. We fix pSelf = (1− pGBest)/2 so that there

is an equal chance for selecting a current agent and a random agent if the global best is not

used.

2.3 Designs for Hyperparameter Settings

Various designs can be used to set the DE hyperparameters before the optimization process.

As the functions optimized by DE are often complex with many local minima, one has

to carefully choose the initial point for the optimization process. These initial points are

22

-1 1Factor A -1
1

Factor B
-1

1

Fa
ct

or
C

Figure 2.1: Geometric illustration of a 23 full factorial design

determined using any of the methods discussed below. In each subsection below one method

is described, and its benefits and drawbacks are discussed.

Full factorial designs (FFD)

Factorial designs are a research method for studying the effects of multiple independent

variables on a response variable, formalized by Sir Ronald A. Fisher in the early 20th century

(Fisher 1935). These designs typically involve defining factors at two or three levels, forming

a grid of all possible combinations, resulting in 2m or 3m observations for m factors. Figure

2.1 shows a 23 full factorial design.

Full factorial designs sample points at the corners of a hypercube, ensuring uniform dis-

tribution across the design space. They allow for the analysis of main effects and interactions

(Montgomery 2017), but can be complex and require larger sample sizes for adequate power

(Tabachnick and Fidell 2019).

To mitigate the need for larger samples, fractional factorial designs were introduced

by David John Finney (Finney 1945). These designs use a fraction of runs based on the

sparsity-of-effects principle, focusing on main effects and lower-order interactions. They

are expressed as 2m−p or 3m−p, depending on the factors set as products of others. Selecting

defining relations for fractional designs is essential, with criteria such as maximum resolution

and minimum aberration guiding this process (Wu and Hamada 2011).

23

(−1,−1)

(−1, 1)

(1,−1)

(1, 1)

x1

x2

(−α, 0) (α, 0)

(0,−α)

(0, α)

x2

x1
x3 α

Figure 2.2: CCD for m = 2 and m = 3

Central composite designs (CCDs)

Introduced by Box and Wilson (1951) as an extension of factorial designs, they were de-

veloped as a way to efficiently fit quadratic response surfaces and identify optimal process

settings in industrial experiments. CCDs are full or fractional factorial designs that are

augmented with two additional sets of sampling points described as “center” and “axial or

star” points (Box and Wilson 1951). The center point is defined by all factors being set at

their center level. The CCD uses 2m axial points, each of which is defined by all but one

factor being at their center level and the level of the remaining factor is denoted by α, which

is generally chosen to be between 1 and
√
m (Montgomery 2017). The basic concepts of the

CCD for m = 2 and m = 3 are depicted in Figure 2.2, where the bold dots are the design

points.

Orthogonal array composite designs (OACD)

Introduced by Xu, Jaynes, and Ding (2014), an OACD is a class of composite designs based

on a two-level factorial design and a three-level orthogonal array (OA). An OA of n runs, m

columns, s levels, and strength t, denoted by OA(n, sm, t), is an n×m matrix in which all

st level-combinations appear equally often in every n× t submatrix (Wu and Hamada 2011).

For example, a 2m factorial design can be viewed as OA(n, 2m, t) with n = 2m and t = m.

24

Similarly, a three-level OA can be written as OA(n, 3m, t). Thus, an OACD is a composite

design which consists of a two-level factorial design as its factorial points, a three-level OA

as its additional points, plus any number of center points (Luna et al. 2022).

Space filling designs

While the previously discussed designs utilize sampling points that are at the boundaries

of the design space, space filling designs generate samples that are dispersed throughout

the multidimensional design space and not just at the boundary of the design space. These

designs are important in sampling a surface as they could capture important regions thereby

minimizing the bias between the true structure of the surface and the estimated surface from

the sampled points (Gardner et al. 2006; Giunta, Wojtkiewicz, and Eldred 2003). They are

of various types depending on the approach used to construct them, e.g., sampling-based

– Latin Hypercube designs, distance-based – maximin designs, and distribution – based

uniform designs (Burton, Xu, and Yi 2022).

Latin hypercube designs (LHDs) – Based on McKay (1992)’s Latin hypercube sampling, it

divides the range of each factor into bins of equal size, where n also corresponds to the

number of samples to be generated resulting in a total of nm combinations where m is

the number of factors being considered. The n samples are then randomly generated

such that for all one-dimensional projections, there will be only one sample in each

bin.

Maximin distance designs – Introduced by Johnson, Moore, and Ylvisaker (1990), this

design aims at spreading out the design points in the design space by maximizing

the minimum distance between any two design points. It thus tends to place a large

proportion of points at the corners and on the boundaries of the design space. Math-

ematically, this can be formulated as follows. Suppose we want to construct an n-run

design in m factors. Let the design region be the unit hypercube X and let the design

be D = {x1 . . . ,xn}, where each design point xi is in X = [0, 1]m. The maximin design

25

optimizes the function below:

max
D

min
i ̸=j

d (xi,xj) ,

where d (xi,xj) is the distance between the points xi and xj.

Maximin Latin hypercube designs – Unlike Latin hypercube designs, maximin distance

designs do not have good projection properties for each factor. Morris and Mitchell

(1995) proposed to overcome this problem by searching for the maximin distance design

within the class of Latin hypercube designs. They also proposed to use the following

criterion to achieve maximin distance:

min
D

{
n−1∑
i=1

n∑
j=i+1

1

dp (xi,xj)

}1/p

(2.2)

where p > 0 is chosen large enough, say p = 15.

Maximum projection (MaxPro) designs – Although maximin Latin hypercube designs en-

sure good space-filling in m dimensions and uniform projections in each dimension,

their projection properties in two to m − 1 dimensions are not known. By the ef-

fect sparsity principle (Wu and Hamada 2011), only a few factors are expected to be

important. To curb this, Joseph, Gul, and Ba (2015) proposed a different criterion:

min
D

ψ(D) =

{
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1∏m
l=1 (xil − xjl)

2

}1/m

. (2.3)

and showed that the design that minimizes ψ(D) tends to maximize its projection capa-

bility in all subspaces of factors, and thus named these designs as maximum projection

designs.

2.4 Modeling

We consider three different frameworks to model the data: (a) Linear Model, (b) Kriging

Model and (c) Heterogeneous Gaussian Process (HetGP).

26

Linear Model (lm)

For m quantitative factors, denoted by x1, . . . , xm, a second-order linear model is defined as

y = β0 +
m∑
i=1

βixi +
m∑
i=1

βiix
2
i +

∑
i<j

βijxixj + ϵ (2.4)

where β0, βi, βii, and βij are the intercept, linear, quadratic, and bilinear (or interaction)

terms, respectively, and ϵ is the error term. This model is simple and provides a straight-

forward way to model and understand relationships between the response variable and the

factors. The main effects are easy to to interpret.

Kriging Model (km)

Proposed by South African geostatistician Krige (1951), Kriging is one of the methods used

to interpolate intermediate values, whereby these intermediate values are modeled using

Gaussian Process (GP) which is governed by prior co-variances. It provides a probabilistic

prediction of the output variable, as well as an estimate of the uncertainty of the predic-

tion (Chevalier, Picheny, and Ginsbourger 2014). The kriging predictors interpolating the

observations are assumed to be noise-free (Roustant, Ginsbourger, and Deville 2012). Inter-

mediate interpolated values obtained by Kriging are the best linear unbiased predictors.

The Kriging model consists of two parts: a trend and a GP. The trend part is often

modeled as a regression on some fixed basis functions. In the specific case where the basis

functions reduce to a constant function, it is referred to as ordinary Kriging (Roustant,

Ginsbourger, and Deville 2012). The general form is as given below

Y (x) =
k∑

i=1

βifi(x) + Z(x), (2.5)

where f1, . . . , fk are k basis functions, β1, . . . , βk are corresponding regression coefficients,

and Z(x) is a stationary GP with zero mean and covariance function ψ. The covariance

27

function ψ completely defines the behavior of the Gaussian Process Z(x). It is defined as

ψ (xi,xj) = Cov (Z (xi) , Z (xj)) = σ2

m∏
l=1

K (hl; θl) , (2.6)

where σ2 is the scale parameter called the process variance, hl = |xi,l − xj,l|, xi,l and xj,l

are the lth elements of the ith run xi and the jth run xj, and K(h; θ) is the correlation

function. The parameters θl chosen for the correlation function K (hl; θl) must be positive.

Otherwise the correlation function will not be feasible. These parameters are chosen to be

physically interpretable in the same unit as the corresponding variables. They are often

referred to as the characteristic length-scales by Rasmussen and Williams (2006). Popular

correlation functions include Gaussian, Matérn, and power-exponential family correlation

functions. The Matérn function with parameter ν = 5/2 is often chosen as the default when

fitting kriging models. It is defined as:

K(h; θ) =

(
1 +

√
5h

θ
+

5h2

3θ2

)
exp

(
−
√
5h

θ

)
. (2.7)

The unknown parameters can be estimated via MLE or cross validation. In R, the km function

in the DiceKriging package was used to fit the kriging model.

Heteroskedastic Gaussian Process (HetGP)

HetGP follows the simplifying assumption in the computer experiments literature in using

a mean zero GP, which shifts all of the modeling effort to the covariance structure (Binois,

Gramacy, and Ludkovski 2018). Observation model is given by

yi = y (xi) = f (xi) + εi, εi ∼ N (0, r (xi)) , (2.8)

where f(xi) is a GP with covariance or kernel k(·, ·) and r(xi) is the variance of ϵi which

depends on xi. The kernel k(·, ·) is positive definite, with parameterized families such as the

Gaussian or Matérn being typical choices. If r(xi) = τ 2 is a constant, then the process is

homoskedastic. In matrix notation, the modeling framework just described is equivalent to

28

writing

Y ∼ N (0,Kn +Σn) ,

where Kn is the n×nmatrix with (i, j) coordinate k (xi,xj), and Σn = Diag (r (x1) , . . . , r (xn))

is the variance matrix of the vector of independent noise εi.

Given the kernel function k(·, ·) and data y = (y1, . . . , yn)
⊤, multivariate normal (MVN)

conditional identities provide a predictive distribution at site x : Y (x) | y, which is Gaussian

with parameters

µ(x) = E(Y (x) | y) = k(x)⊤ (Kn +Σn)
−1 y,

σ2(x) = V ar(Y (x) | y) = k(x,x) + r(x)− k(x)⊤ (Kn +Σn)
−1 k(x),

where k(x) = (k (x,x1) , . . . , k (x,xn))
⊤. In R, the mleHetGP function in hetGP package is

used to fit this model with the default Gaussian kernel.

2.5 The Data Generation Process

We aim to obtain optimal DE hyperparameter settings that can be used to generate UPDs.

The Objective Function: Uniform Projection Design Criterion

Proposed by Sun, Wang, and Xu (2019), the uniform projection criterion solely focuses on

two-dimensional projections. This is due to two factor interactions being more important

than three-factor or higher-order interactions. The motivating idea was that although designs

with low discrepancy have good uniformity in the full-dimensional space, they can have bad

projections in lower dimensional spaces, which is undesirable when only a few factors are

active. Thus designs with better projection properties are preferred. Sun, Wang, and Xu

(2019) argued that the uniform projection designs scatter points uniformly in all dimensions

and have good space-filling properties in terms of distance, uniformity and orthogonality.

The uniform projection design criterion is defined using the centered L2-discrepancy.

For an n × m design D = (xik) with s levels from {0, 1, . . . , s − 1}, its (squared) centered

29

L2-discrepancy is defined as

CD(D) =
1

n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 +

1

2
|zik|+

1

2
|zjk| −

1

2
|zik − zjk|

)

− 2

n

n∑
i=1

m∏
k=1

(
1 +

1

2
|zik| −

1

2
|zik|2

)
+

(
13

12

)m

,

where zik = (2xik − s+ 1) /(2s). Then the uniform projection criterion is to minimize

ϕ(D) =
2

m(m− 1)

∑
|u|=2

CD(Du) , (2.9)

where u is a subset of {1, 2, . . . ,m}, |u| denotes the cardinality of u and Du is the projected

design of D onto dimensions indexed by the elements of u. The ϕ(D) is the average centered

L2-discrepancy values of all two-dimensional projections of D.

We implemented the DE and uniform projection criterion in the package UniPro. The

following code generates an n×m UPD with s levels

> UniPro(n, m, s, NP, itermax, pMut, pCR, pGBest, seed)

where NP , itermax, pMut, pCR and pGBest are DE hyperparameters described in Section

2, and seed is an optional seed for random number generators that ensures reproducibility.

As the task of design generation is quite complex, only 3 design sizes are considered. A

UPD of size 30 × 3 is considered as a small and easy task, 50 × 5 as a medium task and

70× 7 as a large and difficult task. We only consider the construction of designs with s = n

so that the resulting UPD is an LHD.

Training and testing data

Designs discussed in Section 2.3 are used to determine the parameter settings for the DE

algorithm hyperparameters. Specifically, we construct five designs: a CCD with 43 runs

(ccd3_43), an OACD with 50 runs (oacd3_50), 50-run random LHD, 50-run maximin LHD,

and 50-run maxpro LHD. All designs have five factors, one for each hyperparameter. Each

30

run corresponds to a setting of the five hyperparameters. The CCD and OACD have 3

levels while the rest have 50 levels. The levels are linearly interpolated within the minimum

and maximum factor values for each hyperparameter. Generating the test data from the 35

factorial, 243-run random LHD, and the 45 factorial seems good enough. This is because the

random LHD enjoys the maximum space-filling property in all one dimensions, while the 35

and 45 factorial designs cover the entire 5-dimensional input space in a uniform fashion.

Given the target design size (n ×m) and a setting of the five hyperparameters, we run

the UniPro function to generate an n × m UPD and the resulting ϕ(D) value defined in

(2.9). This is recorded as the response value for that particular hyperparameter setting and

target design size. For each setting, the DE algorithm is replicated ten times yielding ten

replicates for the response. These are then aggregated to obtain the mean and the standard

deviation of the response. Thus we obtain five training datasets for each target size.

The same procedure is taken to generate the testing dataset with the exception that the

designs used for the hyperparameter setting combinations being a 35 full factorial design, a

random LHD with 243 runs, a combination of these two, and a 45 full factorial design.

Density plots of the response for the testing and training data are presented in Figure 2.3

for the target size 50× 5. All of the distributions are skewed to the right. For a 50× 5 UPD

all the training designs lead to similar minimum ϕ(.) values, around 0.17, whereas different

types of designs lead to different maximum ϕ(.) values. Indeed, all space filling designs have

maximum ϕ(.) values around 0.28, while the factorial designs and the hybrid design have a

maximum ϕ(.) values around 0.34. The narrower range of the ϕ(.) values suggests that the

space filling designs do not explore the entire space of hyperparameters.

Model evaluation

For each training dataset, we fit the three models descibed in Section 2.4 and test on the

four testing datasets. Designs are evaluated by considering their ability to collect informative

data for building a statistical model that specifies the relationship between the response and

31

0.20 0.25 0.30

2
4

6
8

ccd3_43

N = 43 Bandwidth = 0.02005

D
en

si
ty

0.20 0.25 0.30

2
3

4
5

6
7

8

oacd3_50

N = 50 Bandwidth = 0.01977

D
en

si
ty

0.20 0.25 0.30

0
2

4
6

8
10

full_243

N = 243 Bandwidth = 0.01209

D
en

si
ty

0.20 0.25 0.30

0
5

10
15

20

lhd_50

N = 50 Bandwidth = 0.009963

D
en

si
ty

0.20 0.25 0.30

0
5

10
15

20

maximin_50

N = 50 Bandwidth = 0.009911

D
en

si
ty

0.20 0.25 0.30

0
5

10
15

20

maxpro_50

N = 50 Bandwidth = 0.008923

D
en

si
ty

0.20 0.25 0.30

0
5

10
15

20

lhd_243

N = 243 Bandwidth = 0.006109

D
en

si
ty

0.20 0.25 0.30

0
5

10
15

full_243+lhd_243

N = 486 Bandwidth = 0.008657

D
en

si
ty

0.20 0.25 0.30

0
4

8
12

full_1024

N = 1024 Bandwidth = 0.008092

D
en

si
ty

Figure 2.3: Density plots of the ϕ(D) values with target size 50× 5

32

Table 2.1: Comparison of designs and model evaluations with target size 30× 3

(a) Testing on the 35 FFD (b) Testing on the 243 LHD

correlation RMSE correlation RMSE

Design lm km hetGP lm km hetGP lm km hetGP lm km hetGP

ccd3_43 0.88 0.88 0.88 1.51 1.59 1.62 0.65 0.03 0.60 1.62 3.75 1.51

oacd3_50 0.88 0.94 0.93 1.62 1.25 1.32 0.68 0.63 0.61 1.94 2.30 2.22

lhd_50 0.41 0.36 0.34 3.19 3.30 3.27 0.28 0.20 0.19 1.08 1.14 1.14

maximin_50 0.71 0.73 0.74 2.86 3.19 3.03 0.64 0.63 0.64 0.66 0.66 0.65

maxpro_50 0.71 0.62 0.66 2.35 2.97 2.72 0.69 0.71 0.74 0.74 0.69 0.61

(c) Testing on the 35 FFD+243 LHD (d) Testing on the 45 FFD

correlation RMSE correlation RMSE

Design lm km hetGP lm km hetGP lm km hetGP lm km hetGP

ccd3_43 0.84 0.60 0.83 1.57 2.88 1.57 0.84 0.66 0.85 1.55 2.83 1.50

oacd3_50 0.82 0.83 0.83 1.79 1.85 1.83 0.85 0.87 0.87 1.68 1.68 1.68

lhd_50 0.42 0.35 0.36 2.38 2.47 2.45 0.45 0.39 0.37 2.47 2.57 2.56

maximin_50 0.69 0.63 0.68 2.08 2.31 2.19 0.74 0.75 0.76 2.16 2.38 2.27

maxpro_50 0.74 0.60 0.68 1.75 2.15 1.98 0.74 0.67 0.71 1.80 2.22 2.03

the hyperparameters, which is measured by the test root mean squared error (RMSE). The

correlation (ρ) between the response and the predicted together with the RMSE are reported.

