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Abstract

Time is fundamental in representing and reasoning about changing
domains. A proper temporal representation requires characterizing two
notions: (I) time itself, and (2) tempoml incidence, i.e. the domain-
independent properties for the truth-value of fiuents and events through
out time. FormaUy defining them involves some problematic issues such
as (i) the expression of instantaneous events and instantaneous holding of
fluents, (ii) the dividing instant problem and (iii) the formalization of the
properties for non-instantaneous holding affluents.

This paper discusses how previous attempts fail to address all these
issues and presents a simple theory of time and temporal incidence which
satisfactorily overcomes all of them.

Our theory of time, called JV, is based on having instants and periods
at equal level. Our theory of temporal incidence is defined upon XV. Its
key insight is the distinction between continuous and discrete fluents.
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1 Introduction

Time has been recognized as an important notion for modelling and reasoning
about changing domains. Many frameworksfor change and action are built upon
a temporal representation [17, 1, 14, 6, 26, 23, 15, 7, 8, 22, 20, 18, 10]. In these
frameworks, the domain at hand is formalized by expressing how propositions
are true or false throughout time. Commonly there is a distinction between
propositions describing the state of the world {fluents) and those describing the
occurrences that make the world change {events). The temporal representation
of such frameworks has two basic components: (i) a theory of time, and (ii) a
theory of temporal incidence. A theory of time describes what are the primitive
time elements, the primitive relations between them and their properties (e.g.
the ordering relation over instants is transitive). A theory of temporal incidence
describes the domain-independent properties for the truth-value of fluents and
events throughout time (e.g. if a fluent is true during a period it must be true
during the instants within that period). Some works that focussed on these
issues are [9, 24, 2, 16, 23, 3, 8, 25].

***(] am not sure about next two paragraphs) A proper theory of time and
temporal incidence is fundamental for any temporal representation to correctly
answer temporal queries such as "Did the event close the relay occur before con
necting the battery ?", "At what times were the light on and the door open ?".
Consider, for instance, a CLP scheme [12] for representing temporal informa
tion: The theory of time characterizes the constraint domain which determines
the properties (such as completeness) for a constraint solving procedure. The
theory of temporal incidence characterizes relations among different temporal
occurrences at related times and, therefore, has impact in the completeness of
the overall proof procedure.

From a practical point of view, they enable identifying implicit, redundant or
inconsistent temporal informationand, thus, they help with improvingefficiency
of reasoning algorithms. For example, in the presence of the sentence "the light
was on between 8:00 and 9:00" the sentence "the light was on between 8:30 and
9:00" is redundant. As another example, consider two tasks competing on a
single resource. The theory of temporal incidence allows inferring that the time
periods during which these tasks utilize the common resource do not overlap.
As a result, some temporal constraint propagation is enabled.

Formalizing time and temporal incidence is problematic because real world
dynamic domains may involve both parameters whose change is modelled as
continuous and others whose change is modelled as discrete. We call a model
with both types of change a hybrid model, and the system a hybrid system
[10]. For example, consider an electro-mechanical battery charger: recharging a
battery can be viewed as a continuous change whereas closing a relay would be
better regarded as discrete^ .

' Hybrid systems are interesting since manydailyusedelectro-mechanical devices are euit-



The contribution of this work is identifying the shortcomings of previous ap
proaches and proposing a simple and satisfactory theory of time and temporal
incidence. We take what appears to be a rather straight forward approach only
in hindsight. We identify the following problematic issues: (i) the expression of
insiantaneous events and instantaneous holding of fluentSy (ii) the dividing tn-
stani problem and (iii) the formalization of the properties for non-instantaneous
holding of fluents. We explain why previous attempts fail to address all of the
above and we explain how to overcome them in our approach.

Our theory of time, called XV, is based on having instants and periods^ at
equal level. Our theory of temporal incidence, called CV, is defined upon IP. Its
key insight is the distinction between continuous and discrete fluents. Although
there is a common understanding in the community that they are different, we
are not aware of a single satisfactory framework in which the precise details
have been worked out properly.

The structure of this paper is as follows. Section 2 introduces some problem
atic issues to be considered. Section 3 discusses the shortcomings of previous
approaches. Section 4 presents our theory of time called IP. Section 5 presents
our categorization of propositions and the theory of their temporal incidence.
In section 6 we discuss how the above problems are satisfactorily addressed
and section 7 presents an example of hybrid model that is described using our
approach. Finally section 8 summarizes our contribution.

