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Abstract 1 

Carbon use efficiency (CUE), the proportion of carbon (C) consumed by microbes 2 

that is converted into biomass, is an important parameter for soil C models with explicit 3 

microbial controls. While often considered as a single parameter, CUE is an emergent 4 

property of multiple microbial processes, including assimilation efficiency, biomass-5 

specific respiration, enzyme production, and respiratory costs of enzyme production. These 6 

processes occur over variable time scales and imply different fates for C, and the same 7 

emergent CUE value can result when C is allocated in fundamentally different ways (e.g. a 8 

high investment in enzyme production vs. a high assimilation cost). We developed a model 9 

that represents the individual processes underlying emergent CUE to test how shifts in 10 

microbial allocation alter equilibrium soil C pool sizes.  We found that an increase in 11 

emergent CUE that results from a change in assimilation efficiency, biomass specific 12 

respiration, or respiration costs from enzyme production causes soil organic C (SOC) to 13 

decline, while the same change in emergent CUE resulting from a change in enzyme 14 

production causes SOC to increase.  15 

We also used the model to test the sensitivity of CUE from isotopic C tracer 16 

estimates to changes in microbial allocation processes. We found that these estimates do 17 

not account for the same microbial processes represented by emergent CUE in models. We 18 

propose that considering microbial processes explicitly rather than representing CUE as a 19 

single parameter can improve data-model integration. In addition, modeling microbial 20 

processes explicitly will account for a wider range of possible outcomes from shifts in 21 

microbial C allocation, such as when increased SOC results from increasing CUE. 22 

23 
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Introduction 1 

The Earth’s soils represent a large carbon (C) reservoir that is vulnerable to climate 2 

change (Cox et al. 2000, Jobbágy and Jackson 2000, Schlesinger and Andrews 2000, Jackson 3 

et al. 2017). Predicting the dynamics of soil C is therefore critical to understanding the 4 

global C cycle (Cox et al. 2000, Davidson and Janssens 2006). However, models that are 5 

currently used to predict soil C storage under climate change often fail to match the results 6 

from field experiments (Cox et al. 2000, Melillo et al. 2002, Bouskill et al. 2014). For 7 

example, models overestimate the magnitude and duration of the response of soil 8 

respiration to warming (Bouskill et al. 2014), and also produce estimates of current soil C 9 

stocks that can range from 40% to 240% of estimates based on empirical measurements 10 

(Todd-Brown et al. 2013). 11 

Better predictions of soil C stocks under dynamic conditions may be possible if 12 

models can account for how microbial allocation of C changes with environmental 13 

conditions (Conant et al. 2011). In most soil C models, microbial allocation is represented 14 

implicitly; a proportion of C is respired as it move between pools (Schimel and Schaeffer 15 

2012a). This partitioning parameter is thought to represent microbial carbon use efficiency 16 

(CUE), which is the proportion of C consumed by microbes that is incorporated into the 17 

biomass (Allison et al. 2010, Wang et al. 2013, Wieder et al. 2015). Models have also begun 18 

to account for microbial processes by including CUE explicitly, so that CUE partitions 19 

consumed C between respiration and growth of a microbial biomass pool.  Varying this 20 

parameter reveals the sensitivity of soil C stocks to changing microbial C allocation with 21 

environmental conditions for models that represent microbes both implicitly (Conant et al. 22 

2011) and explicitly. (Allison et al. 2010, Wieder et al. 2013, Li et al. 2014). In microbial-23 
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explicit models, assumptions about the temperature sensitivity of CUE alters not just the 1 

magnitude but also the direction of soil C stock changes in response to climate warming 2 

(Wieder et al. 2013). 3 

Empirical studies have been unable to reach the consensus necessary to constrain 4 

the possible range of CUE in soil or its sensitivity to environmental change (Manzoni et al. 5 

2012). For example, while some theory suggests that CUE should decline with temperature 6 

(del Giorgio and Cole 1998, Steinweg et al. 2008, Allison et al. 2010, Sinsabaugh et al. 7 

2013), studies of temperature sensitivity show mixed results. Some studies have found a 8 

decrease in CUE with increasing temperature (Steinweg et al. 2008, Tucker et al. 2013), but 9 

others have found no change (Dijkstra et al. 2011b, Hagerty et al. 2014), or a response that 10 

depends on substrate type (Frey et al. 2013). The average CUE of 0.55 across studies in soil 11 

reviewed by Manzoni et al. (2012) is almost double the average of the aquatic and pure 12 

culture studies reviewed. In fact, soil studies have measured values across virtually the full 13 

range of possible CUE (Sugai and Schimel 1993, Frey et al. 2013, Manzoni et al. 2017). 14 

Recent measurements are typically higher—near 0.7—which approaches the theoretical 15 

maximum CUE (estimated near 0.8) and surpasses the maximum value of 0.6 from pure 16 

culture (Roels 1980, Gommers et al. 1988, Dijkstra et al. 2015). 17 

Much of this inconsistency may arise because CUE itself is a coarse aggregation of 18 

microbial processes that are difficult to constrain in a single parameter (Lee and Schmidt 19 

2014, Xu et al. 2014, Geyer et al. 2016, Manzoni et al. 2017). CUE is the proportion of 20 

consumed C that is used to produce new biomass, a definition that is ambiguous as to 21 

which physiological processes should be counted (Sinsabaugh 2013). At a cellular level, 22 

partitioning C between growth and non-growth is expected to represent the balance 23 
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between anabolic versus catabolic metabolism (Carlson et al. 2007, Dijkstra et al. 2011b). 1 

However when considering the soil microbial community, anabolism and growth are not 2 

equivalent.  For example, some products of anabolism such as extracellular enzymes and 3 

exudates are generated within the cell but then excreted into the soil matrix. When growth 4 

is considered over very short time scales (i.e. seconds or minutes), C directed toward 5 

exudates may still be within the cell and could be counted as growth. However, over longer 6 

timescales, exudation would remove these products and they would not contribute to 7 

growth.  8 

The overall CUE of the soil microbial community is an emergent property—the 9 

result of integrating multiple microbial biochemical pathways. A single parameter is 10 

unlikely to capture the full suite of effects on soil C cycling that result from shifts in each 11 

individual pathway.  For example, a reduction in microbial CUE could occur if microbes 12 

either allocate more C toward exudative products or if they respire more of the C they take 13 

up. These two mechanisms would have fundamentally different effects on soil C cycling; an 14 

increase in exudative products may increase soil C storage without increasing respiration.  15 

