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Abstract

Recent work has shown that individual differences in language
development are related to differences in procedural learning,
as measured by the serial reaction time (SRT) task. Perfor-
mance on this task has also been shown to be associated with
common genetic variants inFOXP2. To investigate what these
differences can tell us about the functional properties of lan-
guage processing, we present a computational model of the
SRT task. We varied parameters in the model to observe their
effects on performance in the task. We found that the com-
bined effect of several model parameters produced changes in
the learning trajectory that were similar to those observedbe-
haviorally.

Keywords: language processing; specific language impair-
ment; FOXP2; procedural learning; serial reaction time task;
computational modeling; simple recurrent networks

Introduction
The mechanisms that underlie language use emerge over the
course of development through the integration of multiple
biological and environmental factors (Elman et al., 1997).
Much previous research has focused on whether these mecha-
nisms are language-specific or domain-general (Christiansen
& Chater, 2008). Regardless of which is the case, we must
specify how different factors interact to give rise to language.

One way to study the mechanisms involved in language is
to look at individual differences in language ability. Recently,
the use of molecular genetics has emerged as a tool for inves-
tigating these differences. However, the use of genetics to
study complex cognitive processes, like language, presents a
challenge: how do we address questions regarding the role of
genes when they are so far removed from language process-
ing? Similarly, how do we assess the role of individual genes
when it is unlikely that there is a one-to-one correspondence
between genes and specific characteristics of language?

As a first step, we need a way to observe the effects of func-
tional properties of language processing on behavior. Com-
putational models offer a tool for doing this. The units in a
neural network model, for instance, correspond to functional
(rather than structural) units in the system. Thus, computa-
tional models may be useful for examining how genetic fac-
tors relate to the functional organization of cognitive systems.

The aim of the current paper is to investigate the relation-
ship between individual differences (both differences in lan-
guage ability and genetic differences) and functional proper-
ties of language processing using a computational model of
the serial reaction time (SRT) task. The SRT task measures
participants’ ability to learn pattern sequences. Variation in
performance on the SRT task has been associated with both
language ability (Tomblin, Mainela-Arnold, & Zhang, 2007b)
and genetic differences (Tomblin, Christiansen, Bjork, Iyen-
gar, & Murray, 2007a). Given this, and the fact that sequence
processing is a critical component of language use, this task
provides a useful paradigm for studying these relationships.

Individual differences in language abilities

One area in which differences in language ability have been
extensively studied is specific language impairment (SLI).
SLI is a relatively common developmental disorder character-
ized by difficulty acquiring language in the absence of gross
cognitive or sensory impairments, and despite adequate ex-
perience and educational opportunities (Tomblin, Records,
& Zhang, 1996). Typically, research criteria for SLI classi-
fication require that the individual falls 1.15 SD below the
mean on a range of standardized assessments of language
while falling in the normal range for non-verbal intelligence
(Tomblin et al., 1996).

Children with SLI have deficits in various language abil-
ities, such as mopho-syntactic processing, phonological
processing, word learning, and spoken word recognition
(Leonard, 1998; McGregor, Newman, Reilly, & Capone,
2002; McMurray, Samelson, Lee, & Tomblin, 2010). In many
ways, these children demonstrate language abilities associ-
ated with typically developing younger peers. They have
smaller vocabularies, use shorter, simpler syntactical con-
structions, and make more morphological errors than would
be expected for children their age (McGregor, Friedman,
Reilly, & Newman, 2002).

A range of possible hypotheses for SLI have been pro-
posed, and include deficits in temporal-perceptualprocessing,
generalized slowing, problems with phonological processing,
and deficits in working memory (Bishop, North, & Donlan,
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1996). Thus, the underlying causes remain unclear, though it
is likely that SLI is multiply determined.

Genetic factors and language

Genetics is now commonly employed as a tool for investi-
gating differences in language development. Initial molec-
ular studies centered on the KE family, a multigenerational
pedigree that appears to show an autosomal dominant pattern
of language impairment (Hurst, Baraitser, Auger, Graham,
& Norell, 1990). Affected individuals have been character-
ized as having apraxia of speech, as well as expressive and
receptive language problems (Vargha-Khadem, Watkin, Al-
cock, Fletcher, & Passingham, 1998). They also have a rare
genetic mutation in theFOXP2(forkhead box P2) gene (Lai,
Fisher, Hurst, Vargha-Khadem, & Monaco, 2001). More
recently, Mueller, Bjork, Tomblin, and Murray (in prepera-
tion) investigated the role of more common genetic variants
in FOXP2. These variants were single nucleotide polymor-
phisms (SNPs), which represent differences in a single base
pair in the genome. They examined multiple SNPs in a popu-
lation with a range of language abilities and found an associa-
tion between SNPs in the promoter region and language abil-
ity as a discrete phenotype. This suggests that these common
variants ofFOXP2also play a role in language development.