2 Problematic Issues

In this section we introduce the problematic issues that arise when defining a
theory of time and a theory of temporal incidence.

Instantaneous Events The model of a dynamic system often involves some
events that cannot be qualified by a duration. Some prototypical examples
are "turn oflf the light", "shoot the gun", "start moving", "sign a contract".
Modelling such events can be problematic specially when sequences of them
occur in presence of continuous change (section 7 discusses it in detail).

Instantaneous Fluent Holding It seems natural to ask queries about
whether a fluent is true or not at a certain instant (e.g. w£ts the light red
when the car hit John?). Moreover, modelling continuous change requires hav
ing fluents that may hold at isolated instants. A simple, representative example
is the parameter speed of a ball tossed upwards in what we call the Tossed Ball
Scenario (TBS) (see figure 1). The ball moves up during p\ and down during
period p^. There must be time piece "in between", where the speed of the ball

ably modelled as such.
^By period we mean a time interval.



V= 0 [t].

w>0(pil v<0[p2)

Figure 1: The Tossed Ball Scenario (TBS).

is zero. Such a time piece can only be durationless otherwise it would mean
that the ball is stopped for a while. Modelling the TBS requires the ability to
talk about the truth value of fluents at durationless times. This, however, may
lead to the problem described next.

The Dividing Instant Problem (DIP) Assume that time is made of in
stants and periods and we need to determine the truth-value of a fluent / (e.g.
"the light is on") at an instant i, given that / is true on a period p\ ending at
} and is false at a period p2 beginning at it (see figure 2) [9, 24, 1,8].

propositionB . /?

Figure 2: The Dividing Instant Problem.

The problem is a matter of maintaining logical consistency: If intervals are
closed then / and -i/ are both true at i which is inconsistent. If they are open
we might have a "truth gap" at i. The other two options are open/closed and
closed/open intervals which are judged to be artificial [1, 8].

Non-Instantaneous Holding of Fluents Formalizing the properties of tem
poral incidence for non-instantaneous fluents can be a non-trivial issue. There
are two major classes of these properties. The first is the class of properties that
relate the holding of a fluent at related times. Important instances of it are:

• Homogeneity: If a fluent is true on a piece of time it must hold on any
subtime [1, 8].

• Concaienahilii}^: If a fluent is true on two consecutive pieces of time it
must be true on the piece of time obtained by concatenating them. Notice

^Most ofprevious approaches have focussed on properties related to homogeneity whereas
very little attention has been paid to concatenabillty. Nevertheless, it is important since (i)



that there may be different views for the meaning of consecutive.

The second is the class of properties relating the holding of contradictory
fluents at related times. Two main important instances are:

• Non-holding: If a fluent is not true on a piece of time, there must be an
subtime where its negation holds [1, 8].

• Disjoininess: Any two periods such that a fluent is true on one and its
negation is true on the other, must be disjoint. There may be different
views for the meaning of disjoint also.

Non-Atomic Fluents The holding of negation and disjunction of atomic
fluents is an issue that needs to be defined [23, 8]. For instance, given a fluent
/ and a period p, it is necessary to precisely characterize the relation between
the holding of -</ and the non-holding of / on p.

3 Related Work

In this section we survey instant-based approaches, interval-based, approaches
where instants are derived from intervals and, finally, an approach with both
instants and periods at equal level. For each approach we discuss first the theory
of time and then the theory of temporal incidence.

Instant-based Approaches Classical approaches in AI define time as an
ordered collection of instants^. In section 2 we outlined a number of reasons for
having instants as a primitive to properly define temporal incidence. However,
several arguments have been put forward against theories of time based on
instants:

• Ontological: "Our direct experience is with phenomena that take time"

[ij-

• Philosophical: "Instants can have no content: it takes to many of them
to make up a durable experience ?" [9, 13], "the point-based, continuous
model .. .they start with is too rich" [3], "richer than we need. They per
mit the description of states of phenomenally impossible states of affairs"
[9].

• Logical: The DIP.

it is a semantica] issue, and (ii) has computational benefits since it allows to have a compact
representation of fluents holding throughout numerous consecutive periods.