Here, we explicitly define CUE as a function of multiple cellular processes to ask the 16 

question: is emergent CUE in models able to capture the variable effects of different 17 

microbial allocation strategies on soil C stocks? We then evaluate how isotopic C tracer 18 

measurements integrate the multiple microbial processes involved in determining 19 

emergent CUE in order to assess if and how these measurements can be used to inform 20 

microbial model parameters.  21 

22 

23 



6 

Explicitly modeling the processes involved in CUE 1 

Comprehensively modeling the processes involved in determining CUE would 2 

require a full biochemical model that would include the metabolic pathways of the entire 3 

soil microbial community. This level of process resolution is unrealistic; we therefore 4 

aggregate these processes in a way that represents the main microbial C allocation 5 

pathways. We define CUE as: 6 

7 

CUE = U−RU−RB−RE−EX
U  (1) 8 

9 

where U (uptake) is C consumed by the microbial biomass, RU is respiration that occurs as a 10 

function of uptake, RB  is respiration that occurs as a function of the biomass (i.e. biomass-11 

specific respiration), RE is respiration from the production of extracellular enzymes, and EX 12 

is the exudation of microbial products including extracellular enzymes. Most microbial soil 13 

C models are structured so that growth (C that stays in live microbes) increases the pool of 14 

carbon consumers (i.e. microbial biomass) (Wieder et al. 2015). As exudates would not 15 

contribute to this pool, we follow the definition of Manzoni et al. (2012) and represent 16 

exudation as a loss term in the CUE calculation. Respiration that occurs with uptake (RU), 17 

includes any respiratory cost of transporting substrate into the cell and the minimum cost 18 

for catabolism (e.g. dissimilation). This minimum cost depends on where in the metabolic 19 

pathway the substrate enters and the complexity of substrate consumed (Hobbie and 20 

Hobbie 2013). We define the proportion of C remaining after respiration from uptake as 21 

the microbial assimilation efficiency (ae) where: 22 

23 
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𝑎𝑒 =  𝑈−𝑅𝑈
𝑈  (2) 1 

2 

Assimilation efficiency sets the maximal amount of C that is incorporated into the biomass, 3 

but it does not reflect all of the energetic costs of the microbial cell (Gommers et al. 1988, 4 

Manzoni et al. 2012, Xu et al. 2014). Respiration also occurs as a proportion of the biomass 5 

(RB) through biomass maintenance costs like energy directed toward osmoregulation, cell 6 

motility, defense mechanisms, proofreading and turnover of macromolecular compounds, 7 

shifts in metabolic pathways, and overflow metabolism (Schimel and Weintraub 2003, van 8 

Bodegom 2007). Growth is also reduced by exudation of extracellular products (EX), 9 

including exopolysaccharides and enzymes, and by the respiration that results from their 10 

production (RE). 11 

Through the above mechanisms, microbial C costs are incurred as a proportion of 12 

uptake (i.e. assimilation), biomass pool size (i.e. maintenance and overflow costs), or both 13 

(i.e. enzyme production and respiration) depending on the process.  Processes that occur as 14 

a function of substrate uptake can be described as: 15 

16 

𝑋 = 𝑝𝑋 ∗ 𝑈 (3) 17 

18 

where p represents the proportion of uptake directed toward process X, where X is  either 19 

RU, RE ,or  EX. However, C costs that are proportional to the biomass are incurred as a 20 

proportion (t) per unit of biomass C (B): 21 

22 

𝑌 =  𝑡𝑦 ∗ 𝐵 (4)23 
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1 

where Y represents one of the biomass-specific processes; RB, RE,  or EX.  Given equations 2 

1-4, CUE therefore equivalent to:3 

4 

CUE = (ae ∗ U) − 𝑝𝐸𝑋 ∗ 𝑈 − 𝑝𝑅𝐸 ∗ 𝑈 − 𝑡𝑅𝐵∗𝐵
𝑈 − t𝐸𝑋∗B

𝑈 − 𝑡𝑅𝐸∗𝐵
𝑈  (5) 5 

6 

From this formulation it is clear that biomass specific costs occur as a proportion of the 7 

biomass to uptake ratio; thus CUE will only be constant when the biomass pool is at steady 8 

state so that this ratio is stable. Under conditions where uptake increases such as from an 9 

increase in substrate concentration or microbial uptake affinity, the relative amount of C 10 

going toward biomass specific costs would decrease such that CUE increases. 11 

The dynamic nature of CUE has implications for both models and measurements.  12 

For microbial models, it means that representing CUE as a constant parameter is unlikely to 13 

reflect the true microbial costs of growth under dynamic conditions. For typical isotopic 14 

measurements of CUE, estimates are made using a labeled substrate that is out of 15 

equilibrium with the biomass and therefore cannot equally account for assimilation 16 

efficiency and biomass specific energy costs. This is because the amount of C directed 17 

toward biomass-specific costs changes with the ratio of biomass to uptake, whereas costs 18 

that occur as a proportion of uptake do not; thus, outside of steady-state biomass 19 

conditions, the relative influence of biomass specific costs varies. The extent to which these 20 

processes are accounted for in measurements will depend on the abundance of the isotope 21 

in the substrate versus biomass pool, which will change over time. When a labeled 22 

substrate is first added, the ratio of labeled biomass to C taken up is at its lowest, and so the 23 
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influence of biomass specific costs is low.  As time proceeds this ratio will increase and so 1 

will the influence of biomass specific costs on the CUE estimate; hence, estimated CUE 2 

should decline.  3 

Explicitly considering the microbial processes that determine CUE could explain the 4 

variation in CUE empirical estimates. Whether microbial exudates are counted as growth 5 

has often been determined by methodological constraints. Many CUE estimates require 6 

measurements of microbial biomass to quantify growth, and most available methods for 7 

estimating microbial biomass exclude exudates (e.g. chloroform fumigation, cell counts, 8 

and substrate-induced respiration).  However, even recently developed methods for 9 

estimating CUE vary in how they account for exudation. While biochemically explicit 10 

approaches account for exudation as part of growth (Dijkstra et al. 2011a), CUE estimates 11 

using 18O incorporation into DNA likely excludes it from growth completely (Spohn et al. 12 