FOXP2is expressed in multiple species as well as several
different organs, including the lungs and brain (Shu et al.,
2007; Fujita et al., 2008). This has led some to argue that the
link betweenFOXP2and language is weak. However, the fact
thatFOXP2is neither species- nor domain-specific means it
is likely to play a role in multiple cognitive processes. In
addition, sinceFOXP2is a transcription factor (i.e., encodes a
regulatory protein that affects gene expression), it is possible
to identify other elements of the gene pathway (and therefore
the systems) in which it exists (Vernes et al., 2008).

A more general role forFOXP2 fits with the hypothesis
that language itself is shaped by domain-general processes
(Christiansen & Chater, 2008). Statistical learning plays
an important role in language acquisition (Saffran, Aslin,&
Newport, 1996), and it is closely related to procedural learn-
ing (Perruchet & Pacton, 2006).FOXP2remains a candidate
gene involved in language because of its association with pro-
cedural learning and the basal ganglia (Enard et al., 2009).

Procedural learning and the SRT task

Given the links between language ability,FOXP2, and pro-
cedural learning, researchers have examined sequence learn-
ing to better understand these relationships and mechanisms
associated with language. The SRT task is a sequence learn-
ing task designed to measure participants’ ability to implicitly
learn sequences. Participants are presented with blocks oftri-
als that are either random or repeat in a particular sequence.
As sequence processing is fundamental to language and sta-
tistical learning provides a useful mechanism for learninglan-
guage (Saffran et al., 1996), this task allows us to measure
some of the key functional properties of language.
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Figure 1: Behavioral data for pattern trials in the SRT task.
(A) Data from Tomblin et al. (2007b) comparing SLI and NL
groups. (B & C) Data from Tomblin et al. (2007a) for in-
dividuals with different genotypes of SNPs rs1916988 and
rs7785701.

Tomblin et al. (2007b) used an SRT task to examine dif-
ferences between children with normal language (NL) and
children with SLI. In their task, participants were shown four
boxes on a computer screen. On each trial, a picture of a
cartoon creature appeared in one of the boxes, and the partic-
ipant’s task was to choose the box containing the picture as
quickly as possible.

For the first 100 trials, stimuli were presented randomly.
Then, 200 trials were presented in which the sequence [1, 3,
2, 4, 4, 2, 3, 4, 4, 2, 4] was repeated (pattern trials). Fi-
nally, 100 additional random trials were presented. Partici-
pants were not informed which trials were random and which
were pattern trials during the course of the experiment. The
experiment was divided into blocks of 20 trials each for data
analysis (blocks 1-5 were the first set of random trials, blocks
6-15 were pattern trials, and 17-20 were random trials).

Tomblin et al. found that, overall, the SLI group had longer
RTs than the NL group (Fig. 1A). During the pattern trials,
performance of both groups improved, indicating that they
learned something about the sequence. However, the learn-
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ing trajectory differed for the two groups. For the NL group,
RT decreased rapidly after the first few blocks of pattern tri-
als and then leveled off. In contrast, for the SLI children, RT
remained flat (or increased slightly) during the first few pat-
tern blocks before decreasing. The difference between these
two learning trajectories can be approximated by a quadratic
function (small differences between the two groups at the first
and last blocks; large differences in the middle blocks).

In another study, Tomblin et al. (2007a) examined the rela-
tionship between multiple SNPs and performance in this SRT
task. They found that the CC genotype of SNP rs1916988
(Fig. 1B) and the CC genotype of SNP rs7785701 (Fig. 1C)
were associated with slower RTs over the course of the pat-
tern trials. The CC genotype of SNP rs1916988) was also
associated with a learning curve that was similar to the SLI
children.

These results suggest that both language impairment and
genetic variation inFOXP2 have similar effects on perfor-
mance in the SRT task. Given previous work showing a link
betweenFOXP2and language, these effects may be related
to common functional differences evident in language impair-
ment and some variants ofFOXP2.

Computational model
We used a neural network to examine whether some of the
functional properties of procedural learning are related to the
differences observed with human participants. In particu-
lar, we would like to capture the difference in the shape of
the learning trajectory observed between some of the fast RT
groups (children with NL [Fig. 1A] and the CC and CT geno-
types of SNP rs1916988 [Fig. 1B]) and slow RT groups (SLI
children and the CC genotype of that SNP). By exploring the
parameter space of the model, we can determine which func-
tional properties are associated with these differences inthe
learning trajectories.

