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EXECUTIVE SUMMARY 
 
 
This report documents findings from a demonstration project to verify the feasibility of 
employing a model-based approach to central plant operation and diagnostics at U.S. Department 
of Defense (DoD) facilities, and to quantify the associated benefits. Specific objectives that the 
field demonstration was designed to validate included: effectiveness in reducing electricity 
consumption and associated greenhouse gas (GHG) emissions; user satisfaction; cost-
effectiveness and viability of system economics; and validity of model calibration. 
 

TECHNOLOGY OVERVIEW 
It is estimated that 5%–30% of the energy used in commercial buildings is wasted due to faults 
and errors in the operation of the control system, including suboptimal setpoints, operational 
sequences, and control problems. In this demonstration Lawrence Berkeley National Laboratory 
(LBNL) developed a hybrid data-driven and physics model-based ope  rational tool for energy 
efficiency in central cooling plants. Whereas empirical data-driven analytics permit assessment 
of operations based on actual prior system performance, physics-based approaches also enable 
assessment relative to design intent and underlying physical principles. The tool, PlantInsight, 
provides detection and diagnosis of three types of faults: fan cycling, chiller cycling, and poor 
chiller efficiency. It also provides analysis of optimal condenser water setpoint temperatures to 
minimize plant energy consumption. A calibrated simulation model is used in the algorithms to 
identify poor chiller efficiency and optimal condenser water temperature, while the cycling faults 
are identified using purely data-driven models. In addition, the tool offers visualization for 
operators to track key parameters such as cooling plant load and chilled water loop temperature. 
Figure ES-1 contains a diagram of the Modelica model used to conduct the cooling optimization 
and the architecture of the PlantInsight tool, as implemented for the demonstration. Figure ES-2 
contains screen shots of the user interface. 
 

  
Figure ES- 1. Diagram of the system-level Modelica model used to represent the cooling plant (left); 

architecture (right) of the PlantInsight operational tool 
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Figure ES- 2.  Screen shots from PlantInsight:  Visualization and KPI tracking (top); condenser water 
temperature setpoint optimization (bottom) 

KEY FINDINGS 
 
Once developed, the PlantInsight technology was implemented at the U.S. Naval Academy 
(USNA), and the technology performance objectives were evaluated. 
 
Model calibration: To ensure that the models developed to simulate the central plant were 
representative of the central plant’s actual physical performance, the chiller and tower models 
were calibrated to measured data from the site. The calibration goal targeted a difference 
between model-predicted and measured parameters of less than 10% for 90% of data points. This 
was achieved for ten of ten tower cells for which data were available, and for three of six 
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chillers. The soundness of the calibration process was confirmed, however for the chillers, 
calibration was challenged by the limited volume of data representing full-capacity operation, 
and perhaps by inaccurate chilled water temperature sensor data, or faulty operations underlying 
the data.  
 
User satisfaction: The demonstration technology was evaluated to determine whether 
PlantInsight offered equal or improved satisfaction relative to existing operational tools. This 
objective was used to determine the extent to which the demonstration technology met the needs 
of site operational staff. Survey responses indicated that satisfaction with the capabilities of 
PlantInsight was equal to or better than that with the preexisting JCI Metasys system that is used 
for plant operations. Although PlantInsight is intended to complement (not replace) the Metasys 
system, from a user satisfaction standpoint, it provides a meaningful benchmark. Table ES-1 
summarizes operational staff’s feedback on the user interface (UI), outputs of the fault detection 
and diagnosis (FDD) and optimization analytics, and the tool overall, on a scale of one to five.  
 

Table ES- 1.  User feedback on the PlantInsight UI, FDD, and optimization outputs, and overall tool 

Characteristic Not Satisfied  Neutral  Highly 
Satisfied 

1 2 3 4 5 
User interface    X  
FDD and optimization outputs    X  
Tool overall    X  
 
Energy and greenhouse gas emissions (GHG) savings: The demonstration targeted 10% annual 
reductions in electricity consumption and associated GHG emissions at the central cooling plant. 
The baseline comprised the conventional operation of the plant, using a static condenser water 
temperature setpoint. Energy savings potential was evaluated by comparing the simulated annual 
energy consumption with and without use of the optimized setpoints from PlantInsight. The 
results of the analysis indicated that daily energy savings greater than 10% are obtainable for 
approximately six months of the year, mainly during the winter season. However, for the year as 
a whole, energy savings of approximately 1.5% are obtainable. This was because savings were 
driven by wet bulb temperature (lower), which occur in the winter season when total plant 
consumption is lowest. Larger annual savings are possible in drier climates.  
 
Greenhouse gas emissions were quantified using a conversion factor based on references 
published by the U.S. Environmental Protection Agency (eGRID and the Greenhouse Gas 
Emissions Technical Reference). Since the conversion factor was represented as a single constant 
for the region, the emissions reduction results are the same as those for energy, in terms of 
percent savings. That is, greater than 10% daily GHG emissions savings are achievable 
throughout six months of the year—mainly the winter season. However, only 1.38% 
(181,403 tons) annual savings are possible in the USNA’s more humid climate. 
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System economics: Assessment of system economics based on standard capital budgeting metrics 
provides a gauge for determining financial feasibility of the demonstration technology. Using the 
findings from the demonstration, a life-cycle cost analysis was conducted in accordance with the 
principles of the National Institute of Standards and Technology (NIST) Building Life-Cycle 
Cost Analysis (BLCCA) process, as published in NIST Handbook 135. The BLCC calculator 
was used to determine the benefit of the proposed demonstration technology relative to the “do-
nothing” case of continued use of a static condenser water temperature setpoint at the cooling 
plant. The analysis showed that simple and discounted payback can be met in 1.4 years, well 
within the five-year target that was established. Although savings are relative small on an annual 
basis, the total plant energy costs are on the order of several million dollars per year. The annual 
savings are therefore large enough to offset the cost of implementing the open source software 
technology at a new installation. There are no licensing fees, and the cost of initial 
implementation, modeling, and calibration—as well as ongoing cost of use and maintenance—
are recoverable within acceptable payback periods. 
 

TECHNOLOGY TRANSITION 
Future implementation of the technology concerns three pertinent issue areas: Information 
technology (IT) security, maintenance and evolution, and scale-up and transition. 
 
IT security: The PlantInsight technology requires unidirectional transfer of cooling plant 
operational data from the site to the application’s database. The application is hosted on a web 
server, and is accessible via web browser. In the USNA demonstration, port 443 was used to 
establish secure communications from the Metasys building automation system (BAS) kiosk to 
the PlantInsight application. To satisfy DoD IT security requirements, future installations can 
consider several options that surfaced over the duration of the demonstration. PlantInsight can be 
integrated within existing accredited applications, as was the original intent when the 
demonstration was first initiated. This would require some re-architecting of the code based on 
the specific technology to be integrated with, however in anticipation of this mode of delivery, 
PlantInsight has been designed with modular separation of the interfaces between the models, 
algorithms, and user-facing information provided through the graphical user interface (GUI). 
Alternatively, PlantInsight could be put through the accreditation process itself. Another option 
that was explored was to push plant operational data from the installation to a server farm on a 
secure DoD network, with PlantInsight accessing the data through a virtual private network 
(VPN) application. 
 
Technology maintenance and evolution: As the demonstration comes to a conclusion, LBNL will 
work with UNSA IT to transfer the tool from LBNL’s server to a server and location that will 
comply with IT security requirements. This is a key step in ensuring that the technology can 
continue to provide efficiency improvements to the chiller plant operations. Similarly, as the 
campus grows and cooling load is added, plant equipment is updated, and operations evolve over 
time, it will be necessary to update and recalibrate the models used in PlantInsight. Although it is 
not yet used universally throughout the industry, companies such as HOK, Johnson Controls 
(JCI), and United Technologies Corporation (UTC) have staff that are familiar with the modeling 
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language (Modelica) upon which the tool is built. They could potentially be contracted to support 
future model modification and calibration. 
 
Technology scale-up and transition: To make the PlantInsight Tool available to other DoD 
installations, it will be released through an open source software license. This will enable stand-
alone use according to its current design, or adaptation for use within existing installation energy 
management facility and information systems as described in the considerations of IT security. 
Several types of documentation have been developed to support these future transition activities, 
and to support ongoing use at USNA. 
 
For developers and implementers: (a) code documentation describing key module integration, 
functionality, and dependencies; (b) higher level documentation of tool architecture and 
installation and configuration requirements (to be released with code); and (c) guidance on 
model creation and calibration. 
 
For installation users: A user guide in document form that explains the tool’s functionality and 
how it can be used to generate and track energy and utility cost savings. 
 

CONCLUSIONS 
Future implementations of the technology will benefit from awareness of the following higher-
level lessons that were learned throughout the course of the demonstration. First, operators place 
strong value on access to tools that provide visibility into how controls impact energy use and 
cost. This is not as a rule available in today’s commercial analytics technologies that span 
building automation systems, meter analytics tools, or equipment-specific fault detection and 
diagnostics tools. As such, heating, ventilation and air conditioning (HVAC) optimization 
technologies represent advances in the state of today’s available technology, and this is even 
more true of optimization tools that incorporate physics-based modeling approaches. The 
Environmental Security Technology Certification Program’s (ESTCP) technology demonstration 
program has acted as a leader in the demonstration of these cutting-edge solutions, and future 
implementations will continue to contribute to the state of knowledge of their development and 
application.  
 
Model-predictive optimization combined with fault detection and diagnostics is recognized as a 
critical aspect of realizing the dynamic low-energy buildings of tomorrow, and today’s 
applications can deliver even more impact from expanding the set of parameters that are included 
in the optimization, as well as the number of end uses that are considered. Although these 
technologies represent advanced forward-looking applications, the external infrastructure to 
support their delivery at scale is mature; cloud hosting and computational scalability are well 
supported through modern IT solutions. In contrast, the most significant practical 
implementation barrier are the brittle building data acquisition and communication systems that 
present chronic challenges to analytics applications that need to interface with controls data. 
Finally, we note that the creation and calibration of physics-based models that are intended to be 
used in the operational phase of the building life-cycle is highly dependent upon the specific 
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algorithms with which they will be paired. The open, reference implementations that are 
delivered with PlantInsight are important contributions to the industry’s continued success in 
leveraging these promising approaches for next-generation building energy efficiency.  
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1.0 INTRODUCTION 

1.1 BACKGROUND 
 
It is estimated that 5%–30% of the energy used in commercial buildings is wasted due to faults 
and errors in the operation of the control system, including suboptimal setpoints, operational 
sequences, and control problems (Fernandez et al. 2017; Katipamula and Brambley 2005; Mills 
2011; Roth et al. 2005). Existing buildings are often not properly commissioned for efficient 
operations, and performance degrades when retrofits, faults, and other improvements are not 
appropriately monitored over time. Monthly utility bills commonly used by facility and energy 
managers provide limited insight into building and system energy performance; however, 
analytics software is increasingly used to improve and maintain operational efficiency in 
commercial buildings.  
 
Energy managers, owners, and operators are using a diversity of commercial offerings often 
referred to as Energy Information Systems (EIS), Fault Detection and Diagnosis (FDD) systems, 
or more broadly Energy Management and Information Systems (EMIS) to cost-effectively 
enable savings on the order of 10% to 20% (Granderson and Lin 2016; Granderson et al. 2017; 
Kramer et al. 2017; Henderson and Waltner 2013; Lane and Epperson 2013). Most of these 
EMIS analytic technologies use data from meters and sensors, with rule-based and/or data-driven 
models to characterize system and building behavior. For example, Microsoft, which maintains 
the largest contiguous corporate campus in the United States, has recently deployed a rule-based 
FDD system for building-level HVAC operations. By collecting and analyzing millions of data 
points per day, the company has been able to embark on multiple improvements that are 
reshaping the way its buildings are managed. Microsoft’s building engineers have become far 
more proactive: instead of “walking around” to find issues, they’re now “walking to” the 
problems that have the greatest impact on cost or comfort, and have saved over 18% in 
electricity consumption at their Puget Sound campus, with rapid payback (Granderson et 
al. 2017; Smith et al. 2011). 
 
Within the family of EMIS technologies, automated HVAC system optimization offerings are 
beginning to emerge. Newer to the market than meter analytics and FDD technologies, these 
tools use physics-based, or more commonly data-driven, models to predict optimal supervisory 
system control settings. These are then automatically implemented through bi-directional 
connectivity and communication with the building automation system (BAS).  
 
In contrast to data-driven approaches, physics-based modeling uses first principles and 
engineering models (e.g., efficiency curves) to characterize system and building behavior. 
Historically, these physics-based approaches have been used in the design phase of the building 
life cycle or in retrofit analyses. Whereas empirical data-driven analytics permit assessment of 
operations based on actual prior system performance, physics-based approaches also enable 
assessment relative to design intent and underlying physical principles. Physics-based models 
can be used to automate the detection of system or component faults, and to identify optimal 
control strategies to minimize system energy use. A second value of these models is they can be 
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used as a reference to support future retrofits, so that HVAC and related building systems can be 
further improved beyond operational, tune-up interventions from this technology. The use of 
hybrid data-driven and model-based approaches for operational tools that conduct continuous 
fault detection and energy use optimization is largely still the domain of exploratory research. 
For example, a previous attempt (Pang et al. 2012) to use EnergyPlus physics-based models to 
identify whole-building level operational energy waste was proposed and demonstrated (Adetola 
et al. 2014).  
 
In this demonstration, Lawrence Berkeley National Laboratory (LBNL) developed a hybrid data-
driven and physics model-based operational tool for energy efficiency in central cooling plants. 
The tool, PlantInsight, offers FDD functionality, setpoint optimization, and visualization of key 
performance parameters, targeting 10% energy savings and associated reductions in greenhouse 
gas (GHG) emissions. With annual U.S. Department of Defense (DoD) expenditures of 
$3.7 billion on facility energy consumption (DoD 2016), and HVAC comprising over 40% of 
commercial building site energy usage (US EIA 2012), the savings potential reaches hundreds of 
millions of dollars if the technology is successful and applied across all DoD facilities and 
HVAC end uses. The key targets for this specific demonstration are facilities with central 
cooling plants. This represents a smaller, but more energy intensive, fraction of DoD facilities. 

1.2 OBJECTIVE OF THE DEMONSTRATION 
 
The overarching goal of the demonstration project was to verify the feasibility of employing a 
model-based approach to central plant operation and diagnostics at DoD facilities, and to 
quantify the associated benefit. Although the tools developed under this project can be applicable 
to both buildings and central plants, the primary focus is on central plant energy efficiency.  
 
Specific objectives that the field demonstration was designed to validate include: 

● Effectiveness in reducing electricity consumption and associated GHG emissions 
● Ease of use and user acceptability 
● Cost-effectiveness and viability of system economics 
● Validity of model calibration 
● Acceptable latency in data transfer between software components 

 
Additional attributes that were targeted in the design of the technology included scalability, and 
open source code and application programming interfaces (APIs) to avoid “lock-in” and support 
integration with complementary commercial analytics tools. The development and field testing 
process was also used to identify high-value monitoring points that can be leveraged to maximize 
the value of whole-facility metering. 
 
It was originally planned that the demonstration would be conducted at the U.S. Navy Yard in 
Washington D.C., and that the technology would be integrated with Naval District Washington’s 
(NDW’s) Building, Asset, and Energy Situational Awareness (BAESA) and IBM monitoring 
systems. Due to disruptions at the Navy Yard that affected the central plant operations and ability 
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to host a demonstration, the project was moved to the U.S. Naval Academy in Annapolis, 
Maryland. (Site points of contact are provided in Appendix A.) Over the course of the project the 
Naval District Washington discontinued its use of the IBM system, so the PlantInsight tool was 
deployed as a stand-alone tool. 
 

1.3 REGULATORY DRIVERS 
 
This technology demonstration leverages and supports compliance with several regulatory 
drivers. Advanced metering was required at federal buildings beginning in 2012 (Energy Policy 
Act of 2005, section 103, codified in 42 USC 8253(e)), providing a foundation of metering and 
monitoring infrastructure that the demonstration builds upon. Analytics technologies such as 
those demonstrated in this project support the automation of baselining and performance 
reporting, which are required in the Energy Independence and Security Act (EISA) 2007. 
Finally, the advanced diagnostic capabilities that will be integrated with EIS in this 
demonstration will further enable compliance with the 30% energy reduction and associated 
carbon reduction goals in Executive Orders (EOs) 13423 and 13514, and EISA 2007. Most 
recently, Executive Order 13693, signed in March 2015 and effective the beginning of fiscal year 
2016, calls for the promotion of building energy conservation, efficiency, and management by 
reducing agency building energy intensity (measured in British thermal units [Btu] per gross 
square foot) by 2.5% annually through the end of fiscal year 2025, relative to the baseline of the 
agency’s building energy use in fiscal year 2015 and taking into account agency progress to date. 
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2.0 TECHNOLOGY DESCRIPTION 

2.1 TECHNOLOGY OVERVIEW  
 

PlantInsight is a hybrid data-driven and physics model-based operational tool for energy 
efficiency in central cooling plants. It provides detection and diagnosis of three types of faults: 
fan cycling, chiller cycling, and poor chiller efficiency. It also provides analysis of optimal 
condenser water setpoint temperatures to minimize plant energy consumption. A calibrated 
simulation model is used in the algorithms to identify poor chiller efficiency, and optimal 
condenser water temperature, while the cycling faults are identified using purely data-driven 
models. In addition, the tool offers visualization for operators to track key parameters such as 
cooling plant load and chilled water loop temperature.  
 