*This is the approach classically taken in physics where time is usually isomorphic to the
real numbers.



Regarding the theory of temporal incidence, the two most relevant instant-
based proposals in AI, McDermott's [17] and Shoham's [23], both include a clas
sification of propositions according to their temporal incidence. McDermott's
approach has been criticized for presenting then in an informal and unclear re
cursive form [21]. A major criticism to both approaches is the lack of attention
to the relevant issue of non-instantaneous and non-atomic holding of fluents. In
particular, although both agree on the importance of representing continuous
change, none of them formally accounts for the essential differences between
holding of continuous and discrete fluents.

Interval-based Approaches Allen [1] proposed a theory of time exclusively
based on intervals where "instants are modelled as very short intervals". How
ever, neither instantaneous holding of fluents nor instantaneous events can be
properly represented, the reason being that a very short interval does not have
the same properties as an instant. In particular, it does not divide a period
into two meeting ones. For example, in the light on/off scenario (see figure 2),
assume that we want to view switchoff as an instantaneous event occurring at
i. Thus, the period where the light is on (pi) meets the period where it is off
(p2). Clearly cannot be modelled as a short interval since pi would not meet
P2.

Another problem of a time ontology exclusively based on intervals is that
defining the theory of incidence becomes much more complex. In Allen's inci
dence theory, for instance, the axiom for homogeneity of fluent holding (H.2) is
quite cumbersome, and, in fact, it conflicts with the axiom H.4 for holding of
negated fluents as shown by [8]. We shall see that instants make defining the
incidence behavior over periods very simple and natural.

Deriving Instants from Periods Mathematicians proposed a number of
set-theoretic methods for constructing points from intervals that can be used
for deriving instants. The following are two examples; (i) the maximsU set of
intervals that have a non-empty intersection, (ii) the equivalence class of pairs
of meeting intervals that meet "at the same place".

The interest of deriving instants from periods is unclear since, as noted by
Allen and Hay^ [3], "we may end up in the same place" than starting with
an instants structure. Indeed we show (section 4) that Allen and Hayes time
interval theory [2, 3] together with points derived using the second method
above, admits the same models than the period component of our theory of
time. As a consequence, any criticism against instants will apply also to the
"derived instants".

Now, regarding temporal incidence, the point is whether assertions about
occurrence of events and holding of fluents are allowed at the derived instants
or not. Allen and Hayes limit their formal development to the theory of time
and discuss temporal incidence only informally. As recipient for Instantaneous



events, they introduce a different type of "instantaneous" entity: the moment
[2]. A momeni is an indivisible interval. The problem with moments is the same
as with short intervals (subsection 3): since they are intervals, their beginning
and end are distinct which does not fit the intuitions about "instantaneous".

Allen and Hayes's reply to the issue of instantaneous holding of fluents is as
follows ([3], section 4): "We avoid it by resolutely refusing to allow fluents to
hold at points". The reason for that is avoiding the DIP. In section 6 we discuss
when the DIP is and is not a problem. Allen and Hayes propose the following
alternative: "One could define a notion of a fluent X being true at a point p
by saying that X is true at p just when there is some interval I containing p
during which X is true". It is easy to see that this does not work for modelling
continuous fluents (consider the v = 0 fluent in the TBS).

Instants and Periods on the Same Footing The most relevant proposal in
this direction is Galton's approach [8]. Its two main features are: (i) The theory
of time is defined over instants and periods at equal level (i.e. neither periods
are a set-theoretic construction from instants nor viceversa). (ii) Fluents are
diversified into instantaneous/durable and states of position/states of motion:
a state of position can hold at isolated instants; if it holds during a period
it holds at its limits (e.g. "a quantity taking a particular value"); a state of
motion cannot hold at isolated instants (e.g. "a body being at rest"). The main
shortcomings of this approach are the following:

1. The theory formed by the axioms is too weak to properly account for the
relations between instants and periods. We discuss it in detail in section
4.

2. It is not clear that Galton's new types of fluents are useful, the reason
being that one single type of fluent is not enough to model a continuously
changing parameter. Let us illustrate that with the TBS. Consider the
fluent / = (v ^ 0). It cannot be modelled as a state of position because /
holds on both pi and p^ which must contain the limiting instant i where
~<f holds (i/ = 0). A state of motion cannot be used either because it
cannot hold at isolated instants: we are not allowed to say that -•/ is true
at 1.

