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Abstract 

It has been argued that people use multiple frames of 
reference (FORs) for representing and updating spatial 
relationships between objects in a complex environment. 
When there are conflicts among representations of multiple 
FORs, they compete to determine behavior. “Frame of 
Reference-based Map of Salience” theory (FORMS) suggests 
that FORs with high salience may be processed in priority. 
Here, we report a computational neural network model for a 
two-cannon task, which naturally involves multiple FORs 
with different levels of salience: intrinsic frame of reference 
(IFOR) and egocentric frame of reference (EFOR). The goal 
is to investigate the computational neural mechanisms 
underlying human spatial performance. Our simulation results 
fit earlier behavioral results well. The model suggests 
although multiple FORs may be initially represented 
independently, they interfere with each other by the inhibitory 
competition of neurons in the later process (in hidden layer) 
for conflict resolution. Moreover, salience may modulate the 
competition by prioritizing FORs with high salience levels. 
These results represent a connectionist support for the 
FORMS theory. 

Keywords: frame of reference; inhibitory competition; 
salience; neural network model 

Introduction 

People adopt multiple frames of reference (FORs) to 

represent the spatial relationship of objects in a complex 

environment (Klatzky, 1998; Mou & McNamara, 2002; 

Piaget & Inhelder, 1956; Sun & Wang, 2014; Tamborello, 

Sun, & Wang, 2012; Wang, Johnson, & Zhang, 2001; Zacks 

& Michelon, 2005). Based on the relationship with the 

observer, FORs can be classified into three types, egocentric 

FOR (EFOR), intrinsic FOR (IFOR) and allocentric FOR 

(AFOR) (Klatzky, 1998; Mou & McNamara, 2002; 

Tamborello et al., 2012; Wang & Spelke, 2002). An EFOR-

based representation is anchored to the observer, which 

needs to be updated following the movement of the 

observer’s eye, head, body coordinates (Wang et al., 2001). 

In an IFOR-based representation, an object or an object 

group in the viewing environment but exogenous to the 

observer is used as the reference point. For example, a table 

is used as an IFOR anchor in the description “the cup is on 

the table”. IFORs remain stable with the observer’s 

movement but have to be updated when the reference object 

moves. In an AFOR-based representation, the entire 

environment, such as a room or a city, is taken as the 

reference point. For a comprehensive review, see (Mou, 

Fan, McNamara, & Owen, 2008; Mou & McNamara, 2002; 

Sun & Wang, 2010, 2014; Tamborello et al., 2012; 

Yamamoto & Philbeck, 2013). 

Particularly of our interests is how multiple FOR 

representations develop and interact with each other. 

Mathematically, all FORs are equivalent. Depending on 

specific situations, however, some FORs are more useful or 

convenient. In comparison, EFOR is probably more 

automatic and almost effortless, AFOR is quite stable but 

computationally demanding, and IFOR is a balance between 

flexibility and stability. “Frame of Reference-based Map of 

Salience” theory (FORMS) states the human brain 

represents spatial information simultaneously using multiple 

FORs, each being a spatial map of salience (i.e. only salient 

objects or locations are represented on each map), and that 

human performance is determined by the interaction of all 

relevant FOR-based representations (Sun & Wang, 2010, 

2014; Tamborello et al., 2012; Wang et al., 2001; Wang, 

Sun, Johnson, & Yuan, 2005; Yamamoto & Philbeck, 

2013). 

To understand the interaction among multiple FORs and 

the effect of salience, Tamborello et al. (2012) designed a 

two-cannon task (a modified and simplified version is 

shown in Figure 1), in which two cannons (a red and a blue) 

were surrounded by 8 pellets in red or blue color. The 

salience of the cannons was determined by the pellet color 

ratio such that the cannon with more same-color pellets was 

more salient. In the task, when one of the pellets was 

randomly chosen as the target pellet (flashing), the cannon 

in the same color became the target cannon. Participants 

were asked to rotate the target cannon to the location of the 

flashing target pellet in the shortest way by pressing either 

the left-arrow or the right-arrow button on the keyboard. An 

analysis (Figure 3A and 3B) showed that reaction time (RT) 

became longer when there was a conflict among different 

FOR-based representations. RT in cannon angle 180° 

condition was longer than RT in cannon angle 0° condition 

(Cannon Angle Effect). In the cannon angle 180° condition, 

RT for trials where the target pellet appeared in the minority 

color group was longer than RT for those in the majority 

color group (Salience Effect).  RT in target cannon point- 

down condition was longer than RT in target cannon point-

up condition (Target Cannon Orientation Effect). And the 

target cannon orientation effect was larger in cannon angle 

180° condition than that in cannon angle 0° condition, 
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Figure 1. A schematic illustration of the two-