 
Figure 1 shows the landing page of the tool. The period of time for which data are shown and 
faults are summarized is user-selected and shown in the upper right date summary. In the plot, 
the total load on both plants (tons) is overlaid with the load from each plant individually. The 
landing page plots can be toggled to plant efficiency (kilowatts [kW]/ton) as well as the load and 
weather forecast for the next 24 hours. Above the plot, the total cost of operations, total 
consumption, maximum load, and number of current faults are summarized in key performance 
indicator (KPI) tiles. The landing page also shows runtime summaries and fault summaries. The 
menu options on the left side of the page allow the user to access drill-down information 
associated with the optimization and fault detection capabilities.  
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Figure 1. Screen shot of the landing page of the PlantInsight tool 

 
The architecture of the PlantInsight Tool is shown in Figure 2 as a block diagram schematic. The 
green blocks indicate portions of the system that are located at the site, while the orange blocks 
represent remote components. Data from the meters and sensors at each cooling plant is 
transferred to the on-premise automation system (energy management and control system, or 
EMCS), which is accessed through an operator kiosk. Data from the site is pushed to a remote 
PostgreSQL database that is used to store data for access by the PlantInsight tool. The user 
accesses the tool through a browser-based JavaScript graphical front-end application that 
interacts with the back-end via a representational state transfer (REST) API. 
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Figure 2. Architecture of the PlantInsight tool for hybrid model-based and data-driven central plant 
diagnostics and optimization 

 

2.2 TECHNOLOGY DEVELOPMENT 
 
Development of the PlantInsight tool comprised four primary elements: model construction and 
calibration, creation of FDD and optimization algorithms, architecture definition, and graphical 
user interface (GUI) development. The following subsections detail these elements. 
 
2.2.1 Model Construction and Calibration 
 
The physics-based modeling approaches that underlie PlantInsight’s optimization and efficiency 
diagnostics are built using the Modelica language specification (Wetter et al. 2014) and 
Functional Mockup Interface (FMI) standard (Blochwitz et al. 2011). Modelica is an equation-
based, object-oriented programming language for the modeling and simulation of physical 
systems. FMI is a standard way of packaging and interfacing physical system models to enable 
model exchange and co-simulation among different tools. Both Modelica and FMI are open 
standards, meaning that freely available, open source, and commercial tool chains—including 
model libraries, development environments, and compilers—can be built using them. The 
technological maturity of Modelica has been demonstrated in various industrial sectors, such as 
for the design of energy efficient vehicles (Deuring et al. 2011; Philipson et al. 2008), the 
improvement of air-conditioning systems for automobiles (Junior et al. 2009), the development 
of models of biochemical network systems (Wiechert et al. 2010), and the design of power plants 
(Razak 2010; Casella and Pretolani 2006; Alobaid et al. 2008). In the buildings industry, LBNL 
has been developing the Modelica Buildings Library (Wetter 2014). 
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The Modelica models that simulate the operation of the central cooling plant were developed 
using a diversity of information from the cooling plant design specifications, nameplate data, 
drawings, and trend-log data. Beginning with the design drawings, the plant configuration, 
components, and equipment were replicated in model form. The Modelica Buildings Library was 
used to build a representation of the specific central cooling system. In this case, the system 
included two interconnected chilled water plants called Rickover and Lejeune. To represent each 
plant, individual models of chillers, pumps, and cooling towers were created and then integrated 
as a single cooling plant model. Once the plant design was represented, manufacturer data, 
including nameplate values, chiller loading curves, and pump nameplate values, were used to 
quantify key equipment and component-level characteristics. Finally, the specific control 
sequences that are in use at the plant were embedded into the model. In-person site visits were 
necessary to compile all of the information needed for model creation, since not all information 
was readily accessible in digital form.  
 
 
Figure 3 illustrates the chiller model for one of the chillers at the Rickover cooling plant. Here, 
solid blue lines represent the water pipes and the dashed lines are the paths for control signals 
and other inputs for the model, such as weather data and plant cooling load. This model uses the 
Chiller.Electric.EIR model from the Modelica Buildings Library (Wetter 2014). In this model, 
chiller power can be calculated for any loading and temperature conditions. Using the same 
conventions as in Figure 3, Figure 4 shows the model for one of the cooling towers, which uses 
the CoolingTower.YorkCalc model in the Modelica Buildings Library. In this model, the 
approach temperature (the difference between the leaving water temperature and the entering air 
temperature) was calculated using a purely empirical YorkCalc correlation1 and the tower fan 
power was computed by a third-order polynomial regression. 
 
Figures 3–6 illustrate the models that were created for the Rickover cooling plant. Similar 
models were created for the Lejeune plant.  

                                                           
1 Input Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output. 
https://energyplus.net/sites/default/files/pdfs/pdfs_v8.3.0/InputOutputReference.pdf  

https://energyplus.net/sites/default/files/pdfs/pdfs_v8.3.0/InputOutputReference.pdf
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Figure 3. Diagram of the Modelica model of the 2,500-ton chiller at the Rickover plant 

 
 
 

 
Figure 4. Diagram of the Modelica model for a cooling tower at the Rickover plant 

 
 
Figure 5 shows the state model in the supervisory controller that is used to determine the 
chillers’, cooling towers’, and pumps’ operational status according to the plant cooling load. 
When the plant cooling load is less than 1,250 tons, one small chiller is on; between 1,250 tons 
and 2,500 tons, one large chiller is on; between 2,500 tons and 3,750 tons, one large chiller and 
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one small chiller are on; and when the load is larger than 3,750 tons, all three chillers are on. 
Figure 6 shows the integrated model for the entire cooling plant. 
 

 
 

Figure 5. Diagram of the Modelica model for chiller staging in the supervisor controller 
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Figure 6. Diagram of the system-level Modelica model for the Rickover cooling plant 

 
 
Once constructed, the chiller and cooling tower models were calibrated to the measured historic 
data from the cooling plant. The first step in calibration was to filter the historic data to that 
representing steady-state plant operation. From the steady-state data, we ensured as large as 
possible a range in the variation of each variable, for maximum coverage of operational 
conditions. Next, the GenOpt (Wetter 2001) optimization engine was used to search the 
(uncalibrated) model parameters to minimize the difference between the model outputs and the 
associated measured data.  
 
The following criteria were used to determine if the chiller is under steady state or not: 

1. The operating status of the chiller is on 
2. The difference between chilled water returning and leaving temperature is greater than 

2°C 
3. The deviation of the measured leaving temperature of the chilled water from the setpoint 

is less than 0.3°C 
4. The deviation of chilled water flow rate, condenser water flow rate, and chilled water 

leaving temperature from their average value in one hour should be within 10% 
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The following criteria were used to determine if the cooling tower is under steady state or not: 
1. The operating status of the cooling tower is on 
2. The deviation of condenser water leaving temperature from its average value in one hour 

should be within 0.5°C 
 
The chiller and cooling tower models were calibrated using sixteen months of measured data 
(May 13, 2014–September 22, 2015). The goal of chiller calibration was to minimize the 
difference between the measured and simulated chiller coefficient of performance (COP) by 
tuning the coefficients of the equations that are used with the Chiller.ElectricEIR model to 
determine chiller power. The goal of tower fan calibration was to minimize the difference 
between the measured and the simulated fan power by tuning the coefficients of the fan curves 
used with the CoolingTower.YorkCalc model. The goal of tower leaving temperature calibration 
was to minimize the differences between the measured and the simulated tower leaving 
temperature by tuning the nominal wet bulb temperature and the nominal approach temperature. 
The objective functions are shown in the equations below.  
 

𝐽𝐽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = min (� (𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑡𝑡) − 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑖𝑖𝑚𝑚(𝑡𝑡))2),  for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡)     (1)
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
 

 

𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐_𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖_𝑝𝑝𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖 = min�� (𝐸𝐸_𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚(𝑡𝑡) − 𝐸𝐸_𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑖𝑖𝑚𝑚(𝑡𝑡))2
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
�, 

 
for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡)                                                                                                     (2) 

 

𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐_𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖_𝑖𝑖𝑖𝑖𝑚𝑚𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐_𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 = min�� (𝑇𝑇_𝑙𝑙𝑙𝑙𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚(𝑡𝑡) − 𝑇𝑇_𝑙𝑙𝑙𝑙𝑓𝑓𝑠𝑠𝑖𝑖𝑚𝑚(𝑡𝑡))2
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
�, 

 
for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡)                                                                                                    (3) 

 
In these equations, 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚(𝑡𝑡) and 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑖𝑖𝑚𝑚(𝑡𝑡) are the measured and simulated COP during the 
calibration period [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡), 𝐸𝐸_𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚(𝑡𝑡); and 𝐸𝐸_𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑖𝑖𝑚𝑚(𝑡𝑡) are the measured and simulated 
cooling tower fan power consumption during [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡); and 𝑇𝑇_𝑙𝑙𝑙𝑙𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚(𝑡𝑡) and 𝑇𝑇_𝑙𝑙𝑙𝑙𝑓𝑓𝑠𝑠𝑖𝑖𝑚𝑚(𝑡𝑡) are the 
measured and simulated temperature of condenser water leaving the tower. The variables 
involved in the calibration are listed in Table 1. Model parameters are values used in the model 
that are known a priori, and are specific to the equipment and plant design. The “goodness” of 
calibration for the chiller models was determined based on COP, and that of the tower models 
was based on the temperature of condenser water leaving the tower and fan power consumption. 
Calibration was deemed sufficient when more than 90% of the data points fell within a 10% 
error band. 
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Table 1. Variables used in the model calibration 

Plant Components Calibration goal Calibration inputs Calibration tuning 
parameters 

Chiller Coefficient of 
performance (COP) 

Compressor status (on/off) 
Chilled water flow rate 
 
Condenser water flow rate 
 
Chilled water entering 
temperature 
 
Temperature of the condenser 
water entering the chiller 

Coefficients of the 
chiller operation curves  
 

Cooling tower  Condenser water 
leaving temperature  
 

Condenser water entering 
temperature  
 
Outside air dry bulb temperature  
 
Outside air relative humidity 

Nominal approach 
temperature 
 
Nominal wet bulb 
temperature 
 
 

Fan energy use  Fan speed ratio of each module 
 

Coefficient of the fan 
operation curve 

 
The calibration results are described in detail in Section 6.4. 
  
 
2.2.2 Optimization and FDD Algorithms 

2.2.2.1 Optimization Algorithm 
 
The optimization algorithm determines the most effective cooling tower condenser water 
temperature setpoint. The chillers’ efficiency increases when the temperature of condenser water 
entering the chillers (Tcw,ent) decreases. On the other hand, reducing Tcw,ent may increase the 
energy consumption of cooling towers. Therefore, there is an optimum condenser water 
temperature setpoint for cooling towers at which the total energy consumption of the chillers and 
the cooling towers is minimized. To determine the optimal condenser water temperature setpoint, 
the component models of multiple chillers, cooling towers, and pumps were packaged into a 
system model, as shown in Figure 6. The system model was run to predict the energy 
consumption under different condenser water setpoints. Optimization constraints, such as the 
desired cooling load, were also incorporated into the model. As with the calibration activity, 
GenOpt was used as the optimization engine. The optimization period can be set to any desired 
value, in the case of this work, ranging from one hour to one day. In the configuration of the 
PlantInsight tool, the optimization period was defined as one day, as recommended by plant 
staff. The full steps of the optimization routine are (1) predict plant cooling load and (2) find the 
optimal condenser water temperature setpoint. 
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(1) Predict Plant Cooling Load 
 

To predict plant cooling load, we used a regression model that uses a linear combination of a 
bias, minute, hour, outside air temperature, and day of week (Equation 4).  
 

𝐿𝐿𝐿𝐿𝑓𝑓𝑑𝑑𝑇𝑇𝑐𝑐𝑡𝑡𝑚𝑚𝑖𝑖  =  𝛽𝛽0 + 𝛽𝛽1𝑀𝑀𝑀𝑀𝑓𝑓𝑀𝑀𝑡𝑡𝑙𝑙 + 𝛽𝛽2𝐻𝐻𝐿𝐿𝑀𝑀𝐻𝐻 + 𝛽𝛽3𝐶𝐶𝑂𝑂𝑇𝑇 + 𝛽𝛽4𝐷𝐷𝑓𝑓𝐷𝐷  (4) 
 
The coefficients of the linear combination are trained by linear least squares on the previous 
year’s data. Different coefficients are trained for each month. To predict the load for a given 
time, we obtained the forecasted outside air temperature from Weather Underground 
(www.wunderground.com) and used that, along with the prediction time and coefficients from 
the appropriate month to compute the plant load. To guard against unrealistic predictions, if the 
predicted load was outside of the range of loads used to train the specific month’s model, then 
we used the previous or next month’s model. Whether to use the previous or next month’s model 
depends on if the predicted load is too high or too low and if the season is autumn or spring.  If it 
is autumn and the predicted load is too high, the previous month’s model is used; if too low, then 
the next month’s model is used.  For the spring months, the pattern reverses:  if the predicted 
load is too high, then the next month’s model is used; if it is too low, the previous month’s model 
is used.  
 
The final piece of load prediction was to split the total predicted load into loads for Rickover and 
Lejeune. The total predicted load was split to Rickover by a piecewise linear approximation as a 
function of total load, shown in Appendix B. This approximation was made based on previous 
measurements of the ratio of Rickover load to total campus load. The Lejeune load was taken as 
the remaining difference between the total load and the calculated Rickover load. 
 

(2) Optimize Condenser Water Temperature Setpoint 
 
The optimal condenser water setpoint was determined by solving the optimization problem 
defined in Equation 5 below (Huang and Zuo 2014). It was assumed that all the cooling towers 
are controlled by the same condenser water setpoint. Since the change of the condenser water 
setpoint does not impact pump operation, the optimization equation does not include the pump 
energy consumption. 
 

min �𝐸𝐸 �
𝑡𝑡0 + ∆𝑡𝑡
𝑡𝑡0         

� = 𝑚𝑚𝑀𝑀𝑓𝑓 �� (𝐶𝐶𝑐𝑐ℎ(𝑡𝑡) + 𝐶𝐶𝑡𝑡𝑡𝑡(𝑡𝑡)𝑑𝑑𝑡𝑡)
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
�  for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡) 

 
with 𝐶𝐶𝑐𝑐ℎ(𝑡𝑡) = 𝑓𝑓(𝑇𝑇𝑐𝑐ℎ,𝑖𝑖𝑐𝑐𝑡𝑡(𝑡𝑡),𝑄𝑄𝑃𝑃(𝑡𝑡), 𝑆𝑆𝑐𝑐ℎ�����⃗ (𝑡𝑡)) 

 
and 𝐶𝐶𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝑓𝑓(𝑇𝑇𝑡𝑡𝑤𝑤𝑃𝑃 (𝑡𝑡),𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡(𝑡𝑡0),𝑇𝑇𝑐𝑐𝑡𝑡,𝑖𝑖𝑖𝑖𝑚𝑚(𝑡𝑡),𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡)) 

 
such that 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡,𝐿𝐿 ≤ 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡(𝑡𝑡0) ≤ 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡,𝐻𝐻                                                                 (5) 
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In these equations, 𝐸𝐸|𝑡𝑡0
𝑡𝑡0+𝛥𝛥𝑡𝑡 is the total energy consumption of the chillers and cooling towers 

during the optimization period [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡),  𝐶𝐶𝑐𝑐ℎ is the power of chillers, while  𝐶𝐶𝑡𝑡𝑡𝑡 is the power 
of the cooling towers,  𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡 is the condenser water setpoint, QP is the predicted cooling load, 
𝑇𝑇𝑡𝑡𝑤𝑤𝑃𝑃  is the predicted wet bulb temperature from a weather forecast, 𝑆𝑆 is the state vector of the 
system (e.g., equipment operating status, water temperature in chiller condenser, and 
evaporator), and 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡,𝐿𝐿 and 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑖𝑖𝑡𝑡,𝐻𝐻  are the low and high limits of the condenser water 
setpoint during [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡).  
 
The Modelica plant system models are used to calculate 𝐸𝐸|𝑡𝑡0

𝑡𝑡0+𝛥𝛥𝑡𝑡, with forecasted plant loads, 
outside air dry bulb temperature, outside air relative humidity, outside barometric pressure, and 
condenser water setpoint as inputs for each time interval over the time horizon of interest. 
GenOpt is used to solve the optimization problem by varying the condenser setpoint temperature 
for each time interval specified to find the minimum energy consumption over the time horizon. 
Specifically, the Hooke-Jeeves Pattern Search algorithm is used (Polak 1997). The minimum 
condenser water setpoint is either 16°C, as specified by the plant operators, or 4°C higher than 
the minimum outside wet bulb temperature forecasted over the time horizon. This 4°C 
temperature difference is known as the cooling tower approach and is implemented to ensure 
that the condenser setpoint temperature is achievable. The maximum condenser water setpoint is 
28°C as determined by the plant operators. The conventional setpoint is 22.22°C. 
 

2.2.2.2 Fault Detection and Diagnostic Algorithms 
 
Two types of FDD algorithms are implemented in the tool. The first is the detection of cycling 
faults in the cooling tower fans and chiller compressors. The second is identifying efficiency 
faults in the chiller. The detection and diagnosis of chiller efficiency faults was developed and 
implemented in the development version of the tool, but was not included in the “live” version of 
the tool that was released to the site for day-to-day use in operations. The diagnostic component 
of this algorithm, which is based on clustering and decision tree analysis, is particularly critical 
to the overall utility to operators because detection of poor efficiency in and of itself is not 
actionable. However, due to numerous constraints, the diagnostic function could not be tested 
and vetted to the extent required, and therefore was not released in the operational version of 
the tool.  
 