4 Time

In this section we present our theory of time, called IP, based on the idea of
havinginstants and periodsat equal level®®. Our languagefor time has twosorts
of symbols, the instants sort (I) and the periods sort (P), which are formed by

^Very much with in the same spirit of [8] and [5].
^Results on IV are a summaryof those presentedin [25].



two infinite disjoint sets of symbols, and three primitive binary relation symbols,
I X I and begin, end :2 xT.
The first-order axiomatization of IV is as follows:

IPl -•(*-<«) IP7I
IP2 IP72
IP3 i^i' At' <i" =>i^i" IPgl
IP4 i -< i' Vt -< »' VI = 1' IPg 2
IP5.I 3i' (i' ^ i) IP9
IP5 2 3i' (i X IPlO
IPg begin(i, p) Aend(»',p) ^ i -< t'

3i begin(i,p)
3i end(i,p)
begin(t,p) Abegin(»',p) =>• i = V
end(i,p) A end(t',p) ^ »= i'
i =>3 p (begin(i, p) A end(i', p))
begin(i,p) A end(t',p) A
A begin(»,p') A end(t',p') ^ p = p'

IPl -T- IP4 are the conditions for -< to be an strict linear order -namely
irreflexive, asymmetric, transitive and linear- relation over the instants^. /P5
imposes unboundness on this ordered set. IPs is intended to order the extremes
of a period. This axiom rules out durationless periods which are not necessary
since we have instants as a primitive. The pairs of axioms /P?,. and /Pa,, for
malize the intuition that the beginning and end instants of a period always exist
and are unique respectively. Conversely, axioms /P9 and /Pio close the connec
tion between instants and periods by ensuring the existence and uniqueness of
a period for a given ordered pair of instants.

We now characterize the models by following the simple intuition of an in
terval being an ordered pair.

DeRiiition 1 (TP-structure) An IV-struciure is a tuple {2d,Vd,<d
,beginj,end<i) where Id and Vd are sets of instants and periods respectively,
<d is a binary relation on Id and beginj,endd ore binary relations on IdtVd-

We show that the elements and the pairs of an unbounded linear order S
form a model for IV and all the models are isomorphic to it.

Theorem 1 (the models) Given an infinite set S and an unbounded strict lin
ear order < on it then the IV-structure (<S,pairs(5), <,lirst, second) forms
a model of IV, (iirst returns the first element of the pair and second the sec
ond). Furthermore, any model M = (I,P,-<,begin, end) of IV «s isomorphic
to the structure (I, pairs(Z), <, first, second) where I and < are the same as
in M.

Corollary 1 Every model of IV is characterized by an infinite set S and an
unbounded strict linear order < on it.

Note that IV accepts both dense and discrete modelsof time. The subtheory
of dense models, we call it TPrfenje> axiomatized by adding the following
denseness axiom:

IPll i<i' ^3i" {i<i" <i')

'Notice that IPi is actually redundant since it can be derived from IP2. We include it for
clarity.



Theorem 2 (dense models) The models ofTV^gngg characterized by the
set of elements and the set of ordered pairs of distinct elements of an unbounded,
dense, sfrt'ci linearly ordered set. Moreover TVjgngg is a complete axiomatiza-
tion for the theory of rationals and rational intervals, namely Th{Q, INT{Q)).

Let us see how our theory relates to previous theories of time. Allen and
Hayes's theory, let us call it I ah >is exclusively based on time intervals. To com
pare to our theory we use the same technique as Ladkin [16] of deriving instants
constructed described as follows: first define the notion of pair of meeting in
tervals, second apply the equivalence relation "having the same meeting point"
and, finally, associate an instant to each class. Let us call the resulting theory

• Its class of models is the same as IV, i.e. the theories are equivalent.