2.6 Results and Analysis

Table 2.1(a)(b) and Figure 2.4(a)(b) present comparison of designs and model evaluations

with target size 30×3 for testing the two 243-run data sets. One striking observation is that

the performance of the training data set depends on the nature of the testing data set. The

33

(c) Testing on the 35 FFD+243 LHD (d) Testing on the 45 FFD

(a) Testing on the 35 FFD (b) Testing on the 243 LHD

cc
d

oa
cd lh
d

m
ax

im
in

m
ax

pr
o

cc
d

oa
cd lh
d

m
ax

im
in

m
ax

pr
o

0

1

2

3

0

1

2

3

R
M

SE

hetGP km lm

Figure 2.4: Comparison of RMSE with target size 30× 3

34

composite designs, CCD and OACD, seem to be better when tested on the 35 FFD while

the space filling designs (random LHD, maximin LHD, and maxpro LHD) did better when

tested on the 243-run random LHD. As this does not give a general idea as to which designs

might perform better in general, we invoke the combined data with 486 (runs 35 FFD and

243-run LHD) and the 45 FFD as the testing dataset. Here we see that the composite designs

perform better than the space filling designs; see Table 2.1(c)(d) and Figure 2.4(c)(d). The

50-run random LHD performed the worst in terms of correlation regardless of the testing

data. The correlation is strikingly low whereas the RMSE is high. This might be due to

randomness, but it does show the weakness of the random LHD.

One bizarre observation from Table 2.1(b) is the correlation of 0.03 when using the CCD

as the training design and testing it on the 243-run random LHD. This value is strikingly

lower than any other values given in Table 2.1. No apparent reason could be deduced as to

why this is so. Multiple replications indicated that this is not an error. From all the results,

we can deduce the robustness of OACD over CCD. This gives a reason to use OACD for the

hyperparameter initialization.

With regards to the models, there seems to be no striking observation to be made as

to whether one fitting method performs better than the other two, with exception for one

30 × 3 case when the kriging model fitting to the CCD training data had a much higher

RMSE value than the other cases.

The three models have quite different assumptions. The linear model assumes a poly-

nomial trend and independent random errors with homoskedastic variance. The Kriging

model assumes a stationary covariance structure, that is, the covariance between two points

in the DE hyperparameter surface structure depends only on the distance or spatial lag

between those points, and not on their specific locations within the domain. The HetGP

model assumes a heteroskedastic variance-covariance structure. For the DE algorithm, the

homoskedastic and stationary assumptions are questionable. Due to this, the HetGP model

is preferred to the linear model and the kriging model. However, the linear model is easy

35

to interpret and fits as well as the HetGP model, and from the results, there is no striking

difference between the two. We use the linear model to determine factor importance and

optimal hyperparameter settings.

Tables 2.3-2.4 and Figures 2.9-2.10 in the Appendix show results when the target design

sizes are 50×5 and 70×7, respectively. Looking at the results, apart from the random LHD

with 50 runs, previously stated observations are upheld.

A natural question is why composite designs perform better than the space filling designs.

We perceive that the hyperparameters at the boundaries lead to some extreme cases in this

experiment and the composite designs do capture this phenomena while the space filling

designs do not. Figure 2.5 presents the histograms of the distances from design points to the

design center for all the designs, where each column is rescaled to [−1, 1] and the euclidean

distance from each point to the center of the design is calculated. This gives an insight

as to why the composite designs, OACD and CCD, tend to perform better than the space

filling designs. This is because the composite designs tend to capture information lying at the

boundaries compared to the space filling designs which tend to capture the information lying

at the center of the design. This is confirmed by the notion that three of the hyperparameters

tend to be optimized around their highest level as discussed in the next section.

2.7 Factor Importance and Optimal Settings

The results obtain call for a deeper look into the model and how each factor is involved in

the surface approximation. This enables us to have a better picture of the surface generated

by the DE hyperparameters.

Table 2.2 shows the estimated coefficients of the second-order models based on the four

different training datasets: CCD, OACD, maximin LHD, and maxpro LHD, for the target

size 30 × 3. Looking at the various models above, the model obtained using the maxpro

LHD as the training data is the worst performing model. It has the lowest adjusted R2 of

36

ccd3_43

dd

D
en

si
ty

0.0 1.0 2.0

0
2

4
6

oacd3_50

dd

D
en

si
ty

0.0 1.0 2.0

0
1

2
3

4
5

6
7

full_243

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

1.
0

2.
0

3.
0

lhd_50

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

maximin_50

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

1.
0

2.
0

3.
0

maxpro_50

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

1.
0

2.
0

lhd_243

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

full_243+lhd_243

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

full_1024

dd

D
en

si
ty

0.0 1.0 2.0

0.
0

1.
0

2.
0

3.
0

Figure 2.5: Histogram of the distances from design points to the design center

37

ccd3_43 oacd3_50 maximin_50 maxpro_50

(Intercept) 0.3815∗∗∗ 0.3876∗∗∗ 0.3878∗∗∗ 0.3814∗∗∗

NP −0.0134∗∗∗ −0.0143∗∗∗ −0.0042∗∗∗ −0.0055∗

pMut 0.0020 0.0028 0.0043∗∗∗ 0.0045∗

pGBest −0.0204∗∗∗ −0.0224∗∗∗ −0.0047∗∗∗ −0.0082∗∗∗

pCR −0.0022 −0.0030 0.0004 0.0007

itermax −0.0146∗∗∗ −0.0152∗∗∗ −0.0046∗∗∗ −0.0021

itermax_q 0.0090 −0.0081 0.0011 0.0057

NP_q 0.0119 0.0080 0.0022 −0.0004

pCR_q 0.0071 0.0074 −0.0008 0.0049

pGBest_q 0.0083 0.0192∗ 0.0035 0.0159∗∗∗

pMut_q 0.0150 0.0174∗ 0.0083∗∗∗ 0.0104∗

NP:pMut 0.0058 0.0064∗ −0.0002 −0.0037

NP:pGBest −0.0041 −0.0038 0.0017 0.0006

NP:pCR 0.0002 −0.0007 −0.0006 −0.0002

NP:itermax 0.0049 0.0033 0.0023 0.0052

pMut:pGBest −0.0080∗ −0.0093∗∗∗ −0.0089∗∗∗ −0.0139∗∗

pMut:pCR 0.0203∗∗∗ 0.0197∗∗∗ 0.0042∗∗ 0.0018

pMut:itermax 0.0032 0.0025 −0.0061∗∗∗ 0.0004

pGBest:pCR 0.0034 0.0036 0.0000 0.0051

pGBest:itermax 0.0057 0.0068∗∗ 0.0076∗∗∗ 0.0058

pCR:itermax 0.0037 0.0021 0.0018 0.0040

R2 0.9034 0.9235 0.8970 0.7297

Adj. R2 0.8157 0.8708 0.8260 0.5433

Num. obs. 43 50 50 50

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 2.2: Statistical models
38

only 0.54. This model does not capture important main effects. For example, it indicates

that the number of iterations (itermax) for optimization is not significant. Yet this is well

known to be important. On the other hand, the model obtained by using OACD as the

training dataset performs the best. It has an adjusted R2 of 0.87 and captures important

main effects and interactions. In addition, CCD might be a little worse than OACD because

of the fewer number of points (43) used for training compared to the other models which

used 50 points. The model from the CCD does not identify any of the quadratic effects to

be significant while the other models do.

Looking at the corresponding p-values from the models obtained, it is evident that all five

hyperparameters are important. The main effects of three hyperparameters (NP , itermax

and pGBest) are very significant, whereas the several interactions involving one of the other

two hyperparameters (pMut and pCR) are also very significant. The probability of using

the global best (pGBest) is quite important because its main effect is highly significant in

all the models in Table 2.2. It can also be inferred that the maximum number of iterations

(itermax) and the population size (NP) are important. The linear models indicate that to

minimize the objective function, it is ideal to use a larger pGBest, increase the population

size (NP) and increase the number of iterations (itermax). The population size and the

number of iterations could be constrained by the available budget.

With regards to interactions, all significant interaction terms involve either pMut or

pGBest. The interaction of pMut and pGBest is negative. On the other hand, the inter-

action between pMut and pCR is positive. As this is a minimization problem, this positive

interaction indicate that the two variables need to be either at their low levels or one has to

be low while the other high. Both should not be at their high levels.

To have a better understanding of the interactions, we examine some interaction plots

from the full 45 factorial, shown in Figure 2.6. Here, the number of population (NP),

number of iterations (itermax) and the probability of using global best (pGBest) are held

at their highest levels, i.e., 100, 1500 and 0.95, respectively. These results are consistent

39

0.
40

0.
42

pMut

m
ea

n
of

 v
al

ue

0.05 0.35 0.65 0.95

NP

10
40
70
100

0.
39

0.
41

0.
43

pMut

m
ea

n
of

 v
al

ue
0.05 0.35 0.65 0.95

itermax

500
833
1167
1500

0.
39

0.
41

0.
43

pMut

m
ea

n
of

 v
al

ue

0.05 0.35 0.65 0.95

pCR

0.95
0.65
0.35
0.05

0.
39

0.
42

0.
45

pMut

m
ea

n
of

 v
al

ue

0.05 0.35 0.65 0.95

pGBest

0.05
0.35
0.65
0.95

Figure 2.6: Interaction plots involving pMut based on the 45 FFD and target size 30× 3.

40

pMut
Slice at NP = 100, itermax = 1500, pGBest = 0.93

pC
R

 0.368

 0.369

 0.37

 0.371

 0.372
 0.372

 0.373

 0.373

 0.374

 0.374

 0.375

 0.378

 0.38

 0.38

 0.381

 0.382 0.387

 0.391
 0.392

 0.399
 0.4

0.2 0.6

0.2
0.4

0.6
0.8

30x3 as target

pMut
Slice at NP = 100, itermax = 1500, pGBest = 0.93

pC
R

 0.154 0.
15

6

 0.158

 0.158

 0.16

 0.16

 0.162

 0.162

 0.164

 0.164

 0.166

 0.17

 0.17

 0.176

 0.176

 0.178

 0.184

 0.19

 0.194
 0.212

0.2 0.6

0.2
0.4

0.6
0.8

50x5 as target

pMut
Slice at NP = 100, itermax = 1500, pGBest = 0.93

pC
R

 0.
1

 0.104

 0.108

 0.108

 0.11
 0.11

 0.112

 0.112

 0.114

 0.116

 0.118

 0.118

 0.12

 0.124
 0.126

 0.132
 0.136

 0.148

0.2 0.6

0.2
0.4

0.6
0.8

70x7 as target

pMut
Slice at NP = 100, itermax = 1500, pGBest = 0.93

pC
R 0.363

 0.364

 0.365

 0.366
 0.366

 0.367

 0.367

 0.368

 0.368

 0.369

 0.369

 0.372

 0.374

 0.374

 0.375

 0.376

 0.381

 0.384

 0.385
 0.399

0.2 0.6

0.2
0.4

0.6
0.8

30x3 as target

pMut
Slice at NP = 100, itermax = 1500, pGBest = 0.93

pC
R

 0.15

 0.152
 0.154

 0.154

 0.156

 0.156

 0.158

 0.158

 0.16

 0.162 0.164

 0.166

 0.168

 0.17

 0.176 0.186

 0.192
 0.21

0.2 0.6

0.2
0.4

0.6
0.8

50x5 as target

pMut
Slice at NP = 100, itermax = 1500, pGBest = 0.93

pC
R

 0.
09

6
 0.

09
8

 0.1

 0.102

 0.104

 0.106 0.106

 0.108

 0.108

 0.11

 0.112

 0.114

 0.116

 0.116

 0.122

 0.126
 0.14

 0.142

0.2 0.6

0.2
0.4

0.6
0.8

70x7 as target

Figure 2.7: Contour plots of pMut and pCR while fixing other hyperparameters at high levels. Top

row uses CCD as the training data; bottom row uses OACD as training data.

with the second order models in Table 2.2, where NP , itermax and pGBest are all negative

and significant. Thus they should be set at the highest level to minimize the response

values. These results are consistent for other target design sizes. For pMut and pCR, their

interaction is more complicated as it is positive and thus a further analysis is called for to

determine the preferred levels to set these parameters. We use contour plots to visualize the

two parameters when the other three are held at their highest level.

Figure 2.7 shows the contour plots of pMut and pCR while fixing NP = 100, itermax =

1500 and pGBest=0.95. From the contour plot based on CCD and OACD training data set,

and target size 30× 3, we note that the response value could be minimized by taking values

over the off diagonal. Either a smaller pMut and larger pCR or a larger pMut and a smaller

pCR. This is also the case for target sizes 50×5 and 70×7. Searching the optimal setting is

achieved by varing pMut from 0.05, 0.15, . . . , 0.95 with fixed parameters pCR = 1− pMut.

41

For each setting of pMut and pCR, the DE algorithm is run 100 times to construct 100

designs while fixing NP = 100, itermax = 1500 and pGBest = 0.95. The average response

values are then calculated across these runs, allowing us to identify the optimal settings of

pMut and pCR for each target size. This approach results in the folllowing optimal settings

of (pMut, pCR): (0.95, 0.05), (0.25, 0.75), and (0.15, 0.85) for target size 30× 3, 50× 5 and

70× 7 respectively.

The optimal settings are compared with two DE variants, DE1 and DE4, described by

Stokes, Wong, and Xu (2024). DE1 uses only the global best solution (pGBest = 1), while

DE4 is a hybrid approach with pGBest = 0.5, where the global best, the current agent,

and a random agent are selected with probabilities of 0.5, 0.25, and 0.25, respectively, for

each column independently. Both DE1 and DE4 utilize fixed values of pMut = 0.1 and

pCR = 0.5.

For the comparison, the optimal settings for pMut and pCR, determined for each target

size, are used while maintaining pGBest = 0.95. In all cases, NP = 100 and itermax = 1500

are set, and the DE algorithm is executed 100 times to construct 100 designs for each method.

Figure 2.8 presents boxplots of the ϕ(·) values of these designs. The results demonstrate

that DE with optimal settings (DEoptim) produces significantly better uniform projection

designs compared to the two variants provided by Stokes, Wong, and Xu (2024), confirming

the effectiveness of hyperparameter tuning.

2.8 Conclusion

This paper compared small designs in exploring the response surface of a DE algorithm

hyperparameters. Five numerical hyperparameters were considered: population size, the

number of maximum iterations, probability of crossover, probability of mutation, and prob-

ability of using the global best for mutation. Various composite designs and space-filling

designs for selecting combinations of these hyperparameters were also examined. The per-

formance of a design was evaluated via building a second order model, a kriging model and

42

DE1 DE4 DEoptim

0.
38

0
0.

38
5

0.
39

0
0.

39
5

0.
40

0

(a) 30× 3 as target

DE1 DE4 DEoptim

0.
16

6
0.

16
8

0.
17

0
0.

17
2

0.
17

4

(b) 50× 5 as target

DE1 DE4 DEoptim

0.
10

2
0.

10
4

0.
10

6
0.

10
8

0.
11

0

(c) 70× 7 as target

Figure 2.8: Performance of the DE algorithms under three setttings: DE1, DE4 and DEoptim

(optimal settings)

a heterogeneous GP model. The performance was measured in terms of testing RMSEs and

correlation. The comparison was made based on data simulated using the uniform projection

criterion. Under the settings considered, the comparison demonstrates that OACD and CCD

are the better choices over space-filling designs for exploring the response surface of the DE

algorithm hyperparameters. In addition, the second-order model is simple and works just as

well as the Kriging model and the heterogeneous GP model in this situation. The importance

of tuning the DE algorithm is demonstrated and a simple strategy on determining optimal

hyperparameter settings for constructing UPDs with different target sizes is provided.

While the primary goal of optimizing hyperparameters is to find an optimal hyperpa-

rameter combination that maximizes the overall performance of a learning algorithm, the

paper additionally examines the impact of different design configurations on the effective-

ness of hyperparameter tuning. The insights gained are subsequently used to select the best

hyperparameters, which are then applied by the DE algorithm to construct UPDs.