Cycling Faults 
 
Tower fan cycling faults are detected using cooling tower variable frequency drive speed data 
(percentage of maximum speed), while chiller cycling faults are detected using chiller 
compressor current data (percentage of full load amps). For each, less than 10% is considered off, 
while greater than 10% is considered on. For each five-minute time interval being analyzed 
during the period of interest, the algorithm counts the number of fan or chiller transitions from 
on to off, or off to on, that occur in the hour surrounding the time interval; that is, 30 minutes 
before and after the time interval. If the number of transitions is greater than or equal to 10 
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(five cycles/hour) or 8 (four cyclers/hour) for the fan or chiller respectively, a fault is flagged for 
that five-minute time interval. As illustrated in  
Figure 7, time periods of five minutes in which a fault has been flagged are then aggregated into 
faulty intervals if they persist for at least 90 minutes. Multiple faulty intervals are aggregated into 
a faulty period if they occur within two hours of each other. Otherwise, separate faulty periods 
result from the faulty intervals. Finally, energy wasted, money wasted, a fault description, type, 
and start and end time are calculated and stored. 
 

 
 

Figure 7. Fault aggregation algorithm. A single faulty period is displayed to the user if two faulty 
intervals are within two hours (left). If the time interval is greater than two hours (right), two faulty 

periods are displayed. 

 
Chiller Efficiency Faults 
 
Poor chiller efficiency is determined by comparing model-predicted COP with that estimated 
from measured data. Described in detail in Bonvini et al. (2014a and 2014b), the FDD algorithm 
is based on an advanced Bayesian nonlinear state estimation technique called Unscented Kalman 
Filtering (UKF) that estimates system states and parameters based on measured data and a model 
of the system (Julier and Uhlmann 1996). A back smoothing method is added to reduce the 
likelihood of false positives from operational variability and data uncertainties. Detecting poor 
chiller efficiency for a given time period occurs in the following steps for a given time period: 
 

(1) Identify steady-state periods 
 

Since the model of the chiller is calibrated during steady-state operation, it is important that the 
FDD algorithm only make comparisons between estimated performance from measurements and 
expected performance from models under these same conditions. Therefore, only time intervals 
with measured data meeting the criteria specified in the model calibration section are considered. 
The steady-state criteria are described in Section 2.2.1. 
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(2) Calculate and compare estimated and expected COP 

 
For each time interval identified as steady-state, the actual COP is estimated using the UKF. 
Specifically, measured chilled water and condenser water return temperatures and mass flowrates 
are combined with chiller power measurements in an idealized chiller model based on 
temperature-dependent Carnot efficiency to estimate the COP. The expected COP is calculated 
using the calibrated chiller model with the measured chilled and condenser water return 
temperatures and mass flowrates, as well as the chilled water leaving temperature setpoint. The 
probability of a fault for the time interval is computed by first finding the normalized error 
between the estimated COP and the expected COP, using the standard deviation of the estimation 
as the normalization magnitude, as shown in Equation 6. 
 

𝜖𝜖𝑐𝑐𝑐𝑐𝑖𝑖𝑚𝑚 = 𝐶𝐶𝐶𝐶𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐶𝐶𝐶𝐶𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

√2⋅𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
       (6) 

 
 
Then, the probability of a fault based on that error is calculated as shown in Equation 7. 
 

𝐶𝐶𝑓𝑓𝑚𝑚𝑓𝑓𝑖𝑖𝑡𝑡 = 1.0+𝑖𝑖𝑖𝑖𝑓𝑓(𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒)
2

        (7) 
 
 
If the probability is higher than a threshold, then a fault is flagged for the time interval. 
 

(3) Aggregate fault intervals 
 

Faulty time intervals are checked to determine whether that they last for a minimum of 
90 minutes. If they do not, then the fault is not flagged. Faulty time intervals occurring within 
two hours of one another are aggregated into a faulty period. Otherwise, separate faulty periods 
result from the faulty intervals. This is the same as the fault aggregation depicted in Figure 7 
above. Finally, energy wasted, money wasted, a fault description, type, and start and end time are 
calculated and stored.  
 
In the future, a clustering and decision tree analysis procedure could be implemented to provide 
further diagnostic insight. A procedure was developed to group detected faults based on the 
similarity of conditions under which they occur; similar instances are grouped, and summarized 
for presentation in the tool interface to support root cause diagnostics by the operator. First, a k-
means clustering algorithm divides the observed faults into distinct operational conditions under 
which the faults can be characterized. Each k cluster corresponds to a diagnostic message for the 
operator. Once the clusters are identified, a human readable diagnostic message must be 
assigned. A decision tree is used to determine the boundaries in the feature space that distinguish 
between regular and faulty data, and thus identify them. The variables used in the decision tree, 
i.e., the feature space, are condenser and evaporator water temperatures, cooling load, electric 
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power, time of day, outside air temperature, and condenser and evaporator mass flow rates. The 
results of the decision tree are then sorted in order of importance to find the set that best 
describes the majority of the faulty conditions. 
 
2.2.3 Architecture Definition 
 
 
Figure 8 further details the schematic diagram first presented in Figure 2. PlantInsight is written 
in Python 2.7, and consists of three main components: the Django web framework, the model 
simulation and optimization EstimationPy Python packages, and a PostgreSQL relational 
database. The Django web framework serves the web pages and API calls, runs the data update 
routines to calculate derived data points, runs the models using EstimationPy, and runs the 
FDD/optimization algorithms. Within these algorithms, model simulations are run by Dymola 
dymosim files, optimizations are run by GenOpt, and fault detection and diagnostics use 
EstimationPy. Dymola is a Modelica development, compiling, and simulation program; GenOpt, 
developed by LBNL, is an optimization tool for building energy simulation programs; and 
EstimationPy is a Python package, developed by LBNL and used for state and parameter 
estimation of dynamic systems that conform to the Functional Mockup Interface (FMI) standard. 
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Figure 8. Illustration of the Python, Django, and PostgresSQL components of PlantInsight, and data 
transfer from USNA 

The PlantInsight data originates from a Johnson Controls Historian database running Microsoft 
SQL Server located at the USNA site. A program was written in Java 8 to copy the data from the 
USNA SQL Server database to the PlantInsight PostgreSQL database, located at LBNL. The 
program was installed on an operator kiosk at USNA and scheduled to run daily at 8:00 AM PT. 
Automated routines on the PlantInsight system read in the new data, update its derived data 
points, run the models, then run the FDD/optimization algorithms. 
 
2.2.4 GUI Development 
 
To ensure that the tool would be of maximum utility to plant operators, design feedback was 
obtained iteratively, throughout development. The most important feedback that was integrated 
into the tool design and functionality is summarized in the following:  
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● Add key performance indicators: Primary chilled water loop temperature, and weather 
forecast are critical parameters that are tracked by the operations staff. In addition, staff 
also requested that the tool-predicted plant load forecast be added to the interface. Since 
these variables are tracked on a continual basis under existing operations, it was 
important that they be included in the PlantInsight tool. If excluded, the tool would be 
less likely to be integrated into daily management processes because it would lack the 
most valuable monitoring features that are included in the current EMCS. KPIs are 
displayed on the landing page, as shown in  

● Figure 1. 
● Convert energy units to dollars: While campus energy managers regularly track 

kilowatt-hours (kWh) and Btu, tons and dollars resonate more strongly with plant 
operations staff. Therefore, the impact of faults and optimal setpoints are represented in 
terms of utility costs. Operators and energy management staff were interested in two cost 
scenarios—savings gained from changes that are implemented (to communicate the value 
of the team’s contributions to others in the organization) and the cost of not addressing 
changes (to facilitate approval of remedial actions and associated expenditures). 

● Limit the frequency of optimization: Although the tool was initially configured to 
generate optimal setpoints each hour, the operations staff were not comfortable 
implementing changes more than once a day. More frequent changes were deemed 
impractical and risky. Over time, twice-daily changes may be integrated into operational 
routines to address overnight conditions. In addition, the predicted energy consumption 
with the optimal condenser water setpoint temperature is compared to the predicted 
energy consumption with the conventional setpoint, and if the savings are not significant 
(>1%), the conventional setpoint temperature is recommended.  

 
 
Figure 9 shows the condenser water temperature setpoint optimization features in the tool. In the 
upper plot, the model-determined optimal setpoint is shown along with the conventional actual 
setpoint (in °F) for the upcoming day. The conventional setpoint is an annual constant under 
current operational strategies. The forecasted wet bulb temperature is also plotted. In the lower 
plot, for a time period specified by the user, the actual measured power (orange) and the 
predicted power that would have been consumed under the model-determined optimal condenser 
water temperature setpoint (green) is shown. This predicted optimized power is calculated as a 
percentage of measured power, where the percentage is calculated from the ratio of model-
determined optimal power to model-determined baseline power. Therefore, if the optimal 
setpoint were actually implemented, the user would expect to see the actual measured power and 
optimal predicted power trends overlap. 
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Figure 9. Screen shots of the condenser water temperature setpoint optimization features in PlantInsight: 
(Top) Optimal and conventional condenser water setpoints with predicted wet bulb temperature. (Bottom) 

Measured and predicted optimal power. 

 
 
Figure 10 shows the chiller efficiency fault detection and diagnostic features in the tool (not 
released in the live version of the tool). In the upper plot, the chiller efficiency curve is plotted 
with kW/ton on the y-axis, and cooling tons on the x-axis. In the bottom plot, a time series of 
detected efficiency faults is provided. A time series of the measured COP is overlaid with the 
model-predicted COP. When the two values diverge beyond a threshold size and probability, a 
fault is detected. Fault instances are aggregated and flagged for the user’s attention, as described 
in Section 2.2.2.2. 
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Figure 10. Screen shot of the chiller efficiency fault detection and diagnostic features in the PlantInsight 
tool for a fault-free period of operation 

Figures 11–13 show the tool’s cycling fault detection features.  
Figure 11 contains a summary overview of tower fan and chiller cycling fault detection results 
during the time period of April 24–27, 2016. The red box indicates that tower fan cycling fault 
was detected in Rickover Tower 1 Cell A. Figure 12 provides a drill-down of the hourly power 
(kW) measurements for the tower’s faulting fan, where the period of cycling is highlighted in a 
pink box. A zoom-in plot of the higher-frequency data from this period in Figure 13 verifies that 
the fan was indeed cycling on and off every 5 to 10 minutes.  
 
 



 
ESTCP Final Report: 201254   December 2017 
Optimizing Operational Efficiency: Integrating Energy Information Systems and Model-Based Diagnostics 
 22  

 
Figure 11. Screen shot of the cycling fault detection results overview in the PlantInsight tool for a time 

period during which a tower fan cycling fault was detected 

 

 

Figure 12. Screen shot of the cycling fault detection “drill down” results for Rickover Tower 1 Cell A in 
the PlantInsight tool when a tower cycling fault was detected 
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Figure 13. Zoom-in of the data verifying the fan cycling detected in the PlantInsight tool 

 

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY 
 
In assessing the advantages and limitations of the technology we considered diagnostic and 
optimized control power, scalability, required expertise, maintainability, and contrast with 
approaches based purely on rule-based and data-driven techniques. Rule-based and data-driven 
approaches are diverse and quite varied, as are physics-based models and the use cases for which 
they may be deployed. Therefore, we present a general discussion, based on the current state of 
today’s most readily available solutions.  
 
Diagnostic and optimized controls power: Physics-based techniques remain a compelling 
direction for the continuous commissioning, optimization, and FDD systems of the future. One 
major advantage of physics-based models over data-driven models is the ability to extend them 
for retrofit analysis as well as those that focus on operational efficiency analysis. One can drop in 
new chillers, towers, or pumps and use the model for further analysis beyond the realm of prior 
historic operations. In addition, users can compare how the system should operate to how it has 
operated in the past. Accordingly, knowledge of the underlying physics holds potential to 
enhance diagnostic power. Model-based approaches are critical in the delivery of holistic 
strategies for advanced, efficient building controls. The buildings industry is only beginning to 
deliver energy-aware transactive controls and dynamic, anytime optimization. These capabilities 
will surely be needed in the buildings and energy supply systems of the future, and will require 
more sophisticated model-based representations of the underlying physics and engineering in the 
system.  
 
Required expertise: Given the modeling tools available today, physics-based model construction 
is more labor-intensive and less scalable than rule-based and data-driven models. While non- 
physics-based approaches typically require tuning of key parameters, they are less likely to 
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require customization or rebuilding for each new building or system encountered. Moreover, if 
components change, retrofits are made, or control sequences are modified, physical models may 
require modification. It is possible to leverage whole-building reference models that provide a 
coarser representation of the building and its systems, however it is not clear that these offer 
sufficient resolution for reliable fault diagnostics and optimization. Depending on the specific 
modeling environment used, “stock” components may be available from preexisting libraries. 
However, the models must then be adapted for use with specific diagnostic algorithms. For 
example, in this work, the chiller model from the Modelica Buildings Library was adapted and 
modified for use in the state/parameter estimation phase of the efficiency fault detection 
algorithm. Model calibration requires a significant degree of specialized expertise in building 
modeling, operations, and building science. In general, however, it can largely be conducted with 
data that are commonly available from building control systems. As in the case of rule-based and 
data-driven models, the required data often need to be cleansed to fill gaps and filter extreme or 
erroneous values.  
 
Scalability and maintainability: Cost-effective integration of control system data into analytics 
tools remains one of the most significant challenges to advancing the state of today’s technology, 
whether model-based or data-driven approaches are employed. In principle it is possible, but in 
practice the associated cost and complexity often outweigh the benefits of the advanced analytics 
that require the data integration. Once the data are obtained, care must be taken to ensure that the 
models are being calibrated in a physically meaningful way. Auto-calibration routines that codify 
some of the expertise that is needed for successful calibration are being developed by 
researchers, and are beginning to be offered to the industry (Sanyal et al. 2014; Sun et al. 2016). 
However, calibration approaches must be matched to the application. For example, calibration of 
a model used for a chiller fault detection as it operates through dynamic and steady-state regimes 
may be quite different from that of a whole-building model that is used to determine faults in 
centralized HVAC systems. The questions of when to recalibrate and how to account for faults 
present in the calibration data are the subjects of ongoing research. Finally, one can consider the 
infrastructural aspects of delivering model-based approaches for use in continuous operational 
analytics. The infrastructural requirements for such systems do not present a practical challenge 
for scaled delivery. Cloud-based software services dominate today’s solutions for operational 
analytics tools, precisely because of the cost-efficient, scalable, computational, and hosting 
flexibility they provide. 
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3.0 PERFORMANCE OBJECTIVES 
 
 
Table 2 below provides a summary of the demonstration performance objectives, metrics, data 
requirements, success criteria, and results. 
 

Table 2. Performance objectives 

Performance 
Objective Metric Data Requirements Success Criteria Results 

Quantitative Performance Objectives 
(1) Reduce 
Central Plant 
Electricity Use 

Annual energy 
use, normalized 
for weather 
(kWh/year) 

Time series plant energy 
data, and independent 
variables such as outside 
air temperature and 
relative humidity 

At least 10% 
reduction 
compared to 
baseline cooling 
plant energy use 

Objective 
achievable for 
~6 months of the 
year; not 
achievable on an 
annual basis 

(2) Reduce 
Central 
Cooling Plant 
Greenhouse 
Gas Emissions  

Equivalent CO2 
emissions 
(metric tons) 

Metered energy use 
before and after the 
demonstration, and 
regional emissions factors 

10% reduction 
compared to 
cooling plant 
baseline 

Objective 
achievable for 
~6 months of the 
year; not 
achievable on an 
annual basis 

(3) System 
Economics 

Simple and 
discounted 
payback for 
technology use 

Costs: sensor hardware, 
sensor and software 
installation, model 
creating calibration, 
electricity use, model and 
software maintenance, 
operator training, and 
time to use tool 

Simple and 
discounted 
payback in less 
than 5 years  

Objective met 
with simple and 
discounted 
paybacks of 
1.4 years 

(4) Central 
Plant Model 
Calibration 

Difference 
between model 
prediction and 
measurement  

Central plant operational 
parameters, e.g., 
compressor status, chilled 
water flow rates, 
temperatures, weather 
conditions, fan speed, etc. 

Difference 
between model-
predicted and 
measured 
parameters less 
than 10% for 90% 
of data points 

Objective met for 
3 of 6 chillers 
and 10 of 10 
cooling tower 
cells  

(5) Latency in 
Data Transfer 
Between 
Database, and 
GUI 

Latency 
(milliseconds) 

Measured time to transfer 
data between the tool’s 
components 

Near-zero latency, 
in data transfer 
between GUI and 
database, i.e., 
<500 milliseconds 

Objective 
superseded by 
Performance 
Objective 6 
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Qualitative Performance Objectives 

(6) User 
Satisfaction  

Qualitative 
measures of 
satisfaction with 
the enhanced EIS 

Pre- and post-installation 
interviews with operators 

Equal or improved 
satisfaction 
relative to existing 
operational tools 

Objective met 

 

The following text describes each of the six performance objectives in Table 2 in further detail 
and includes a discussion of obtained results.  
 