Theorem 3 IV =

Gallon's theory (namelyIVg) is defined over Within and Limits® relations.
Let I denote a period and i denote an instant:

11 V73i Within(i, 7)
12 Within(t, 7) A In(7, J) ^ Within(i, J)
13 Within(i, 7) AWithin(i, J) ^ 3K (In(A', 7) AIn(A', 7))
14 Within(t, 7) ALimits(i, J) ^ 3A (In(A, 7) A In(7f, J))

The axioms seem appropriate to avoid DIP-like criticisms and to specify some of
the properties for temporal incidence of fluents. However, the theory is too weak.
It is easy to identify examples of counter-intuitive models accepted by the theory.
For example, let us take a basic model M composed of an infinite set of periods
P and Allen's relations satisfying interval axioms, plus an infinite set of instants
7 which make M satisfy 7i. Now, we take M plus a single instant t ^ 7 which
Limits a certain period p € P and only that one. The axioms do not force it to
limit any of those periods that meet or are met by p. The obvious undesirable
consequence of XVg weakness is that some queries will not receive the expected
intuitive answers. In the example, given the assertions Within(i, p), Meets(p, p'),
is not possible to derive an answer for the query Limit8(i,p').

The reason of this weakness is the loose connection between instants and

periods. In [25] we show how JVg can be properly extended to implement the
idea of instants as period the meeting points [25]. We show that the resulting
theory is equivalent to 2"Pjenje-

5 Temporal Incidence

In this section we present our theory of temporal incidence, called CV, which is
based on the following ideas:

def def
*LiMit8(t,p) = i = begin(p) Vt = •nd(p), Within(t,p) = b«gin(p) < t < andlp).



1. JVe allow fluents to hold at points. We discuss why this does not, in fact,
create any problem. It makes the resulting theory much simpler to define.

2. We distinguish between continuous and discrete fluents. We diversify flu
ents according to whether the change on the parameter they model is
continuous or discrete.

As undelying language we take standard temporal reified first-order one with
equality (as in [17,1,8]). The decisions made regarding temporal representation
are the following:

• Time theory: We take define the instant-to-period re
lations (such as Vithin) and period-to-period (such as Meets) upon -<,
begin and end.

• Reified propositions: Reified propositions are classified into conftnttous
fluents, discrete fluents^ and events.

• Temporal Occurrence Predicates (TOPs). We introduce a different
TOP for each combination of temporal proposition and time unit (similar
to [14, 8]):

Holds;„(/,p)
HoLDs;ii(/,p)

Holds'(/,i)

Holds2j(/,*)

OccURS<,„(e,p)

OCCURSai(e,l)

— The continuous fluent / holds throughout the period p

The discrete fluent / holds throughout the period p

The continuous fluent / holds at the instant t

The discrete fluent / holds at the instant i

The event c occurs on the period p

The event e occurs at the instant i

Terminology. Henceforth we use the following notational shorthands. We
may use begin and end in functional form (e.g. i = begin(p)). HoLOS(,n
stands for both HoLDS^n and HoLDS^, and HoLDSa^ for HoLOSat and
HoLDS^i- Given any two periods p,p' such that Meet8(p,p'), we define the
functions »eetpoint(p,p') end(p) = begin(p') and concat(p,p') p" s.t.
begin(p") = begin(p) A end(p") = end(p'). We use the 13 common qualitative
relations between intervals. PR denotes the set of them. We define also

In : "P X"P ^ Starts VDuring VFinishes
Disjoint^ : P x P Before V After

Disjoint:V xV Before VMeets VMet_by V After

^We use the equalityrelation to expressa fluent representing a parameter taking a certain
value. E.g. the speed of a ball being positive on p is expressed as HOLDS(speed +,p). We
omit necessary axioms imposing the exclusivity among the different values of a parameter.



5.1 Axioms of Temporal Incidence

Since instants and periods are both primitive units in XV, we are not forced
to accept any assumption on the relation between the holding of a fluent on a
period and its holding at the period endpoints. A fluent holds during a period
iff it holds at its inner instants:

CDj HoLDSon(/,p) <=• (Within(t,p) ^ Holdsat(/.«•))

From it, nothing can be derived about the holding of / at the p endpoints.

Continuous Fluents A continuous fluent may hold both during a period and
at a particular instant without any restriction. This is not the case for discrete

Discrete Fluents The genuine property of discrete fluents is that they cannot
hold at an isolated instant:

CD2 H0LDS^(/,i) => 3p (Holds^(/,P) a (Hithin(i,p) Vbegiii(i,p) Vend(i,p)))

Our distinction between continuous and discrete events is different from Gal-

ton's distinction between states of position and states of motion. Identifying it
as a key property in modelling changing domains is a key insight in this paper.