43

Appendix: Additional tables and figures for target sizes 50× 5 and

70× 7

(c) Testing on the 35 FFD+243 LHD (d) Testing on the 45 FFD

(a) Testing on the 35 FFD (b) Testing on the 243 LHD

cc
d

oa
cd lh
d

m
ax

im
in

m
ax

pr
o

cc
d

oa
cd lh
d

m
ax

im
in

m
ax

pr
o

0

1

2

0

1

2

R
M

SE

hetGP km lm

Figure 2.9: Comparison of RMSE with target size 50× 5

44

Table 2.3: Comparison of designs and model evaluations with target size 50× 5

(a) Testing on the 35 FFD (b) Testing on the 243 LHD

correlation RMSE correlation RMSE

Design lm km hetGP lm km hetGP lm km hetGP lm km hetGP

ccd3_43 0.94 0.96 0.93 1.32 1.17 1.49 0.83 0.82 0.80 1.42 1.81 1.88

oacd3_50 0.94 0.96 0.96 1.42 1.11 1.09 0.83 0.84 0.86 1.59 1.98 1.66

lhd_50 0.83 0.85 0.83 2.35 2.19 2.26 0.89 0.92 0.93 1.18 0.97 0.92

maximin_50 0.87 0.84 0.81 2.03 2.73 2.58 0.92 0.92 0.93 0.90 0.89 0.85

maxpro_50 0.85 0.81 0.82 2.21 2.79 2.62 0.90 0.92 0.92 1.06 0.94 0.93

(c) Testing on the 35 FFD+243 LHD (d) Testing on the 45 FFD

correlation RMSE correlation RMSE

Design lm km hetGP lm km hetGP lm km hetGP lm km hetGP

ccd3_43 0.92 0.92 0.89 1.37 1.53 1.70 0.93 0.93 0.92 1.32 1.40 1.50

oacd3_50 0.91 0.92 0.93 1.51 1.61 1.41 0.92 0.94 0.94 1.45 1.44 1.30

lhd_50 0.86 0.88 0.88 1.86 1.69 1.73 0.87 0.87 0.87 1.87 1.77 1.82

maximin_50 0.90 0.85 0.85 1.57 2.03 1.92 0.90 0.87 0.86 1.61 2.08 1.98

maxpro_50 0.88 0.83 0.85 1.73 2.08 1.97 0.88 0.85 0.86 1.75 2.11 1.99

45

(c) Testing on the 35 FFD+243 LHD (d) Testing on the 45 FFD

(a) Testing on the 35 FFD (b) Testing on the 243 LHD

cc
d

oa
cd lh
d

m
ax

im
in

m
ax

pr
o

cc
d

oa
cd lh
d

m
ax

im
in

m
ax

pr
o

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

R
M

SE

hetGP km lm

Figure 2.10: Comparison of RMSE with target size 70× 7

46

Table 2.4: Comparison of designs and model evaluations with target size 70× 7

(a) Testing on the 35 FFD (b) Testing on the 243 LHD

correlation RMSE correlation RMSE

Design lm km hetGP lm km hetGP lm km hetGP lm km hetGP

ccd3_43 0.93 0.96 0.94 1.25 1.01 1.18 0.81 0.84 0.83 1.46 1.82 1.84

oacd3_50 0.94 0.97 0.97 1.22 0.91 0.86 0.83 0.88 0.92 1.39 1.54 1.18

lhd_50 0.83 0.84 0.82 2.15 2.28 2.18 0.94 0.95 0.95 0.75 0.69 0.72

maximin_50 0.87 0.87 0.81 1.77 2.09 2.14 0.94 0.94 0.93 0.82 0.80 0.86

maxpro_50 0.88 0.88 0.87 1.80 2.01 1.89 0.94 0.95 0.95 0.80 0.71 0.70

(c) Testing on the 35 FFD+243 LHD (d) Testing on the 45 FFD

correlation RMSE correlation RMSE

Design lm km hetGP lm km hetGP lm km hetGP lm km hetGP

ccd3_43 0.90 0.91 0.90 1.36 1.47 1.54 0.92 0.94 0.93 1.28 1.26 1.33

oacd3_50 0.91 0.93 0.95 1.30 1.27 1.03 0.92 0.94 0.95 1.29 1.21 1.06

lhd_50 0.87 0.87 0.87 1.61 1.69 1.62 0.86 0.87 0.86 1.81 1.85 1.79

maximin_50 0.90 0.88 0.86 1.38 1.58 1.63 0.89 0.89 0.86 1.49 1.67 1.75

maxpro_50 0.90 0.89 0.90 1.39 1.51 1.43 0.90 0.90 0.90 1.49 1.58 1.51

47

CHAPTER 3

Evaluating Space-Filling Designs for Prediction and

Sequential Optimization

3.1 Introduction

In optimization and experimental design, selecting the right strategy is key to achieving pre-

cise and efficient results, particularly in methods like Gaussian processes (GP) and Efficient

Global Optimization (EGO). These techniques rely heavily on initial design strategies to

guide optimization and improve predictive accuracy. Although the Latin hypercube design

(LHD) (McKay, Beckman, and Conover 1979) is a commonly used space-filling strategy

for computer experiments, research suggests that alternative designs may outperform it in

certain cases, especially for screening and prediction tasks (Welch et al. 1992). Studies

have explored various design strategies, finding that even subtle differences in design can

significantly affect performance (Chen et al. 2016).

The choice of a design is particularly important in complex systems, including fields

like engineering and machine learning. Prior research has highlighted how design strategies

can impact the performance of Gaussian processes, emphasizing the importance of selecting

appropriate methods for high-dimensional problems (Harari and Steinberg 2014).

In a sequential optimization such as EGO, as optimization progresses, the GP model

is updated with additional sample points. As the process converges, the influence of the

initial design strategy is reduced. Nevertheless, the initial design strategy remains crucial

in determining the speed and accuracy of convergence. Choosing the appropriate design

48

strategy for a given problem is essential for enhancing both predictive performance and

optimization efficiency.

The objective of this paper is to evaluate which space-filling designs offer greater effi-

ciency and robustness for both prediction and optimization. Various types of space-filling

designs have been proposed in literature. They include LHDs, maximin distance designs

(Johnson, Moore, and Ylvisaker 1990; Morris and Mitchell 1995), orthogonal array-based

designs (Tang 1993; Xiao and Xu 2018), uniform designs (Fang et al. 2000), maximum pro-

jection designs (Joseph, Gul, and Ba 2015), and uniform projection designs (Sun, Wang, and

Xu 2019). Traditionally, comparisons have been focused on LHDs and maximin distance

LHDs. With new software developments, we can now compare the performance of other

types of space-filling designs, including maximum projection designs, uniform designs, and

uniform projection designs.

Recent studies, such as those by Shi, Chiu, and Xu (2023), have evaluated space-filling

designs in deep neural network predictions, but our research extends this by focusing on

the performance of space filling designs in optimization as well. We assess both predictive

and minimization capabilities using deterministic test functions, with GP models serving as

surrogates and the expected improvement method guiding optimization.

This study evaluates the effectiveness of various space-filling design strategies, particu-

larly in high-dimensional prediction and optimization tasks. We find that uniform designs

and uniform projection designs, especially those with 16 levels or more, demonstrate consis-

tent robustness and they often outperform other types of space-filling designs. In contrast,

distance-based designs like maximin distance designs underperform in higher dimensions.

These findings emphasize the importance of selecting effective design strategies for high-

dimensional prediction and optimization.

The paper is organized as follows. Section 2 provides background on the GP surrogate

model and active learning techniques. Section 3 reviews various types of space-filling designs,

followed by Section 4, which describes the test functions used. Section 5 presents experi-

49

mental results, and Section 6 concludes with key findings and recommendations for future

optimization challenges.

3.2 Background

3.2.1 The surrogate model

Gaussian Processes (GPs) are well-regarded for their flexibility and accuracy in regression

tasks, providing a probabilistic framework that accounts for uncertainties in predictions

(Snelson 2008). The kriging model, proposed by South African geostatistician Krige (1951),

is taken to be one of the surrogate models used in modelling the data. Kriging is one of the

methods used to interpolate intermediate values, whereby these intermediate values are mod-

eled using GP which is governed by prior co-variances. It provides a probabilistic prediction

of the output variable, as well as an estimate of the uncertainty of the prediction (Chevalier,

Picheny, and Ginsbourger 2014). The kriging predictors interpolating the observations are

assumed to be noise-free (Roustant, Ginsbourger, and Deville 2012). Intermediate interpo-

lated values obtained by kriging are the best linear unbiased predictors.

The kriging model is

Y (x) = µ(x) + Z(x),

where µ(x) is a trend function and Z(x) is a stationary GP with zero mean. The ordinary

kriging assumes that the trend is a constant, i.e., µ(x) = µ, while the universal kriging

assume that the trend is a linear combination of some basis functions.

The stationary GP Z(x) is determined by its covariance structure Cov(xi,xj) = σ2r(xi,xj)

where σ2 is the common variance and r(xi,xj) is the correlation between xi and xj. It is

often assumed that r(xi,xj) is a decreasing function of some distance. Various correlation

functions can be used in the fitting of the kriging model. Here, we make use of the Matérn

5/2 correlation function. We fit an ordinary kriging with the constant trend. Chen et al.

(2016) showed that a regression model more complex than a constant mean either has lit-

50

tle impact on prediction accuracy or is an impediment and that the choice of correlation

function has modest effect, but there is little to separate two common choices, the power

exponential and the Matérn, if the latter is optimized with respect to its smoothness.

Given n design points {x1, . . . ,xn} and the response y = (y1, . . . , yn), let R = (r(xi,xj))

be the n × n correlation matrix. In this setup, for the ordinary kriging, the µ and σ2 are

estimated as follows:

µ̂ =
1⊤R−1y

1⊤R−11
, σ̂2 =

1

n
(y − µ̂1)⊤R−1(y − µ̂1) (3.1)

For any point x, let r(x) = (r(x,x1), . . . , r(x,xn))
⊤. Then the best linear unbiased

predictor (BLUP) of Y (x) is

ŷ(x) = µ̂+ r(x)⊤R−1(y − µ̂1), (3.2)

where µ̂ is given in (3.1). The variance of the BLUP is

s2(x) = σ2

[
1− r(x)⊤R−1r(x) +

(1− 1⊤R−1r(x))2

1⊤R−11

]
(3.3)

and σ2 can be estimated from the data as given in (3.1).

3.2.2 The expected improvement (EI)

The expected improvement is a measure of how promising a particular set of inputs is in

terms of improving the objective function value. To quantify this measure, the objective

function needs to be evaluated at various points, yet these evaluations are quite costly. Of-

ten when the evaluation of the objective function is costly, the need of specific strategies to

optimize these functions arises. In most of these evaluations, the non-availability of deriva-

tives prevents the use of gradient based techniques. Similarly, the use of meta-heuristics

(e.g., genetic algorithm) is compromised due to severely limited evaluation budgets (Rous-

tant, Ginsbourger, and Deville 2012). In order to curb these limitations, Jones, Schonlau,

and Welch (1998) proposed the use of kriging model as the surrogate model to estimate the

51

expected improvement of selecting a new set of inputs over the current best solution. When

carrying out minimization for example, the improvement at a new point x is

I(x) = max(ymin − Y (x), 0),

where ymin = min(y1, . . . , yn) is the existing minimum value. The new point will bring a

positive improvement if Y (x) is less than ymin, and an improvement of 0 otherwise. The

expected improvement (EI) is simply the expectation of I(x), that is,

E[I(x)] = E [max(ymin − Y (x), 0)] .

Under the ordinary kriging, Y (x) follows a normal distribution with mean ŷ(x) and

variace s2(x) given in (3.2) and (3.3), respectively. Then one can express EI in a closed form

(Jones, Schonlau, and Welch 1998):

E[I(x)] = (ymin − ŷ(x))Φ
(
ymin − ŷ(x)

s(x)

)
+ s(x)ϕ

(
ymin − ŷ(x)

s(x)

)
,

where Φ and ϕ are the cumulative and probability density function of the standard nor-

mal distribution, respectively. The EI criterion has important properties for sequential

exploration: It is null at the already visited sites, and non-negative everywhere else with

a magnitude that is increasing with s(x) and decreasing with ŷ(x) (Jones, Schonlau, and

Welch 1998). This guides the selection of the next set of inputs to evaluate. It encourages

the exploration of regions with high uncertainty (large predicted variances) and exploitation

of regions with potentially high rewards (small predicted means). The mean function and

variance function of the Gaussian process are typically smooth as they are constructed based

on a combination of smooth kernel functions and observed data. The cumulative distribution

function Φ(z) and the probability density function ϕ(z) of the standard normal distribution,

are also smooth functions. These functions are well-defined and infinitely differentiable for

all real values of z. Therefore, combining these smooth components in the closed form EI

expression results in a smooth function overall. This smoothness property of the closed form

EI enables the use of gradient-based optimization methods, in particular, the L-BFGS (Lim-

52

ited memory Broyden-Fletcher-Goldfarb-Shanno) optimization algorithm, to search for the

point of maximum expected improvement efficiently within a specified constrained domain.

3.2.3 The Efficient Global Optimization (EGO) Algorithm

This optimization method sequentially builds upon the EI criterion. EGO enhances this

modeling process by intelligently selecting the most informative data points for evaluation.

Rather than passively using a fixed dataset, EGO iteratively queries the objective function,

focusing on areas that maximize information gain. This targeted approach reduces the

number of expensive evaluations needed, accelerating the learning process. EGO (Jones,

Schonlau, and Welch 1998) leverages the surrogate GP model to find the global optimum

of the objective function. Using EI as the acquisition function, EGO balances the trade-off

between exploring new regions of the design space and exploiting known promising areas.

This results in a more efficient optimization process that converges on optimal solutions with

fewer evaluations.

Algorithm 1 summarizes the procedure. Starting with an initial design X (typically, a

Latin hypercube design), EGO sequentially visits a current global maximizer of EI and up-

dates the metamodel at each iteration, including hyperparameters re-estimation (Roustant,

Ginsbourger, and Deville 2012). This is done until convergence or until the budgets are

exhausted.

53

Algorithm 1 EGO algorithm
Require: X, f = function to be minimized, nnew=number of points to add

1: Evaluate f at the design points X; y = f(X)

2: Build a kriging model based on X and y

3: for i in 1 to nnew do

4: Find x∗ ← argmaxx E[I(x)]

5: Evaluate y∗ ← f(x∗)

6: Update X and y with the new point x∗ and response y∗

7: Update the kriging model

8: end for

9: Return X,y

The EGO algorithm has been shown to be effective and has been adopted in many

computer experiments and are nowadays considered as reference global optimization methods

in dimensionm ≤ 10 in cases where the number of objective function evaluations is drastically

limited (Jones 2001).

3.3 Space-Filling Designs

We briefly review various types of space-filling designs.

Latin Hypercube Design (LHD): Based on McKay (1992)’s Latin hypercube sam-

pling, it divides the range of each factor into bins of equal size, where n also corresponds

to the number of samples to be generated resulting in a total of nm combinations where

m is the number of factors being considered. The n samples are then randomly generated

such that for all one-dimensional projections, there will be only one sample in each bin. In

this paper, the random Latin hypercube sampling was used to generate the random LHD

with levels 0, · · · , n− 1. In R, this was accomplished using the ‘lhs’ package. The following

command generates an LHD with n runs and m factors.

54

> floor(lhs::randomLHS(n, m) * n)

Maximin Distance Designs: Introduced by Johnson, Moore, and Ylvisaker (1990),

this design aims at spreading out the design points in the design space by maximizing the

minimum distance between any two design points. It thus tends to place a large proportion

of points at the corners and on the boundaries of the design space. Mathematically, this can

be formulated as follows. Suppose we want to construct an n-run design in m factors, say

D = {x1 . . . ,xn}, where xi represnts the ith run. The maximin distance design optimizes

the function below:

max
D

min
i<j

d (xi,xj) , (3.4)

where d (xi,xj) is the distance between the points xi and xj. Here we use the Euclidean

distance, i.e., d (xi,xj) =
√∑m

l=1(xil − xjl)2.

Maximin LHD: Introduced by Morris and Mitchell (1995) these designs combine the

principles of Latin Hypercube Sampling (LHS) and the maximin distance criterion to op-

timize the spread of sample points across the design space. This hybrid approach ensures

that points are uniformly distributed in each dimension, while also maximizing the mini-

mum distance between any two points in the design. For computational purpose, Morris and

Mitchell (1995) also reformatted the maximin criterion as a minimization problem given as:

min
D

ϕp(D) =

{
n−1∑
i=1

n∑
j=i+1

1

dp (xi,xj)

}1/p

(3.5)

where p > 0 is chosen large enough so that the resulting design achieves maximin distance.

We use the SLHD package to generate maximin LHDs because they are better than those

generated from the lhs package using the function maximinLHS. The following command

generates a maximin LHD with n runs and m factors.

> SLHD::maximinSLHD(t = 1, n, m)$Design - 1

Maximum Projection Design (Maxpro Design): Although maximin LHDs ensure

good space-filling in m dimensions and uniform projections in each dimension, their pro-

jection properties in two to m − 1 dimensions are not known (Joseph, Gul, and Ba 2015).

55

By the effect sparsity principle (Wu and Hamada 2011), only a few factors are expected to

be important. To curb this, Joseph, Gul, and Ba (2015) proposed the maximum projection

(MaxPro) criterion:

min
D

ψ(D) =

{
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1∏m
l=1 (xil − xjl)

2

}1/m

. (3.6)

They argued that the design that minimizes ψ(D) tends to maximize its projection capability

in all sub spaces of factors, and thus named these designs as maximum projection designs.

We use the MaxPro package to generate a MaxPro LHD with n runs and m factors.

> MaxPro::MaxProLHD(n, m)$Design * n - 0.5

Uniform Design (UD): These designs seek to scatter points uniformly on the domain.

This is often achieved by minimizing the centered L2-discrepancy of the design (Fang et al.

2000). For an n ×m design D = (xik) with s levels, denoted by 0, · · · , s − 1, its (squared)

centered L2-discrepancy is defined as

CD(D) =
1

n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 +

1

2
|zik|+

1

2
|zjk| −

1

2
|zik − zjk|

)

− 2

n

n∑
i=1

m∏
k=1

(
1 +

1

2
|zik| −

1

2
|zik|2

)
+

(
13

12

)m

,

(3.7)

where zik = (2xik − s+ 1) /(2s). We use the R package UniDOE to generate UDs. The

following command generates a UD with n runs, m factors, and s levels.

> UniDOE::GenUD(n, m, s)$final_design - 1

The UniDOE package uses the threshold accepting algorithm to generate UDs, which often

takes an excessive time in comparison with the construction of maximin and MaxPro LHDs.

Thus we only used UDs for prediction, not optimization.

The UniDOE package was removed from the CRAN (Comprehensive R Archive Network)

repository in 2021 as it was no longer maintained and problems were not corrected on time.

Though one can still be able to install it from github.