2016b). Improved theoretical analysis of CUE and its underlying processes could help 13 

empiricists address these inconsistencies.  14 

15 

Measurements of CUE 16 

The most widely used method of estimating CUE in soil involves adding an 17 

isotopically labeled C-substrate and calculating CUE based on measured concentrations of 18 

the label in the remaining substrate, CO2, and microbial biomass pools after some time 19 

period (Frey et al. 2013, Kallenbach et al. 2015, Riggs and Hobbie 2016). For this method, 20 

how exudation is counted depends on the assumptions of the equation applied to estimate 21 

CUE.  We add the subscripts S, C, and B, adopted from Frey et al. (2001) to distinguish the 22 

three methods of calculating CUE (i.e. substrate based (CUES), concentration based (CUEC), 23 
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biomass based (CUEB)) with isotopic data from CUE as defined in equation 1 and 5. In the 1 

formulation for CUES , the substrate-based CUE formulation, all C consumed and not 2 

respired is assumed to be growth; the total amount of C consumed is determined as the 3 

change in the extractable C pool from the initial label addition: 4 

5 

𝐶𝑈𝐸𝑆 = Δ𝐷𝑖−𝐶𝑂2𝑖
Δ𝐷𝑖 (6) 6 

7 

where ΔDi is the change in the concentration of the isotope in the extractable C pool over 8 

the incubation period and CO2i is the amount of isotope released as CO2. The change in the 9 

extractable C pool is often assumed to represent microbial uptake, meaning processes like 10 

abiotic sorption of the substrate to soil particles or recycling of products from the biomass 11 

back to the extractable C pool are assumed to be negligible. Given this, CUES can be 12 

expressed in terms of the microbial processes involved: 13 

14 

𝐶𝑈𝐸𝑆 = 𝑈−𝑅𝑈−𝑅𝐵−𝑅𝐸
𝑈 (7) 15 

16 

 Using this equation, exudation will be counted as growth. 17 

In a second equation for concentration-based CUE (CUEC), growth is equivalent to 18 

the label concentration in the microbial biomass pool (Bi) measured by chloroform-19 

fumigation extraction, which would exclude exudation from growth (Manzoni et al. 2012); 20 

consumed C is determined as the change in the extractable C pool (i.e. Di).  CUEC can be 21 

expressed in terms of measured isotopic pools and microbial processes involved in the 22 

estimate: 23 
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1 

𝐶𝑈𝐸𝐶 = 𝐵𝑖
Δ𝐷𝑖 = 𝑈−𝑅𝑈−𝑅𝐵−𝑅𝐸−𝐸𝑋−𝜏𝐵

𝑈  (8) 2 

3 

where τB represents C lost from death of the microbial biomass, represented here as a non-4 

respiratory loss of C. 5 

In the biomass-based CUE formulation for CUEB, growth is the amount of isotopic 6 

label in the biomass, and the consumed C is determined as the sum of label respired as CO2 7 

and label in the biomass: 8 

9 

𝐶𝑈𝐸𝐵 = 𝐵𝑖
𝐵𝑖+𝐶𝑂2𝑖 = 𝑈−𝑅𝑈−𝑅𝐵−𝑅𝐸−𝐸𝑋−𝜏𝐵

(𝑈−𝐸𝑋−𝜏𝐵)  (9) 10 

11 

This formulation excludes C directed toward exudation from both growth and uptake. It 12 

also minimizes the effect of grazing, because like exudates, much of the microbial C that is 13 

lost to the food web would not be measured in chloroform extractable fumigation 14 

measurements (Frey et al. 2001). The differences between these three equations illustrate 15 

that CUE measurements should explicitly consider the processes captured by different 16 

methods. Otherwise, measured CUE values will be impossible to interpret, compare, and 17 

include in models. 18 

Most models, however, simplify CUE to a single parameter that is not comparable to 19 

any empirical estimates. Therefore, we develop a soil C model that explicitly includes 20 

biomass specific respiration, assimilation efficiency, and enzyme production/respiration to 21 

calculate CUE at steady state. We explore the effect of explicitly modeling these processes 22 
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by simulating equilibrium pool sizes under a range of values for each microbial parameter. 1 

We simulate an isotopic tracer addition to assess how isotope-based measurements of CUE 2 

would compare to actual CUE at steady state. This comparison enables an analysis of how 3 

isotopic measurements capture each category of microbial energetic costs. 4 

5 

Methods 6 

Steady-State Model 7 

We used the Allison-Wallenstein-Bradford (AWB; Allison et al. 2010) model with three 8 

additional fluxes to explicitly represent microbial biomass-specific respiration (RB), uptake 9 

driven enzyme production (FUE), and respiration from the production of enzymes (RE; 10 

Figure 1). We also added a maintenance respiration flux that is a constant proportion of the 11 

biomass (RB): 12 

13 

𝑅𝐵 = 𝑟 ∗ 𝐵 (10) 14 

15 

where r is the biomass specific respiration rate (Table 1) and B is the concentration of C in 16 

the biomass. The uptake-driven enzyme production flux occurs as a proportion (es) of 17 

assimilated C: 18 

19 

𝐹𝑈𝐸 = (𝑉𝑈∗𝐵∗𝐷
𝐾𝑈+𝐷 ) ∗ 𝑎𝑒 ∗ 𝑒𝑠 (11) 20 

21 

where ae is the assimilation efficiency and D is the concentration of C in the DOC pool. 22 

Microbial C uptake is calculated with a Michaelis-Menten function where VU is the 23 
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maximum DOC uptake rate and KU is the DOC uptake half-saturation constant. Enzymes are 1 

also produced constitutively as a proportion of the biomass: 2 

3 

𝐹𝐸 = 𝑒𝑝 ∗ 𝐵 (12) 4 

5 

where ep is the enzyme production rate. Respiration from enzyme production is then: 6 

7 

𝑅𝐸 = 𝑧𝑒 ∗ ((𝑉𝑈∗𝐵∗𝐷
𝐾𝑈+𝐷 ) ∗ 𝑎𝑒 ∗ 𝑒𝑠 + 𝑒𝑝 ∗ 𝐵) (13) 8 

9 

where ze is the respiration C cost per enzyme-C produced. Microbial biomass increases 10 

with uptake from the DOC pool (FU): 11 

12 

𝐹𝑈 = 𝑉𝑈∗𝐵∗𝐷
𝐾𝑈+𝐷 (14) 13 

14 

The amount of C that is incorporated into the biomass is a function of assimilation 15 

efficiency (ae). We use the default value of 0.7 for assimilation efficiency, which is close to 16 

the value usually measured in instantaneous C partitioning (Dijkstra et al 2011) but below 17 

the maximum assimilation efficiency estimated for glucose in Grommers et al (1988). By 18 

using this assimilation efficiency value, we are simulating a highly labile tracer (e.g. 19 

glucose). Assimilation efficiency will vary across substrate types and would be lower for 20 

more complex substrates (e.g. phenol; (Frey et al. 2013).  Respiration proportional to 21 

uptake (RU) can then be calculated as: 22 
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1 