cannon task. Middle: trial procedure. At the 

beginning of each trial, a fixation cross was 

presented at the center of the screen for 500 ms, 

and subjects were asked to fixate on it, then 

two cannons (one red and one blue) and eight 

pellets (in either red or blue) were presented 

together on the computer screen. After a one-

second pause, a randomly selected pellet would 

flash as the target pellet. The participants’ task 

was to use the arrow keys to rotate the cannon 

in the same color of the target pellet toward the 

target pellet as quickly as possible. Auditory 

feedback was played for either the correct (a 

shot sound) or incorrect (an alarm sound) 

response; top left: cannon congruent (0°) and 

cannon incongruent (180°); top right: pellet 

color ratio (blue : red = 6:2, 4:4, and 2:6); 

bottom left: likely target pellet (target occurs in 

the majority color pellets) and less likely target 

pellet (target occurs in the minority color 

pellets); bottom right: target cannon orientation 

up (12 o’clock is 0°, clockwise rotation, set 

315°, 0°, and 45° as the target cannon up 

condition) and down (set 135°, 180°, and 225° 

as the target cannon down condition). 

 

Table 1. The training data for the model. Each row represents a group of trials that covers different FORs with different 

orientations and salience, different target pellet color. The first three columns (“FOR number”, “Cannon Angle” and “Pellet 

Ratio B:R”) represent different conditions; Column “Weights” represents relative frequency; Column  “Types” represents 

how many trial types are contained in each group; the last ten columns represent specific input information, with salience 

level ranging from 0.2 to 0.8, and cannon orientation or target location as up-right (UR), up (U), down-left (DL), or down-

right (DR); the last column is the response (right or left key). 

which means there was an interaction between cannon angle 

effect and target cannon orientation effect. These results 

indicate that people encounter difficulties when they have to 

process different conflicting FOR representations and that 

they seem to prioritize processing of each FOR by salience.  

How the conflicts occur raises an issue. In particular, how 

are the conflicts among FORs represented and what is the 

mechanism of conflict resolution? Previously, we have 

hinted that spatiotemporal association and predictive 

learning play a major role in such tasks (Sun & Wang, 

2014). In the current study, we evaluate the hypothesis by 

developing a neural network model of the two-cannon task. 

The model is implemented in Leabra (local, error-driven and 

associative, biologically realistic algorithm), a biologically 

based computational modeling framework (O'Reilly, 1998; 

O'Reilly, Munakata, Frank, & Hazy, 2012). Among all the 

features, Leabra incorporates complex network dynamics 

using bidirectional excitatory connections and fast pooled 

inhibition, which makes it an ideal candidate for exploring 

the interference among conflicting cognitive process. 
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Figure 2. The model of the two-cannon task. Three 3x3 

FOR orientation layers (excluding the center neuron, the 

other eight neurons corresponding to eight orientations: U-

up, UR-up-right, R-right, DR-down-right, D-down, DL-

down-left, L-left, UL-up-left) with three 1x1 salience layer; 

one 3x3 target pellet location layer (excluding the center 

neuron, the other neurons corresponding to eight locations) 

with two 1x1 target pellet color layer (representing the color 

of the target pellet); one 10x10 hidden layer; one 2x1 output 

layer (Left, Right). 

The Neural Network Model 

Model Architecture and Connectivity 

The model (Figure 2) consists of three levels of layers 

(input, hidden and output). At the input level, there are nine 

input layers. Each layer encodes one piece of stimulus 

information independently. Three 3x3 layers are used to 

encode the orientations of two IFORs and one EFOR (Blue 

Cannon Orientation, Red Cannon Orientation and EFOR 

Orientation in Figure 2). Three 1x1 layers aside the three 

FOR input layers are used to encode their salience (Blue 

Cannon Salience, Red Cannon Salience, EFOR Salience). 

One 3x3 layer filled in gray color is used to encode the 

locations of target pellet (Target Pellet Location). Two 1x1 

layers aside the target location input layer are used to 

encode the color of target pellet (Blue Target Pellet, Red 

Target Pellet). At the hidden level, one 10x10 layer is used 

to represent and process all the vision input information. At 

the output level, one 2x1 layer is used to encode the 

response. 

The connections among the layers are all bi-directional. 