56

Uniform Projection Design (UPD): Proposed by Sun, Wang, and Xu (2019), this

design solely focuses on two-dimensional projections. This is due to two factor interactions

being more important than three-factor or higher-order interactions. The motivating idea

is that although designs with low discrepancy have good uniformity in the full-dimensional

space, they can have bad projections in lower dimensional spaces, which is undesirable when

only a few factors are active. Thus it is preferable to have a design with better projection

properties. The uniform projection criterion is defined using the centered L2-discrepancy as

follows:

ϕ(D) =
2

m(m− 1)

∑
|u|=2

CD(Du) , (3.8)

where u is a subset of {1, 2, . . . ,m}, |u| denotes the cardinality of u and Du is the projected

design of D onto dimensions indexed by the elements of u. The ϕ(D) is the average centered

L2-discrepancy values of all two-dimensional projections of D. The UPD scatters points

uniformly in all dimensions and have good space-filling properties in terms of distance,

uniformity and orthogonality (Sun, Wang, and Xu 2019). We use the UniPro package and

the Differential Evolution algorithm to generate UPDs. The following command generates

a UPD with n runs, m factors, and s levels.

> UniPro::UniPro(n, m, s)$xbest - 1

Note that the SLHD and MaxPro packages can only generate LHDs while the UniDOE and

UniPro packages can generate balanced multi-level UDs and UPDs as long as the number of

runs is a multiple of the number of levels.

3.4 Test Functions

To test the efficiency of various space-filling designs, two methods were analyzed. First the

efficiency of the designs was analysed via its predictability efficiency. Here the objective was

to minimize the prediction root mean square error (RMSE) to ensure accurate and reliable

57

predictions. The second method was to look at designs through the problem of minimization

convergence. Under these two methods, various test functions were taken into consideration.

3.4.1 Prediction Functions

Currin: This is a simple two dimensional polynomial function evaluated on the square [0, 1]2

used for illustrating methods of modeling computer experiment output (Currin et al. 1991).

It has the form:

f(x) = 4.90 + 21.15x1 − 2.17x2 − 15.88x21 − 1.38x22 − 5.26x1x2.

Circuit: This is a six-dimensional function that models an output transformerless push-

pull circuit (Surjanovic and Bingham 2013) with the response being the midpoint voltage.

It takes the following form:

f(x) =
(Vb1 + 0.74) β (Rc2 + 9)

β (Rc2 + 9) + Rf

+
11.35Rf

β (Rc2 + 9) + Rf

+
0.74Rfβ (Rc2 + 9)

(β (Rc2 + 9) + Rf)Rc1

,

where Vb1 =
12Rb2

Rb1 +Rb2

.

The variables are of different domains: Rb1 ∈ [50, 150], Rb2 ∈ [25, 70], Rf ∈ [0.5, 3], Rc1 ∈

[1.2, 2.5], Rc2 ∈ [0.25, 1.2] and β ∈ [50, 300].

Piston: This is a seven-dimensional function that models the circular motion of a piston

within a cylinder. It involves a chain of nonlinear functions with the response f(x) being

the cycle time (Surjanovic and Bingham 2013). It takes the following form:

f(x) = 2π

√
M

k + S2 P0V0

T0

Ta

V 2

,

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta − A

)
and A = P0S + 19.62M − kV0

S
,

where M ∈ [30, 60] is piston weight (kg), S ∈ [0.005, 0.020] is piston surface area (m2),

V0 ∈ [0.002, 0.010] is initial gas volume (m3), k ∈ [1000, 5000] is spring coefficient (N/m),

P0 ∈ [90000, 110000] is atmospheric pressure (N/m2), Ta ∈ [290, 296] is ambient temperature

(K) and T0 ∈ [340, 360] is filling gas temperature (K).

58

Borehole: This is a 8-dimensional function that models water flow through a borehole

with the response being water rate flow in m3/yr (Surjanovic and Bingham 2013). It takes

the following form:

f(x) =
2πTu (Hu −Hl)

ln (r/rw)
(
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

) .
The variable names and their corresponding domains are given as follows:

Domain Variable Name

rw ∈ [0.05, 0.15] radius of borehole (m)

r ∈ [100, 50000] radius of influence (m)

Tu ∈ [63070, 115600] transmissivity of upper aquifer (m2/yr)

Hu ∈ [990, 1110] potentiometric head of upper aquifer (m)

TI ∈ [63.1, 116] transmissivity of lower aquifer (m2/yr)

HI ∈ [700, 820] potentiometric head of lower aquifer (m)

L ∈ [1120, 1680] length of borehole (m)

Kw ∈ [9855, 12045] hydraulic conductivity of borehole (m/yr)

G-function: This is an m-dimensional function designed by Ilya M. Sobol to study the

sensitivity of complex mathematical models and is particularly useful for benchmarking and

validating global sensitivity analysis methods. It has the form:

f(x) =
m∏
i=1

|4xi − 2|+ ai
1 + ai

,

where x = (x1, x2, . . . , xm) is a vector of input variables, each typically in the range [0, 1] and

ai = i/2−1, for all i = 1, . . . ,m, are coefficients that determine the sensitivity of the function

to the ith input variable. Larger values of ai indicate less sensitivity to the corresponding

input.

59

Wing weight: This is a function that models a light aircraft wing with the response

being the wing’s weight.

f(x) = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04
(

100tc
cos(Λ)

)−0.3

(NzWdg)
0.49 + SwWp,

where SW ∈ [150, 200] is wing area (ft2), Wfw ∈ [220, 300] is weight of fuel in the wing (lb),

A ∈ [6, 10] is aspect ratio, Λ ∈ [−10, 10] is quarter-chord sweep (degrees), q ∈ [16, 45] is

dynamic pressure at cruise
(
lb/ft2

)
, λ ∈ [0.5, 1] is taper ratio, tc ∈ [0.08, 0.18] is aerofoil

thickness to chord ratio, NZ ∈ [2.5, 6] is ultimate load factor, Wdg ∈ [1700, 2500] is flight

design gross weight (lb) and Wp ∈ [0.025, 0.08] is paint weight
(
lb/ft2

)
.

Oakley & O’hagan (2004): This is a 15-dimensional function that take the following

form:

f(x) = aT
1 x+ aT

2 sin(x) + aT
3 cos(x) + xTMx,

where the a-coefficients are chosen so that 5 of the input variables contribute significantly

to the output variance, 5 have a much smaller effect, and the remaining 5 have almost no

effect on the output variance. Values of the coefficient vectors a1,a2 and a3, and the matrix

M, are available at Surjanovic and Bingham (2013).

Rosenbrock: The Rosenbrock function is a classic m-dimensional optimization prob-

lem, also known as the Valley or banana function. The global optimum lays inside a long,

narrow, parabolic shaped flat valley (Molga and Smutnicki 2005). To find the valley is triv-

ial, however convergence to the global optimum is difficult and hence this problem has been

frequently used to test the performance of optimization algorithms (Picheny, Wagner, and

Ginsbourger 2013). For comparison, the modified 4d version presented by Picheny, Wagner,

and Ginsbourger (2013) was used. This modified version has the following form:

f(x) =
1

3.755× 105

[
3∑

i=1

(
100

(
x̄i+1 − x̄2i

)2
+ (1− x̄i)2

)
− 3.827× 105

]
, (3.9)

where x̄i = 15xi − 5 for all i = 1, . . . , 4. The test region is usually restricted to 0 ≤ xi ≤ 1

for i = 1, . . . , 4.

60

x
y

z

(a) 3D plot

 5

 5
 5

 10

 10 10

 15
 15 15

 20

 20

 20

 25

 25

 30
 30

 35

 35

 40

 40

 45

 45

 50

 50

 55

 55

 60

 60

 65

 65

 70

 70

 75

 75

 80

 80

 85

 85

 90

 90

 95

 95

 100

 100

 105

 105

 110

 110

 115

 115

 120

 120

 125

 130

 130

 135

 135

 140

 140

 145

 145

 150

 150 155

 160
 165

 170

 175

 175

 180

 180

 185
 190

 195

 200

 225

−5 0 5 10

0
5

10
15

(b) Contour plot

Figure 3.1: Branin Function

3.4.2 Minimization Functions

Branin function: This is a well-known 2-dimensional function with multiple local minima

and global minimum introduced by Dixon and Szegö (1978). It is often used to test opti-

mization algorithms due to its complexity and multi-modal nature. The Branin function has

the form

f(x) = f(x1, x2) = a
(
x2 − bx21 + cx1 − r

)2
+ s(1− t) cos (x1) + s

where the typical parameter values are a = 1, b = 5.1/ (4π2) , c = 5/π, r = 6, s = 10 and

t = 1/(8π). The function is usually evaluated over the square x1 ∈ [−5, 10], x2 ∈ [0, 15].

Within this domain the function has 3 global minima: x∗ = (−π, 12.275), (π, 2.275) and

(9.42478, 2.475), with the minimum function value being f (x∗) = 0.397887. The contour

plot of the function is as shown in Figure 3.1.

Camel Six-Hump function: This is a 2-dimensional function with 6 local minima and

2 global minima evaluated on the rectangle x1 ∈ [−3, 3] and x2 ∈ [−2, 2]. It has the form:

f(x) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 +

(
−4 + 4x22

)
x22.

The global minima is f (x∗) = −1.0316 which occurs at x∗ = (0.0898,−0.7126) and (−0.0898, 0.7126).

61

x
y

z

(a) 3D plot

 0
 0

 0
 0

 2

 4

 6

 8 10

 12
 14

 16 18

 20

 22

 24

 26

 28

 30

 32

 34

 36 38

 40 42

 44

 46

 48

 48

 48 50

 50

 52

 52

 54

 54

 56
 56

 5
8 58

 60

 60

 6
2

 6
2

 64

 6
4

 6
6

 66

 68

 6
8

 7
0

 70

 72

 7
2

 74

 74

 76

 76

 7
8

 78

 80

 8
0

 82

 82

 84

 84

 86

 86
 88

 90

 90

 92

 9
4

 9
6

 98

 1
04

 108
 110

 112

 1
12

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

(b) Contour plot

Figure 3.2: Camel Six-Hump Function

Goldstein-Price function: This is a 2-dimensional function with several local minima

evaluated on the rectangle xi ∈ [−2, 2] for i = 1, 2. It has the form:

f(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]
×
[
30 + (2x1 − 3x2)

2 (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)]
.

(3.10)

The global minima is f (x) = 3 at x = (0,−1)⊤.

Ackley function: The Ackley function is a widely used function for testing optimization

algorithms (Adorio and Diliman 2005; Molga and Smutnicki 2005). In its two-dimensional

form, it is characterized by a nearly flat outer region, and a large hole at the center. The

function poses a risk for optimization algorithms, particularly hill climbing algorithms, as

they often get trapped in one of its many local minima (Surjanovic and Bingham 2013). The

Ackley function has the following form:

f(x) = −a exp

−b
√√√√ 1

m

m∑
i=1

x2i

− exp

(
1

m

m∑
i=1

cos (cxi)

)
+ a+ exp(1)

with the recommended values for a, b and c being a = 20, b = 0.2 and c = 2π. It is

usually evaluated on the hypercube xi ∈ [−32.768, 32.768] for all i = 1, · · · ,m with a global

minimum of f(x) = 0 at xi = 0 for i = 1, · · · ,m.

62

x

y

z

(a) 3D plot

 10000

 10000

 10000

 20000

 2
00

00

 20000

 20000

 20000

 30000

 30000

 30000

 30000

 4
00

00

 40000

 4
00

00

 50000

 50000

 50000

 60000

 6
00

00

 70000

 7
00

00

 8
00

00

 80000 90000

 1e+
05

 1e+05

 1e+
05

 110000

 110000

 120000 130000
 140000 150000

 160000

 1
60

00
0

 2e+05 210000

 220000

 230000

 2
30

00
0

 270000
 3e+05

 310000

 4e+05 410000
 420000

 540000
 620000 630000
 850000 930000

−2 −1 0 1 2

−
2

−
1

0
1

2

(b) Contour plot

Figure 3.3: Goldstein-Price Function

x

y

z

2D Ackley function

x

y

z

Zoom on 2D Ackley function

Figure 3.4: Ackley function

63

x

y

z

(a) 2D levy Function

Figure 3.5: Levy function

Levy function: This is a m-dimensional function often used as a test function for

optimization. It is usually evaluated on the hypercube xi ∈ [−10, 10] ∀i = 1, . . . ,m and has

the global minimum of f(x∗) = 0 at x∗ = (1, . . . , 1)⊤. It is defined as

f(x) = sin2 (πw1) +
m−1∑
i=1

(wi − 1)2
[
1 + 10 sin2 (πwi + 1)

]
+ (wm − 1)2

[
1 + sin2 (2πwm)

]
,

where wi = 1 + (xi − 1)/4 for i = 1, . . . ,m.

Michalewicz Function: This is a multimodal test function with m! local optima for

m dimensions. It is characterized by its steep valleys and ridges. The “steepness” of the

valley or edges is defined by the parameter p (Molga and Smutnicki 2005). For larger p it is

quite difficult to obtain the optimum as the function values for points in the space outside

the narrow peaks give very little to no information on the location of the global optimum.

At the same time an increase in dimensionality increases the difficulty due to the increased

number of local minima. The function is defined as:

f(x) = −
m∑
i=1

sin (xi)

[
sin

(
ix2i
π

)]2p
with p usually set at p = 10 and the domain restricted to xi ∈ [0, π] for i = 1, · · · ,m. The

64

x

y

z

(a) 2D Michalewicz function for p = 1

x

y
z

(b) 2D Michalewicz function for p = 10

Figure 3.6: Michalewicz function

global minimum is approximated to be f(x) = −1.8013 for m = 2, f(x) = −4.6877 for

m = 5 and f(x) = −9.6602 for m = 10.

65

3.5 Numerical Experiments

This section presents the numerical results from applying Gaussian Process (GP) to the

prediction functions and Efficient Global Optimization (EGO) to the minimization functions.

In order to determine the effectiveness of the different initial designs, both prediction and

optimization functions were taken into consideration.

We first generate different types of space-filling designs using various packages as de-

scribed in Section 3.3 and examine their performance and relationship under different crite-

ria. For each type of design, we ran the corresponding algorithm to construct 80× 8 LHDs

200 times. Table 3.1 shows the mean and median of the various design criteria for each de-

sign type. The design criteria are the maximin LHD criterion (3.5) with p = 15, the MaxPro

criterion (3.6), the centered L2-discrepancy (3.7), the UPD criterion (3.8), and the absolute

average correlation criterion (3.11) defined below:

ρave =
2

m(m− 1)

m∑
k=1

m∑
l=k+1

|
∑n

i=1 (xik − x̄·k) (xil − x̄·l)|√∑n
i=1 (xik − x̄·k)

2∑n
i=1 (xil − x̄·l)

2
. (3.11)

For all criteria, smaller values represent better designs.

As expected, each type of design performs the best under the corresponding criterion used

to generate the design. For example, maximin LHD have smaller ϕp(D) values and MaxPro

designs have smaller ψ(D) values. In addition, random LHDs are worse than all other types

of space-filling designs. Regarding to the ρave criterion, UPDs and uniform designs (ud) are

considerably better than other types of designs. Figure 3.7 gives a visualization where UPDs

are fairly comparable to the uniform designs. These two types of designs have the highest

correlation. From Table 3.1 and Figure 3.7, we are capable to determine that uniform designs

and UPDs are more robust than other types of designs under various design criteria. We

have examined cases with different design sizes, and the conclusions are similar.

66

ψ(D) ∼ ϕp(D)

0.03 0.04 0.05 0.06

50
10

0
15

0
20

0
25

0
30

0

φp(D)

ψ
(D

)

maximin
MaxPro
randomLHD
ud
UniPro

100CD ∼ ϕp(D)

0.03 0.04 0.05 0.06

1.
0

1.
5

2.
0

2.
5

φp(D)

10
0C

D
maximin
MaxPro
randomLHD
ud
UniPro

100ϕ(D) ∼ ϕp(D)

0.03 0.04 0.05 0.06

0.
01

0.
02

0.
03

0.
04

φp(D)

10
0φ

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

ρave(D) ∼ ϕp(D)

0.03 0.04 0.05 0.06

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

φp(D)

ρ a
ve

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

100CD ∼ ψ(D)

50 100 150 200 250 300

1.
0

1.
5

2.
0

2.
5

ψ(D)

10
0C

D

maximin
MaxPro
randomLHD
ud
UniPro

100ϕ(D) ∼ ψ(D)

50 100 150 200 250 300

0.
01

0.
02

0.
03

0.
04

ψ(D)

10
0φ

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

ρave(D) ∼ ψ(D)

50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

ψ(D)

ρ a
ve

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

100ϕ(D) ∼ 100CD

1.0 1.5 2.0 2.5

0.
01

0.
02

0.
03

0.
04

100CD

10
0φ

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

ρave(D) ∼ 100CD

1.0 1.5 2.0 2.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

100CD

ρ a
ve

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

ρave(D) ∼ 100ϕ(D)

0.01 0.02 0.03 0.04

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

100φ(D)

ρ a
ve

(D
)

maximin
MaxPro
randomLHD
ud
UniPro

Figure 3.7: Comparison of 100 80× 8 LHDs using various criteria

67

Table 3.1: Comparison of 100 80× 8 designs using various criteria

design summary ϕp(D) ψ(D) 100CD 100ϕ(D) ρave

maximin mean 0.0231 90.5940 1.2676 0.0215 0.0289

median 0.0231 83.5325 1.2616 0.0214 0.0289

MaxPro mean 0.0281 32.5730 1.2028 0.0182 0.0483

median 0.0280 32.3859 1.1962 0.0181 0.0481

ud mean 0.0269 35.0794 0.7129 0.0088 0.0072

median 0.0266 34.6913 0.7131 0.0088 0.0071

UniPro mean 0.0326 44.4252 0.9240 0.0084 0.0054

median 0.0321 43.6042 0.9215 0.0084 0.0054

randomLHD mean 0.0402 125.7954 2.1808 0.0377 0.0883

median 0.0385 116.8441 2.1881 0.0379 0.0891

68

3.5.1 Prediction results

The test functions are evaluated on various space-filling LHDs of sizes 64× 15 and 128× 31.