1. Reduce Central Plant Electricity Use: Reduce the total electricity consumed over the course 
of one year at the central plant (kWh/year) by 10% with respect to baseline operations. 
 

Purpose: Improving the energy efficiency of the central plant increases energy security 
and reduces site operating and maintenance. It also reduces total GHG emissions 
associated with plant operations.  

 
Metric: The difference between annual energy consumption with the baseline operating 
conditions and annual energy consumption resulting from optimized operation, as 
calculated by annual simulations of both plant operation strategies. 

 
Data: Measured cooling load for each central plant and measured weather conditions at 
the demonstration site.  

 
Analytical Approach: Energy savings were determined by the difference between 
simulated annual energy consumption with and without use of the tool. Specifically, the 
baseline energy consumption was determined through daily simulations of each of the 
two plants’ energy consumption using measured cooling load, measured weather 
conditions, and the conventional condenser water setpoint of 22.2°C as inputs. The 
optimized energy consumption was determined through daily optimization of each plant’s 
condenser water setpoint based on measured cooling load and measured weather 
conditions, with subsequent simulation using the optimized setpoint. This approach 
achieves a maximum-achievable energy savings since the load is perfectly known in the 
optimization of the setpoint.  

 
Result: The results of the analysis indicate that daily energy savings greater than 10% are 
obtainable for approximately six months of the year; mainly during the winter season. 
However, for the year as a whole, much lower energy savings of 1.38% (434,785 kWh, 
$30,435) are obtainable. While the performance is unsatisfactory compared to the overall 
performance objective, a number of valuable insights emerged from the analysis, 
including the effects of seasonal wet bulb temperatures and the relative power 
consumption of the chiller compared to the cooling tower fans. Larger annual savings are 
possible in drier climates. Further details are provided in Section 6 of this report. 
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2. Reduce Central Cooling Plant Greenhouse Gas Emissions: Reduce the equivalent carbon 
dioxide (CO2) emissions associated with the electricity used to run the central cooling plant over 
the course of one year (metric tons) by 10% with respect to baseline operations. 
 

Purpose: Improving the energy efficiency of the central plant helps to achieve the DoD’s 
overall energy and water goals of reducing GHG emissions from non-vehicle sources. 
Additionally, source reduction, as opposed to emission containment, is cost-effective, 
highly scalable, and a transferable approach to reducing GHG emissions at most military 
installations.  

 
Metric: The difference between annual expected tons of GHG emissions with the 
baseline operating conditions and annual expected tons of GHG emissions resulting from 
optimized operation, as calculated by annual simulations of both plant operation 
strategies.  

 
Data: Measured cooling load for each central plant, measured weather conditions at the 
demonstration site, and regional emissions factors.  

 
Analytical Approach: Calculated energy savings from Performance Objective 1 were 
converted to tons of avoided GHG emissions regional emission factors for the Annapolis 
area. This conversion factor is obtained from ENERGY STAR’s Portfolio Manager 
Greenhouse Gas Emissions Technical Reference Guide (ENERGY STAR 2017). The 
factor is obtained by assuming indirect emissions, since electricity is produced by the 
utility off-site, and using the U.S. Environmental Protection Agency’s (EPA’s) Emissions 
& Generation Resource Integrated Database (eGRID) for August 2017 in the RFCE (mid-
Atlantic) region, which includes Maryland. The conversion factor is 110.93 kg CO2/MBtu 
(378.5 kg CO2/kWh). 

 
Result: With a single conversion factor applied, the results of the analysis are the same as 
the energy performance objective, in terms of percent savings. That is, greater than 10% 
daily GHG emissions savings are achievable throughout six months of the year, mainly 
the winter season. However, only 1.38% (181,403 tons) annual savings are possible in 
USNA’s more humid climate, for the same reasons as described for the energy savings 
performance objective. 

 
3. System Economics: The demonstration technology can meet simple and discounted payback 
hurdles of less than five years.  
 

Purpose: Assessment of system economics based on standard capital budgeting metrics 
provides a gauge for determining financial feasibility.  

 
Metric: Simple and discounted payback based on the cost of implementing and using 
PlantInsight compared to the baseline case of no optimization.  

 
Data: All data required to evaluate system economics, e.g., utility costs under both 
scenarios, hardware and software purchase, installation, and calibration, regular 
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maintenance, and operator labor and training time. All input values and assumptions are 
provided in detail in Section 7 of this report. 

 
Analytical Approach: Calculations were conducted in accordance with the principles of 
the NIST BLCCA process, as published in NIST Handbook 135 (Fuller and Petersen 
1996). The BLCC calculator was used to determine the benefit of the proposed 
demonstration technology relative to the “do-nothing” case. Section 7 provides details of 
the life-cycle cost analysis, including how the elements of the cost model were mapped to 
the inputs required within the BLCC calculator. 

 
Result: The analysis showed that simple and discounted payback can be met in 1.4 years, 
well within the five-year target that was established. Further details are provided in 
Section 7 of this report.  

 
4. Central Plant Model Calibration: Calibrate the chiller and tower models so that the 
difference between model-predicted and measured parameters are less than 10% for 90% of the 
data points. 
 

Purpose: Ensure that the model developed to simulate the central plant is representative 
of the central plant’s actual physical performance.  

 
Metric: The difference between model predictions and measured data from central plant 
operations. 

 
Data: Chiller compressor status, chilled water flow rate, condenser water flow rate, 
chilled water entering temperature, chilled water leaving temperature setpoint, condenser 
water entering temperature, nominal power, energy use; tower condenser water leaving 
and entering temperature, fan speed, nominal power, and energy use; outside air dry bulb 
temperature and relative humidity.  

 
Analytical Approach: Data from the plant were measured and compared to model 
estimates over a 16-month period (5/13/2014–9/22/2015). 

 

Result: The soundness of the calibration process was confirmed, and the majority of systems 
were calibrated to meet the performance objective: three of six chillers and all ten of the fourteen 
cooling tower cells for which the required data were available. However, data availability and 
possibly reliability prevented successful calibration of all chillers and tower cells. For the 
chillers, calibration was challenged by the limited volume of data representing full-capacity 
operation, and perhaps by inaccurate chilled water temperature sensor data, or faulty operations 
underlying the data. For the cooling tower cells, key calibration inputs were not available from 
the historical set of measurements from the site; the data were either not reporting correctly 
(constant zero values) or of poor quality. Further details are provided in Section 6 of this report.   
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5. Latency in Data Transfer Between Database and GUI: Design the tool for near-zero (<500 
millisecond) latency in data transfer between the user interface and the database. 
 

Purpose: Ensure that results from the FDD and operational optimization can be displayed 
to the operator without delays that adversely affect usability. 

 
Metric: Data “travel time” between tool components. 

 
Data: Measures of time to transfer data between critical interfaces in the PlantInsight 
tool. 

 
Analytical Approach: Apply to PlantInsight utilities that are designed for software 
developers to measure latency and are compatible with the specific architecture and 
coding of the tool.  

 
Result: This performance objective was superseded by Performance Objective 6, which 
encompassed overall user satisfaction relative to existing operational tools used at the 
site. The original target was 500 milliseconds, as the midpoint between the 0.1 second 
threshold of perceived instantaneousness, and the 1.0 second threshold of maintaining a 
user’s perception of operating directly on data. Building energy and operational 
applications (and other business applications) often feature longer latencies, and 
10 seconds is recognized as the limit for keeping a user’s attention focused. In 
PlantInsight, latency in the GUI is largely driven by the user-selected time history of 
analysis. Going farther back in time over longer time horizons increases the time required 
to display results and data plots. However, operators tend to use the tool non-
continuously, with a focus on recent operations. Throughout the demonstration, system 
responsiveness was never mentioned (positively or negatively) by users of the tool. 

 
6. User Satisfaction: Evaluate whether the demonstration technology offers equal or improved 
satisfaction relative to existing operational tools.  
 

Purpose: Determine the extent to which the demonstration technology meets the needs of 
site operational staff with respect to their existing set of energy management tools. 

 
Metric: Qualitative measures of satisfaction based on survey/interview questions. 

 
Data: Operator responses to survey questions. 

 
Analytical Approach: A survey instrument (see Appendix C) was developed to compare 
and contrast features and capabilities, identify those with the highest value to site 
operational staff, and identify improvements; the central chilled water plant manager and 
lead operator (primary users of the demonstration technology) were interviewed to obtain 
responses for evaluation. 
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Result: This performance objective was met; the demonstration technology was to 
provide equal or improved user satisfaction relative to the tools currently in use at USNA. 
Further details are provided in Section 6 of this report.  
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4.0 FACILITY/SITE DESCRIPTION 
 
The technology demonstration was conducted at the United States Naval Academy (USNA). The 
technology was implemented across the two central plants, Rickover and LeJeune, that serve the 
campus-wide chilled water (CHW) loop. 
 
The USNA was selected based on the following desired site characteristics, deemed most critical 
to ensuring a good fit with the technology, and its implementation requirements: 
 

● Installation staff prepared to integrate advanced methods into regular operations routines 
● A central HVAC plant with modern control systems and robust trending capability 
● Advanced metering of sufficient totality to determine energy saving impacts of improved 

HVAC operations. 
  

4.1 FACILITY/SITE LOCATION AND OPERATIONS 
 
The USNA is located in Annapolis Maryland, and therefore operates within mixed-humid 
ASHRAE Climate Zone 4A. This implies a significant indoor cooling demand. This fact is 
especially relevant because the proposed demonstration focuses on the improving the operational 
efficiency of USNA’s central cooling plant. The cooling plant is split into two separate buildings, 
and serves a diverse set of buildings, including traditional office spaces, classrooms, libraries, 
gymnasiums, laboratories, a small data center, and other university buildings. Figure 14 shows a 
campus map with the location of the cooling plant facilities and the buildings they serve. 
 
The plant is relatively new (constructed in 2006) and represents the current state of efficient 
design practice. The plant management staff uses the plant building automation system (BAS) to 
trend the standard operational parameters that are leveraged by the PlantInsight tool, and it 
contains a good degree of monitoring and measurement. USNA shares many common 
characteristics with other DoD installations. 
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Figure 14. Map of the U.S. Naval Academy. The central plants serving the campus chilled water loop are 

located in Lejeune (south end of campus) and Rickover (north end of campus). 

 

4.2 FACILITY/SITE CONDITIONS  
 
The cooling plant is split into two separate buildings and comprises four 2,500-ton York chillers, 
two 1,250-ton York chillers, and seven two-cell cooling towers. The Rickover plant, which is 
used for the majority of the year, contains two 1,250-ton chillers, one 2500-ton chiller, and four 
two-cell cooling towers. The Lejeune plant contains three 2,500-ton chillers, and three two-cell 
cooling towers.  
Figure 15 shows images of the Lejeune cooling towers and one of the chillers. The 2,500-ton 
chillers at the plant have two compressors, while the 1,250-ton chillers have one compressor 
each. The central chilled water loop is operated in a primary/secondary pumping arrangement 
with each plant. Variable frequency drives are outfitted on each cooling tower fan and secondary 
chilled water loop pump. Primary chilled water loop pumps and condenser water pumps do not 
have variable frequency drives. The plants use a Johnson Metasys® BAS. USNA energy 
management staff report that the campus HVAC operates during typical “campus” operating 
hours but can run long hours to accommodate students during exam weeks or other high-activity 
times.  
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Figure 15. Lejeune plant cooling towers (left), chillers and pump (right) 

 
The primary loop pumps are operated as follows. Each pump is associated to a specific chiller 
and operates at nominal speed if the chiller is designated to turn on. One backup pump is 
available for chiller during operation. For example, PCHP-1 and -2 are associated with the 
2,500-ton chiller in Rickover with one operating at a time and the other for backup, while 
PCHP-3 to -5 are associated with either 1,250-ton chiller in Rickover, with two operating at a 
time and the third for backup. The pumps are staged based on minimum runtime. The secondary 
loop pumps each have variable frequency drives and are controlled to maintain the prescribed 
differential pressure setpoint across the campus loop. The condenser pumps are operated 
similarly to the primary pumps. 
 
The cooling plant is operated to provide campus loop chilled water at 42°F +/- 2°F (adjustable).  
Figure 16 below illustrates the plants’ configuration in relation to this loop. Each plant is 
operated in a seasonal configuration. During winter months (commonly November to April), the 
Lejeune plant is decommissioned, and only the Rickover plant provides cooling to the campus by 
running one of the two 1,250-ton chillers at a time, with one designated cooling tower. In non-
winter mode, the two plants (Rickover and Lejeune) are operated to satisfy the cooling load 
requests according to staging sequences as follows. Once the cooling load surpasses the capacity 
of the single 1,250-ton chiller, the Rickover 2,500-ton chiller begins to operate, while the 
original (1,250-ton) chiller is de-energized. When the load rises above the capacity of the 
2,500-ton chiller, the 1,250-ton chiller with the lowest runtime commences operation, together 
with the 2,500-ton machine. Upon continued rise of the cooling load above 3,750 tons, the 
operation is switched to the Lejeune plant. Personnel may decide to operate both plants 
simultaneously under certain circumstances. The transition and the coordination between the two 
plants is partially assisted by operators. Finally, cooling towers are staged on/off according to 
minimum runtime and to maintain a nominal condenser water temperature of 72°F +/- 2°F 
(adjustable). Cooling tower fan speeds are modulated to maintain fine control of the setpoint. 
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Note that this condenser water setpoint is the optimization variable of interest, as described in 
Section 2. 
 

 
 

Figure 16. Configuration of the USNA cooling plants and the chilled water loop 



 
ESTCP Final Report: 201254   December 2017 
Optimizing Operational Efficiency: Integrating Energy Information Systems and Model-Based Diagnostics 
 35  

5.0 TEST DESIGN 

5.1 CONCEPTUAL TEST DESIGN 
 
The USNA technology demonstration was conducted in three phases. First, design wireframes 
and an alpha version of the PlantInsight optimization and diagnostic tool was developed to 
ensure conceptual alignment with existing operational practices, and to obtain early design 
feedback. This alpha version interfaced with a static database of historical operational data from 
the facility.  
 
In the second phase, we connected operational data with a beta version of the tool and conducted 
troubleshooting and refinement to ensure integrity of all software interfaces and components of 
the tool. We also conducted vetting of the diagnostic and optimization algorithms. In the third 
phase, we released the first version (v1) of the tool for operator use and began tracking its 
performance. Throughout the demonstration, operational data were collected and used for a 
variety of development, testing, and verification processes, including model training and 
calibration, algorithm vetting, visualization in the tool’s GUI, energy baselining, and 
performance assessment. 
 
To frame the demonstration according to classical experimental constructs, the demonstration 
design can be expressed as follows: 

 
Hypothesis: The use of the hybrid physics-based and data-driven optimization and fault 
detection tool will reduce electricity use (and associated GHG emissions) in a chiller-
based central cooling plant. These reductions can be achieved in a cost-effective manner 
with acceptable user satisfaction.  
 
Independent variable: Installation and use of the PlantInsight tool. 
 
Dependent variables: Electricity use at the central plant, plant utility expenditures, cost of 
software and sensor hardware, and user experience. 
 
Controlled variables: Central plant configuration, electricity tariff and rates, weather and 
climate conditions. Controlled variables are incorporated in the modeling and analysis to 
improve the likelihood that results of tests reflects actual performance at USNA and that 
they are transferable to expectations at other military sites. 

 

5.2 BASELINE CHARACTERIZATION  
 
The technology demonstration evaluated three categories of performance objectives: 

1. System economics, energy and greenhouse gas reductions, which require a rigorous 
quantitative baseline characterization. 
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2. Model calibration and system latency, which are absolute measures that do not require 
comparison relative to a baseline.  

3. User satisfaction, which is a qualitative measure that was assessed relative to a baseline 
comprising the existing technologies used in by the operations staff, using a survey and 
interview instrument.  

 
Baseline energy use and GHG emissions were characterized using measured cooling load at each 
plant, measured weather conditions at the site, and the conventional condenser water setpoint 
temperature of 22.2°C as inputs in the plant simulation models. The simulated electricity 
consumption of each plant includes chiller compressors and cooling tower fans. 
 
Baseline conditions for the evaluation of system economics are detailed in Section 7. 

 

5.3 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS 
 
The primary components of the demonstration technology, PlantInsight, were described in 
Section 2 and illustrated in Figures 2 and 8. Data from meters and sensors at the USNA’s two 
central cooling plants is stored locally in the Johnson Controls Microsoft SQL server. These data 
are accessed by operational staff through the “operator kiosk.” The kiosk is located in a different 
facility on the USNA campus than either cooling plant.  
 
The PlantInsight tool is located on a server at LBNL, and accessible to USNA via web browser. 
Site data required for PlantInsight is pushed to LBNL using secure port 443 and a data transfer 
program installed on the kiosk.  
 
The location of the Rickover and Lejeune cooling plants on the USNA campus is shown in 
Figure 14 in Section 4.1. Schematic diagrams of the cooling plants and the location of selected 
measurement points used in the demonstration are provided in Figures 17–20 below.  
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Figure 17. Schematic diagram of the Rickover plant chilled water system 
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Figure 18. Schematic diagram of the Rickover plant condenser water system 
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Figure 19. Schematic diagram of the Lejeune plant chilled water system 
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Figure 20. Schematic diagram of the Lejeune plant condenser water system 
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5.4 OPERATIONAL TESTING 

Over the duration of the project operational testing was delayed several times due to: (1) a need 
to change demonstration sites, (2) changes in NDW facility/energy management technologies 
with which PlantInsight would be integrated, and (3) modifications to NDW contracts and 
services that resulted in LBNL providing GUI development and data integration solutions. Given 
these challenges, the demonstration could not have been successful without the unfailing, 
dedicated support and collaboration of NDW and USNA staff.  