The hidden layer has a self-recurrent excitatory connection 

to itself. The weight of forward connection is stronger than 

the weight of the feedback and self-recurrent excitatory 

connection with a ratio of 2:1. The k-winner-take-all 

parameter is used in the hidden layer (the percentage, k= 

25%) and the output layer (the number of neurons, k= 1), 

which controls the activation level of the two layers without 

using explicit inhibitory neurons. All other parameters used 

in the model take the default values of Leabra (O'Reilly et 

al., 2012).  

Training and Testing 

The training data set consists of 13 groups of trials (Table 

1).  The first 12 groups are used to train the three FORs-

coexisting conditions and the last group is for the single 

EROR condition. The first 12 groups are generated based on 

three independent variables: cannon angle (0°, 180°), the 

pellet color ratio (blue: red = 2:6, 4:4, and 6:2), and target 

pellet color (Blue, Red). The orientations of each cannon 

(shown in “Blue Cannon Orientation” column and “Red 

Cannon Orientation” column, same orientations for cannon 

angle 0° condition, opposite orientations for cannon angle 

180° condition) control the cannon angle (shown in 

“Cannon Angle” column). The pellet color ratio (shown in 

“Pellet Ratio B: R” column) will change the salience of each 

cannon (shown in “Blue Cannon Salience” column and 

“Red Cannon Salience” column. e.g. if blue: red= 2:6, we 

set 0.2 for blue salience and 0.8 for red salience). The target 

pellet color (shown in “Blue Target Pellet” column and 

“Red Target Pellet” column) controls the target pellet color 

of each trial and the blue/red target pellet also indicates the 

correct response should be made by the blue/red cannon. In 

each of the 12 groups, there are 36 trial types separated by 

the cannon orientation and target pellet location (shown in 

“Types” column. 8 cannon orientations and different target 

pellet location excluding locations same with or opposite to 

cannon and EFOR orientations). In order to increase the 

robustness of salience effect, we set the salience groups 3 

times more than the other groups (shown in “Weights” 

column).   

    EFOR is always automatic activated as the point-up 

orientation because in behavioral studies participants 

(“observers”) were always facing with the computer screen. 

When the target cannon points above the horizontal, the 

target cannon’s IFOR matches the participant’s EFOR; 

when it points below the horizontal, IFOR does not match 

EFOR, causing a conflict between IFOR and EFOR (Target 

Cannon Orientation Effect). Thus, we set the last group for 

the EFOR, and specially train the single EFOR with an only 

point-up orientation group. In EFOR group, there are 6 trial 

types (1 EFOR orientation and 6 target pellet location 

excluding locations same with or opposite to EFOR 

orientation). In order to increase the robustness of the effect, 

we set the weight of the EFOR group as 50. The total trial 

number of training data is (1*10+3*2) *36+50*6=876. And 

the testing data contains only three FORs coexisting groups, 

and each group only repeats by one time, so the total trial 

number of testing data is 12*36=432. 

We set the maximum cycles of each trial as 200. If the 

cycle reaches 200, the current training trial would stop and 

switch to next trial. The stop criterion of the whole training 

is the average sum square error (SSE) reaching 0 by four 

times continuously. In the testing phase, when the activation 

of output layer reaches a set threshold (0.85) a response is 

said to have been made. The number of cycles is taken as 

the measure of model RT. 
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Thirty “simulated subjects”, each with randomly 

initialized weights were trained and tested to get thirty 

independent simulation results. 

 Simulation Results 

Analysis 

The dependent variable is the number of computational 

cycles of each trial. The independent variables are cannon 

angle (0°, 180°), target cannon orientation (Up, Down), 

pellets color ratio (Blue: Red = 2:6, 4:4, 6:2), target pellet 

color (Red, Blue). One 2 (cannon angle) × 3 (pellet color 

ratio) × 2 (target pellet color) repeated-measures ANOVA 

was performed on the cycles to search for the main effects 

of cannon angle effect and the salience effect (Figure 3C. 

and Table 2). A 2 (cannon angle × 2 (target cannon 

orientation) repeated-measures ANOVA was performed on 

the cycles to search for the main effects of target cannon 

orientation effect, cannon angle effect, and their interaction 

(Figure 3D and Table 3). A correlation analysis was 

performed on the simulation results and the behavioral 

results (Figure 4). According to the FORMS theory and the 

earlier behavioral experimental results, we expected our 

model could learn from the training data, and the simulation 

results would have a positive correlation with earlier 

behavioral experimental results. The effects of interest are 

summarized below. 