In addition, UPDs with 8 and 16 levels are also constructed and used for model fitting

and prediction with the purpose of evaluating whether the number of levels affects the

performance. All designs are scaled to the function domain accordingly. Since the functions

are of various dimensions, yet the designs used are of a pre-specified dimension, the unused

dimensions are considered to be inert and serve as ‘noise’. This is quite common in practice

whereby some inert factors are involved in an experimental study. For example, the borehole

function has 8 variables, thus we have 7 inert variables when the design has 15 columns.

For each design type, an ordinary kriging model with a constant trend using the matérn

correlation function with ν = 5/2 is then fitted. To evaluate the performance of different

types of designs, the normalized root mean square error is used. This is given by

Normalized RMSE =

[
N−1

∑N
i=1 {ŷ (xi)− y (xi)}2

N−1
∑N

i=1 {ȳtrain − y (xi)}2

]1/2
,

where x1, . . . ,xN are the inputs of the test dataset, y(xi) is the true response, ŷ(xi) is the

predicted value from the GP model, and ȳ is the mean of the responses in the training

dataset. This criterion is related to R2 in regression, but it measures performance for a new

test dataset and smaller values are desirable (Chen et al. 2016). We used a random LHD

with N = 10, 000 runs as the test dataset.

In order to reduce the randomness effect, the process is replicated 200 times. The repli-

cation of the design generation is done via row and column permutations. For each design

type, except for the random LHD, 100 designs are generated and the best design among

these 100 generated designs determined by each design type criterion is chosen as the can-

didate design. Using row and column permutation of the best design for each design type,

100 designs are thus generated. This method of design generation is chosen as it is almost

infeasible to generate uniform designs of size 64×15 and 128×31 200 times. In particular to

generate a 10× 3 uniform design with 10 levels using a machine equipped with a 13th Gen

69

Intel Core™ i7-1360P 16-core CPU running at 2.2 GHz, it takes an average of 5.8 seconds

while a machine with Intel® Xeon® Platinum 8160 CPU with 48 cores running at 2.10 GHz

takes an average of 5.77 seconds. In order to use the row and column permutation, a fairly

large enough design is to be used. For example to generate a 80×8 UD design with 80 levels

requires ≈ 439 minutes (7.32 hours) just for one design in the first machine, while needing

432 minute (7.2 hours) in the second machine. This shows as to why permutation is the best

way to do the design generation.

Figure 3.8 shows the normalized RMSEs for the various test functions using various

64 × 15 designs. The mean and median RMSEs are also obtained and are reported in

Table 3.2. A general conclusion is that the use of uniform designs and uniform projection

designs in prediction is efficient as they result in minimal normalized RMSEs for most of

the test functions, compared to the other types of designs. This could be attributed to their

robustness in nature. On the other hand, the random LHD is often the worst as expected

with one exception. For the 9-dimensional G-function, the maximin, MaxPro and uniform

LHDs perform worse than the random LHD whereas all three of the UPDs perform better

than the random LHD. In particular the 8-level UPD (upd8q) performs the best in this case.

Among all space-filling designs, the UPD appears to be the most robust as it is never

worse than the random LHD. Also it is better than the maximin and MaxPro designs with

one exception for the Wingweight function, where the maximin design is better. In addition,

the 16-level UPD (upd16q) performs better than the 8-level UPD except for the case of the

G-function. At the same time 16-level UPD performs better than the 64-level UPD. This

gives the notion of the importance of the number of levels. A fair enough number of levels in

comparison to the number of runs is important in prediction. While in physical experiments,

3-5 levels are enough, in computer experiments, more levels are needed.

The conclusions reached are further cemented by observing the results obtained when

using 128 × 31 design size for training and predicting on the test dataset with 10,000 runs.

Here 8-level UPD is not used as it produces many outliers which would distort the visual

70

Borehole

0.08

0.10

0.12

0.14

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

Circuit

0.125

0.150

0.175

0.200

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

Currin

0.125

0.150

0.175

0.200

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

Gfunction

0.6

0.8

1.0

1.2

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

OakleyOhagan

0.21

0.24

0.27

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

Piston

0.20

0.25

0.30

0.35

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

4D Rosenbrock

0.30

0.35

0.40

0.45

0.50

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

Wingweight

0.100

0.125

0.150

0.175

0.200

0.225

lhd maximin maxpro ud upd upd16q upd8q
design

N
or

m
al

iz
ed

 R
M

S
E

Figure 3.8: Normalized RMSEs for various test functions and 64× 15 designs

71

Table 3.2: Means and medians of normalized RMSEs for 64× 15 designs

fun lhd maximin maxpro ud upd upd16q upd8q

Borehole mean 0.1168 0.1048 0.1053 0.0936 0.0986 0.0990 0.1119

median 0.1171 0.1044 0.1049 0.0930 0.0987 0.0986 0.1117

Circuit mean 0.1519 0.1394 0.1397 0.1286 0.1337 0.1308 0.1417

median 0.1526 0.1383 0.1386 0.1280 0.1335 0.1298 0.1408

Currin mean 0.1622 0.1487 0.1480 0.1380 0.1333 0.1273 0.1326

median 0.1606 0.1473 0.1479 0.1372 0.1330 0.1273 0.1328

Gfunction mean 0.8092 0.8618 0.8328 0.8540 0.7795 0.7830 0.7423

median 0.7996 0.8704 0.8237 0.8757 0.7642 0.7598 0.7167

OakleyOhagan mean 0.2461 0.2358 0.2329 0.2284 0.2277 0.2258 0.2300

median 0.2460 0.2364 0.2324 0.2278 0.2276 0.2257 0.2279

Piston mean 0.2351 0.2127 0.2195 0.2101 0.2137 0.2146 0.2254

median 0.2317 0.2103 0.2172 0.2065 0.2113 0.2149 0.2227

Rosenbrock mean 0.4134 0.4051 0.3943 0.3708 0.3672 0.3583 0.3655

median 0.4115 0.4053 0.3908 0.3699 0.3669 0.3580 0.3659

Wingweight mean 0.1520 0.1275 0.1367 0.1244 0.1337 0.1310 0.1355

median 0.1496 0.1268 0.1352 0.1239 0.1334 0.1309 0.1352

comparison of the results. The 16-level UPD still has the best performance in most of the

test functions; see Table 3.3 and Figure 3.9.

72

Borehole

0.12

0.14

0.16

0.18

0.20

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Circuit

0.150

0.175

0.200

0.225

0.250

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Currin

0.25

0.50

0.75

1.00

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Gfunction

0.7

0.8

0.9

1.0

1.1

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

OakleyOhagan

0.28

0.32

0.36

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Piston

0.200

0.225

0.250

0.275

0.300

0.325

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

4D Rosenbrock

0.36

0.40

0.44

0.48

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Wingweight

0.25

0.50

0.75

1.00

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Figure 3.9: Normalized RMSEs for various test functions and 128× 31 designs

73

Table 3.3: Means and medians of normalized RMSEs for 128× 31 designs

fun lhd maximin maxpro ud upd upd16q

Borehole mean 0.1624 0.1451 0.1511 0.1366 0.1425 0.1408

median 0.1625 0.1449 0.1508 0.1365 0.1426 0.1406

Circuit mean 0.1920 0.1742 0.1798 0.1676 0.1709 0.1630

median 0.1908 0.1739 0.1784 0.1672 0.1704 0.1631

Currin mean 0.1960 0.1818 0.1815 0.1730 0.1747 0.4376

median 0.1949 0.1809 0.1799 0.1724 0.1744 0.1582

Gfunction mean 0.7697 0.8550 0.8074 0.8682 0.7724 0.7297

median 0.7642 0.8336 0.7894 0.8677 0.7599 0.7119

OakleyOhagan mean 0.3166 0.2769 0.3006 0.2752 0.2865 0.2797

median 0.3156 0.2763 0.2988 0.2748 0.2854 0.2794

Piston mean 0.2699 0.2504 0.2601 0.2475 0.2535 0.2483

median 0.2703 0.2510 0.2593 0.2475 0.2525 0.2478

Rosenbrock mean 0.4257 0.4204 0.4105 0.3916 0.3975 0.3724

median 0.4248 0.4189 0.4102 0.3909 0.3977 0.3720

Wingweight mean 0.2037 0.1748 0.1900 0.1756 0.1821 0.3112

median 0.2027 0.1745 0.1879 0.1752 0.1819 0.1669

From Figure 3.9 we see that the Currin and the wing weight functions produce a few

large RMSE values, likely due to the failure of the optimization routine when fitting the

74

Currin

0.150

0.175

0.200

0.225

0.250

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Wing Weight

0.150

0.175

0.200

0.225

0.250

lhd maximin maxpro ud upd upd16q
design

N
or

m
al

iz
ed

 R
M

S
E

Figure 3.10: Normalized RMSEs for Currin and Wing Weight functions without the outliers

kriging model. These outliers distort the display of the boxplots even though the other

RMSE values are generally concentrated below the RMSE value of the other functions. For

a fair comparison, we got rid of these outliers and plotted the rest as shown in Figure 3.10.

75

Branin

1

2

3

4

5

5 10 15 20
nstep

y
Camel Six

−1.0

−0.8

−0.6

−0.4

−0.2

5 10 15 20
nstep

y

Goldstein-Price

25

50

75

100

125

5 10 15 20
nstep

y

maximin MaxPro randomLHD UniPro

Figure 3.11: Minimization path for 2 dimensional test functions

3.5.2 Minimization results

We consider four types of space-filling designs for sequential minimization: random LHDs,

maximin LHDs, MaxPro LHDs and UPDs. The test functions are evaluated at n0 =

10 × m initial points, apart from the Branin function which is evaluated at n0 = 10 ini-

tial points. These functions are then minimized using the EGO approach. We use the

function fastEGO.nsteps in the R DiceOptim package to sequentially add a point at a time

with n1 steps. For each step, the cumulative minimum is recorded. This process is replicated

200 times.

Figure 3.11 shows the average minimal values at each step, together with the 2 stan-

dard error bar, of the resulting minimization path with n1 = 20 added points for three

2-dimensional test functions. For the Branin function, MaxPro designs and UPDs yield

smaller y-values at early stages than maximin and random LHDs. The difference gradu-

ally diminishes over the sequential optimization process. After 15 additional points, all the

methods have the same y-value indicating that the function minimum has been achieved.

The result is similar for the Camel Six function. For the Goldstein-Price function, the UPD

76

maintains its advantage over others even after 20 steps.

The results presented above are not unique. They are determined by the computation of

the first y-value from the initial design. The design that initially produces the least function

value tends to generally converge faster to the function minimum, as the sequential points

majorly depend on the expected improvement with influence from the design type. This

indicates that the choice of the initial design for optimization is quite significant. A poor

initial design will yield poor objective values at the initialization stage which will lead to

slower convergence.

As the number of iterations (nsteps) increases, the influence of the initial design type

on the optimization process diminishes. Initially, the choice of design strategy can play a

significant role in guiding the search for the global optimum. However, as more sample

points are iteratively added based on the acquisition function, the optimization process

becomes increasingly driven by the updated GP model. This model incorporates all collected

data points, thereby reducing the relative impact of the initial design. Consequently, the

optimization converges towards the global optimum, and differences attributed to the initial

design strategy become less pronounced.

Though this is the case, in high dimensional setup, or using complicated functions, the

number of sequentially added points needed for convergence might be quite large. With a

limited budget, the effect of initial design could be profound.

Figure 3.12 shows the minimization path for 3 other test functions with varying dimen-

sions from 4 to 8. One striking observation is the decreasing efficiency of using maximin

designs when the dimension increases. At lower dimensions, maximin designs fairly com-

pete with the other designs but as the dimensions increase to 6 and 8, it is observed that

the maximin designs do poorly. This is even after increasing the number of steps to 30 or

more. We also note that MaxPro designs are worse than random LHDs and UPDs for the

Ackley and Levy function. Overall, UPDs are robust and perform well under all situations,

especially in high dimensions and complicated test functions.

77

4D Ackley

10

12

14

16

5 10 15 20
nstep

y

4D Levy

1

2

3

4

5

5 10 15 20
nstep

y

4D Michalewicz

−2.4

−2.2

−2.0

−1.8

5 10 15 20
nstep

y

6D Ackley

9

11

13

15

17

0 10 20 30
nstep

y

6D Levy

4

8

12

16

0 10 20 30
nstep

y

6D Michalewicz

−3.0

−2.5

0 10 20 30
nstep

y

8D Ackley

14

16

18

20

0 10 20 30
nstep

y

8D Levy

10

20

30

0 10 20 30
nstep

y

8D Michalewicz

−3.5

−3.0

0 10 20 30
nstep

y

maximin MaxPro randomLHD UniPro

Figure 3.12: Minimization path for test functions with varying dimensions

78

3.6 Concluding Remarks

In conclusion, the numerical evaluation of Gaussian Process (GP) and Efficient Global Op-

timization (EGO) techniques reveal that the uniform design (UD) and uniform projection

design (UPD) stand out for their robustness and efficiency. When compared across vari-

ous design criteria, the UD and UPD consistently demonstrate superior performance. The

extensive experimentation, including the generation of 100 designs and their permutations,

highlighting the efficiency of the uniform designs in reducing normalized root mean square

error in prediction tasks. Notably, the UPD with 16 levels proved to be particularly effective,

underscoring the importance of having a sufficiently large number of levels in design, yet it

is not necessary to use LHDs with the number of levels being equal to the number of runs

when the latter is large.

The comparative analysis of different initial designs for EGO further confirmed the effi-

cacy of UPDs. As evidenced by the results, UPDs converged more quickly to the function

minimum compared to other design methods. Although the differences in optimization out-

comes among design strategies became less pronounced with more iterations, the initial

design choice had a significant impact at early stages, which could prolong to later stages

when we encounter complicated optimization tasks in high dimensions. This observation

underscores the value of selecting a good design strategy for enhancing the efficiency of

the optimization process. In conclusion, UPDs are simple to construct, offering a feasible

solution for large-scale, high-dimensional prediction and optimization tasks.

However, the results also revealed some limitations, particularly with distance-based

designs like the maximin criterion in high-dimensional spaces. One reason as to why this

might be the case is because of the use of Euclidean distance as the criterion to be optimized

by the maximin design yet it is well documented that Euclidean distance is not a good

metric in high dimensions. In high dimensions, the natural intuition which comes from our

three-dimensional world fails and thus do not apply (Domingos 2012). Taking an example

of Gaussian distribution, in high dimensions, most of the mass of a multivariate Gaussian

79

distribution is not near the mean, but in an increasingly distant “shell” around it; and

most of the volume of a high dimensional orange is in the skin, and not the pulp. If a

constant number of points is distributed uniformly in a high-dimensional hypercube, beyond

some dimensionality most points are closer to a face of the hypercube than to their nearest

neighbor. When a hypersphere is approximated by inscribing it in a hypercube, in high

dimensions almost all the volume of the hypercube is outside the hypersphere (Domingos

2012). At the same time, in high dimensions, the ratio between the nearest and farthest

points using Euclidean distance metric approaches 1, i.e., the points essentially become

uniformly distant from each other (Aggarwal, Hinneburg, and Keim 2001). Thus, as all

points are essentially uniformly distant from each other, the distinction is meaningless. This

indicates as to why the Euclidean distance would therefore not be a good measure of distance

in high dimensions. Since the spreading of points using the maximin design is done using

the Euclidean distance,the design will experience the issues highlighted above making it

inefficient as compared to the other methods. Perhaps this phenomenon also impacts the

MaxPro designs, making the efficiency of the MaxPro design to decline as the dimensions

increases as seen in Figure 3.12. Though this is not known.

As the UPD focusing on 2-dimensional uniformity, it is not highly impacted by the curse

of dimensionality. Thereby retaining its high performance in comparison to the distance

based designs with regards to minimizing high dimensional functions. The inefficacy of the

maximin design in higher dimensions, due to the limitations of Euclidean distance met-

rics, suggests that such distance-based methods may not be well-suited for complex high-

dimensional problems. Conversely, the UPD’s use of the centered L2-discrepancy criterion

allows it to mitigate the curse of dimensionality, maintaining its effectiveness across various

dimensions. This highlights the need for careful consideration of design criteria and metrics

in high-dimensional optimization tasks to ensure accurate and efficient results.

80

CHAPTER 4

Kriging Based Sequential Region Shrinkage with EGO

for Hyperparameter Optimization

4.1 Introduction

Black-box optimization is a key challenge in many fields, including engineering, finance, and

machine learning. It involves finding the optimal solution to a complex function that is

either expensive or impossible to evaluate analytically. Formally, this can be expressed as:

x∗ = argmin
x∈Ω

f(x),

where Ω represents the search space of x. Optimizing f(x) is a non-trivial task, typically

requiring either derivative-based or derivative-free methods. Derivative-based methods de-

pend on the calculation of the objective function’s derivatives, making them suitable when

f(x) is smooth and differentiable, and its derivatives are easy to compute. However, in many

real-world scenarios, the function is unknown or difficult to differentiate, making derivative-

free methods preferable. These methods are especially useful in cases of black-box functions,

that is, where the objective is not directly accessible.

Hyper-parameter Optimization (HPO) is a classic example of a black-box optimization

problem, where the goal is to select the best set of hyper-parameters for a learning algorithm.

These hyper-parameters are typically set before training and they control various aspects of

the model. They include the learning rate, regularization, and the choice of the optimization

algorithm. The model’s performance can vary significantly based on the hyper-parameters

chosen (Feurer and Hutter 2019), with results sometimes fluctuating drastically depending on

81

the architecture (Liu, Simonyan, and Yang 2018). Several methods are widely used for HPO,

including grid search, random search (Bergstra and Bengio 2012), and Bayesian optimization

(Pelikan, Goldberg, Cantú-Paz, et al. 1999).