The phases and dates of development and operational testing are summarized below:  

2012: Project launch at Washington Navy Yard (WNY); central plant information and 
data acquisition; Demonstration Plan development and approval. 

2013: Early model development for WNY; integration plan to deliver PlantInsight 
capabilities through NDW’s EnergyICT meter analytics system; demonstration site 
relocation due to WNY shooting incident. 

2014: Update of Demonstration Plan to reflect new location at USNA; central plant 
information and data gathering for new site; NDW recommendation to deliver 
PlantInsight through the IBM operational platform; wireframe mockups of PlantInsight 
delivered to NDW, IBM, and USNA staff for early design testing and feedback.  

2015–2016: NDW recommendation to untether PlantInsight from IBM platform; 
reassignment of GUI implementation and tool hosting to LBNL.  

2016–2017: Alpha version released for testing, via integration to a static mirrored 
database; troubleshooting and development of code to establish continuous data access 
from USNA to LBNL database; features updated based on user feedback. Beta released 
with live data updates and used for further testing algorithm vetting; iterative hardening 
based and enhancement. Full-fledged in-situ operational testing including implementation 
of optimized setpoints recommended by the tool. 

5.5 SAMPLING PROTOCOL 
The Johnson Controls Metasys building automation system is the primary source of data used for 
the model calibration, and ongoing setpoint optimization and fault detection capabilities of the 
tool. Additional sources of data include a weather feed for temperature and wet bulb forecasts. 
Panel-level electricity consumption data that is not integrated into the Metasys system was used 
to validate PlantInsight’s calculations of plant and chiller energy use that were based on 48 total 
Metasys points. A blended average cost of electricity ($0.07/kWh) provided by the site utilities 
manager was used for all calculations to convert energy to dollars.  
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The data that were used for the development and operation of PlantInsight are summarized in 
Table 3. 
 
Table 3. Summary of data and monitoring points used for technology development and operation 

Data Point Sampling 
Frequency 

Quantity Data Source Use of Data  

Chiller compressor status *COV 10 Metasys Model calibration 
Fault detection and 
diagnosis 

Chiller chilled water leaving 
temperature 

5 min 6 Metasys Model calibration 
Fault detection and 
diagnosis 

Chiller chilled water entering 
temperature 

5 min 6 Metasys Model calibration 
Fault detection and 
diagnosis 

Chiller chilled water leaving 
temperature setpoint 

COV 6 Metasys Model calibration 
 

Chiller FLA motor current 5 min 10 Metasys Energy calculation 
Model calibration 
Fault detection and 
diagnosis 

Chiller chilled water pressure 
difference 

5 min 6 Metasys Calculate chilled water 
flowrate for model 
calibration 
Fault detection and 
diagnosis 

Chiller condenser water pressure 
difference 

5 min 6 Metasys Calculate chilled water 
flowrate for model 
calibration 
Fault detection and 
diagnosis 

Cooling tower module status COV 14 Metasys Model calibration 
Fault detection and 
diagnosis 

Cooling tower condenser water 
leaving temperature 

5 min 14 Metasys Model calibration 
Data quality check 

Cooling tower condenser water 
entering temperature 

5 min 14 Metasys Model calibration 
Data quality check 

Cooling tower condenser water 
leaving temperature setpoint 

5 min 2 Metasys Model calibration 
CDW setpoint optimization 

Cooling tower module fan speed 5 min 14 Metasys Model calibration 
Cooling tower module electric 
power 

5 min 14 Metasys Energy calculation 
Model calibration 
Fault detection and 
diagnosis 

Outside air dry bulb temperature 5 min 1 Metasys Model calibration 
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Outside air relative humidity 5 min 1 Metasys Model calibration 
Primary loop chilled water 
leaving temperature 

5 min 1 Metasys Data quality check 

Primary loop chilled water 
entering temperature 

5 min 1 Metasys Data quality check 

Secondary loop chilled water 
leaving temperature 

5 min 1 Metasys Data quality check 

Secondary loop chilled water 
entering temperature 

5 min 1 Metasys Data quality check 

Forecasted outside air dry bulb 
temperature 

Hourly 1 Weather 
underground 

Load forecast 
CDW setpoint optimization 

Forecasted outside air relative 
humidity 

Hourly 1 Weather 
underground 

Load forecast 
CDW setpoint optimization 

*COV stands for change of value 
 
The demonstration did not require addition of meters or sensors other than those already in place 
at the site. As such, demonstration-specific calibration beyond the site’s standard calibration 
procedures was not conducted, except for the plant temperature sensors (which are critical to the 
models that underlie the PlantInsight tool). Data were cleaned using standard logic to remove 
outlier spikes and discard data for periods when values that should have been variable were 
observed to be constant, or “pinned.”  
 
Data quality checks were conducted for the plant temperature sensors by comparing readings 
with one another and applying engineering logic. Figure 21 shows the location of temperature 
sensors for the Rickover plant. When only one chiller is running in the plant, chiller-chilled 
water leaving or entering temperature was compared with primary loop and secondary loop 
chilled water leaving or entering temperature. The chiller-chilled water leaving or entering 
temperature reading was deemed reliable if it closely matched the readings of the associated 
primary loop and secondary loop temperature sensors. When a significant difference was 
identified, the average difference was calculated and used to correct the measured temperature.  
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Figure 21. Location of chilled water temperature sensors at the Rickover plant 

 
Table 4 summarizes the results of quality assurance checks that showed four of the six chillers 
had accurate temperature sensors. Below that are sample plots of data used in the analysis.  
Figure 22 shows that the Rickover Chiller 1 chilled water leaving temperature closely followed 
the measurements from primary and secondary loops, indicating that the data are valid and the 
data from the leaving temperature sensor was correct.  
Figure 23 shows that although the Lejeune primary and secondary loop entering temperatures are 
equivalent, they are approximately, 3°F lower than the Lejeune Chiller 1 chilled water entering 
temperature. From analysis of the data for all the time periods when only Chiller 1 was running 
in the plant, it was determined that the entering temperature reading was offset 2.5°F higher than 
the nominal value. This temperature bias was corrected through a calculation within the 
PlantInsight tool. Similar analyses for the cooling tower condenser water leaving and entering 
temperature indicated that the cooling tower temperature sensors were producing accurate 
readings. 
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Table 4. Results of quality assurance checks for chilled water temperature sensors 

Rickover 
plant 

Chiller 1 chilled water leaving temperature Correct 

Chiller 1 chilled water entering temperature 

Chiller 2 chilled water leaving temperature 

Chiller 2 chilled water entering temperature 

Chiller 3 chilled water leaving temperature 

Chiller 3 chilled water entering temperature 

Lejeune 
plant 

Chiller 1 chilled water leaving temperature 1.4°F higher than actual value 

Chiller 1 chilled water entering temperature 2.5°F higher than actual value 

Chiller 2 chilled water leaving temperature Correct 
 

Chiller 2 chilled water entering temperature 

Chiller 3 chilled water leaving temperature 1.1°F lower than actual value 

Chiller 3 chilled water entering temperature 1.1°F lower than actual value 
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Figure 22. Quality assurance check for the Rickover Chiller 1 chilled water leaving temperature sensor: 
The data were plotted from September 13, 2015, when only Chiller 1 was running and the decoupler flow 

direction was from leaving to entering chilled water 

 
 

 
 

Figure 23. Quality assurance check for the Lejeune Chiller 1 chilled water entering temperature sensor: 
The data were plotted from July 13, 2015, when only Chiller 1 was running and the decoupler flow 

direction was from entering to leaving chilled water 

5.6 SAMPLING RESULTS 
 
The figures in this section contain data plots for a sampling of some of the most critical points 
used in operational testing of the demonstration technology. In  
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Figure 24, operational data for Rickover Chiller 3 is shown over a five-day period in spring, 
including the chiller’s entering and leaving water temperature, flow, and percent of maximum 
current.  
Figure 25 includes trends for Rickover Cooling Tower 4 over the same time period, and shows 
water temperature and fan speed and power in each of the tower’s two cells.  
Figure 26 shows the dry bulb temperature and relative humidity during this period. Figure 27 
shows the implementation of the optimal condenser water temperature setpoint, which was ten 
degrees F lower than the typical static setpoint otherwise used at the plant.  
 
 

 
 

Figure 24. Operational data for Rickover Chiller 3: April 6–10, 2017 

 

 
 

Figure 25. Operational data for Rickover Tower 4: April 6–10, 2017 
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Figure 26. Relative humidity and dry bulb temperature data for April 6–10, 2017 

 
Figure 27. Rickover cooling tower leaving temperature setpoint changing due to the implementation of an 

optimized setpoint from April 6–10, 2017 
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6.0 PERFORMANCE ASSESSMENT 
 

6.1 REDUCE CENTRAL PLANT ELECTRICITY USE  
 
6.1.1 Procedure 
 
The goal of this performance objective was to reduce the total electricity consumed over the 
course of one year at the central plant (kWh/year) by 10% with respect to baseline operations. 
This performance objective was to be met by the implementation of optimized setpoints 
determined by the tool according to the algorithms described in Section 2.2.2.1. To determine if 
this performance objective was met, a simulation of tool implementation was used. Specifically, 
for each plant, measured cooling load data and observed weather conditions were used by the 
optimization algorithm to determine the optimal condenser water setpoint for a given day. Once 
this setpoint was determined, the operation of each plant for the given day was simulated using 
the developed models twice—once with the optimized setpoint and once with the conventional 
setpoint. The conventional setpoint represents the baseline operation, while the optimized 
setpoint represents operation with the tool in use. This procedure was repeated every day for one 
year. Finally, the savings were calculated as the difference between the total annual energy 
consumption simulated with baseline operation and with optimized operation. Due to periodic 
issues with data collection of measured cooling load for each plant over the life of the project, 
the analysis period for this performance objective was confined to September 7, 2014, to 
September 7, 2015. As this testing procedure assumes perfect knowledge of daily load profiles 
and weather conditions, the results can be considered an upper bound on the savings potential 
from implementation of PlantInsight’s condenser water setpoint optimization. Additionally, the 
results were used to provide insights into causes for successful or unsuccessful performance  
 
In addition to assessment of yearly energy savings with a simulation, real energy savings were 
analyzed using measured data from the site during the period during which plant operators 
implemented setpoints suggested by the PlantInsight tool. This period was March 29 and April 
7–10, 2017. 
 
6.1.2 Annual Simulation Results 
 
The results of the analysis indicate daily energy savings of greater than 10% can be obtained for 
approximately six months of the year, mainly during the winter season. However, on an annual 
basis, across all 12 months of the year, obtainable annual energy savings were 1.38% 
(434,785 kWh, $30,435). A number of valuable insights as to when and under what conditions 
savings are achieved emerged from the analysis. 
 
 
Figure 28 (left) shows the absolute savings for the two plants as a total, for each day over the 
course of the year, while  
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Figure 28 (right) shows the relative savings. The relative savings represent the savings as a 
percentage of the baseline operation for each day.  
Figure 28 in general shows that the majority of savings occur in the winter time, when only the 
Rickover plant is in operation and the cooling load and total energy consumption is low. Some 
additional savings occur in the summer, when the Lejeune plant is in operation. In total, the 
Rickover plant achieves greater than 10% energy savings 48% of the days of the year, while 
Lejeune does not achieve greater than 10% energy savings for any portion of the year. While 
relative savings during the winter can be as high as 30%, the total power consumption is low, 
and therefore the contribution to annual savings is too low to meet the annual 10% target. 

 
 

Figure 28. Simulated daily energy savings from September 2014 through September 2015 (left: absolute 
value; right: relative) 

 
Further analysis shows that savings potential is driven by outside wet bulb temperature in 
addition to the trade-off between cooling power and chiller power consumption. For Rickover, 
during the winter when savings potential is high, the optimal condenser water setpoint 
temperature is low, indicating that working the fans harder to achieve a lower condenser water 
temperature is worth the increase in chiller efficiency and lower chiller energy consumption. 
Meanwhile, in the summer, high wet bulb temperatures limit the ability for the cooling towers to 
lower the condensing temperature and provide any energy savings. For Lejeune, on days that 
provide a higher savings potential, the optimal condenser water setpoint temperature is high, 
indicating that working the fans less on those days is worth a slight loss in chiller efficiency. 
However, the savings in tower fan energy is relatively small compared to chiller power, and so 
the savings on the system is small. Tables 5 and 6 show the relative fan and chiller power for 
Rickover and Lejeune plants for typical days in which savings can be seen by using the 
optimal setpoint. 
 



 
ESTCP Final Report: 201254   December 2017 
Optimizing Operational Efficiency: Integrating Energy Information Systems and Model-Based Diagnostics 
 51  

Table 5. Savings breakdown for Rickover 

 
 

Table 6. Savings breakdown for Lejeune 

 
 
 
6.1.3 Performance Assessment with Field Data 
  
In addition to simulation, energy savings were evaluated using field testing data from the 
implementation of optimal setpoints on March 29 and April 7–10, 2017. During this time period, 
the site operational staff adjusted the cooling tower setpoint to the optimized setpoint suggested 
by the PlantInsight tool. After this time period, further implementation of the recommended 
optimal setpoints was precluded by chiller downtime and repairs, transitions to summer and 
term-time conditions, and time-sensitive resource-intensive projects that limited staff ability to 
conduct experimental operational changes. Toward the end of September 2017, daily use of 
optimized setpoints was reinstituted; however, disconnection of the head-end kiosk from which 
data are exported to the PlantInsight tool prevented acquisition of the operational data to extend 
the savings analysis based on measured field data.  
 
In the initial performance testing on March 29, 2017, the setpoint for the cooling towers was 
changed to 65°F. This caused instability in the tower fans and inability to maintain the tower 
leaving temperature at setpoint. Troubleshooting revealed a default setting in the control 
sequence that set the tower fan speed to zero when the tower leaving temperature was less than 
70°F. This parameter was changed to 60°F, and the second performance test was executed from 
April 7–10, 2017. Figure 27 in Section 5.6 showed the change of cooling tower setpoint and 
associated change in cooling tower leaving temperature, and that tower leaving temperature 
successfully met the 62°F setpoint. 
 
From April 7–10, 2017, only Rickover Chiller 3 and Tower 4 were operating. The energy 
savings was estimated as defined in Equation 8.  
 

kWh Savings = kWh_Baseline - kWh _Post_Implementation   (8) 
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In this equation, kWh_Baseline represents the measured energy consumption at a given cooling load 
with the baseline 72°F static setpoint. kWh_Post_Imlementation represents the measured energy 
consumption at a given cooling load with the optimized tower setpoint from PlantInsight. 
 
A linear regression baseline model was created with the data from February and March 2017, 
when only Chiller 3 and Tower 4 were in operation. The total electricity use of the chiller and 
tower was regressed against the chiller’s cooling load. The resulting baseline model shows good 
fitness, with an R2 of 0.8, normalized mean bias error of 0.04%, and CVRMSE of 6%. The fit 
between model and baseline data is shown in  
Figure 29. The equation for the baseline model is: 
 

kWh_Baseline = (0.53*cooling_load (ton) + 102.87) * hours  (9) 
 

 

 
 

Figure 29. Baseline energy data: metered (blue) vs. modeled (red) 

 
Figure 30 shows the savings results from projecting the baseline model to estimate the energy 
use that would have occurred during the test period had the optimized setpoints not been 
implemented. 17% savings were achieved over this four-day period, for a total of 5,436 kWh. 
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Figure 30. Actual vs. baseline-predicted energy use (test period: April 7–10, 2017) during which 17% 

energy savings were quantified 
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6.2 REDUCE CENTRAL COOLING PLANT GREENHOUSE GAS EMISSIONS  
 
The goal of this performance objective was to reduce the equivalent CO2 emissions associated 
with the electricity used to run the central cooling plant over the course of one year (metric tons) 
by 10% with respect to baseline operations. Similar to the energy savings performance objective 
discussed in Section 6.1, this goal was to be met by the implementation of optimized setpoints 
determined by the tool according to the algorithms described in Section 2.2.2.1. Therefore, to 
analyze this performance objective, the procedure and findings in Section 6.1 were used, with a 
conversion factor applied to estimate GHG emissions attributable to plant electricity 
consumption. This conversion factor was obtained from ENERGY STAR’s Portfolio Manager 
Greenhouse Gas Emissions Technical Reference Guide (ENERGY STAR 2017). The factor was 
obtained by assuming indirect emissions, since electricity is produced by the utility off-site, and 
using EPA’s Emissions & Generation Resource Integrated Database (eGRID) for August 2017 in 
the RFCE (mid-Atlantic) region, which includes Maryland. The conversion factor was 
110.93 kgCO2/MBtu (378.5 kgCO2/kWh). 
 
With a single conversion factor applied, the results of the analysis were the same as performance 
objective 6.1 in terms of percent savings. That is, greater than 10% daily savings were achieved 
for approximately six months of the year for the two-plant combined total. However, on an 
annual basis, achievable annual savings of 1.38% were achieved. This result was due to the same 
reasons as described in the energy performance objective reported in Section 6.1. This savings 
potential translates to 181,403 tons of cooling for the combined plant total. 