𝑅𝑈 = 𝐹𝑈 ∗ (1 − 𝑎𝑒) (15) 2 

3 

A proportion of the microbial biomass carbon (MBC) is also lost from the biomass pool by 4 

microbial death in the AWB model (FX). 5 

6 

𝐹𝑋 = 𝜏𝐵 ∗ 𝐵 (16) 7 

8 

where τB is the biomass death rate. The biomass C lost from death is split between the SOC 9 

and DOC pools by the parameter αBS. The differential equation of the biomass pool is 10 

therefore: 11 

12 

𝑑𝐵
𝑑𝑡 = 𝐹𝑈 − 𝑅𝑈 − 𝑅𝐵 − 𝑅𝐸 − 𝐹𝑋 − 𝐹𝐸 − 𝐹𝑈𝐸  (17) 13 

14 

The SOC pool increases with inputs (IS), and decreases as C is decomposed, moving from 15 

the SOC into the DOC pool (FS). Decomposition of the SOC pool follows Michaelis-Menten 16 

kinetics: 17 

18 

𝐹𝑆 = 𝑉×𝐸×𝑆
𝐾+𝑆 (18) 19 

20 

where V is the maximum decomposition rate, E is the concentration of C in the enzyme 21 

pool, and K is the half-saturation constant for the reaction. The SOC pool also increases by a 22 

proportion of microbial death (FX). The differential equation for the SOC pool is: 23 
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1 

𝑑𝑆
𝑑𝑡 = 𝐼𝑆 − 𝐹𝑆 + 𝐹𝑋 ∗ 𝛼𝐵𝑆 (19) 2 

3 

The DOC pool decreases with microbial uptake (FU) and increases with decomposition of 4 

the SOC pool (FS), a proportion of microbial death, and with decay of the enzyme pool, 5 

which occurs as a constant proportion of the enzyme pool (FL). 6 

7 

𝐹𝐿 = 𝜏𝐿 ∗ 𝐸 (20) 8 

9 

where τL is the enzyme pool decay rate. The differential equation for the DOC pool is: 10 

11 

𝑑𝐷
𝑑𝑡 = 𝐼𝐷 + 𝐹𝑆 − 𝐹𝑈 + 𝐹𝑋 ∗ (1 − 𝛼𝐵𝑆) + 𝐹𝐿 (21) 12 

13 

The enzyme pool increases with microbial enzyme production (FE and FUE) and decreases 14 

with enzyme decay (FL). The differential equation for the enzyme pool is: 15 

16 

𝑑𝐸
𝑑𝑡 = 𝐹𝐸 + 𝐹𝑈𝐸 − 𝐹𝐿 (22) 17 

18 

We used the AWB model to calculate CUE under steady state conditions. The steady-state 19 

equations for the model are: 20 

21 

22 
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𝐵 = − 𝑎𝑒(𝑒𝑠 ∗ 𝑧𝑒 + 𝑒𝑠 − 1)(𝐼𝐷 + 𝐼𝑆)
−(𝑎𝑒 ∗ 𝑒𝑠 ∗ 𝑟) + 𝑎𝑒 ∗ 𝑒𝑠 ∗ 𝜏𝐵 ∗ 𝑧𝑒 − 𝑎𝑒 ∗ 𝜏𝐵 − 𝑎𝑒 ∗ 𝑒𝑝 + 𝑟 + 𝜏𝐵 + 𝑒𝑝 ∗ 𝑧𝑒 + 𝑒𝑝1 

(23) 2 

𝐷 = − 𝐾𝑈 ∗ (𝑟 + 𝜏𝐵 + 𝑒𝑝 ∗ 𝑧𝑒 + 𝑒𝑝)
(𝑎𝑒 ∗ 𝑒𝑠 ∗ 𝑉𝑈 ∗ 𝑧𝑒 + 𝑎𝑒 ∗ 𝑒𝑠 ∗ 𝑉𝑈 − 𝑎𝑒 ∗ 𝑉𝑈 + 𝑟 + 𝜏𝐵 + 𝑒𝑝 ∗ 𝑧𝑒 + 𝑒𝑝)3 

(24) 4 

𝐸 = − (𝑎𝑒 ∗ (𝐼𝐷 + 𝐼𝑆) ∗ (𝑒𝑠 ∗ (𝑟 + 𝜏𝐵) + 𝑒𝑝)
𝜏𝐿 ∗ (𝑟 ∗ (𝑎𝑒 ∗ 𝑒𝑠 − 1) + 𝜏𝐵 ∗ (𝑎𝑒 ∗ (−𝑒𝑠) ∗ 𝑧𝑒 + 𝑎𝑒 − 1) + 𝑒𝑝(𝑎𝑒– 𝑧𝑒 − 1))5 

(25) 6 

𝑆 = − 𝐾∗𝜏𝐿(𝛼𝐵𝑆∗𝑎𝑒∗𝐼𝑑∗𝜏𝐵∗𝑋1+𝐼𝑠(𝑋2∗𝑟+𝑒𝑝∗𝑋3+𝜏𝐵(−1+𝑎𝑒(1−𝑒𝑠∗𝑧𝑒+𝛼𝐵𝑆∗𝑋1))))
𝑎𝑒∗𝐼𝑑((𝑒𝑠(𝑟+𝜏𝐵)+𝑟𝑒)∗𝑉+𝛼𝐵𝑆∗𝜏𝐵∗𝜏𝐿∗𝑋1)+𝐼𝑠∗(𝑚𝑟(𝑋2∗𝑟𝑙+𝑎𝑒∗𝑒𝑠∗𝑉)+𝑒𝑝(𝑎𝑒∗𝑉+𝜏𝐿∗𝑋3)+𝜏𝐵(𝑎𝑒∗𝑒𝑠∗𝑉+𝜏𝐿(−1+𝑎𝑒(1−𝑒𝑠∗𝑧𝑒+𝛼𝐵𝑆∗𝑋1))))7 