Grid search systematically evaluates the model’s performance for every combination of

hyper-parameters within a predefined grid, choosing the configuration that yields the best

result. Random search, on the other hand, samples hyper-parameters randomly from a

predefined distribution and selects the best-performing configuration. Bayesian optimization

constructs a probabilistic model of the objective function by combining prior knowledge

with previously evaluated configurations. The posterior model is then optimized using an

acquisition function, and the process is repeated until no further improvements can be made

(Brochu, Cora, and De Freitas 2010).

While grid search and random search are simple and easy to implement, they become

computationally expensive, especially in high-dimensional hyper-parameter spaces. Bayesian

optimization is typically more efficient and effective for HPO (Snoek, Larochelle, and Adams

2012). One way to enhance the efficiency of Bayesian optimization is through the use of a

surrogate model, which approximates the objective function and directs the search toward

promising regions of the hyper-parameter space (Jones, Schonlau, and Welch 1998).

Bayesian optimization has gained popularity in solving black-box optimization problems

due to its ability to handle noisy and non-convex functions, which are common in real-world

scenarios. The probabilistic surrogate model used in Bayesian optimization is typically a

Gaussian Process (GP), which is a flexible and a powerful tool for modeling complex functions

(Rasmussen and Williams 2006). GPs can predict the value of the objective function at

unexplored points while also providing an estimate of the uncertainty of these predictions.

In this paper, we propose a Kriging-based region shrinkage method that builds on Effi-

cient Global Optimization (EGO) (Jones, Schonlau, and Welch 1998). The method sequen-

tially refines the region of interest (ROI) based on a proportion of most informative data

points, progressively shrinking the search space by reducing the size of the interval for each

82

hyper-parameter at each step. This approach allows us to focus more precisely on promis-

ing regions. By using EGO, the method balances exploration and exploitation within the

domain.

The effectiveness of the proposed method is demonstrated using several well-known physi-

cal test functions from the Virtual Library of Simulation Experiments (Surjanovic and Bing-

ham 2013). We compare our approach to existing optimization methods and show that

the proposed derivative-free method achieves results on par with or exceeding expectations.

Empirical results on DE hyperparameter optimization for constructing uniform projection

designs show that our method requires fewer computational resources while performing com-

parably to, or better than, traditional hyper-parameter tuning methods such as grid search

and random search. Although the theoretical guarantees are limited, the empirical results

indicate strong potential for practical applications.

4.2 Background Theories

4.2.1 Related Work

In pursuit of minimizing loss, numerous optimization techniques based on the Bayesian

approach have been developed. While some methods emphasize dimensionality reduction

to enhance computational efficiency, the majority focus on reducing the size of the search

space, commonly referred to as variable interval size reduction. The work presented here

falls within this category.

Among the various strategies explored are the Controlled Gutmann-RBF (CG-RBF)

method (Regis and Shoemaker 2007), the Trust Region Implementation in Kriging-based

optimization with Expected Improvement (TRIKE) (Regis 2016), and the Trust-Region

framework for Efficient Global Optimization (TREGO) (Diouane et al. 2023). Although

many of these methods confine the search to a local region, the TREGO method alternates

between local and global searches, returning to the global scale search after a successful local

83

search.

In TREGO, a local search is conducted when an iteration fails to achieve meaning-

ful progress, meaning there is no significant improvement over the current best solution.

Repeated failures progressively reduce the size of the local search space, while successful

iterations trigger a global search. However, this process can lead to slow convergence.

To address this, we propose a modification: successful iterations will continue to focus

on a reduced local search space, while unsuccessful iterations will initiate a global search.

Here, a successful iteration is defined as one in which a point is found with a lower function

value than any previously evaluated. We show that this proposed method leads to faster

convergence compared to existing techniques, particularly TREGO.

4.2.2 The Efficient Global Optimization (EGO) Algorithm

The Efficient Global Optimization (EGO) algorithm builds upon the Expected Improvement

(EI) criterion to sequentially explore the objective function. It begins with an initial design

(typically a Latin hypercube) and iteratively visits the global maximizer of the EI criterion.

At each step, the Kriging surrogate model is updated, including the re-estimation of hy-

perparameters, based on newly sampled points. This process continues until a convergence

criterion is met or the budget of function evaluations is exhausted (Roustant, Ginsbourger,

and Deville 2012). Algorithm 2 summarizes the procedure.

The EGO algorithm has proven to be highly effective and is frequently used in optimiza-

tion problems where the number of objective function evaluations is severely limited. It is

considered as one of the reference methods for global optimization in moderate-dimensional

problems (typically d ≤ 10) (Jones 2001).

84

Algorithm 2 EGO algorithm
Require: X, f = function to be minimized, nnew=number of points to add

1: Evaluate f at the design points X; y = f(X)

2: Build a kriging model based on X and y

3: for i in 1 to nnew do

4: Find x∗ ← argmaxx E[I(x)]

5: Evaluate y∗ ← f(x∗)

6: Update X and y with the new point x∗ and response y∗

7: Update the kriging model

8: end for

9: Return X,y

4.2.3 The Trust Region EGO (TREGO)

Proposed by Diouane et al. (2023), Trust Region Efficient Global Optimization (TREGO)

operates by searching within a dynamically adjusted trust region centered at the current best

solution. The algorithm identifies new candidate points by optimizing within this region and

evaluates the objective function. If the result is a success, the region expands, controlled by

α. An iteration is deemed successful when there is a significant improvement on the result

obtained from the current result by a margin. On the other hand, if poor, it contracts,

controlled by β. After each evaluation, the surrogate model is updated with the new data,

and the trust region is resized accordingly. This process balances global exploration and

local refinement until stopping criteria are met. The stopping criteria mostly used is the

maximum iterations. The default values used for α and β are 1/0.9 and 0.9 respectively.

Algorithm 3 summarizes the procedure. A forcing function is used to determine whether

a search is deemed successful or not. The forcing function ρ(σ) is a positive continuous

non-decreasing function such that ρ(σ)→ 0 when σ → 0.

85

Algorithm 3 Simplified Trust-Region EGO (TREGO)
1: Input: Initial DoE X0, function evaluations y0, constants α, β, dmin, dmax, initial step-

size σ0, initial best point x∗
0 ∈X0

2: Output: Best found point x∗k
3: Initialize: k = 0

4: while stopping criterion is not met do

5: Global Phase

6: xglobal = argmax
x∈Ω

E (I(x)) /* Find global candidate */

7: Update Xk+1 := Xk ∪ xglobal
k and yk+1 := yk ∪ f(x

global
k)

8: if f(xglobal) ≤ f(x∗
k)− ρ(σk): then /* Successful global step */

9: Update best point: x∗
k+1 = xglobal

10: Increase step size: σk+1 = ασk

11: else

12: Local Phase

13: Define trust region Ωk = {x ∈ Ω | dminσk ≤ ∥x− x∗
k∥ ≤ dmaxσk}

14: xlocal = argmax
x∈Ωk

E (I(x)) /* Find local candidate */

15: Update Xk+1 := Xk ∪ xlocal
k and yk+1 := yk ∪ f(xlocal

k)

16: if f(xlocal) ≤ f(x∗
k)− ρ(σk): then /* Successful local step */

17: Update best point: x∗
k+1 = xlocal

18: Increase step size: σk+1 = ασk

19: else

20: Keep current best point: x∗
k+1 = x∗

k

21: Reduce step size: σk+1 = βσk

22: end if

23: end if

24: Increment iteration counter: k = k + 1

25: end while

return Best found point x∗
k

86

4.3 The Proposed Algorithm

One key feature of the Efficient Global Optimization (EGO) algorithm is its ability to balance

exploration and exploitation to efficiently search the solution space. By exploring broadly,

EGO can uncover regions that are more likely to contain the global optimum, which is

especially useful when dealing with complex and multimodal objective functions. However,

this global search strategy can be computationally expensive, particularly when the search

space is large or evaluating the objective function is time-consuming. In some cases, a

localized search focusing on a smaller region may be more efficient.

To address these challenges, we propose a sequential region shrinkage method that alter-

nates between a localized search and a global search. The global search evaluates whether

further improvements can be made beyond the current local search region. This approach

aims to strike a balance between efficient local searches and the broader exploration required

for finding the global optimum. Algorithm 4 summarizes the procedure.

4.3.1 Region of Interest (ROI) Determination

In this method, a controlled parameter ρ determines the proportion of the top 100ρ% of data

points to use in calculating the new ROI. In the first iteration, the entire domain Ω serves as

the initial ROI. EGO adds nnew points to the data set X and y, constituting a global search.

Afterward, the top 100ρ% of data points, based on a predefined ρ value, are selected. The

ROI’s boundaries are defined as the minimum and maximum of each dimension from these

selected points. The ROI is then shifted to center it at the best-performing point, focusing

the subsequent local search on this smaller region.

Figure 4.1 illustrates the ROI determination process.

In Figure 4.1(a), the contours represent the entire function domain Ω. We start with 10

points, selected using a maximin Latin hypercube design. These are represented as the black

dots in Figure 4.1. Then 5 additional points are added using EGO. These additional points

87

Algorithm 4 Sequential Region Shrinkage Method
Require: X, f , Ω = domain, nnew, ρ

1: Evaluate f at the design points X; y ← f(X)

2: Build a Kriging model based on X and y

3: Set the region of interest (ROI) Ω′ ← Ω (initial domain)

4: while stopping criteria not met do

5: Run EGO within the domain Ω′ to obtain the next nnew points

6: Update X and y with the new points

7: Update the Kriging model

8: Determine the new ROI Ω′ ← ROI(X,y,Ω, ρ)

9: if small or no improvement (unsuccessful iteration) then

10: Restore the original domain: Ω′ ← Ω

11: end if

12: end while

13: Return X, y

Algorithm 5 Determine Region of Interest (ROI)
Require: X, Ω = domain, y, ρ.

1: τ ← indices of the top 100ρ% of y.

2: Select points in X associated with τ .

3: Find the best point x∗ that minimizes the objective function

4: Determine the lower and upper bounds for points associated with τ ; set Lj := mini∈τ xij

and Uj := maxi∈τ xij for each j = 1, . . . , d

5: Set D := (U− L)/2, where U = (U1, . . . , Ud) and L = (L1, . . . , Ld).

6: Set Ω′ = {x∗ −D,x∗ +D} ∩ Ω.

7: return Ω′.

88

(a) Original function domain Ω with 5 points

added using EGO

(b) Initial ROI containing the top 30% of points

(c) Centering the ROI at the best point (labeled

1)

(d) Constraining the ROI to the initial domain

Ω

(e) ROI to be used for the next iteration

Figure 4.1: ROI determination using the top 30% of total points. The top points are labeled 1-5.

89

are indicated by the red squares. Taking ρ = 0.3, the best 30% of the 15 points, labeled 1-5

and indicated by green stars in decreasing order, are then used to define the new ROI, as

shown in Figure 4.1(b). The ROI is centered around the best-performing point (labeled 1)

in Figure 4.1(c). Since part of the ROI extends outside the original domain, it is constrained

within Ω, resulting in the boxed region in Figure 4.1(d) and 4.1(e). This becomes the new

ROI, Ω′, for the first iteration.

Next, a local search is performed within the newly defined ROI, and m points are added

that maximize the Expected Improvement (EI). With each additional point, the Kriging

model is updated to reflect the newly sampled points. If a point significantly improves upon

the current minimum, the iteration is considered successful, and a new ROI is determined

using the updated top 100ρ% of data points. Otherwise, the method reverts to a global

search.

This iterative process continues until a predefined stopping criterion is met, such as

reaching a specified tolerance level or a maximum number of function evaluations. The

stopping criterion can be adapted depending on whether the true optimum is known. If the

optimum is known, we stop when the tolerance error is reached. Otherwise, we allow for a

default of three global search iterations based on empirical tests, which showed that by the

third global search, convergence typically occurs.

The region bounding strategy is designed to leverage the fact that a well-spaced design

has a high likelihood of sampling points near the optimal region. By focusing the search in

the most promising areas and selectively switching to global searches when necessary, the

proposed method efficiently balances exploration and exploitation. As a result, it achieves the

optimal solution with fewer function evaluations compared to standard EGO and TREGO

algorithms.

90

4.3.2 Difference between RSO and TREGO

TREGO uses EGO to do optimization within the function domain. Once a point is obtained

whose value is below the current function minimum by a given threshold, the iteration is

considered to be successful. The next optimization is to run EGO in the entire function

domain. In the case of an unsuccessful iteration, the region is shrunk by a factor of beta.

The shrunk region is then centered in the current function minimum, where EGO is then

run. The local optimization is only done after the global iteration is unsuccessful. This is

different from the RSO since in the RSO, the region is determined by the top 100ρ% of the

data so far used. Also the RSO reverts to the global search after an unsuccessful iteration.

4.4 Numerical Experiments

To illustrate the efficiency of the method, various test functions of various dimensions from

the Virtual Library of Simulation Experiments (Surjanovic and Bingham 2013) were taken

into consideration. A maximin Latin hypercube design with n = 5d runs was selected as the

initial design. The results were compared to those obtained by EGO and TREGO.

The test functions used and their settings are elaborated below:

1. Branin function (d = 2)

f(x1, x2) =

(
x2 −

5

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos x1 + 10

with x1 ∈ [−5, 10], x2 ∈ [0, 15]. The global minimum f(x∗) = 0.397887 are located at

x∗ = (−π, 12.275), (π, 2.275) and (9.42478, 2.475).

2. Six-hump camel function (SixCamel) (d = 2)

f(x1, x2) = 4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + 4x42

with −2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1. It has six extreme points, among them the global

minimum are x∗ = (0.0898,−0.7126), (−0.0898, 0.7126) and f(x∗) = −1.0316.

91

3. Goldstein-Price function (d = 2)

f(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]
×
[
30 + (2x1 − 3x2)

2 (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)]

with −2 ≤ x1, x2 ≤ 2. The global minimum f(x∗) = 3 is at point x∗ = (0,−1) with

several local minima around it.

4. Hartmann functions with d = 3 (Hartmann3), d = 4 (Hartmann4) and d = 6

(Hartmann6)

f(x) = −
4∑

i=1

αi exp

(
−

d∑
j=1

Aij (xj − Pij)
2

)
,

where 0 ≤ xi ≤ 1, i = 1, 2, · · · , d and α = (1.0, 1.2, 3.0, 3.2)T . The elements of matrices

A,P and the global minimum are given in Table 4.1.

Functions with dimensions 6 or less were considered to be low dimensional functions. In

the optimization, we used error between the function value evaluated at the best point and

the known global optimum. We were interested in the number of function evaluations used

by the algorithm to converge. This was replicated 20 times. The results were compared

to the ones obtained when running EGO alone and when using TREGO. The results are

reported in Table 4.2.

From the results above, we note that the proposed method converges with fewer func-

tion evaluations than both EGO and TREGO in all but one instance. This efficiency not

only conserves computational resources but also is particularly beneficial in resource-limited

scenarios. The exploitation characteristics of our method contribute to this performance.

Notably, while our method generally outperform EGO and TREGO in all instances, for

the Hartmann3 function and tolerance of 10−4, TREGO performs slightly better than the

proposed method.

Additionally, Figure 4.2 shows the minimization path for different test functions using

the 3 methods, along with the 2 standard error bars at each step of the minimization path.

92

Table 4.1: Parameters for the Hartmann functions

Functions Parameters

Hartmann3

x∗ = (0.1146, 0.5556, 0.8525)

f(x∗) = −3.86278

A =



3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 35


;P = 10−4



3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828



Hartmann4

x∗ = (0.1873, 0.1906,

0.5566, 0.2647)

f(x∗) = −3.135474

A =



10.0 0.05 3.0 17.00

3.0 10.00 3.5 8.00

17.0 17.00 1.7 0.05

3.5 0.10 10.0 10.00

1.7 8.00 17.0 0.10

8.0 14.00 8.0 14.00


;P = 10−4



1312 2329 2348 4047

1696 4135 1451 8828

5569 8307 3522 8732

124 3736 2883 5743

8283 1004 3047 1091

5886 9991 6650 381



Hartmann6

x∗ = (0.2017, 0.1500, 0.4769

0.2753, 0.3117, 0.6573)

f(x∗) = −3.32237

A =



10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14



P = 10−4



1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381



93

Table 4.2: Number of function evaluations to achieve the desired tolerance level

mean median

Function tolerr EGO TREGO RSO EGO TREGO RSO

10−3 35.75 28.75 26.25 35 30 25
Branin

10−4 42 37.25 32.5 40 40 30

10−3 43.50 41.00 33.75 45 40 35
SixCamel

10−4 48.75 46.75 40.75 50 50 40

10−3 67 52.5 41 70 57.5 35
Goldstein-Price

10−4 70 70 42.5 70 70 37.5

10−3 23.4 21.2 20.8 24 20 20
Hartmann3

10−4 30.8 25.75 26.4 26 22 24

10−3 46.0 44.0 40.0 44 42 36
Hartmann4

10−4 63.6 55.2 53.6 46 44 40

10−3 60.5 58.5 49.5 64 61 42.5
Hartmann6

10−4 67.5 62 52 70 67.5 47.5

94

(a) Branin function (b) SixCamel function

(c) Goldstein-Price function (d) Hartmann3 function

(e) Hartmann4 function (f) Hartmann6 function

Figure 4.2: Comparison of 3 methods for different test functions
95

The log mean error analysis indicate that the proposed method rapidly decreases the error

rate before stabilizing, signifying a faster convergence compared to the alternatives. In

constrained resource settings, where only 15-25 new observations can be made, our method

achieves a log10 error of at most −3 across all tested functions.

4.5 Application in Generating Uniform Projection Designs

We consider tuning the DE algorithm from UniPro package to generate uniform projection

designs (UPDs). As the DE algorithm is stochastic, the generation is replicated 10 times

and the mean of the 10 criterion values obtained. This is done to minimize variation. This

is considered to be the objective function to be optimized.