Non-Instantaneous Events The intuition behind events (both instanta
neous and durable) is that of an accomplishment that may have relevant con
sequences over the state of the world. Unlike preceding approaches, our theory
does not include any axiom governing the occurrence of events that take time. It
corresponds to the intuition that two accomplishments happening concurrently
is plausible or not depending on the abstraction degree of the analysis. For ex
ample, the event "programming the program pi" can not occur over two periods
that are not disjoint. It is not the case, however, if the event under consideration
is merely "programming a program". Therefore, no domain-independent axiom
can be stated as part of a general theory of temporal incidence.

Non-Atomic Fluents Our theory directly addresses the issue of the holding
of non-atomic fluents with the following axioms:

Negation: CD3 HOLDSaj(->/,i) <=
Conjunction : CD4 HoLDSat(/ A »)
Disjunction: CD5 HoLDSai(/V//',»)

'HOLDSaj(/, 0
>• HOLDSo«(/,i) A HOLDSat(/',i)
• HOLDSaj(/,i) V HOLDSa»(/',i)

Deriving the properties of non-instantaneous holding of non-atomic fluents
from these axioms is straight forward.



6 Revisiting the Problematic Issues

Let us see now how the problems presented in section 2 are addressed using XV
axioms, our set of TOPs and CV axioms.

Instantaneous Events Since instants are a primitive unit in our. theory, we
can directly express instantaneous events using the predicate OccuRSot. In the
DIP, for instance, we have OccuRSaj(switchoff, »)• In section 7 we discuss the
more delicate issue of sequences of instantaneous events'.

Instantaneous Holding We allow to talk about the instantaneous holding
of a fluent at a certain instant by using the predicate HOLDSai. Axiom CDj
(by which fluents hold over a priori "open" periods) ensures we will be able
to express the holding of contradictory fluents ending or beginning at that in
stant without getting in conflict. Furthermore, we can express the holding of a
continuous fluent at an solated instants which is required to model continuous
change. The TBS scenario, for example, is simply represented as follows;

Holds~„(speed = +,pi)
Holds^,(speed = 0,i)
H0LDS~„(speed = -.pz)

end(pi) = I = begin(p2)

The Dividing Instant Problem The DIP is not a problem for temporal
incidence theories where the following two conditions hold:

1. The holding of a fluent over a period does not constrain its holding at the
period's endpoints.

2. Instantaneous holding of fluents can be expressed.

These conditions avoid logical contradiction and truth gap at the dividing in
stant, respectively. In figure 2, the fluent / can be regarded as discrete and the
DIP scenario can be formalized as follows:

HoLDs;i,(iight = on,pi) A Meets(pi,p2) A HoLDS;^(light= off,pa)

Given this information only, the query HoLDS^(light = on, end(pi)) simply
cannot be answered. Our position is that answering it requires additional
domain-dependent information. In some cases we may want to specify that
a fluent holds on and at the end of a period. For instance, consider the fluent
"being in contact with the floor" for a ball being lifted up. Other fluents will
hold at the beginning and on the given period (e.g. "not being in contact with
the floor" for a ball that falls on the floor). In the light example, the most ap
propriate might be having three fluents tight=on, light=off and light=changing,
where the former two hold over open periods and the latter at an instant.



We believe that this is a domain-dependent issue. Our approach avoids mak
ing any commitment about the holding at period's endpoints, whereas provides
the means to safely specify what happens ai the dividing instant.

Non-Instantaneous Fluent Holding A nice feature of our proposal is
that the above few axioms are enough to easily derive the fundamental prop
erties of temporal incidence of fluents. For instance, Allen's Homogeneity
Holds^(/,P) In(p',p) ^ Holds7„(/,p') is easy to prove from axiom
CD^. The properties for concatenability are as follows:

Theorem 4 (Concatenability of discrete fluents)
//Meet8(p,p') then

H0LDs;i,(/,p) A HoLDs;i,(/,p') •<=> HoLDs;i,(/, concat(p,p'))

Theorem 5 (Concatenability of continuous fluents)
//Meet8(p, p') then

Holds^(/,p) a Holds^(/,p') a HoLDsrt(/,aeotpoint(p,p'))
•<=> Holds<,„(/, concat(p,p'))

Concatenability can be regarded as a special case of joinabiliiy. Given two
periods p, p', join(p,p') is defined as a period p" such that begin(p") =
nin(begin(p),begin(p')) and 6nd(p") = nax(end(p), end(p')), where min and
max are defined according to the ordering relation -< over instants.