(26) 8 

9 

where;  𝑋1 = (−1 + 𝑒𝑠 + 𝑒𝑠 ∗ 𝑧𝑒), 𝑋2 = (−1 + 𝑎𝑒 ∗ 𝑒𝑠), and 𝑋3 = (−1 + 𝑎𝑒 − 𝑧𝑒). 10 

11 

The emergent steady-state CUE can be calculated from equation 1 where EX = FE+FUE and U 12 

= FU 13 

14 

CUE = F𝑈−RU−RB−RE−F𝐸−F𝑈𝐸
F𝑈

 (27) 15 

16 

Sensitivity analyses 17 

We tested the local sensitivity of steady-state CUE to the parameter values for assimilation 18 

efficiency, biomass-specific respiration rate, enzyme production per unit biomass, enzyme 19 

production per unit substrate consumed, and the respiration cost of enzyme production (ae 20 
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r, ep, es, and ze respectively). We calculated the parameter sensitivity value using the 1 

equation from Allison et al (2010): 2 

3 

|𝑙𝑜𝑔10(𝐻𝑖𝑔ℎ 𝑜𝑢𝑡𝑝𝑢𝑡)− 𝑙𝑜𝑔10(𝐿𝑜𝑤 𝑜𝑢𝑡𝑝𝑢𝑡)|
|𝑙𝑜𝑔10(𝐻𝑖𝑔ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)−𝑙𝑜𝑔10(𝐿𝑜𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)| (28) 4 

5 

For the sensitivity analysis, we increased r and ep by one order of magnitude over the 6 

reference values (Table 1), for ze we doubled the default, for ae we reduced the default 7 

value by half, and for es we increased the value from 0.0 to 0.0001 or 0.001. Sensitivity 8 

values were calculated for steady-state CUE for all output over the course of 150 simulated 9 

hours. 10 

11 

Assessing significance of explicitly modeling processes involved in CUE 12 

In order to assess the significance of the mechanism behind CUE changes and its 13 

effect on modeled soil C pools, we calculated the emergent CUE and the equilibrium values 14 

for the SOC, DOC, biomass, and enzyme pools across a range of values for each microbial 15 

allocation parameter (i.e. ae, r, ep, es, and ze). For each parameter we simulated the range 16 

of values where SOC was between 0 and 100 mg C g-1 soil, all other C pools were greater 17 

than 0.001 mg C g-1 soil, and CUE was greater than 0.1. 18 

19 

Isotope model 20 

To simulate a labeled substrate moving through the soil system over time, we 21 

created a parallel isotope model that simulates fluxes of carbon between isotopically 22 

labeled SOC, DOC, biomass, and enzyme pools (Si, Di, Bi, and Ei respectively). The isotope 23 
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model is similar in structure to the steady-state model described above but differs in three 1 

ways. First, in the isotope model there are no inputs into the SOC or DOC pools over time; 2 

the initial conditions of the DOC isotope (Di) pool are 0.1% of the equilibrium DOC pool, 3 

simulating a tracer addition of isotopically labeled labile substrate like glucose. Because we 4 

are modeling a tracer level addition over a short time period (150 hours), we assume 5 

recycling of the isotopic substrate from the SOC pool back into the DOC pool is negligible, so 6 

we do not include a decomposition flux (FS) in the isotopic model. Finally, the model 7 

assumes that the isotopic label is completely assimilated in a half hour, with no abiotic 8 

sorption of the tracer, as seen in a tracer study of 14C glucose (Glanville et al. 2016). The 9 

equations for microbial death (FX), enzymatic production (FE), enzymatic decay (FL), 10 

respiration proportional to uptake (RU), biomass-specific respiration (RB), respiration from 11 

enzyme production (RE) remain the same, however we substitute the steady-state pools S, 12 

D, B, and E with the isotopically labeled pools Si Di, Bi, and Ei respectively. Given these 13 

divergences the differential equation for the SOC isotopic pool is: 14 

15 

𝑑𝑆𝑖
𝑑𝑡 = 𝐹𝑋 ∗ 𝛼𝐵𝑆  (29) 16 

17 

and change in the isotopic DOC pool (Di) is modeled as: 18 

19 

𝑑𝐷𝑖
𝑑𝑡 = −𝑉𝐷𝐼 ∗ 𝐷𝑖 + 𝐹𝑋 ∗ (1 − 𝛼𝐵𝑆) + 𝐹𝐿 (30) 20 

21 

where VDI is the uptake rate of the labeled DOC pool (Table 1). The differential equation for 22 

the isotopically labeled biomass pool is then: 23 



19 

1 

𝑑𝐵𝑖
𝑑𝑡 = 𝑉𝐷𝐼 ∗ 𝐷𝑖 − 𝑅𝑈 − 𝑅𝐵 − 𝐹𝑋 − 𝐹𝐸 − 𝐹𝑈𝐸 − 𝑅𝐸  (31) 2 

3 

and the isotopically labeled enzymatic pool is 4 

5 

𝑑𝐸𝑖
𝑑𝑡 = 𝐹𝐸 + 𝐹𝑈𝐸 − 𝐹𝐿 (32) 6 

7 

We also tracked accumulation of isotopically labeled CO2 over time; the differential 8 

equation is written as: 9 

10 

𝑑𝐶𝑂2𝑖
𝑑𝑡 = 𝑅𝑈 + 𝑅𝐵 + 𝑅𝐸  (33) 11 

12 

We used the simulated amount of the label in the CO2i, Bi, and Si pools over the course of 13 

150 hours and estimated CUES, CUEC, CUEB (eqns. 6, 8, and 9 respectively.) We performed a 14 

parameter sensitivity analysis for each of these estimates under the same conditions as the 15 

sensitivity analysis for the steady-state CUE. 16 

17 

Results 18 

At steady state the soil microbial CUE was 0.32 (Figure 2). Steady-state CUE was 19 

most sensitive to assimilation efficiency (ae); it was less sensitive to biomass-specific 20 

respiration (r) enzyme production per unit biomass (ep), respiration from enzyme 21 
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production (ze) and enzyme production per assimilated C (es) (Sensitivity values: 1.00, 1 

0.70, 0.27, 0.12, and 0.004, respectively; Figure 3a). 2 

3 

Simulation of variation in mechanisms underlying CUE 4 

The assimilation efficiency (ae) parameter was positively related to the MBC and 5 

enzyme-C pools as well as to the emergent CUE; it was negatively related to the DOC and 6 