As described in Chapter 2, the DE algorithm has five hyperparameters: NP , itermax,

pCR, pMut and pGBest. We use EGO, TREGO and RSO to tune DE hyperparameters.

Starting with a random Latin hypercube of size 5d = 25, we obtain the minimization path

by sequentially adding 25 points. This is replicated 20 times. Figure 4.3 shows the min-

imization path and Figure 4.4 shows the boxplots of the final optimal objective values for

three methods. The RSO method tends to generally provide smaller objective values than

the EGO or TREGO method.

We also take a look at the distribution of the optimal hyperparameter settings from the

20 replicates in Figure 4.5 obtained from the RSO method, where NP and itermax are

rescaled to [0, 1]. This determines as to whether the optimal region is the same point or

we are converging to a local optimum. The 30 × 3 target design indicates that the process

does not converge to the same value each time. On the other hand, from the 50 × 5 and

70 × 7 target designs, we see that the values for NP and itermax are concentrated at the

upper vertex. Finally, from the 70 × 7 target design, we find out that the values for pCR

and pGBest are also concentrated at the upper end. However, none of the target designs

give information about where the probability of mutation (pMut) should lie. We examine

the correlations to determine as to whether there exists a two way correlation among the

96

method EGO RSO TREGO

0.3848

0.3852

0.3856

0.3860

0.3864

0 10 20
nstep

y

(a) 30× 3

0.1680

0.1685

0.1690

0.1695

0.1700

0.1705

0 10 20
nstep

y
(b) 50× 5

0.104

0.106

0.108

0.110

0 10 20
nstep

y

(c) 70× 7

Figure 4.3: Minimization path for 3 methods in the construction of UPDs using DE

EGO RSO TREGO

0.
38

40
0.

38
45

0.
38

50
0.

38
55

0.
38

60
0.

38
65

(a) 30× 3

EGO RSO TREGO

0.
16

70
0.

16
75

0.
16

80
0.

16
85

(b) 50× 5

EGO RSO TREGO

0.
10

38
0.

10
42

0.
10

46
0.

10
50

(c) 70× 7

Figure 4.4: Comparison of optimal results from 3 methods

NP itermax pMut pCR pGBest

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 30× 3

NP itermax pMut pCR pGBest

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) 50× 5

NP itermax pMut pCR pGBest

0.
2

0.
4

0.
6

0.
8

1.
0

(c) 70× 7

Figure 4.5: Distribution of optimal hyperparameter settings

97

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
P

ite
rm

ax

pM
ut

pC
R

itermax

pMut

pCR

pGBest

(a) 30× 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
P

ite
rm

ax

pM
ut

pC
R

itermax

pMut

pCR

pGBest

(b) 50× 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
P

ite
rm

ax

pM
ut

pC
R

itermax

pMut

pCR

pGBest

(c) 70× 7

Figure 4.6: Correlation plot of the optimal hyperparameter settings

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pMut

pC
R

(a) 30× 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pMut

pC
R

(b) 50× 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pMut

pC
R

(c) 70× 7

Figure 4.7: Scatter plots showing the relation between pMut and pCR

parameters.

From the correlation plots in Figure 4.6, we do notice that pMut is highly correlated

to pCR. These two hyperparameters could be optimized simultaneously while holding the

other 3 hyperparameters (NP , itermax, pGBest) at their highest level. The justification

for this is due to the fact that NP and itermax could be thought of as the budget size. For

the probability of using global best, this value should be high since we would want to be as

close as possible to the global minimum. Figure 4.7 shows the scatter plots of pMut and

pCR. These two hyperparameters are intriguing as they are highly negatively correlated.

Having set these three at their maximum level, an optimization is carried out on the

two remaining parameters, pMut and pCR. The results obtained do not differ from the 5

hyperparameter optimization, though takes a bit longer since NP and itermax have been

98

Table 4.3: Optimal hyperparameter settings for each target design with 1024-run LHD

NP itermax pMut pCR pGBest Average ϕ(·) Median ϕ(·)

30× 3 95 917 0.63 0.19 0.72 0.3878 0.3879

50× 5 98 1485 0.40 0.38 0.88 0.1688 0.1687

70× 7 84 1408 0.11 0.92 0.86 0.1064 0.1064

held at their highest level.

Finally, we compare the RSO method with other methods in generating UPDs. We

consider the random search method, the grid search method, the DE1 and DE4 methods

provided by Stokes, Wong, and Xu (2024), and the DEoptim method based on the second

order model in Chapter 2. The random search used a random Latin hypercube design with

1024 runs and the grid search method used a 45 full factorial design. The optimal factor

combinations obtained for the random search and grid search are given in Tables 4.3 and

4.4, respectively.

DE1 always uses the global best (i.e., pGBest = 1), while DE4 is a hybrid version with

pGBest = 0.5, which randomly chooses the global best, the current agent and a random

agent with probability 50%, 25%, and 25% for each column independently. Both DE1 and

DE4 use NP = 100, itermax = 1500, pMut = 0.1 and pCR = 0.5. The DEoptim method

from Chapter 2 uses NP = 100, itermax = 1500, pGBest = 0.95 and optimal settings of

(pMut, pCR) as (0.95, 0.05), (0.25, 0.75), and (0.15, 0.85), respectively, for target size 30×3,

50 × 5 and 70 × 7. Table 4.5 gives the optimal hyperparameter settings obtained from the

RSO method.

For a given target size and each method, we generate 100 UPDs using the respective

optimal factor combination and compute their objective ϕ(·) values. Figure 4.8 compares

the objective values of the generated UPDs from the six methods.

Figure 4.8 indicates the advantage of using optimized methods as compared to random

99

Table 4.4: Optimal hyperparameter settings for each target design with 45 FFD

NP itermax pMut pCR pGBest Average ϕ(·) Median ϕ(·)

30× 3 100 1167 0.95 0.05 0.65 0.3863 0.3860

50× 5 100 1500 0.35 0.95 0.95 0.1688 0.1686

70× 7 100 1500 0.35 0.35 0.95 0.1063 0.1062

Table 4.5: Optimal hyperparameter settings for each target design using RSO

NP itermax pMut pCR pGBest Average ϕ(·) Median ϕ(·)

30× 3 100 1452 0.95 0.05 0.74 0.3857 0.3855

50× 5 100 1500 0.19 0.63 0.74 0.1683 0.1681

70× 7 100 1498 0.13 0.95 0.95 0.1045 0.1045

DE1 DE4 DEoptim RSO Grid Random

0.
37

5
0.

38
0

0.
38

5
0.

39
0

0.
39

5
0.

40
0

(a) 30× 3 as target

DE1 DE4 DEoptim RSO Grid Random

0.
16

6
0.

16
8

0.
17

0
0.

17
2

0.
17

4

(b) 50× 5 as target

DE1 DE4 DEoptim RSO Grid Random

0.
10

2
0.

10
4

0.
10

6
0.

10
8

0.
11

0

(c) 70× 7 as target

Figure 4.8: Comparison of six methods for constructing UPDs

100

search or grid search. Even using 1024-runs to determine the optimal settings, the grid and

random search methods perform poorly as compared to RSO and DEoptim. On the other

hand, DE1 and DE4 perform the worst as these methods use arbitrary settings selected by

Stokes, Wong, and Xu (2024).

Figure 4.8 also indicates that using the RSO as compared to the default DE1 and DE4

is highly effective when the dimension of the target design increases. This is because with

increase in dimension of target design, the DE1/DE4 algorithms are still far from the optimal

solution, while the RSO carries out an additional minimization which moves closer to the

optimal hyperparameter settings. In addition, RSO and DEoptim have similar performance

despite the use of different settings for pCR, pMut and pGBest. One advantage of using

RSO over DEoptim is the notion that for DEoptim, one has to determine which design is

best, to carry out the optimization. In Chapter 2, it is shown that the 50-run OACD is the

best. On the other hand, RSO uses a 25-run LHD with additional 25 points for optimization.

No prior knowledge of the design is needed. Furthermore, determining the optimal settings

in DEoptim is quite a task when there exists significant interactions between the factors,

while for RSO, the method yields the optimal settings directly.

101

CHAPTER 5

Conclusion and Future Directions

The studies presented in this work advance the understanding and application of optimiza-

tion methods and experimental design in addressing complex, high-dimensional challenges

in design construction. Optimization algorithms, especially Differential Evolution (DE) and

Bayesian optimization, have demonstrated their capability to tackle intricate real-world prob-

lems requiring efficient navigation of extensive search spaces. This dissertation has focused

on three interlinked studies: optimizing DE hyperparameters for constructing Uniform Pro-

jection Designs (UPDs), evaluating initial design choices for prediction and optimization,

and introducing a Kriging-based sequential shrinkage method for enhancing Bayesian opti-

mization. Collectively, these studies provide essential insights into how the structure and

strategy of optimization methods can be tailored to suit varied problem domains, resulting

in improved accuracy, efficiency, and scalability.

This chapter synthesizes the findings of these studies, discussing their implications and

highlighting directions for future work in advancing optimization techniques.

5.1 Key Findings Across the Studies

5.1.1 Optimizing Hyperparameters in Differential Evolution for UPD Genera-

tion

The first study explored the hyperparameter landscape of a modified DE algorithm applied to

discrete tasks, such as generating Uniform Projection Designs (UPDs). DE is traditionally

102

effective for continuous optimization, but modifications to its structure are necessary to

handle discrete variables. Inspired by recent work on DE adaptations, this study focused

on five critical DE hyperparameters, including population size, maximum iterations, and

probabilities related to mutation, crossover and use of the global best. Through extensive

testing, OACD and CCD emerged as the most effective experimental designs for exploring

DE’s hyperparameter response surface, outperforming space-filling designs in terms of root

mean squared error and correlation with the underlying objective.

This analysis, built upon second-order model as the surrogate model, revealed that

second-order models offer a reliable yet simpler alternative to more complex surrogate ap-

proaches, such as Kriging and heteroskedastic Gaussian Processes (GPs). This is significant

because identifying optimal hyperparameter settings is not only crucial for enhancing DE’s

performance but also for constructing high-quality UPDs, which have applications in a va-

riety of fields that require uniformity across high-dimensional spaces. The study highlights

the importance of structured hyperparameter tuning in optimizing DE’s utility, establish-

ing OACD and CCD as powerful tools for practitioners seeking to leverage DE in discrete

optimization contexts.

5.1.2 Efficiency and Robustness of UPDs in High-Dimensional Prediction and

Optimization Tasks

The second study assessed the effectiveness of various initial design strategies within the

framework of prediction and optimization. By using Gaussian Process (GP) models as sur-

rogate and focusing on active learning through selective sampling, this study highlighted the

influence of initial design on prediction accuracy and optimization efficiency. In particular,

Uniform Projection Designs (UPDs) consistently outperformed distance-based designs, such

as maximin and MaxPro designs, especially in high-dimensional spaces. This advantage is

attributed to the UPD’s focus on two-dimensional uniformity via the centered L2-discrepancy

criterion, which circumvents the inefficiencies associated with Euclidean distance metrics in

103

high-dimensional contexts and curse of dimensionality.

The performance of UPDs highlights the limitations of distance-based designs in high di-

mensions. Euclidean-based metrics, such as those used in maximin designs, tend to falter in

high-dimensional settings where points become uniformly distant from one another. In con-

trast, UPDs maintain efficiency by avoiding reliance on high-dimensional distances, instead

leveraging two-dimensional uniformity, which ensures more consistent prediction accuracy

across varying dimensionalities. This study’s findings underscore the importance of initial

design choice in prediction and also in optimization via EGO processes, particularly when

early-stage optimization has a pronounced impact on convergence and overall accuracy.

5.1.3 Introducing a Sequential Shrinking Approach to Bayesian Optimization

for Resource-Efficient Tuning

The third study introduced a Kriging-based sequential region shrinking method, enhanc-

ing traditional Bayesian optimization techniques by focusing on progressively smaller, more

promising regions in the search space. This novel approach incorporates aspects of EGO by

iteratively narrowing the search region, allowing the optimization process to converge more

efficiently. By targeting high-potential areas in each iteration, the approach significantly re-

duces the computational resources required compared to traditional grid and random search

methods.

The sequential shrinking method not only performs effectively across various test func-

tions but also demonstrates advantages over existing Bayesian strategies, such as TREGO.

This is particularly important in resource-constrained scenarios, where reducing computa-

tional load without sacrificing optimization quality is paramount. The method’s integration

of Kriging with a focused region-based approach makes it a practical choice for applications

in high-dimensional spaces, where traditional optimization strategies may become compu-

tationally prohibitive. As such, this study’s findings contribute to a growing body of work

emphasizing the role of adaptive, resource-efficient techniques in optimization.

104

5.2 Implications for Optimization Strategies and Practical Appli-

cations

This dissertation’s findings emphasize the role of both design selection and adaptive opti-

mization strategies in achieving high performance in complex, high-dimensional tasks. The

successful use of UPDs as initial designs in EGO demonstrates that high-dimensional op-

timization can be more effectively approached by leveraging two-dimensional uniformity

rather than high-dimensional Euclidean distances. This insight is essential for practitioners

in fields where high-dimensional optimization is necessary, offering a robust alternative to

conventional designs that suffer in high-dimensional spaces.

Moreover, the effectiveness of structured search techniques, particularly the novel Kriging-

based sequential region shrinking method, highlights the potential of region-focused opti-

mization in resource-constrained applications. By progressively shrinking the search region,

this method achieves convergence with reduced computational requirements, which has prac-

tical implications for industries where efficiency and speed are critical. Similarly, the use

of OACD and CCD in hyperparameter tuning underscores the continued relevance of clas-

sical factorial composite designs and the response surface methodologies, particularly when

dealing with highly sensitive or discrete parameters in algorithms like DE.

For practitioners, these studies provide practical insights into choosing appropriate de-

sign and search techniques based on problem dimensionality, optimization objectives, and

computational constraints. The findings also underscore the value of adaptive frameworks

in both design and search, offering a balance between exploration and exploitation that

improves optimization outcomes.

5.3 Limitations and Future Directions

Despite the strengths of the findings, this research also identifies limitations that warrant

further investigation. First, while the current studies provide evidence for the effectiveness of

105

UPDs in high-dimensional optimization, additional work is needed to explore the theoretical

underpinnings of UPDs’ performance.The impact of factor interactions in the DE algorithm

remains an area for future exploration, particularly in developing more nuanced models that

account for interaction effects without introducing excessive model complexity.

Additionally, the sequential shrinking approach, while efficient, could benefit from inte-

gration with TREGO or with other advanced machine learning models or ensemble methods,

potentially enhancing its adaptability and performance in even more complex search spaces.

For instance, exploring hybrid approaches that combine GP models with UPD-based designs

or integrating deep learning models for dynamic surrogate modeling may further improve

accuracy and computational efficiency.

Furthermore, the Kriging-based shrinking approach and DE hyperparameter optimiza-

tion would benefit from more comprehensive evaluations across different domains. Future

work might explore alternative acquisition functions that enhance adaptability in Bayesian

optimization, especially for applications requiring specific trade-offs between exploration and

exploitation. Extending these techniques to larger datasets or real-world applications would

also validate their utility in practical settings, where high dimensionality and computational

costs pose ongoing challenges.

Finally, this research although focuses exclusively on the construction of Uniform Projec-

tion Designs (UPDs), it is generalizable to the construction of various space filling designs.

We considered the UPD as there is no established construction methods that currently ex-

ist. In future studies, however, we can apply the proposed procedures to construct other

space filling desings such as MaxPro designs or uniform designs and then compare these with

existing designs to assess the efficiency of the proposed methods.

106

5.4 Final Remarks

In conclusion, this work advances the field of high-dimensional optimization by evaluating

and enhancing design and optimization strategies for hyperparameter tuning, experimental

design generation, and adaptive region-focused optimization. The findings from the three

studies provide a cohesive framework that balances theoretical insights with practical appli-

cability, ultimately paving the way for more robust and efficient optimization techniques.

This research not only enhances our understanding of the design and optimization land-

scape but also contributes valuable tools for tackling complex challenges across scientific,

engineering, and industrial applications. The evolving methodologies and insights presented

here have significant potential to guide future innovations, leading to more accurate, scalable,

and resource-efficient solutions for a wide array of optimization problems.

107

References
Aarts, Emile and Jan Korst (1989). Simulated annealing and Boltzmann machines: a stochas-

tic approach to combinatorial optimization and neural computing. John Wiley & Sons,

Inc.

Adorio, Ernesto P and U Diliman (2005). “Mvf-multivariate test functions library in c for

unconstrained global optimization”. In: Quezon City, Metro Manila, Philippines 44.

Aggarwal, Charu C, Alexander Hinneburg, and Daniel A Keim (2001). “On the surprising

behavior of distance metrics in high dimensional space”. In: Database theory—ICDT 2001:

8th international conference London, UK, January 4–6, 2001 proceedings 8. Springer,

pp. 420–434.

Babu, BV and M Mathew Leenus Jehan (2003). “Differential evolution for multi-objective op-

timization”. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. Vol. 4.

IEEE, pp. 2696–2703.

Bergstra, James and Yoshua Bengio (2012). “Random search for hyper-parameter optimiza-

tion.” In: Journal of machine learning research 13.2.

Beyer, H-G and Dirk V Arnold (2001). Theory of evolution strategies-A tutorial. Springer.

Beyer, Hans-Georg and Hans-Paul Schwefel (2002). “Evolution strategies–a comprehensive

introduction”. In: Natural computing 1, pp. 3–52.

Binois, Mickael, Robert B Gramacy, and Mike Ludkovski (2018). “Practical heteroscedastic

gaussian process modeling for large simulation experiments”. In: Journal of Computa-

tional and Graphical Statistics 27.4, pp. 808–821.

Blum, Christian (2005). “Ant colony optimization: Introduction and recent trends”. In:

Physics of Life reviews 2.4, pp. 353–373.