Theorem 6 (Joinability of discrete fluents)
//->Disjoint;i;(p,p') then

HoLDs;i.(/,p) AH0LDs;^(/,p') <=• HoLDs;^(/, join(p,p'))

Theorem 7 (Joinability of continuous fluents)
//-.Disjoint^(p,pO, or

Meets(p,p') A HOLDSat(/,a««tpoint(p,p')), or
M«t_by(p,p') A HoLDSat(/,B««tpoint(p',p))

then

Holds^(/,p) aHolds^(/,p') <=> HoLDSo„(/,join(p,p'))

There are also a number properties relating the holding of contradictory
fluents at distinct, related times.

Theorem 8 (non-holding of discrete fluents)

-.Holds^(/,p) 3p'In(p',p)AHoLDs;i;(-./,p')

Theorem 9 (non-holding of continuous fluents)

-.Holds^(/,p) <<=>• 3i Within(i,p)AHoLDS~,(/,i)



Theorem 10 (disjointness)

Holds<,„(/,p)a Holds^(-./,p') =}. Disjoint7„(p,p')

At this point one may ask for how long can we go enumerating properties
of temporal incidence. To answer this question, let us analyze the issue from
a more general perspective. The above properties are, in fact, particular cases
of the following general scheme (/ is a fluent and p denotes the collection of
periods Pi,.. .,p„) :

If Holds(/,p) and f \= f then HOLDS(/',p')
If Holds(/,p) and / ^ then HoLDs(-i/',p')

The scope of this paper goes as far as showing that the most basic properties
of this scheme are theorems of our theory. There might be other properties one
may be interested to consider such as more sophisticated instances of the above
scheme or general temporal properties of some relations basic for a particular
task (e.g. the temporal relation between / and /' when Causes(/,/')).

7 Example: Modelling Hybrid Systems

In this section weillustrate the application of our theory in qualitative modelling
of a physical system. A (qualitative) model of a system is usually the result of an
abstraction intended to simplify the analysis. When this abstraction produces
discontinuous or discrete behaviors together with continuous ones the result is
called a hybrid model There are many instances physical systems such as most
electro-mechanical devices (e.g. photocopiers, cars, stereo sets, video cameras)
that are suitably modelled as hybrid. There are several approaches to represent
ing discrete changes into a continuous modelin the area of qualitative modelling
[19, 7, 11, 10].

Some semantical problems have been encountered because of the different
nature of discrete and continuous change. We shall see that an adequate the
ory of time and temporal incidence is fundamental to overcome them. Let us
consider a particular example from [10] (we borrow the example, the qualitative
model, the intended envisionment and a tentative solution). Figure 3 shows a
simple circuit in which electric power is provided to a load by either a solar
array or a rechargeable battery.

A part of the continuous behavior of this system is described as follows:

CO: "If the sun is shining and the relay is closed then the solar array acts as a
constant current source and the battery accumulates charge."

The discrete events are specified as follows:

Dl; "If the relay is closed, when the signal from the controller goes high, then
the relay opens."



Figure 3: The hybrid circuit example.

D2: "If the relay is open, when the signal from the controller goes low, then
the relay closes."

D3: "If the signal is low, when the controller detects that the charge level in
the battery has reached the threshold q^, then the controller turns on the
signal to the relay."

Now, let us consider a particular predicted qualitative behavior. This is
normally described as a sequence of states that hold alternatively at a point
and during an interval. The transition from one state to another is produced
either by a continuous change or by a discrete change produced by a discrete
event. Quoting Iwasaki et al. "...we would like to model discrete events as
being instantaneous". Problems arise when sequences of them need to be de
scribed, such as "the signal goes high and immediately after the relay closes".
The following predicted behavior and the explanation about why sequences of
discrete events are problematic are from [10]. Given the initial state of our
example where the signal is low, the relay is closed and the sun is shining, the
intended envisionment would be the following sequence of states:

Qba < 92 signal = low relay = closed
Q BA —92 signal = low relay = closed
Qba signal = high relay = closed
Qba —signal = high relay = open
Qba < 92 signal = high relay = open

The state 52,1 is produced by the signal going high, and S2.2 by tbe relay closing.
It is not clear how to model the times of S2, 52.1 and 52.2 as well as both the
time spans and the discrete events between them. Assuming that discrete events
take no time leads to logical contradiction because of the way the discrete events
are specified. "The antecedent for rules specifying such events often includes
the negation of the consequence; this leads to a contradiction when events are
treated as implications." In the case of Dl, for example, the signal is low and
goes high, but if the change is instantaneous both values for the signal will be
true at the same time.