SOC pools. As the value of ae decreased from 1 to 0.34 the microbial costs of uptake 7 

increased (Figure 4), and CUE decreased linearly from 0.45 to 0.15. Over this range of ae 8 

values, MBC decreased from 0.48 to 0.10 mg C g-1 soil and enzyme-C decreased from 2.67 9 

x10-3 mg C g-1 soil to 5.8 x10-4. In both the SOC and DOC pools, the C concentration 10 

increased nonlinearly as ae decreased; DOC increased from 0.02 to 0.06 mg C g-1 and SOC 11 

increased from 22 to 99 mg C g-1. 12 

The biomass-specific respiration (r) parameter had a positive relationship with the 13 

DOC and SOC pool and a negative relationship with enzyme-C, MBC, and CUE. As the value 14 

of r increased from 0 to 9.4 x10-4 mg C mg-1 C h-1, CUE decreased from 0.57 to 0.15 and the 15 

rate of decline was highest at lower values of r (Fig. 4). Over this range of r values, MBC 16 

declined from 0.79 to 0.10 mg C g-1 soil and enzyme-C declined from 0.004 to 0.0005 mg C 17 

g-1 soil. The concentration of C in the DOC and SOC both increased with r, from 16 to 99 mg18 

C g-1 soil in the SOC pool and 0.01 to 0.06 mg C g-1 soil in the DOC pool. 19 

The enzyme production rate per unit biomass (ep) was varied from 2.32 x 10-6 to 20 

1.26 x 10-4 mg C mg-1 C h-1. Over this range of ep values, the DOC and enzyme C pools 21 

increased while SOC, MBC, and CUE declined. CUE declined from 0.33 to 0.10. The MBC pool 22 

declined from 0.29 to 0.07 mg C g-1 soil, and SOC declined exponentially from 99 to 4.8 mg C 23 
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g-1 soil. Enzyme-C and DOC concentration increased from 0.0007 to 0.0085 mg C g-1 soil in 1 

the enzyme pool and from 0.02 to 0.10 mg C g-1 soil in the DOC pool. 2 

When the respiratory cost of enzyme production (ze) was increased from 0 to 46, 3 

the SOC and DOC pools increased while MBC, enzyme C, and CUE declined. CUE declined 4 

from 0.35 to 0.24, enzyme C declined from 0.002 to 0.001 mg C g-1 soil, and MBC decreased 5 

from 0.31 to 0.18 mg C g-1 soil. SOC and DOC both increased slightly as ze increased from 6 

0.02 to 0.03 mg C g-1 soil in the DOC pool and from 32 to 53 mg C g-1 soil in the SOC pool. 7 

We increased the proportion (es) of assimilated C that goes toward enzyme 8 

production from 0 to 0.061, which resulted in an increase in enzyme-C and DOC, but a 9 

decrease in SOC, MBC, and CUE. Over this range of es values, CUE declined from 0.32 to 0.10 10 

mg C mg-1 C and MBC decreased linearly from 0.26 to 0.07 mg C g-1 soil. The SOC 11 

concentration decreased from 36.0 to 4.8 mg C g-1 soil, with the rate of decline decreasing 12 

as es increased. The enzyme C concentration increased from 0.001 to 0.008 mg C g-1 soil. 13 

DOC increased from 0.03 to 0.10 mg C g-1 soil and the rate of change increased as es 14 

increased. 15 

16 

Comparison between steady-state CUE and simulated isotopic measurements 17 

The isotopic estimations of CUE were initially more than twice the steady-state CUE; 18 

all the isotopic estimates were 0.70 at the first hour but they declined over time (Figure 2). 19 

The formulation used to calculate CUE from the isotopic simulation affected the time 20 

sensitivity of the measurement: calculated CUE declined fastest over time when using the 21 

CUEC equation, followed by the CUEB and CUES equations. The differences, however, were 22 

small (0.65, 0.66, and 0.64 for CUEB, CUES, and CUEC respectively; Figure 2). 23 
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The isotopic estimations of CUE also diverged from the steady-state CUE in 1 

sensitivity to the processes involved. The isotopic estimates had comparable sensitivity to 2 

ae and es as the steady-state CUE (Figure 3). For the parameters: r, ep, and ze, the 3 

parameter sensitivities to the isotopic calculations of CUE were notably lower than the 4 

sensitivities of the steady-state CUE to the same parameter (Fig. 3a-d). While the 5 

sensitivities to these parameters increased slightly with incubation time, even at the end of 6 

the simulated time the isotopic measurement of CUE was 4 times lower than the steady-7 

state CUE for r, 8 times lower for ep, and 10 times lower for ze (Figure 3). 8 

9 

Discussion 10 

Mechanisms of CUE change are significant for models 11 

We simulated steady-state SOC, DOC, MBC, enzyme C pools and the emergent CUE 12 

under a range of values for each of the microbial parameters: assimilation efficiency (ae), 13 

biomass specific respiration rate (r), enzyme production rate (ep), respiratory cost of 14 

enzyme production (ze), and enzyme production per unit of assimilated C (es).  The 15 

relationship between CUE and the soil C pools (i.e. SOC, DOC, MBC, and Enzyme-C) 16 

depended on the mechanism setting the CUE value. For example, if CUE decreases due to a 17 

decline in assimilation efficiency (ae) the C concentration in the SOC pool increases. 18 

However, if CUE decreases because enzyme production (ep) increases, then SOC pool size 19 

declines (Figure 4). CUE determines the relationship between the substrate and biomass 20 

pools, and consequently the DOC pool size is the same across all mechanisms at any given 21 

CUE value. However, the sizes of the biomass, enzyme, and SOC pools can vary even when 22 

CUE is the same, depending on the microbial allocation strategy (i.e. how the C is 23 
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partitioned between assimilation losses, enzyme production, and maintenance 1 

respiration). 2 

In the scenarios where assimilation efficiency (ae), biomass-specific respiration (r), 3 

or respiratory cost of enzyme production (ze) varied, the relationship between CUE and 4 

each of the four C pools was the same (Figure 4). In fact, at any given value of CUE the SOC, 5 