Box, George E P and Kenneth B Wilson (1951). “On experimental attainment of optimum

conditions”. In: Journal of the Royal Statistical Society, Series B 13.1, pp. 1–45.

108

Brochu, Eric, Vlad M Cora, and Nando De Freitas (2010). “A tutorial on Bayesian optimiza-

tion of expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning”. In: arXiv preprint arXiv:1012.2599.

Burton, Henry, Hongquan Xu, and Zhengxiang Yi (2022). “Design of computer experiments

for developing seismic surrogate models”. In: Earthquake Spectra 38.1, pp. 384–406.

Chen, Hao et al. (2016). “Analysis methods for computer experiments: How to assess and

what counts?” In: Statistical Science 31.1, pp. 40–60.

Chevalier, Clément, Victor Picheny, and David Ginsbourger (2014). “KrigInv: An efficient

and user-friendly implementation of batch-sequential inversion strategies based on krig-

ing”. In: Computational statistics & data analysis 71, pp. 1021–1034.

Clerc, Maurice and James Kennedy (2002). “The particle swarm-explosion, stability, and

convergence in a multidimensional complex space”. In: IEEE transactions on Evolutionary

Computation 6.1, pp. 58–73.

Coello, Carlos A Coello, Gregorio Toscano Pulido, and Maximino Salazar Lechuga (2004).

“Handling multiple objectives with particle swarm optimization”. In: IEEE Transactions

on evolutionary computation 8.3, pp. 256–279.

Currin, Carla et al. (1991). “Bayesian prediction of deterministic functions, with applica-

tions to the design and analysis of computer experiments”. In: Journal of the American

Statistical Association 86.416, pp. 953–963.

Dahal, Laxman, Henry Burton, and Samuel Onyambu (2022). “Quantifying the effect of

probability model misspecification in seismic collapse risk assessment”. In: Structural

Safety 96, p. 102185.

Das, Swagatam and Ponnuthurai Nagaratnam Suganthan (2010). “Differential evolution: A

survey of the state-of-the-art”. In: IEEE transactions on evolutionary computation 15.1,

pp. 4–31.

De Jong, Kenneth Alan (1975). “Analysis of the behavior of a class of genetic adaptive

systems”. In: Technical Report No. 185, Department of Computer and Communication

Sciences, University of Michigan.

109

Diouane, Youssef et al. (2023). “TREGO: a trust-region framework for efficient global opti-

mization”. In: Journal of Global Optimization 86.1, pp. 1–23.

Dixon, Laurence Charles Ward and Giorgio P Szegö (1978). Towards Global Optimisation 2.

North-Holland Pub. Co.

Domingos, Pedro (2012). “A few useful things to know about machine learning”. In: Com-

munications of the ACM 55, pp. 78–87.

Dorigo, M (1996). “The Ant System: Optimazation by a colony of cooperation agents”. In:

IEEE Trans. Systems, Man and Cybernetics Part B 26.1, p. 113.

Dorigo, Marco (2007). “Ant colony optimization”. In: Scholarpedia 2.3, p. 1461.

Falkner, Stefan, Aaron Klein, and Frank Hutter (2018). “BOHB: Robust and efficient hy-

perparameter optimization at scale”. In: International conference on machine learning.

PMLR, pp. 1437–1446.

Fang, Kai-Tai et al. (2000). “Uniform design: theory and application”. In: Technometrics

42.3, pp. 237–248.

Feurer, Matthias and Frank Hutter (2019). “Hyperparameter optimization”. In: Automated

machine learning: Methods, systems, challenges, pp. 3–33.

Finney, D. J. (1945). “The Fractional Replication of Factorial Arrangements”. In: Annals of

Eugenics 12, pp. 291–301.

Fisher, R. A. (1935). The Design of Experiments. Oliver and Boyd.

Gardner, Martha et al. (2006). “From small X to large X: Assessment of space-filling criteria

for the design and analysis of computer experiments”. In: 47th AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference, p. 1714.

Giunta, Anthony, Steven Wojtkiewicz, and Michael Eldred (2003). “Overview of modern de-

sign of experiments methods for computational simulations”. In: 41st Aerospace Sciences

Meeting and Exhibit, p. 649.

Hajek, Bruce (1988). “Cooling schedules for optimal annealing”. In: Mathematics of opera-

tions research 13.2, pp. 311–329.

110

Hansen, Nikolaus and Andreas Ostermeier (2001). “Completely derandomized self-adaptation

in evolution strategies”. In: Evolutionary computation 9.2, pp. 159–195.

Harari, Ofir and David M Steinberg (2014). “Optimal designs for Gaussian process models

via spectral decomposition”. In: Journal of Statistical Planning and Inference 154, pp. 87–

101.

Holland, JH (1975). “An introductory analysis with applications to biology, control, and

artificial intelligence”. In: Adaptation in Natural and Artificial Systems. First Edition,

The University of Michigan, USA.

Hutter, Frank, Holger H Hoos, and Kevin Leyton-Brown (2011). “Sequential model-based

optimization for general algorithm configuration”. In: Learning and Intelligent Optimiza-

tion: 5th International Conference. Springer, pp. 507–523.

Johnson, David S et al. (1991). “Optimization by simulated annealing: an experimental

evaluation; part II, graph coloring and number partitioning”. In: Operations research

39.3, pp. 378–406.

Johnson, Mark E, Leslie M Moore, and Donald Ylvisaker (1990). “Minimax and maximin

distance designs”. In: Journal of statistical planning and inference 26.2, pp. 131–148.

Jones, Donald R (2001). “A taxonomy of global optimization methods based on response

surfaces”. In: Journal of global optimization 21, pp. 345–383.

Jones, Donald R, Matthias Schonlau, and William J Welch (1998). “Efficient global optimiza-

tion of expensive black-box functions”. In: Journal of Global optimization 13, pp. 455–

492.

Joseph, V Roshan (2016). “Space-filling designs for computer experiments: A review”. In:

Quality Engineering 28.1, pp. 28–35.

Joseph, V Roshan, Evren Gul, and Shan Ba (2015). “Maximum projection designs for com-

puter experiments”. In: Biometrika 102.2, pp. 371–380.

Kawachi, Masahiro and Nobuyoshi Ando (1992). “Goldberg, DE: Genetic Algorithms in

Search, Optimization & Machine Learning, 401pp., Addison-Wesley (1989).” In: Artificial

Intelligence 7.1, pp. 168–168.

111

Kennedy, James and Russell Eberhart (1995). “Particle swarm optimization”. In: Proceedings

of ICNN’95-international conference on neural networks. Vol. 4. ieee, pp. 1942–1948.

Kirkpatrick, Scott, C Daniel Gelatt Jr, and Mario P Vecchi (1983). “Optimization by simu-

lated annealing”. In: science 220.4598, pp. 671–680.

Krige, Daniel G (1951). “A statistical approach to some basic mine valuation problems on the

Witwatersrand”. In: Journal of the Southern African Institute of Mining and Metallurgy

52.6, pp. 119–139.

Kukkonen, Saku and Jouni Lampinen (2006). “Constrained real-parameter optimization with

generalized differential evolution”. In: 2006 IEEE International Conference on Evolution-

ary Computation. IEEE, pp. 207–214.

Li, Lisha et al. (2018). “Hyperband: A novel bandit-based approach to hyperparameter

optimization”. In: Journal of Machine Learning Research 18.185, pp. 1–52.

Liashchynskyi, Petro and Pavlo Liashchynskyi (2019). “Grid search, random search, genetic

algorithm: a big comparison for NAS”. In: arXiv preprint arXiv:1912.06059.

Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2018). “Darts: Differentiable architecture

search”. In: arXiv preprint arXiv:1806.09055.

Lujan-Moreno, Gustavo A et al. (2018). “Design of experiments and response surface method-

ology to tune machine learning hyperparameters, with a random forest case-study”. In:

Expert Systems with Applications 109, pp. 195–205.

Luna, Jose et al. (2022). “Orthogonal array composite designs for drug combination exper-

iments with applications for tuberculosis”. In: Statistics in medicine 41.17, pp. 3380–

3397.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). “A Comparison of Three Methods

for Selecting Values of Input Variables in the Analysis of Output from a Computer Code”.

In: Technometrics 21.2, pp. 239–245. doi: 10.2307/1268522.

McKay, Michael D (1992). “Latin hypercube sampling as a tool in uncertainty analysis of

computer models”. In: Proceedings of the 24th conference on Winter simulation, pp. 557–

564.

112

https://doi.org/10.2307/1268522

Mezura-Montes, Efrñn, Jesús Velázquez-Reyes, and Carlos A Coello Coello (2006). “A com-

parative study of differential evolution variants for global optimization”. In: Proceedings

of the 8th annual conference on Genetic and evolutionary computation, pp. 485–492.

Michalewicz, Zbigniew (2013). Genetic algorithms+ data structures= evolution programs.

Springer Science & Business Media.

Miettinen, Kaisa (1999). Nonlinear multiobjective optimization. Vol. 12. Springer Science &

Business Media.

Mitchell, Melanie (1998). An introduction to genetic algorithms. MIT press.

Mockus, J, V Tiesis, and A Zilinskas (1978). “The application of Bayesian methods for

seeking the extremum”. In: Toward Global Optimization 2, pp. 117–130.

Mockus, Jonas (1994). “Application of Bayesian approach to numerical methods of global

and stochastic optimization”. In: Journal of Global Optimization 4, pp. 347–365.

Molga, Marcin and Czesław Smutnicki (2005). “Test functions for optimization needs”. In:

Test functions for optimization needs.

Montgomery, Douglas C (2017). Design and analysis of experiments. John wiley & sons.

Morris, Max D and Toby J Mitchell (1995). “Exploratory designs for computational experi-

ments”. In: Journal of statistical planning and inference 43.3, pp. 381–402.

Myers, Raymond H, Douglas C Montgomery, and Christine M Anderson-Cook (2016). Re-

sponse surface methodology: process and product optimization using designed experiments.

John Wiley & Sons.

Pelikan, Martin, David E Goldberg, Erick Cantú-Paz, et al. (1999). “BOA: The Bayesian

optimization algorithm”. In: Proceedings of the genetic and evolutionary computation

conference GECCO-99. Vol. 1. Citeseer, pp. 525–532.

Picheny, Victor, Tobias Wagner, and David Ginsbourger (2013). “A benchmark of kriging-

based infill criteria for noisy optimization”. In: Structural and multidisciplinary optimiza-

tion 48, pp. 607–626.

Price, Kenneth, Rainer M Storn, and Jouni A Lampinen (2006). Differential evolution: a

practical approach to global optimization. Springer Science & Business Media.

113

Qin, A Kai, Vicky Ling Huang, and Ponnuthurai N Suganthan (2008). “Differential evo-

lution algorithm with strategy adaptation for global numerical optimization”. In: IEEE

transactions on Evolutionary Computation 13.2, pp. 398–417.

Rasmussen, C and C Williams (2006). Gaussian processes for machine learning. MIT press:

Cambridge, MA.

Regis, Rommel G (2016). “Trust regions in Kriging-based optimization with expected im-

provement”. In: Engineering optimization 48.6, pp. 1037–1059.

Regis, Rommel G and Christine A Shoemaker (2007). “Improved strategies for radial basis

function methods for global optimization”. In: Journal of Global Optimization 37, pp. 113–

135.

Roustant, Olivier, David Ginsbourger, and Yves Deville (2012). “DiceKriging, DiceOptim:

Two R packages for the analysis of computer experiments by kriging-based metamodeling

and optimization”. In: Journal of statistical software 51, pp. 1–55.

Santner, Thomas J et al. (2003). The design and analysis of computer experiments. Vol. 1.

Springer.

Schwefel, Hans-Paul (1977). “Numerische optimierung von computer-modellen mittels der

evolutionsstrategie”. In: (No Title).

— (1981). Numerical optimization of computer models. John Wiley & Sons, Inc.

Schwefel, Hans-Paul Paul (1993). Evolution and optimum seeking: the sixth generation. John

Wiley & Sons, Inc.

Shi, Chenlu, Ashley Kathleen Chiu, and Hongquan Xu (2023). “Evaluating designs for hy-

perparameter tuning in deep neural networks”. In: The New England Journal of Statistics

in Data Science 1.3, pp. 334–341.

Shi, Yuhui and Russell Eberhart (1998). “A modified particle swarm optimizer”. In: 1998

IEEE international conference on evolutionary computation proceedings. IEEE world

congress on computational intelligence (Cat. No. 98TH8360). IEEE, pp. 69–73.

Snelson, Edward Lloyd (2008). Flexible and efficient Gaussian process models for machine

learning. University of London, University College London (United Kingdom).

114

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical bayesian optimization

of machine learning algorithms”. In: Advances in neural information processing systems

25.

Srinivas, Niranjan et al. (2009). “Gaussian process optimization in the bandit setting: No

regret and experimental design”. In: arXiv preprint arXiv:0912.3995.

Stokes, Zack, Weng Kee Wong, and Hongquan Xu (2024). “Metaheuristic Solutions to Order-

of-Addition Design Problems”. In: Journal of Computational and Graphical Statistics 33.3,

pp. 1006–1016.

Storn, Rainer and Kenneth Price (1997). “Differential evolution–a simple and efficient heuris-

tic for global optimization over continuous spaces”. In: Journal of global optimization 11,

pp. 341–359.

Sun, Fasheng, Yaping Wang, and Hongquan Xu (2019). “Uniform projection designs”. In:

Annals of Statistics 47.1, pp. 641–661.

Surjanovic, S. and D. Bingham (2013). Virtual Library of Simulation Experiments: Test

Functions and Datasets. Retrieved July 12, 2024, from http://www.sfu.ca/~ssurjano.

Simon Fraser University.

Tabachnick, B. G. and L. S. Fidell (2019). Using Multivariate Statistics. Pearson.

Talbi, EG (2009). “Metaheuristics: From Design to Implementation”. In: John Wiley & Sons

google schola 2, pp. 268–308.

Tang, Boxin (1993). “Orthogonal array-based Latin hypercubes”. In: Journal of the American

Statistical Association 88.424, pp. 1392–1397.

Vent, W (1975). Rechenberg, Ingo, Evolutionsstrategie-Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann-Holzboog-Verlag.

Stuttgart 1973. Broschiert.

Weise, Thomas (2009). “Global optimization algorithms-theory and application”. In: Self-

Published Thomas Weise 361, p. 153.

Welch, William J et al. (1992). “Screening, predicting, and computer experiments”. In: Tech-

nometrics 34.1, pp. 15–25.

115

http://www.sfu.ca/~ssurjano

Whitley, Darrell (1994). “A genetic algorithm tutorial”. In: Statistics and computing 4,

pp. 65–85.

Wu, CF Jeff and Michael S Hamada (2011). Experiments: planning, analysis, and optimiza-

tion. John Wiley & Sons.

Wu, Jia, SenPeng Chen, and XiYuan Liu (2020). “Efficient hyperparameter optimization

through model-based reinforcement learning”. In: Neurocomputing 409, pp. 381–393.

Xiao, Qian and Hongquan Xu (2018). “Construction of maximin distance designs via level

permutation and expansion”. In: Statistica Sinica 28.3, pp. 1395–1414.

Xu, Hongquan, Jessica Jaynes, and Xianting Ding (2014). “Combining two-level and three-

level orthogonal arrays for factor screening and response surface exploration”. In: Statis-

tica Sinica 24.1, pp. 269–289.

Yang, Xin-She and Mehmet Karamanoglu (2013). “Swarm intelligence and bio-inspired com-

putation: an overview”. In: Swarm intelligence and bio-inspired computation, pp. 3–23.

Yang, XS (2010). Engineering Optimization: An Introduction with Metaheuristic Applica-

tions. John Wiley & Sons.

Zhou, Qing and Yanda Li (2003). “Directed variation in evolution strategies”. In: IEEE

Transactions on Evolutionary Computation 7.4, pp. 356–366.

Zoph, Barret and Quoc V Le (2016). “Neural architecture search with reinforcement learn-

ing”. In: arXiv preprint arXiv:1611.01578.

116

	Introduction
	Introduction to Optimization Algorithms
	Metaheuristic Algorithms
	Evolutionary Algorithms
	Swarm intelligence (SI)
	Simulated Annealing (SA)

	Bayesian Optimization
	Leveraging Differential Evolution and Bayesian Optimization

	Tuning Differential Evolution Algorithm for Constructing Uniform Projection Designs
	Introduction
	Differential Evolution Algorithm
	Designs for Hyperparameter Settings
	Modeling
	The Data Generation Process
	Results and Analysis
	Factor Importance and Optimal Settings
	Conclusion

	Evaluating Space-Filling Designs for Prediction and Sequential Optimization
	Introduction
	Background
	The surrogate model
	The expected improvement (EI)
	The Efficient Global Optimization (EGO) Algorithm

	Space-Filling Designs
	Test Functions
	Prediction Functions
	Minimization Functions

	Numerical Experiments
	Prediction results
	Minimization results

	Concluding Remarks

	Kriging Based Sequential Region Shrinkage with EGO for Hyperparameter Optimization
	Introduction
	Background Theories
	Related Work
	The Efficient Global Optimization (EGO) Algorithm
	The Trust Region EGO (TREGO)

	The Proposed Algorithm
	Region of Interest (ROI) Determination
	Difference between RSO and TREGO

	Numerical Experiments
	Application in Generating Uniform Projection Designs

	Conclusion and Future Directions
	Key Findings Across the Studies
	Optimizing Hyperparameters in Differential Evolution for UPD Generation
	Efficiency and Robustness of UPDs in High-Dimensional Prediction and Optimization Tasks
	Introducing a Sequential Shrinking Approach to Bayesian Optimization for Resource-Efficient Tuning

	Implications for Optimization Strategies and Practical Applications
	Limitations and Future Directions
	Final Remarks

	References