6.3 SYSTEM ECONOMICS 
 
The life-cycle cost analysis that was conducted to evaluate system economics is described in 
detail in Section 7.0. The analysis confirms that the demonstration technology can meet simple 
and discounted paybacks of 1.4 years, satisfying the five-year performance objective. 
 

6.4 CENTRAL PLANT MODEL CALIBRATION  
 
The performance objective associated with plant model calibration stipulated that the difference 
between model-predicted and measured parameters be less than 10%, for 90% of data points. 
This objective was satisfied for three of six chillers, and for each of the ten cooling towers for 
which there was sufficient data. Table 7 shows these results. In the table, Rick-CH1, Lej-CH1, 
Lej-CH2, and Lej-CH3 represent the four 2,500-ton dual compressor chillers, and Rick-CH2 and 
Rick-CH3 represent the two 1,250-ton single-compressor chillers. Lej-T1, Lej-T2, Lej-T3, Rick-
T1, Rick-T2, Rick-T3, and Rick-T4 are the seven cooling towers, each of which has two cells, 
denoted A and B.  
 
For the three chillers that could not be calibrated to the performance objective, it is suspected 
that the causes were either limited volume of data representing full-capacity operation, erroneous 
data, or faulted operations underlying the data. In the case of the cooling towers, four cells could 
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not be calibrated because the necessary calibration parameters were not available or were 
erroneous from the measured data history at the site. These are designated “N/A” in Table 7. 
Since the model structure for each of the cooling towers were equivalent, the calibration 
parameters for towers that were well-calibrated were applied to those for which calibration data 
were not available. The calibration parameters for chillers that were less well-calibrated 
were used in the chiller models, even though they were less than ideal with respect to the 
performance objective. 

 
 

Table 7. Percentage of calibration data points within the 10% error band 

 Rick-
CH1 

Rick-
CH2 

Rick-
CH3 

Lej- 
CH1 

Lej- 
CH2 

Lej- CH3 

Chiller COP 99% 99% 81% 75% 99% 79% 

  Lej-
T1A 

Lej-
T1B 

Lej-
T2A 

Lej-
T2B 

Lej- 
T3A 

Lej- T3B 

Cooling tower fan power (W) 92% N/A 95% 95% 96% N/A 

Cooling tower leaving temp 
(°C) 

96% N/A 95% 97% 95% N/A 

  Rick-
T1A 

Rick-
T1B 

Rick-
T2A 

Rick-
T2B 

Rick-
T3A 

Rick-
T3B 

Rick-
T4A 

Rick-
T4B 

Cooling tower fan power (W) 95% 97% N/A N/A 95% 93% 92% 92% 

Cooling tower leaving temp 
(°C)  

98% 98% N/A N/A 98% 98% 99% 98% 

 
Figures 31 and 32 contain selected examples of the calibration results for the chiller and cooling 
tower models:  

o Figure 31 shows model-simulated versus measured COP for a case in which the 
performance objective was met, and for a case in which it was not met.  

o Figure 32 shows model-simulated versus measured cooling tower fan power and 
cooling tower leaving temperature, for one of the ten towers for which the 
performance objective was met. 
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Figure 31. Comparison of simulated and measured chiller coefficient of performance for chiller Lej-CH2, 
for which the model calibration performance objective was met (left,) and for chiller Lej-CH3, for which 

it was not met (right) 

 

 
 

Figure 32. Comparison of simulated (left) and measured (right) cooling tower fan power and cooling 
tower leaving temperature for tower Rick-T3A. In both cases the model calibration performance objective 

was met. 

 
Given that the majority of the models used in PlantInsight were able to be closely calibrated to 
the measured data from the site, the demonstration team was comfortable to incorporate the 
models into the PlantInsight tool. The assessment of the energy-savings performance objective 
confirmed that for key seasonal conditions (low wet bulb temperature), the model-derived 
optimized setpoints were indeed more efficient than the heuristic static setpoint typically used to 
operate the plant. 
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6.5 USER SATISFACTION  
 
The criterion to provide equal or improved satisfaction relative to existing operational tools 
was satisfied. 
 
The two primary users of PlantInsight— the USNA central chilled water plant manager and the 
lead central plant operator—were interviewed and surveyed following release of the v1 version 
of the tool to USNA. The campus utilities manager was not able to attend the interview. 
 
Overall, users reported that satisfaction with the capabilities of PlantInsight was equal to or 
better than that with the preexisting JCI Metasys system that is used for plant operations. 
Although PlantInsight is intended to complement (not replace) the Metasys system, from a user 
satisfaction standpoint, it provides a meaningful benchmark.   

 
Satisfaction with PlantInsight was equal to that with Metasys for the following capabilities:  

● visualization and plotting of plant load data  
● chiller and fan cycling fault detection 

 
Satisfaction with PlantInsight was greater than with Metasys for the following capabilities:  

● visualization and plotting of efficiency curves (kw/ton vs. ton) 
● quantification of plant energy consumption 
● provision of chiller runtime and energy use summary metrics  
● weather and plant load forecasting  
● optimization of central plant setpoints  

 
Satisfaction with PlantInsight relative to utility cost quantification and impacts could not be 
assessed due to the absence of the utilities manager. These included: 

● quantification of central plant utility costs 
● quantification of fault cost impacts 
● quantification of operating costs for different plant setpoints 

 
The capabilities of PlantInsight that were deemed most valuable are summarized in Table 8; 
users were asked to select three to five capabilities from a list of eleven options. On the whole, 
users stated that the technology improved their ability to operate the plant more efficiently by 
identifying the load and energy impacts associated with changes in setpoints and equipment 
operations.   
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Table 8. User feedback on the three to five most valuable capabilities of PlantInsight (demonstration 

technology) 

PlantInsight Capabilities Highest Value to Plant 
Manager 

Highest Value to Plant 
Operator 

Visualization and plotting of 
plant load data 

X X 

Visualization and plotting of 
efficiency curves (kw per ton vs. 
tons) 

X X 

Quantification of plant energy 
consumption 

X  

Quantification of plant 
utility/operational costs 

X  

Weather forecasting X  
Chiller runtime and energy use 
summary statistics 

 X 

Optimization of central plant 
setpoints 

 X 

Fan cycling fault detection   
Chiller cycling fault detection   
Quantification of cost of faults   
Central plant load forecasting   

 
On a scale of 1–5, with 3 being neutral and 5 being highly satisfied, the plant manager and lead 
operator rated the PlantInsight user interface, FDD and optimization outputs, and tool overall at a 
level 4. This finding is summarized in Table 9. 

 
 
Table 9. User feedback on the PlantInsight user interface, FDD, and optimization outputs, and on the tool 

overall 

Characteristic Not Satisfied  Neutral  Highly 
Satisfied 

1 2 3 4 5 
User interface    X  
FDD and 
optimization 
outputs 

   X  

Tool overall    X  
 
 
Users noted that an additional metric of interest is $/ton, which could be used to complement the 
current display of kw/ton vs. ton operational efficiency. Cost savings associated with discrete 
setpoint changes were also noted as a useful complement to the currently displayed energy 
savings. In addition, users highlighted that while daily setpoint changes could be accommodated, 
and recommendations that could apply to a three- to five-day time horizon would be ideal. 
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The ability to identify equipment degradation and/or impending failure was identified as 
additional functionality that could be useful. These prognostic capabilities are beyond the scope 
of fault detection and diagnostics, and optimized control that are the focus of this technology 
development and demonstration effort. However, prognostics and condition-based maintenance 
are indeed ripe areas for future work. 
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7.0 COST ASSESSMENT 

7.1 COST MODEL 
 
 
A cost model for the PlantInsight tools is presented in Table 10. This cost model reflects 
estimated cost that would be required to implement the technology anew at a real site. All 
estimates are based on observations of team and partner experiences throughout the course of the 
demonstration. 
 

Table 10. Summary of demonstration technology cost elements and estimates 

Cost Element Description of Cost Element Estimated Costs 

Hardware Capital 
Costs 

Cost of metering required to calibrate models and execute 
optimization and FDD algorithms 

$18,000 

Installation Costs Labor to install and configure PlantInsight 
 
Labor required to implement data export from BAS to PlantInsight 
 
Labor to install flow meters 
 
Labor to create and calibrate models 

$897 
 
$897 

 
$6,435 
 
$8,372  

Consumables N/A N/A 

Facility Operational 
Costs 

Annual plant energy used with PlantInsight optimized setpoints 
 
 
Labor time to use the tool 

$2,170,535 per 
year 
 
$4,126 per year 

Maintenance Labor to conduct software IT maintenance 
 
Labor to calibrate flow meters 
 
 
Labor to update and recalibrate models 

$1,077 per year  
 
$423 every five 
years 
 
$8,416 every five 
years 

Hardware Lifetime Natural degradation flow meters over time 10 years 

Operator Training Staff time to learn how to use the software and become familiar 
with the interface 

$423 every five 
years 
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Hardware capital costs are costs associated with devices to measure data inputs necessary to run 
the PlantInsight tool. These costs were not incurred in the USNA demonstration of PlantInsight, 
as all data required for the model calibration and execution of the optimization and fault 
detection algorithms was already being monitored in the plant control system. These data points 
are summarized in Section 5.5, Table 3. Plants that have a less complete monitoring infrastructure 
may require the installation of additional sensing or metering hardware. Of the set of required 
data points, chiller flow meters are most likely to be absent. In these more typical cases, we 
estimate that an average installation may require approximately six flow meters at a unit cost of 
approximately $3,000, for a total cost of $18,000. Chiller, pump, and fan power measurements 
are likely obtainable from existing meters or calculations based on variable frequency drive 
(VFD) or constant speed status. Hence, no costs were included for monitoring these data points 
in this analysis.  
 
Installation costs include the labor and material required to install the PlantInsight tool on a 
server and implement data export from the plant BAS to the PlantInsight database. Installation of 
the PlantInsight tool software requires obtaining the repository containing the code, ensuring 
Docker software is functioning on the server, configuring the communication settings of the 
application and database, starting the database and application Docker containers, and testing 
functionality through the browser-based GUI. This task may require 2.5 person days. For the 
USNA demonstration, data export from the plant BAS to the PlantInsight database required 
opening a secure port on the BAS workstation and installing a relatively simple script to push the 
data for selected points from the onsite SQL data server to PlantInsight. Two-and-a-half person-
days may be required for this task, including time to identify the points in the BAS, modify the 
script developed in the demonstration, and install and execute it. This time estimate does not 
include any unique site-specific IT challenges that may be encountered, but cannot be reliably 
forecasted or categorized for a generalized estimate. Assuming a national average annual server 
administrator salary of $65,000 (Glass Door), with a factor of 1.43 (obtained from Bureau of 
Labor Statistics-BLS Employee costs for June 2017) to account for benefits and 2,087 work 
hours per year, the installation of PlantInsight tool and the implementation of data export would 
amount to approximately $897.  
 
The costs associated with installing all the flow meters is estimated to be $6,435. This estimate is 
based on the installation costs for electrical sub-meters ($500/unit) with a 50% adder to account 
for the additional complexity of fluid flow meters. Initial creation and calibration of models 
could require four weeks of mechanical engineering time, assuming a practiced modeler with 
access to site drawings and associated information, as well as necessary data cleaning, testing, 
and integration. Given a national average salary of $76,000 (Glass Door), including the BLS 
benefits factor, the associated cost would be approximately $8,372.  
 
Facility operational costs include the annual cost of electricity used to operate the cooling plant 
with the optimized setpoint from the demonstration technology. Based on the annual energy 
consumption simulation conducted for the savings analysis in Section 6.1.2, this cost would be 
$2,170,535 per year. (The electricity consumption costs for the existing system, without the 
operation of the PlantInsight tool, are calculated to be $2,200,970.) Operational costs also 
include operator time to use the tool, estimated at 1.5 hr per week, or approximately $4,126 per 
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year, assuming the national average facility manager annual salary, including the costs 
of benefits. 
 
Fully burdened maintenance costs include the efforts of a server administrator to ensure 
continuity in data feeds, and are estimated at three days per year, or approximately $1,077 per 
year. This assumes that an existing server is leveraged to host the software and therefore does not 
include general server maintenance costs. Calibration of flow meters is estimated at one day of 
facility manager time every five years, based on fully burdened rate, amounting to $423 per 
instance of calibration service.  
 
Operator training entails approximately one person-day of time, total, across two to four users of 
the technology. This is the time required to learn how to use the software and become familiar 
with the interface. Assuming the national average facility manager fully burdened salary, this 
amounts to approximately $423, approximately every five years, to factor in staff turnover. 
 

7.2 COST DRIVERS  
 
The most significant cost drivers for the demonstration technology are hardware capital and 
installation costs, engineering costs to create and calibrate models, and operators’ time to use the 
tool. USNA has a modern well-instrumented central cooling plant that did not require the 
addition of supplementary hardware to monitor plant operational parameters. This may not be the 
case in other facilities. The cost model assumed that installation of chiller flow meters would be 
required; however, depending on the specific site, additional instrumentation could be required, 
introducing higher hardware and installation costs. Over time, as equipment and operations 
evolve, or for new installations, the models that underlie the tool’s algorithms may require 
modification and calibration.  

7.3 COST ANALYSIS AND COMPARISON 
 
To model and run the cost analysis, we assume implementation of the technology in a large 
facility approximately equivalent to that of the USNA, which is served by multiple chillers, 
which may be split across several individual cooling plants. Hardware costs assume that, on 
average, six chiller flow meters may need to be added to provide the required data for the tool, 
and that those meters would need periodic calibration. Similarly, models may require periodic 
updating by an engineer. The analysis also assumes regular use of the PlantInsight tool by 
operational staff, as well as annual IT maintenance. These and other assumptions for the cost 
model are discussed in further detail in Section 7.1 and summarized in Table 10.  
 
The NIST BLCC tool was used to conduct a comparative analysis between the demonstrated 
technology and the current approach. Under the current approach, the cooling tower operates 
with a single static condenser water temperature setpoint, and operators use the Metasys BAS 
system for system monitoring. Since the energy savings potential is driven by climate (wet bulb 
temperatures), cost-effectiveness could increase in drier climates. 
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The analysis was conducted using the BLCC tool’s MILCON Analysis for an Energy Project 
option. The mapping of the costs in Table 10 to the inputs of the BLCC tool is shown in Table 11. 
 
 

Table 11. Mapping of the BLCC tool inputs to elements of the demonstration technology cost model 

BLCC Input Cost Model Elements Itemized 
Costs 

Total 
Costs 

 
Initial Investment Costs 
(First Cost) 

Hardware capital costs  $18,000 $34,601 

Installation costs $6,435 

Calibration and modeling costs $10,166 

Annual Energy Cost Current annual energy costs  $2,200,970  

Annual energy costs - with PlantInsight $2,170,535 

Annual Recurring O&M and Labor 
Costs 

Facility operational costs - labor time to use 
the tool 

$4,126/year 
 

$5,203 

Labor to conduct software IT maintenance $1,077/year 

Non-Annual Recurring O&M and 
Labor Costs (every 5 years) 

Calibration costs $8,416  $9,262 

Staff time to learn how to use the software 
and become familiar with the interface 

$423  

Labor to calibrate flow meters $423  

 
The following are the other assumptions used in the model: 

• Project Life: 10 years (assuming the software has a shelf life of only 10 years and needs 
major overhaul after that time period) 

• Salvage Value: $0 
• Escalation Rates:  

o Assumed BLCC recommended rates for the energy rates 
o Assumed an inflation rate of 2% for O&M, repair, and other labor costs 

• Assumed a discount rate of 3%, with a mid-year discounting 
• The project will start performing from April 1, 2018. The period between April 1, 2017, 

and March 3, 2018, is considered to be the baseline period. 
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The following are the results of the cost-comparison analysis between the two options (“do 
nothing” and maintain current operations versus operate with PlantInsight): 

• Savings-to-Investment Ratio (SIR): 7.21 
• Adjusted Internal Rate of Return: 23.26% 
• Simple Payback: 1.37 year 
• Discounted Payback: 1.42 year 

 
The full comparative analysis report is included in Appendix D. 
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8.0 IMPLEMENTATION ISSUES 
 
Future implementation of the technology concerns three pertinent areas: IT security, maintenance 
and evolution, and scale-up and transition. There are no regulations that apply to use of the 
technology. The only equipment that may be required for implementation may comprise 
additional off-the-shelf sensors or meters, as discussed in Section 7. 
 
1. IT Security 
 
The PlantInsight technology requires unidirectional transfer of cooling plant operational data 
from the site to the application’s database. The application is hosted on a web server and is 
accessible via a web browser. In the USNA demonstration, port 443 was used to establish secure 
communications from the Metasys BAS Kiosk to the PlantInsight application; for ongoing use at 
USNA, PlantInsight could be ported to a USNA server. 
  
To satisfy DoD IT security requirements, future installations can consider several options that 
surfaced over the duration of the demonstration. PlantInsight can be integrated within existing 
accredited applications, as was the original intent when the demonstration was first initiated at 
the Washington Navy Yard (WNY). Specifically, accreditation refers to compliance with the 
Risk Management Framework (RMF) for DoD information technology, which has replaced 
DIACAP (DoD information assurance certification and accreditation process). This would 
require some re-architecting the code based on the specific technology to be integrated with, 
however in anticipation of this mode of delivery, PlantInsight has been designed with modular 
separation of the interfaces between the models, algorithms, and user-facing information 
provided through the GUI. Alternatively, PlantInsight could be put through the accreditation 
process itself. Another option that was explored was to push plant operational data from USNA 
to a server farm on a secure Navy network, with PlantInsight accessing the data through a virtual 
private network (VPN) application. This architecture is illustrated in Figure 33. 
  