DOC, MBC, and Enzyme-C pool sizes are each identical across the three scenarios. In these 6 

scenarios, when CUE increased, the biomass pool size also increased because more C was 7 

available for growth. Enzyme production and concentration increased in proportion to the 8 

biomass with an increase in CUE. With more enzymes, there was greater decomposition 9 

resulting in a lower SOC pool size. The effects on the soil C pools from reduced assimilation 10 

efficiency, increased biomass-specific respiration, or increased respiratory cost of enzyme 11 

production are similar to previous studies that reduced CUE (Li et al. 2014). 12 

A different pattern emerged when microbial C costs increased due to an increase in 13 

enzyme production, such as when enzyme production per unit biomass (re) or per 14 

assimilated C (es) increased (Figure 4). Under these scenarios, the enzyme pool increased 15 

while CUE declined, and the larger enzyme pool accelerated SOC decomposition. Although 16 

the MBC pool size also declined with lower CUE, the rate of decline was less than in the 17 

scenarios in which changes in ae, r, or ze caused the CUE decline. These simulation results 18 

demonstrate that at steady state, the relationship between CUE and the soil C pools is 19 

dependent on the pathway of microbial C costs (i.e. enzyme production or respiration). 20 

21 

Comparing isotopic estimates vs. steady-state CUE 22 
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In the isotopic simulations, the isotope did not equilibrate between the biomass and 1 

substrate pools. The isotope was assimilated completely at the start of the simulation, so all 2 

CO2 respired from assimilation occurred immediately. However, the biomass-specific 3 

processes only began after the isotope had been assimilated. Thus, compared to steady 4 

state, the amount of CO2 originating from biomass-specific processes was initially lower 5 

than the amount from assimilatory costs. Because the total amount of labeled CO2 is used 6 

for isotopic estimates of CUE, these estimates were initially dominated by assimilation 7 

efficiency, with only minimal contribution from biomass-specific processes such as enzyme 8 

production and biomass-specific respiration (Figure 3). The sensitivity of the isotopic 9 

estimates to enzyme production as a function of uptake was low because the C flux was 10 

small relative to the other microbial C costs. Isotopic estimate sensitivity to biomass-11 

specific costs increased with time because these costs continue to increase the absolute 12 

amount of labeled C that is respired and decrease the amount of label in the biomass. 13 

These simulation results explain why isotopic measurements of CUE in soil often 14 

report high values (Frey et al. 2013, Kallenbach et al. 2015). They disproportionately 15 

weight the assimilatory C costs relative to the biomass-specific C costs (e.g. maintenance 16 

respiration, endogenous metabolism, respiratory costs of enzyme production). In addition, 17 

the increasing influence of biomass-specific costs over time may help explain the variability 18 

in CUE measurements across studies (Tucker et al. 2013, Hagerty et al. 2014). Soil CUE 19 

measurements show greater variability and higher average values than CUE estimates in 20 

systems where growth is calculated from the increase in cell abundance (Manzoni et al. 21 

2012), as can be done in aquatic and pure culture studies (Eiler et al. 2003, James et al. 22 

2017). Isotopic measurements consider all the C incorporated into the biomass to be 23 
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growth; however in studies where growth is estimated in a way that more closely 1 

approximates cell doubling, such as through label assimilation into DNA (as opposed to just 2 

biomass), values of CUE are lower because more energetic costs are incorporated, 3 

including the maintenance costs of the existing cells, production of exudates, and the 4 

energetic demand of cell division (Spohn et al. 2016a, Spohn et al. 2016b). 5 

Our model simulations demonstrate that when CUE accounts for the total energetic 6 

costs of cell growth (i.e. including both assimilatory and biomass-specific costs) a CUE of 7 

0.3 is possible even while the isotopic measurement yields an apparent CUE of 0.7 (Figure 8 

2). Because isotopic measurements are made using a single addition of labeled substrate, 9 

the biomass and substrate pool are not in equilibrium.  After assimilation, biomass-specific 10 

C costs will continue to reduce the isotopic concentration in the biomass—reducing 11 

apparent CUE—with the rate of this decline dependent on the magnitude of the biomass-12 

specific costs. The apparent CUE will at one point in time be equivalent to the emergent 13 

CUE; however, biomass-specific processes will continue to reduce isotopic concentrations 14 

in the biomass until apparent CUE eventually reaches zero. Our results suggest that 15 

isotopic measurements of CUE made quickly after label addition actually quantify the 16 

assimilatory costs of microbial C uptake rather than emergent CUE. 17 

18 

Implications for models and measurements 19 

In order to accurately represent microbial growth and the role of microbes in soil C 20 

dynamics, models need to represent microbial allocation processes (Schimel and Schaeffer 21 

2012b). CUE is an emergent property resulting from these processes, so using a single CUE 22 

parameter in models is a major simplification, if a mathematically appealing one. In most 23 
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soil C models a CUE parameter partitions C between respiration and biomass (i.e. microbial 1 

explicit models) or another soil C pool (i.e. microbial implicit models).  These formulations 2 

assume that CUE changes are predominantly a result of changing respiratory costs 3 

associated with uptake. Our simulations show that varying these model parameters, as they 4 

are currently formulated, is unlikely to account for effects on soil C stocks that result from a 5 

change in CUE via non-respiratory pathways (e.g. enzyme production). 6 

In soil C models with explicit microbial controls, representing microbial allocation 7 

processes is critical for capturing dynamics of the microbial biomass pool. For example, 8 

most of these models represent CUE as assimilation efficiency; if biomass specific 9 

respiration is substantial and not represented separately, then the models will 10 

overestimate microbial growth. Microbial growth may also be overestimated if exudation 11 

products are not modeled as losses from the biomass. When the size of the microbial 12 

biomass pool determines decomposition rates (Allison et al. 2010), it is important to 13 

accurately capture total exudate loss. Additionally, if extracellular enzymes drive SOM or 14 

detritus breakdown, extracellular enzyme production must be considered separately from 15 

other types of microbial exudation. Microbes produce a wide variety of extracellular 16 

products such as antibiotics (Tyc et al. 2016), extracellular polysaccharides (Basler et al. 17 

2015), and extracellular enzymes (Sinsabaugh and Shah 2012), but C costs aside from 18 

extracellular enzymes have been ignored in most models. The distinction between enzymes 19 

and other exudates is critical; extracellular enzyme exudation will accelerate 20 

decomposition, while non-enzyme exudation will not directly affect decomposition but may 21 

increase long-term soil C storage (Liang et al. 2017). It may be important to distinguish 22 

constitutive enzyme production, which may be biomass-specific, from inducible production 23 
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that is a function of substrate uptake, as these two fluxes likely have different controls and 1 

responses to changing environmental conditions or shifts in available substrates (Burns 2 