The alternative is assuming that discrete changes take a very little time in
terval. It is problematic too since the value of continuous variables changing
concurrently becomes unknown after a sequence of actions. In the example,



the charge of the battery would keep continuously increasing for a short pe
riod. After a number of discrete events these small variations accumulate and
complicate the computation of parameter values.

There are several solutions proposed to solve this quandary. They are based
on complicating the model of time either by introducing mythical time ([19],
direct method), by extending the real numbers with infinitessimals ([19], ap
proximation meihod)[4], or by using non-standard analysis [10]. We next show
that none of them is necessary. We use our theory of instants/periods and
continuous fluents/discrete fluents/events as follows:

• Discrete events are modelled as instantaneous events.

♦ Continuous (discrete) quantities are modelled as continuous (discrete) flu
ents.

Since HoLDSon is defined as holding at the inner points only, the values of
fluent being changed by an instantaneous event will not be defined at the time
the event occurs unless there is some specific knowledge about it. The sequence
ofstates representing the intended envisionment becomes simpler:

(*i.<2) Qba < qi signal=low relay= closed
•*2 <2 QBA —q7 signal rc/ay=?
^3 (<2i -) QBA<q-2 signal= high relay = open

Indeed, this solution is much simpler than the previously proposed tech
niques. Itsformalization in terms ofevent occurrences and holding ofcontinuous
and discrete fluents is as follows:

HOLDS^(Qfl^ < 52,Pi)
HOLDS^(iiyna/= lou3,p2)
HQLDS^(re/Qy = closed^pi)
Holds„,(Qb,, =92.end(pi))
OccURSa{(furn_on(ji(;naO,end(pi)) end(pi) = end(p2)
HoLDs;^(jtgnQ/= high,p^) Meet8(p2,p4)
OccuRSat(open(re/oy)), end(p3)) end(p2) = end(p3)
HoLDS^(re/Qv= op€n,pi) Meet8(p3,ps)

8 Conclusion

Atheory oftime and temporal incidence is the foundation for a proper temporal
representation, independently of the method used. In this paper we identified
the problematic issues that need to be addressed, namely the expression of
instantaneous events and instantaneous holding affluents, the dividing instant
problem and the formalization of the properties for non-instantaneous holding
of fluents.

The main contribution of this paper twofold. First, we show that no single
previous approach satisfactorily addresses all of these issues. Then, we propose



a theory of time and temporal incidence (that may look straight forward in
hindsight) which does it. The key insights behind our approach are;

1. The iime ontology is composed of both instants and periods. Several crit
icisms (such as the DIP) have been put forward against having instants
as a primitive. We discussed that instants are needed to describe instan
taneous events and instantaneous holding of fluents, specially when we
want to model systems with both discrete and continuous change. We
have shown that alternatives based on deriving points from intervals are
either not appropriate or do not provide any benefit. We explained how
is possible to allow instantaneous holding of fluents and avoid the DIP.

2. Fluents are diversified into continuous and discrete. The diversification of
fluents into continuous and discrete is commonly agreed upon, but there
is no previous approach that develops it properly. We propose a theory
of temporal incidence based on this distinction and formally present the
relevant properties derived from it.
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9 Rules formalizing the Behavior of the Circuit
Example

Dl Holds^ (rc/oy = c/osed,p) A
A OccuRSat(opcn(rc/ay), end(p)) ^
=> HoLDS^(rc/oy = opcn),p') A Keets(p,p')

D2 Holds^ (re/ay = closed,p) A
A OccuRSat(c/osc(rc/ay), end(p)) ^
=» HoLDS^(rc/ay = c/oseii),p') A Meets(p,p')

D3 H0LDS^(5iyna/= low,p) A
Holds" > g2>®nd(p))
=>• OccuRSat(<tim_on(siyna/), end(p))