The third option that was explored was to leverage the “Enabler” data transport system that was 
under development by NDW at the time that the demonstration was being transferred from WNY 
to UNSA. Illustrated in Figure 34, the Enabler architecture would have been the most general 
solution for replicating the implementation of PlantInsight in standard DoD installations. 
However, this was deemed unnecessary given the requirements at UNSA. The Enabler is no 
longer available for use, and if NDW decides to pursue implementation of the technology at 
additional installations, viable cyber security solutions will need to be identified. 
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Figure 33. Use of a server farm in a secure Navy network to host data for PlantInsight 

 

 
Figure 34.  Illustration of the Enabler data transport system that was previously under development by 

NDW 
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2. Technology Maintenance and Evolution 
 
As the demonstration comes to a conclusion, LBNL will work with UNSA IT to transfer the tool 
from LBNL’s server to a server and location that will comply with IT security requirements. This 
is a key step in ensuring that the technology can continue to provide efficiency improvements to 
the chiller plant operations.  
 
Similarly, as the campus grows and cooling load is added, as plant equipment is updated, and as 
operations evolve over time, it will be necessary to update and recalibrate the models used in 
PlantInsight. Although it is not yet used universally throughout the industry, companies such as 
HOK, JCI, and UTC have staff that are familiar with the modeling language (Modelica) upon 
which the tool is built. They could potentially be contracted to support future model modification 
and calibration. 
  
 
3. Technology Scale-up and Transition 
 
To make the PlantInsight Tool available to other DoD installations, it will be released through an 
open source software license. This will enable stand-alone use according to its current design, or 
adaptation for use within existing installation energy management facility and information 
systems as described in the considerations of IT security. Several types of documentation have 
been developed to support these future transition activities, and to support ongoing use at USNA. 
 
For developers and implementers, the following documentation is provided: (a) code overview, 
with key module integration, functionality, and dependencies (Appendix B); (b) higher-level 
description of tool architecture and installation and configuration requirements (to be released 
with code); and (c) guidance on model creation and calibration (Appendix E). 
 
For installation users, a user guide (Appendix F) explains the tool’s functionality and how it can 
be used to generate and track energy and utility cost savings. 
 
Further discussion with Naval Facilities Engineering Command (NAVFAC) Utilities, and 
Energy Management will be pursued to determine how the PlantInsight solution could be utilized 
in the NDW region given. Independent of the region in which future implementations occur, 
preliminary installation integration scoping begins with an identification of existing control 
analytical and diagnostic technologies, vendors and service providers, and preferred 
implementation architecture. Based on lessons learned during the demonstration these 
preliminary plans require an understanding of the specific BAS used, the points monitored and 
extent of historic data that is stored, existing meter analytics or fault diagnostic software tools 
that may be in use, plant drawings and control sequences, and IT configurations. The most 
critical step for a new installation is to identify secure and reliable methods of data access and 
hosting for PlantInsight. Moreover, savings potential can be maximized at installations in drier 
climates, where lower wet bulb temperatures will be present for a larger portion of the year. 
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In conclusion, future implementations of the technology will benefit from awareness of the 
following higher-level lessons that were learned throughout the course of the demonstration. 
First, operators place strong value on access to tools that provide visibility into how controls 
impact energy use and cost. This is not as a rule available in today’s commercial analytics 
technologies that span building automation systems, meter analytics tools, or equipment-specific 
fault detection and diagnostics tools. As such, HVAC optimization technologies represent 
advances in the state of today’s available technology, and this is even more true of optimization 
tools that incorporate physics-based modeling approaches. The ESTCP technology 
demonstration program has acted as a leader in the demonstration of these leading-edge 
solutions, and future implementations will continue to contribute to the state of knowledge of 
their development and application.  
 
Model-predictive optimization, combined with fault detection and diagnostics, is recognized as a 
critical aspect of realizing the dynamic low-energy buildings of tomorrow, and today’s 
applications can deliver even more impact from expanding the set of parameters that are included 
in the optimization, as well as the number of end uses that are considered. Although these 
technologies represent advanced forward-looking applications, the external infrastructure to 
support their delivery at scale is mature; cloud hosting and computational scalability are well 
supported through modern IT solutions. In contrast, the most significant practical 
implementation barriers are the brittle building data acquisition and communication systems that 
present chronic challenges to analytics applications that need to interface with controls data. 
Finally, we note that the creation and calibration of physics-based models that are intended to be 
used in the operational phase of the building life-cycle is highly dependent upon the specific 
algorithms with which they will be paired. The open, reference implementations that are 
delivered with PlantInsight are important contributions to industry’s continued success in 
leveraging these promising approaches for next-generation building energy efficiency.  
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APPENDIX B: SOURCE CODE DESCRIPTION AND USE  
 
This appendix describes the main features of the application source code implemented in the 
demonstration. This does not include a detailed description of the graphical user interface (GUI) 
design, but instead mainly covers the back end of the tool that performs the analytics for the 
demonstration. 
 
The source code is located in a repository called “PlantInsight” at https://github.com/LBNL-ETA 
and is available under an open source license. All file paths in this appendix will be referenced to 
the home directory of the repository. The main scripts for the Django web framework API and 
FDD/Optimization algorithms are contained in ``/USNA_EIS/plant_insight/plant_insight``, 
while the main scripts for important utility functions, such as querying the database and 
managing model simulations and optimizations, are contained in ``/dependencies/dafne/django-
dafne/dafne``. Simulation files for whole-plant models, used in the optimization, are kept in 
``/USNA_EIS/simulators``, while Functional Mockup Unit (FMU) files for component 
simulation, used in the FDD, are kept in ``/USNA_EIS/FMUs``. 
 
B.1 Deployment 
 
Deploying PlantInsight makes use of Docker containers. A container is a stand-alone package of 
software required to run a particular application, including the operating system and any extra 
software on which the package application may rely. The container is run using the Docker 
software, which can be installed on a host computing platform and operating system. Docker 
container fundamentals are outside the scope of this guide; see https://www.docker.com/ for 
more information. 
 
In this demonstration, two separate Docker containers are used; one for a PostgreSQL database 
and one for the web-service, optimization/FDD algorithm, and GUI applications. This latter 
container is called the application container. Docker containers are run using images and can be 
started or stopped. An image is created using a dockerfile, which contains lines of commands to 
instruct the creation of the image, including the gathering, compiling, and installing of the 
required software components. The files associated with docker image creation of PlantInsight 
can be found in ``/Dockers``. However, to ease deployment, the docker images for PlantInsight 
have already been created. The PostgreSQL container must be running before the application 
container can run. 
 
B.2 Scheduled Tasks 
 
While functionality of the tool can be invoked using the web interface, a number of tasks were 
scheduled to be invoked daily in order to update the state of the data contained in the tool and 
run analytics for operators to use. These tasks were scheduled using the cron program on the 
Linux machine on which the tool is deployed. Specifically, the cron program calls a python 
script that sends a web command to the tool to initiate a task to update all of the data. This task 
was invoked in the module ``/USNA_EIS/plant_insight/plant_insight/views_development.py`` 
with the function ``update_all_data``. This function calls from the module 
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``/USNA_EIS/plant_insight/plant_insight/tasks.py`` the function ``update_all_data``. This 
function then invokes the running of the following task functions within the same module: 
``update_support_data``, ``run_fdd_chiller_cycling``, ``run_fdd_fan_cycling``, 
``update_regression_model``, ``update_forecasted_data``, and ``optimize_cwsp_no_changes``. 
More detailed descriptions of these tasks are grouped into the three sections below according to 
update_support_data, FDD, and condenser water setpoint optimization. 
 
B.3 Update_support_data 
 
This task is to create the 5-min interval data from the building automation system that is needed 
by the FDD and optimization algorithms and the GUI. Calculations and mappings are applied in 
this task. Table B-1 summarizes the main functions and their purposes. 
 

 
Table B- 1.  Main functions and purposes of the task "update_support_data" 

Functions Function purpose 

convert_temperatures.s() Convert temperature variables from degrees F to degrees C and K 

convert_mass_flow_rates.s () Convert mass flow rates into SI units kg/s 

compute_tower_speed.s () Compute the speed of cooling tower fans 

compute_electric_power.si() Compute the chiller electric power given the currents and the 
voltages 

convert_cooling_loads.si () Convert the cooling loads into tons 

compute_kW_per_tons.s() Compute the kW/ton for the chillers 

compute_COP.s() Compute the COP of the chillers 

compute_plant_power.s() Compute the overall electric power of the plants 

compute_overall_campus_cooling_load.s() Compute the total campus cooling load 

data_cleaning_and_steady_state_analysis.s() Filter out the outliers from data, and correct bias in the temperature 
measurements 

 
B.4 Fault Detection and Diagnosis 
 
Two algorithms are used to detect faults for tower fan cycling and chiller cycling. If faults are 
identified, they are managed by the FaultManager, a class in the 
``/USNA_EIS/plant_insight/plant_insight/fault_detection/fault_manager.py`` module, and stored 
in the database. FaultManager is used to store, modify, and query information about identified 
faults, including site, component, type, gravity, start and end time, wasted energy, wasted 
money, and description stored as document objects in the postgres database. 



 
ESTCP Final Report: 201254   December 2017 
Optimizing Operational Efficiency: Integrating Energy Information Systems and Model-Based Diagnostics 
 75  

1. Tower fan cycling 

The tower fan cycling algorithm is called by the function run_fault_detection_fan_cycling. 
This function calls the ``run`` function of the module 
``/USNA_EIS/plant_insight/plant_insight/fault_detection/fault_fan_cycling.py`` for a 
specified start time, end time, and plant. The function invokes the ``detectFanCycling`` 
function from the module 
``/USNA_EIS/plant_insight/plant_insight/fault_detection/detectFanCycling.py``, supplying a 
time series of tower VFD percentage over the time period specified at five-minute intervals. 
Identified faults are handled by the FaultManager. See Section 2.2.2.2 in the main body of 
the report for more information on the tower fan cycling algorithm. 

2. Chiller cycling 
 

The chiller cycling algorithm is called by the function ``run_fdd_chiller_cycling``. This 
function calls the ``run`` function of the module 
``/USNA_EIS/plant_insight/plant_insight/fault_detection/fault_chiller_cycling.py`` for a 
specified start time, end time, and chiller. The function invokes the ``detectCHCycling`` 
function from the module 
``/USNA_EIS/plant_insight/plant_insight/fault_detection/detectCHCycling.py``, supplying a 
time series of each chiller compressor power over the time period specified at five-minute 
intervals. Identified faults are handled by the FaultManager. See Section 2.2.2.2 in the main 
body of the report for more information on the chiller cycling algorithm. 

 
B.5 Optimization 
 
The optimization involves two primary steps: (1) getting forecasted data and using the load 
prediction model to predict load and (2) running the optimization algorithm. 

1. Get forecasted data and predict load 

Getting the forecasted data involves obtaining the forecasted weather data and predicting the 
load. This process is invoked in the module ``/USNA_EIS/plant_insight/plant_insight/tasks.py`` 
by the function ``update_forecasted_data``, which first calls the function 
``update_weather_data``, which then calls the function ``update_forecast_data``, all in the same 
module. ``update_forecast_data`` calls the weatherunderground API for updated forecast data. 
This function then converts these data into pandas dataframes and stores them in the forecast 
table of the database.  

After getting forecast data, the function ``update_forecasted_data`` calls the function 
``predict_plant_load`` located in the same module, which uses the forecasted data to predict the 
plant cooling load. All functions used to build and evaluate the plant load prediction model are 
located in the module ``/USNA_EIS/plant_insight/plant_insight/regression/regression.py``. The 
regression model uses a linear combination of a bias, minute, hour, outside air temperature, and 
day of week to predict the plant load. The weights of the linear combination are trained by linear 
least squares using past data of measured plant total load and the input variables in the function 
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``build_regression_model``. A new model is trained for each month, which means each month’s 
model contains different weights. The updating for each month is performed by the function 
``update_regression_model``, located in ``/USNA_EIS/plant_insight/plant_insight/tasks.py``. 

The plant load is predicted using the ``predict_load`` function in 
``/USNA_EIS/plant_insight/plant_insight/regression/regression.py``. The actual calculation of 
this is performed in the function ``regression_power`` in the same script. To predict the load, the 
forecasted values of the input variables, already collected as described above, are fed into the 
model. To guard against unrealistic predictions, if the predicted load is outside the range of loads 
used to train the specific month’s model, then the previous or next month’s model is used. Use of 
the previous model versus the next month’s model depends on whether the predicted load is too 
high or too low, and whether the season is fall or spring. If the predicted load is too high and the 
season is fall, then the previous month’s model is used. If the predicted load is too low and the 
season is fall, then the next month’s model is used. If the predicted load is too high and the 
season is spring, then the next month’s model is used. If the predicted load is too low and the 
season is spring, then the previous month’s model is used. 

The final piece of load prediction is splitting the total predicted load into loads for Rickover and 
Lejeune. This is performed by the functions ``split_load_rick`` and ``split_load_lej``, also in the 
``/USNA_EIS/plant_insight/plant_insight/regression/regression.py`` module. The total predicted 
load is split to Rickover by a piecewise linear approximation as a function of total load, 
presented in Equations B-1 and B-2 below. The Lejeune load is taken as the remaining difference 
between the total load the calculated Rickover load. The predicted loads are stored in the forecast 
table of the database. 

The load split for the plant is as follows: 

LoadRick=*LoadTotal       (B-1) 
LoadLejeune=LoadTotal-LoadRick      (B-2) 
=1.0 if LoadTotal<6000e3       (B-2a) 
=1.0-0.4*(LoadTotal-6000e3)/100e3 if 6000e3<LoadTotal<6100e3 (B-2b) 
=0.6 if 6100e3<LoadTotal<19000e3      (B-2c) 
=0.6-0.2*(LoadTotal-19000e3)/1000e3 if 19000e3<LoadTotal<20000e3 (B-2d) 
=0.4 if 6100e3<LoadTotal<19000e3      (B-2e) 

 
2. Run optimization algorithm 

Once the forecast data are obtained and the load is predicted for each plant, the optimization is 
invoked. All functions for the optimization are in the module 
``/USNA_EIS/plant_insight/plant_insight/optimization/optimization_all.py``. In the module 
``/USNA_EIS/plant_insight/plant_insight/tasks.py``, the function 
``optimize_cwsp_no_changes`` executes the optimization. This function calls the optimization 
function ``run_optimization_no_changes`` for either the Rickover or Lejeune plants, whichever 
is specified. This function prepares data output dictionaries and calls the function 
``run_optimization``, which prepares the input data and finally invokes the function 
``run_genopt_optimization`` to solve the optimization problem. Note that 
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``run_optimization_no_changes`` applies the assumption that the setpoint temperature is to be 
constant over the optimization time horizon.  

The function ``run_genopt_optimization`` creates table files from the forecasted load, outside air 
drybulb temperature, relative humidity, and atmospheric pressure, to be used as inputs to the 
Modelica model used for optimization, found in the ``/USNA_EIS/simulators`` directory. The 
function then simulates the model using the baseline condenser water setpoint temperature to 
obtain a predicted baseline power consumption over the optimization period. Then, the function 
writes configuration files for optimization in GenOpt and invokes GenOpt to solve the 
optimization problem and find the optimal condenser water temperature. Finally, the optimal 
condenser water setpoint is used to run a final simulation to obtain the predicted optimized 
power consumption, and all results are stored in the analytics table of the database. 
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APPENDIX C: USER SATISFACTION SURVEY 
 
1. What systems are currently used to manage plant operations and plant energy use? 
- Anything other than the Metasys kiosk? Please specify any others. 
  
2. PlantInsight capabilities and user satisfaction: 
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Visualization and plotting of plant load data    

Visualization and plotting of efficiency curves (kw per ton vs. tons)       

Quantification plant energy consumption       

Chiller runtime and energy use summary statistics       

Control of plant operational parameters       

Estimation of central plant utility/operational costs       

Central plant load forecasting       

Weather forecasting       

Fan cycling fault detection       

Chiller cycling fault detection       

Optimization of central plant setpoints       

Quantification of cost of faults       

Quantification of operating costs for different plant setpoints       
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3. Of the capabilities provided in PlantInsight, which are most valuable to the USNA operational 
and energy management team? Select 3-5, marking with an “X”. 
  

PlantInsight system capabilities Highest value to USNA operational and 
energy management team 

Visualization and plotting of plant load data   

Visualization and plotting of efficiency curves (kw per ton 
vs. tons) 

  

Quantification plant energy consumption   

Chiller runtime and energy use summary statistics   

Quantification of plant operational costs   

Control of plant operational parameters   

Estimation of central plant utility costs   

Central plant load forecasting   

Weather forecasting   

Fan cycling fault detection   

Chiller cycling fault detection   

Optimization of central plant setpoints   

Quantification of cost of faults   

Quantification of operating costs for different plant setpoints   
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4. How would you rate your satisfaction with the PlantInsight user interface, on a scale of 1-5, 
with 3 being neutral, 1 being not satisfied, and 5 being highly satisfied? 
  
5. How would you rate your satisfaction with the PlantInsight fault detection and optimization 
outputs, scale of 1-5 with 3 being neutral, 1 being not satisfied, and 5 being highly satisfied. 
  
6. Overall, how would you rate your satisfaction with the PlantInsight tool, scale of 1-5 with 3 
being neutral, 1 being not satisfied, and 5 being highly satisfied. 
  