1982, Allison and Vitousek 2005). Quantifying and modeling non-respiratory losses of C 3 

from the microbial pool (i.e. death and exudation) is likely the greatest challenge for 4 

incorporating microbial allocation processes into models, as these products are difficult to 5 

measure in situ and have variable effects on soil C dynamics. 6 

Developing soil C models that can account for microbial C allocation pathways will 7 

require redirecting empirical research toward quantifying rates and sensitivities of 8 

microbial assimilation efficiency, biomass-specific respiration, enzyme production, and 9 

exudation, and away from lumping distinct processes into a single CUE value. This presents 10 

a considerable challenge, as these processes cannot yet be directly measured in soil; 11 

studies have likely focused on CUE because it is seemingly easier to measure than the 12 

individual processes involved (Ballantyne and Billings 2018). However we have shown 13 

here that most measurements of CUE are not capturing the same processes being modeled.  14 

In addition our results demonstrate that knowing CUE without some insight into the 15 

processes involved is not enough to confidently predict the resulting changes in soil C 16 

stocks. At identical emergent CUE values, changes in respiration cost of enzyme production, 17 

biomass-specific respiration rate, or assimilation efficiency produce the same effect on 18 

modeled C stocks, but emergent CUE is not equally sensitive to changes in these 19 

parameters. Because of this variable sensitivity, model predictions for soil C pools will be 20 

less responsive to temperature-induced shifts in maintenance respiration compared to 21 

changes in assimilation efficiency or the respiratory cost from enzyme production even if 22 

these parameters have the same fractional change per degree Celsius. Assuming 23 
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assimilation efficiency is temperature sensitive rather than maintenance respiration would 1 

cause models to overestimate the response of soil C stocks to temperature. In addition, 2 

Ballantyne and Billings (2018) found that whether respiration is modeled as function of 3 

biomass or as a function of uptake can also produce different transient responses in 4 

modeled SOC stocks, suggesting differences between these two processes might be even 5 

larger under dynamic environmental conditions like those modeled at the Earth system 6 

level.  Currently most of the data on soil microbial CUE comes from studies using the C 7 

isotopic tracer method, which mainly reflects microbial assimilation efficiency. The 8 

potential response of other microbial allocation processes to environmental change is 9 

therefore underexplored and the consequent impacts on model predictions are poorly 10 

constrained. 11 

12 

Conclusions 13 

Earlier model simulations have demonstrated that assumptions about CUE can have 14 

major effects on SOC predictions (Allison et al. 2010, Wieder et al. 2013, Li et al. 2014). We 15 

found that the relationship between CUE and SOC is dependent on the particular microbial 16 

allocation strategy and is sensitive to the methods used to measure it—our short-term 17 

isotopic modeling gave values that were up to twice the steady-state microbial CUE. 18 

 To generate accurate model predictions at large scale under dynamic conditions, 19 

the concept of CUE should be updated to reflect an emergent property that accounts for 20 

microbial growth and C allocation strategy. Modelers and empiricists should therefore 21 

focus on constraining the environmental sensitivity of the individual processes involved in 22 

microbial CUE to predict microbial physiology effects on soil C stocks. 23 



29 

1 

Acknowledgements 2 

We would like to thank Eric Slessarev for helpful feedback during the preparation of this 3 

manuscript.  This manuscript was improved as a result of the thoughtful feedback of two 4 

anonymous reviewers.  This research was supported by grants to SDA from the US DOE 5 

Office of Science, BER (DE-SC0016410), and NSF (DEB-1457160). 6 

7 



30 

Table 1 Default parameter description, units, and default values. 1 

2 

Fig. 1 Schematic of the Allison Wallenstein Bradford model with our modifications of 3 

adding a biomass specific respiration rate (RM), enzyme production respiration (RE), and 4 

uptake driven enzyme production (FUE). 5 

6 

Fig. 2 Steady-state CUE and calculations of isotopic CUE simulated over 150 hours. 7 

Isotopic CUE calculated with three different formulations (i.e. CUEB, CUEC, CUES) using the 8 

simulated concentrations of label in the biomass pool (Bi), respired (CO2i), or the change in 9 

label concentration in the extractable C pool from the start of the incubation to the time of 10 

measurement. 11 

12 

Fig 3 Sensitivity of the a) steady-state CUE and isotopic calculations; b) CUEB, c) CUEC, and 13 

d) CUES to changes in the model parameters. Larger sensitivity values indicate greater14 

sensitivity of the CUE value to changes in the specified parameter.  15 

16 

Fig. 4 The response of modeled equilibrium concentrations for SOC, MBC, DOC, enzyme-C 17 

pools and emergent CUE in response to changing microbial parameter values; assimilation 18 

efficiency (ae), biomass-specific respiration (r), enzyme production rate (ep), respiratory 19 

cost of enzyme production (ze), and proportion of assimilated C to enzyme production (es). 20 

A decline in ae increases microbial C costs while for all other parameters increasing 21 

parameter value also increases microbial C costs. 22 

23 
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Parameter	 Description	 Value	 Unit	

IS 

ID 

SOC	input	rate	

DOC	input	rate	

0.00015	 mg	C	g-1	soil	h-1	

0.00001	 mg	C	g-1	soil	h-1	

V SOC	D	Vmax	 1	 mg	C	mg-1	C	h-1	

K SOC	KM	 250	 mg	C	g-1	soil	

VU DOC	uptake	Vmax	 0.01	 mg	C	mg-1	MBC	h-1	

KU DOC	uptake	KM	 0.26	 mg	C	g-1	soil		

ae Assimilation	efficiency	 0.7	

r Biomass-specific	respiration	rate	 0.00028	 mg	C	mg-1	C	h-1	

τB Microbial	death	rate	 0.00028	 mg	C	mg-1	C	h-1	

ep Enzyme	production	rate	per	unit	

biomass	

0.0000056	 mg	C	mg-1	C	h-1	

τL Enzyme	loss	rate	 .001	 mg	C	mg-1	C	h-1	

αBS Fraction	of	dead	MBC	partitioned	

to	SOC	

0.5	

VDI Uptake	rate	of	isotopic	tracer	 2	 mg	C	mg-1	C	h-1	

ze Respiration	per	unit	enzyme-C	

produced	

10	 mg	C	mg-1	C	

es Enzyme	production	per	unit	

assimilated	C	

0	 mg	C	mg-1	C	

Table 1