Cannon Angle Effect and Salience Effect 

In Figure 3C and Table 2, there was a significant main 

effect of cannon angle effect, F (1, 29) = 719.96, p < .001, 

ηp2 = .96, indicating that the cycles in the cannon angle 0° 

condition (23.51 ± 0.07) were fewer than the cycles in the 

cannon angle 180° condition (26.28 ± 0.11). There was a 

significant interaction of pellet color ratio and target pellet 

color, F (2, 58) = 9.10, p < .001, ηp2 = .24. Post hoc 

analysis suggested that the pattern as below: the cycles of 

the red target pellet (24.81 ± 0.12) were marginally fewer 

than that of the blue target pellet (25.09 ± 0.13) in the blue: 

red = 2:6 condition, p = .09. In contrast, cycles of the red 

target pellet (25.01 ± 0.13) had a trend to be larger than that 

of the blue target pellet (24.77 ± 0.11) in the blue: red = 6:2 

condition, p > .05. The cycles of the two target pellet colors 

(red target pellet: 24.89 ± 0.11, blue target pellet: 24.82 ± 

0.11) showed no difference in the blue: red = 4:4 condition, 

p > .05. This interaction pattern only appeared significantly 

in the cannon angle 180° condition and not in the cannon 

angle 0° condition, as revealed by the significant three-way 

interaction among cannon angle, target pellet color, and 

pellet color ratio, F (2,58) = 47.84, p < .001, ηp2 = .62. Post 

hoc analysis in cannon angle 180° condition suggested that 

the pattern as below: the cycles of the red target pellet 

(25.96 ± 0.99) were fewer than that of the blue target pellet 

(26.82 ± 1.15) in the blue: red = 2:6 condition, p < .01. In 

contrast, cycles of the red target pellet (26.63 ± 1.06) were 

larger than that of the blue target pellet (25.90 ± 0.88) in the 

blue: red = 6:2 condition, p < .01. The cycles of the two 

target pellet colors (red target pellet: 26.20 ± 0.79, blue 

target pellet: 26.18 ± 0.91) showed no difference in the blue: 

red = 4:4 condition, p > .05. No other significant effects 

were obtained, ps > .05.  

 
 

Figure 3 A. RTs for target pellet color, pellet color ratio 

and cannon angle in behavioral results; B. RTs for target 

cannon orientation and cannon angle in behavioral results; 

C. Cycles for target pellet color, pellet color ratio and 

cannon angle in simulation results; D. Cycles for target 

cannon orientation and cannon angle in simulation results. 

 

Table 2: Cycles of target pellet color, pellet color ratio, 
and cannon angle 

 

Cannon 

angle 

Target 

pellet 

color 

Pellet color ratio 

blue: red 

2:6 4:4 6:2 

180° blue 26.82±1.15 26.18±0.91 25.90±0.88 

red 25.96±0.99 26.20±0.79 26.63±1.06 

0° blue 23.36±0.52 23.45±0.52 23.64±0.53 

red 23.66±0.50 23.57±0.60 23.40±0.51 

 

Table 3: Cycles of target cannon orientation and cannon 

angle 

 
Target cannon orientation Cannon angle 

 0° 180° 

Down 23.63±0.52 26.87±1.03 

Up 22.89±0.48 25.16±0.65 

Target Cannon Orientation Effect and Cannon 

Angle Effect 

The cycles results (Figure 3D and Table 3) showed 

significant main effects for target cannon orientation effect 
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and cannon angle effect [F (1, 29) = 75.82, p < .001, ηp2 = 

.72; F (1, 29) = 717.79, p < .001, ηp2 = .96]. The interaction 

of the two factors was also significant, F (1, 29) = 25.03, p 

< .001, ηp2 = .46. Post hoc analysis suggested that target 

cannon orientation effect in the cannon angle 180° condition 

(1.71 ± 0.20) was larger than the effect in the cannon angle 

0° condition (0.74 ± 0.13).  

Correlation 

A correlation analysis between the simulation results and 

behavioral results was conducted. For cannon angle effect 

and salience effect, we combined all the 12 conditions 

(target color × cannon angle × pellet color ratio) together to 

analyze the relation among these conditions. It is evident 

results (Figure 4A) that there was a significantly positive 

correlation, r = 0.53, p < .01, df = 358. For the cannon angle 

effect and target cannon orientation effect, we combined the 

4 conditions (target cannon orientation × cannon angle) 

together to analyze the relation among these conditions. 

Results (Figure 4B) showed that there was also a 

significantly positive correlation, r =.56, p < .01, df = 118. 

 

 

 
 

Figure 4 A. Correlation in target color, cannon angle and 

pellet color ratio; B. Correlation in target cannon orientation 

and cannon angle. 