7. In what ways does the PlantInsight tool improve your ability to operate the plant more 
effectively? 
  
8. How could the tool be improved to provide more value to plant operations or energy 
management? This might be user interface related, new features/capabilities, or improvements to 
existing features/capabilities. 
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APPENDIX D: COST MODEL AND LIFE-CYCLE COST ANALYSIS FOR PLANTINSIGHT (NIST 
BLCC 5.3-17: COMPARATIVE ANALYSIS) 

 
Consistent with Federal Life-Cycle Cost Methodology and Procedures, 10 CFR, Part 436, 
Subpart A 

Base Case: Keep Existing System 
Alternative: Install PlantInsight System 

General Information 

Project Location: Maryland 

Analysis Type: MILCON Analysis, Energy Project 

Analyst: JGG 

Comment ESTCP demonstration at Annapolis, MD 

Base Date: April 1, 2017 

Beneficial Occupancy Date: April 1, 2018 

Study Period: 11 years 0 months (April 1, 2017 through March 31, 2028) 

Discount Rate: 3% 

Discounting Convention: Mid-Year 
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Table D- 1.  Comparison of Present-Value Costs 

PV Life-Cycle Cost 
 

Base Case Alternative Savings from 
Alternative 

Initial Investment Costs:    
  Capital Requirements as of Base Date $0 $34,601 -$34,601 

Future Costs:    
  Energy Consumption Costs $20,040,495 $19,733,293 $307,202 
  Energy Demand Charges $0 $0 $0 
  Energy Utility Rebates $0 $0 $0 

  Water Costs $0 $0 $0 

  Routine Recurring and Non-Recurring 
OM&R Costs 

$0 $57,827 -$57,827 

  Major Repair and Replacements $0 $0 $0 

  Residual Value at End of Study Period $0 $0 $0 
Subtotal (for Future Cost Items) $20,040,495 $19,791,120 $249,375 

Total PV Life-Cycle Cost $20,040,495 $19,825,721 $214,774 

 
Table D- 2.  Net savings from Alternative compared with Base Case 

PV of Non-Investment Savings $249,375 

(less) Increased Total Investment $34,601 

Net Savings $214,774 
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Savings-to-Investment Ratio (SIR) 
SIR  7.21 

 
Adjusted Internal Rate of Return 
AIRR = 23.26% 

 
Payback Period 
 
Estimated Years to Payback (from beginning of Beneficial Occupancy Period) 

Simple Payback occurs in year 1 

Discounted Payback occurs in year 1 
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Table D- 3.  Energy Savings Summary 

Energy Average Annual Consumption Life-Cycle 

Type Base Case 
(kWh) 

Alternative 
(kWh) 

Savings 
(kWh) 

Savings 
(kWh) 

Electricity 31,442,429.0 31,007,643.0 434,786.0 4,347,264.8 
 
Table D- 4.  Energy Savings Summary (in MBtu) 

Energy Average Annual Consumption Life-Cycle 

Type Base Case 
(MBtu) 

Alternative 
(MBtu) 

Savings 
(MBtu) 

Savings 
(MBtu) 

Electricity 107,286.0 105,802.4 1,483.6 14,833.5 
 
Table D- 5.  Emissions Reduction Summary 

Energy Average Annual Emissions Life-Cycle 

Type Base Case 
(kg) 

Alternative  
(kg) 

Reduction 
(kg) 

Reduction 
(kg) 

Electricity     

CO2 20,737,712.14  20,450,951.00 286,761.14 2,867,218.89  

SO2 166,755.74  164,449.84 2,305.90 23,055.83  

NOx 37,585.14  37,065.41 519.73 5,196.56 

Totals: 
CO2 20,737,712.14  20,450,951.00 286,761.14 2,867,218.89 

SO2 166,755.74 164,449.84 2,305.90 23,055.83 

NOx 37,585.14 37,065.41 519.73 5,196.56 

  



 
ESTCP Final Report: 201254   December 2017 
Optimizing Operational Efficiency: Integrating Energy Information Systems and Model-Based Diagnostics 
 85  

APPENDIX E: RESOURCES ON MODEL CREATION AND CALIBRATION  

 
The following resources can be used to learn more about Modelica model creation and 
calibration: 
 
Equation-based languages - A new paradigm for building energy modeling, simulation and 
optimization. Michael Wetter, Marco Bonvini and Thierry S. Nouidui.  

• Available at: http://simulationresearch.lbl.gov/wetter/download/LBNL-1003383.pdf  
  
Generic Optimization Program Overview. Lawrence Berkeley National Laboratory.  

• Available at: https://simulationresearch.lbl.gov/GO/overview.html  
 
Modelica Building Library User Guide. Lawrence Berkeley National Laboratory.  

• Available at: https://simulationresearch.lbl.gov/modelica/userGuide/index.html  
 
Modelica by Example. Michael M. Tiller.  

• Available at:  http://book.xogeny.com/  
 
Tools and Techniques to Calibrate Electric Chiller Component Models. Mark Hydeman and 
Kenneth L. Gillespie  

• Available at: https://lms.i-know.com/pluginfile.php /28938/mod_resource/content/172/ 
Tools%20and%20Techniques%20to%20Calibrate%20Electric%20Chiller%20Componen
t%20Models.pdf (where %20 indicates blank space) 
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APPENDIX F: PLANTINSIGHT USER GUIDE 
 
The PlantInsight tool is accessed by users via a graphical user interface (GUI). This section 
describes how to access and use the GUI to obtain information from the tool. 

F.1 Start the PlantInsight Application  
Open a web browser and enter the URL to access the PlantInsight GUI. (Currently the URL is 
https://plantinsight.lbl.gov, but this may change when the application is transferred from LBNL 
servers to other locations.) The PlantInsight login page is displayed (Figure F-1). Enter username 
and password and log into the tool. 

 

Figure F- 1.  PlantInsight login page 

  

 
F.2 Landing Page Dashboard of PlantInsight 
Once logged in, the user will be directed to the dashboard landing page of the PlantInsight tool, 
shown in Figure F-2.  

https://plantinsight.lbl.gov/
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Figure F- 2.  PlantInsight dashboard landing page 

The dashboard that comprises the landing page dashboard is split into five principal regions.  

On the top left (Figure F-2), the user will find a navigation bar. The navigation bar (Figure F-3) 
allows the user to navigate between different elements of the tool: Dashboard, Optimization, and 
FDD. The optimization element shows the condenser water temperature setpoint optimization 
results at Rickover and Lejeune plants. The FDD element provides the overview and specifics of 
fault detection results. 

 

Figure F- 3.  Navigation bar of the landing page 
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At the top right side of the screen, the user will find a date range selector. By clicking on the date 
range selector, the user can select the date range over which the performance analysis will be 
conducted. When first opened, the tool defaults to the previous 7 days (Figure F-4). 

 

 Figure F- 4.  Date range selector at the top right of the landing page 

 

Above the plot region (see Figure F-2), plant performance during the selected time period is 
summarized in blue boxes, including the total costs of the cooling delivered, total energy 
consumed to deliver the cooling, the maximum load in tons, as well as the number of faults 
observed over the period. 

In the center of the landing page, there are three plant history and forecast plots. The first is a 
graph of the plant load history (Figure F-5). It shows the load served by the Rickover plant (light 
green line) and Lejeune plant (dark green line), the total cooling load of the entire campus 
(brown shading), as well as the chilled water leaving temperature at the primary chilled water 
loop (blue line). To see a shorter duration of the plant load history, simply click and drag the 
period of interest, and the plot will automatically zoom to that period (Figure F-6). Double-click 
the plot to zoom out, then the plot will resize to the original time period. Mouse over any portion 
of the plot to see the value of each parameter displayed in the plot. 
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Figure F- 5.  Plant load history plot at the center of the landing page 

 

Figure F- 6.  Zoom-in feature of the plant load history plot 

In the center of the landing page, click the “Plant efficiency” tab to see the history of plant 
history efficiency. The scatter plot (Figure F-7) shows plant efficiency (kW/ton) against plant 
cooling power (in tons). Click “Today’s Load and Weather Forecast” to see the predicted outside 
air temperature (blue line) and predicted total cooling load for the entire campus (light brown 
shading) in the next 24 hours (Figure F-8). 
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Figure F- 7.  Plant efficiency history plot at the center of the landing page 

 

 

Figure F- 8.  Today's load and weather forecast plot at the center of the landing page 

 

At the bottom of the landing page, there is more information about the performance of specific 
equipment in the plant (Figure F-9). This includes a plant fault summary and two tables 
highlighting the runtime hours and energy consumed by each chiller at the Rickover and Lejeune 
plants. 
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Figure F- 9.  Plant fault (top) and equipment (bottom) summary, shown in the lower portion of the 

landing page 

 
F.3 Optimization 
 

By going to the navigation bar and clicking the “Optimization” button, the user will find a drop-
down menu to access the optimization results for the Rickover and Lejeune plants (Figure F-3). 
The optimization feature of PlantInsight tool uses physics-based modelling algorithms to 
determine the optimal condenser water setpoint for the plant.  

Click the “Rickover” button to see the optimization results for the Rickover plant (Figure F-10).  

In the upper plot of Figure F-10, the model-determined optimal setpoint (orange line) is shown, 
along with the conventional actual setpoint (green line) in degrees F for the upcoming day. The 
conventional setpoint is an annual constant under current operational strategies, and is also 
shown. The forecasted wet bulb temperature (blue line) is also plotted. In the lower plot, for a 
time period specified by the user, the actual measured power (orange line) and the predicted 
power (green line) that would have been consumed under the model-determined optimal 
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condenser water temperature setpoint (green line in the upper plot) is shown. This predicted 
optimized power is calculated as a percentage of measured power, where the percentage is 
calculated from the ratio of model-determined optimal power to model-determined baseline 
power. Therefore, if the optimal setpoint were actually implemented, the user would expect to 
see the actual measured power and optimal predicted power trends overlap. 

As for other plots in the tool, the user can mouse over the plot to see the values of parameters 
attributed to each timestamp. 

 

Figure F- 10.  Optimization results page for the Rickover plant 

Clicking the “Lejeune” button, shows the optimization results of Lejeune plant (Figure F-11), 
following the same conventions as those shown in Figure F-10.  
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Figure F- 11.  Optimization page for the Lejeune plant 

 
F.4 Fault Detection and Diagnosis (FDD) 
 

By going to the navigation bar and clicking the “FDD” button, the user will find a drop-down 
menu to access an FDD (fault detection and diagnosis) overview and details on Tower Fan 
Cycling, and Chiller Cycling (Figure F-3). 

The FDD overview page is divided into two sections: Tower Fan Cycling and Chiller Cycling 
(Figure F-12). Similar to other pages, user can select the date range over which to conduct the 
FDD analysis. Boxes are used to represent each chiller and tower in the two plants. A color 
convention is used to indicate whether or not a specific chiller or tower is faulting during the 
user-selected dates. A green box indicates the plant equipment is running normally and no 
cycling fault is detected. A red box indicates cycling faults are detected. Within the box, the user 
can see the number of cycling faults detected. 
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Figure F- 12.  The FDD overview page 
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Figure F- 13. The equipment-specific fault drill-down page 

By clicking on the equipment box in the FDD overview page or the equipment name under the 
drop-down manual of Tower Fan Cycling and Chiller Cycling in the navigation bar, the user will 
be directed to the equipment specific fault drill-down page (Figure F-13). On this page, the user 
will see two plots: equipment energy (the upper plot) and equipment power (the lower plot). 
Periods of detected cycling are indicated in vertical bars shaded pink.  
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APPENDIX G: ACTION ITEMS 
 
Following the February 2013 In-Progress Review (IPR) meeting we were asked to please discuss 
the following in the final report: 

● The role of the plant operators in attaining potential energy efficiency improvements. Be 
sure to include incentives and disincentives for plant operators to adopt new technologies. 

● The variables that exist within your instrumentation plan that have the greatest impact on 
outcome and what you would do to improve data collection in the future which will 
improve the algorithms used in the project. 

● The delineation of energy savings that will occur from the use of a smaller, more-
efficient chiller in the winter compared to the chiller operation based on the modeling 
used in the project. 

● The possibility of extending the model to determine how to use chilled water for energy 
storage to conduct peak shaving. 

 
These action items were largely associated with our experiences to date (February 2013) at the 
Washington Navy Yard. Ultimately, the demonstration was moved to USNA, rendering the third 
bullet inapplicable. The others are addressed below: 
 
Role of plant operators: Plant operators are critical in attaining potential efficiency 
improvements. They must implement the recommended optimal setpoints from the PlantInsight 
tool and use the tool to monitor for and address any detected faults. The largest incentive to 
adopt the new technology include direct recognition of and accounting for more efficient 
operations, and associated utility cost savings. This incentive is supported within PlantInsight 
through the tool’s estimates of potential savings and cost impacts—quantities which otherwise 
are not available in conventional operational tools. Staff at USNA showed great willingness and 
interest in the demonstration technology because it provides a daily update of the optimal 
setpoint, along with a summary of any faults detected in the equipment, and critical operational 
key performance indicators (KPIs). This appears to be well-aligned with their goal of providing 
excellent service to the inhabitants of the buildings on site that make the most efficient use of the 
available equipment, including the prompt identification of any cycling issues that may arise. 
 
Disincentives may include the additional “lift” required to use a new tool and implement daily 
changes in system setpoints. This disincentive is mitigated through daily automated notification 
of optimal setpoints for the day, and by explicitly incorporating into the tool the savings 
feedback and KPI tracking that serve as incentives and that the operational staff requested to be 
built into the technology. 
 
Impactful instrumentation: Discussed in the Cost Model and Cost Drivers sections (7.1 and 7.2 
of the main body of the report), the most important instrumentation required for the Modelica 
optimization models that may not always be commonly available is chiller flow meters. Power 
measurements and temperature sensors used in the models and algorithms are often commonly 
installed as part of the monitoring infrastructure. Where not directly metered, power 
consumption of fans and pumps can be calculated from their status or speed. These data are 
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important to keep relatively well calibrated so that models can be calibrated, and data are 
reflective of actual plant operations, as described in Section 5 above. However, there is some 
flexibility in the system, as indicated in the demonstration. Even imperfectly calibrated models 
for some chillers and towers were able to be used to strong effect to obtain savings relative to 
baseline practices. 
 
Chilled water storage for peak shaving: While not within the scope of this specific 
demonstration, or in the infrastructure at the USNA, Modelica could be used to model the 
demand savings from using thermal storage to limit the power demands to produce chilled water 
during peak periods. The model could include representations of the physical tank storage and 
pumps, as well as representations of controls for charging and discharging schemes. These 
schemes may be based on time schedules and/or operating conditions.  
 
Following the June 2014 IPR we were asked to include the following in the Final and Cost & 
Performance reports: 

● Discuss the trade-off costs to determine the amount of monitoring and instrumentation to 
install for Modelica customization to enable the system to work optimally. 

● Discuss the sensitivity of the efficiency gains, GHG reductions, etc. to the chosen 
baseline year. For example, how does average temperature of the baseline year affect 
future calculated efficiency gains? 

 
Trade-offs in cost and monitoring instrumentation: The response to this question is equivalent to 
that for “Impactful Instrumentation” from the 2013 IPR. Discussed in the Cost Model and Cost 
Drivers sections 7.1 and 7.2 of the main body of the report, the most important instrumentation 
required for the Modelica optimization models that may not always be commonly available is 
chiller flow meters. Power measurements and temperature sensors used in the models and 
algorithms are often commonly installed as part of the monitoring infrastructure. Where not 
directly metered, power consumption of fans and pumps can be calculated from their status or 
speed. These data are important to keep relatively well calibrated so that models can be 
calibrated, and data are reflective of actual plant operations, as described in Section 5 above. 
However, there is some flexibility in the system, as indicated in the demonstration. Even 
imperfectly calibrated models for some chillers and towers were able to be used to strong effect 
to obtain savings relative to baseline practices. 
 
Sensitivity of efficiency gains and GHG reductions to the chosen baseline year: The temperature 
of the baseline year does influence the total load on the plant, and therefore, the energy 
consumption of the plant in the baseline year. Changes in weather conditions from one year to 
the next are often accounted for by normalizing savings to Typical Meteorological Year (TMY) 
data. The savings analysis presented in Section 6.1.2 of the main body of the report showed that 
savings were most driven by wet bulb as opposed to dry bulb temperature. The efficiency gains 
attributed to the optimization will be less sensitive to year-to-year local fluctuations in weather 
than they are to climatic variations—in a dry climate, savings potential during periods of higher 
plant loading (summer) could be much higher, resulting in larger achievable absolute savings, 
and larger annual relative (percent) savings. 
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Following the Fall 2016 IPR we were asked to: 

● Discuss the steps to take, between now and the end of project, to provide for the ongoing 
operation and maintenance of the technology beyond the completion of the demonstration 
project. If USNA staff intend to continue using the technology, what documentation, 
training or other resources are necessary to ensure that the technology continues to 
provide the demonstrated efficiency improvements to the chiller plant operations? 

● Explain the plans or outlook for the technology developed and demonstrated in this 
project to become commercialized or otherwise become available to other DoD 
installations. What are the potential pathways to technology transfer and what can be 
done between now and the end of the project to better position the technology for 
transition? 

 
These action items were addressed in a memo to the ESTCP program in January 2017, and are 
also addressed in the Implementation Issues in Section 8 of the main body of the report. 
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