Discussion 

The results from the neural network model of the two-

cannon task are consistent with our earlier interpretations of 

the behavioral results based on the FORMS theory. The 

model shows stable performance and replicates all major 

effects with a close match to the behavioral results.  

Importantly, these results provide a neural basis to our 

theory where we can characterize the competition between 

different FOR-based representations by inhibitory 

competition among groups of neurons and predictive 

learning. 

According to the FORMS theory, multiple representations 

with respect to different FORs may co-exist in a segmented 

but competitive fashion. The salience of any particular 

representation is driven by not only the perception of a static 

scene (e.g., the ratio between blue and red pellets) but also 

the prediction of the changing environment (e.g., a red 

cannon would be more likely to be the target cannon 

because there are more red pellets).  This means that in a 

complex environment with multiple spatial relationships, 

representations anchored to different FORs have to be 

constantly maintained and updated. The simulation results 

from the neural network model suggest that the process of 

maintenance and updating can take place distributive within 

the same group of neurons (hidden layer), and therefore 

afford the possibility of interference among different FOR-

based representations at the neural level. 

The model showed the cannon angle effect, target cannon 

orientation effect and the interaction between them. The 

cannon angle effect was demonstrated by the fewer cycles in 

the cannon angle 0° condition (the orientation of the 

potential IFOR was the same as the orientation of the target 

IFOR) than in the cannon angle 180° condition (the 

orientation of the potential IFOR was opposite to the 

orientation of target IFOR). And the target cannon 

orientation effect was revealed by the fact that the cycles of 

the target cannon point-up condition (the orientation of 

target IFOR was the same as the orientation of EFOR) were 

fewer than that of the target cannon point-down condition 

(the orientation of target IFOR was opposite to the 

orientation of EFOR). These two effects suggest that in the 

hidden layer, there may be the same group of neurons 

responsible for computing the output based on the different 

FORs (blue cannon anchored to blue IFOR, red cannon 

anchored to red IFOR and observer anchored to EFOR). 

Therefore, when the orientation of the target IFOR was 

same as the orientation of the potential IFOR or EFOR, the 

response became faster. On the contrary, when their 

orientations were different, inhibitory competition occurred, 

and neurons took more time to focus on the target IFOR, 

leading to slower responses. In addition, the interaction 

between the two effects was revealed by the larger target 

cannon orientation effect in cannon angle 180° condition 

than that in cannon angle 0° condition. According to the 

adding factor theory, when two processes occur in the same 

phase, they will compete with each other for the cognitive 

resource, resulting in longer RT (Liu, Banich, Jacobson, & 

Tanabe, 2004; Liu, Park, Gu, & Fan, 2010; Sternberg, 

1969). In this study, it is likely that some shared neurons for 

FOR information processing in the hidden layer give rise to 

these effects. The salience effect was demonstrated by fewer 

cycles in the likely target pellet condition than that in the 

less likely target pellet condition. We hypothesize that 

neurons in the hidden layer learned to predict the cannon 

with the same color of majority pellets as the target cannon. 
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If the prediction was right, the response would be fast. If the 

prediction was incorrect, it would take more time to update 

the target cannon, so the response would be slow. The 

salience level associated with each FOR might enhance the 

competition and lead to a prioritization of the corresponding 

FOR. However, it was the real-time prediction and 

inhibitory competition that contributed to the extra 

computational time for resolving potential conflicts (Sun & 

Wang, 2014).  

The above analysis suggests that the interaction among 

neuron groups in the hidden layer may be responsible for 

the modeling results. The next step is to perform further 

data analysis, such as PCA and cluster analysis to evaluate 

these predictions. Another step is to add the cue data to the 

testing data set to make the model process the input 

information in temporal sequences. Then the predictive 

learning and the target decision making could be more 

clearly separated in the model.  

Conclusion 

Our neural network model replicates the behavioral results 

well, supporting the claim that representations with multiple 

FORs co-exist and compete to determine performance. 

Importantly, it suggests a plausible neural mechanism 

underlying the FORMS theory. Depending on whether there 

are conflicts among different FOR representations and 

whether the actual outcome is consistent with the 

expectation, competition takes place at different levels and 

results in the engagement and disengagement of different 

FOR-based representations. According to the salience 

effect, the internal spatial representation of the environment 

is always dynamically constructed and updated toward the 

anticipated outcomes, rather than just representing static 

associations of the current spatial configuration. These 

results support our interpretation of spatiotemporal 

association and predictive learning. 
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