Model architecture
The model is a simple recurrent network (SRN; Elman, 1990;
c.f. Misyak, Christiansen, & Tomblin, 2009, for an adapta-
tion to the SRT task). The network has three layers: an input
layer, an output layer, and a hidden layer with recurrent con-
nections. The input and output layers each have four units
(corresponding to the four possible stimulus locations). The
hidden layer’s recurrent connections provide it with informa-
tion about the state of the hidden units on the previous trial
(context units). This allows the network to learn sequences,
like those in the pattern trials of the SRT task. Connection
weights are updated using backpropagation (Rumelhart, Hin-
ton, & Williams, 1986). Logistic activation functions are used
for the hidden and output units.

Simulation procedure
The network was trained on a task based on the one used by
Tomblin et al. (2007b). On each trial, a stimulus was pre-
sented to the network by activating a particular input unit and
setting the rest to zero, and activation flowed to the output

units. Luce choice ratios were computed by dividing each
output unit’s activation by the total activation. These values
were then used to compute an RT for the network according
to the equation

RT=

1

C−

∑ I
n−1

(1)

whereC is the activation of the correct output unit,I is the
activation of each of the three other output units, andn is
the number of output units (four for these simulations). This
gives an estimate that is analogous to RT; a lower value corre-
sponds to a lower RT in the SRT task. Thus, when one unit is
significantly more active than all the others (i.e., the network
is confident in a single response) the RT will be low. When
all the units are similarly active (the network is unsure what
the response is) the RT will be high.

The correct unit on each trial is the output unit that corre-
sponds to the one that was activated at the input layer. This
corresponds to the SRT task in which participants respond by
selecting the location containing the stimulus.

For the first 100 trials, a random location was chosen and
presented as input. Then, for 200 trials, the sequence [1, 3,
2, 4, 4, 2, 3, 4, 4, 2, 4] was repeated. Finally, an additional
100 random trials were presented. Only trials on which the
correct output unit had the highest activation were included
in the analysis. The entire simulation run was divided into 20
blocks of 20 trials.

Simulation 1
In the first simulation, we varied several parameters individ-
ually to gauge their effect on performance in the SRT task:
context strength, input strength, learning rate, number of hid-
den units, andtemperature.

Context strengthdetermines the strength of the connections
from the hidden to context units (i.e., hidden unit activations
are multiplied by this amount when setting context unit acti-
vations). A lower context strength may have an effect on the
network’s ability to learn sequences, which could influence
learning in the SRT task.

Input strengthcontrols the fidelity of the stimulus pre-
sented to the network. The input unit corresponding to the
chosen location is set to the value of the input strength and
the others are set to zero. A lower input strength makes the
stimulus location less distinct from the others.

Learning rateis the value that the weight change term is
multiplied by each time the weights are updated. Models with
lower learning rates require more trials to learn the task, but
may have more stable learning. This could affect the net-
work’s ability to learn over the course of the pattern trials.

Number of hidden unitsaffects the amount of information
the network can hold about the sequence. If the network has
too few, its ability to encode the sequence will be impaired.

Temperaturecorresponds to the temperature parameter of
the logistic activation function. This activation function con-
strains the hidden and output units to have activations be-
tween zero and one. A higher temperature makes the logistic
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more nonlinear. Thus, if the correct output unit has the high-
est activation, a high temperature parameter will make this
value more distinct from the values of the incorrect units, re-
sulting in a lower model RT. The temperature parameters for
the hidden and output units were varied separately.

Five hundred repetitions of each condition were run.

Results

The network was able to learn the SRT task and showed an
overall learning trajectory similar to the ones observed inthe
behavioral data. The network’s performance improved over
the course of the simulation and was faster during the pattern
trials than the random trials.

Fig. 2 shows the performance of the model on the SRT
task for different values of each parameter. A range of values
for the parameters were tested to find a set that produced re-
sponses similar to those observed for the fast RT groups in the
behavioral data. Each parameter was then varied individually,
holding the others constant at those values. For example, in
Fig. 2A, context strengthwas varied. The other parameters
were held constant for bothcontext strengthconditions at the
baseline values (i.e.,learning rate= 0.10,hidden units= 12,
input strength= 1.0, hidden unit temperature= 1.0, output
unit temperature= 1.0).

Context strength(Fig. 2A) had very little effect on on the
network’s RT. This suggests that the network can still perform
the task with limited information from the previous trial.

Input strength(Fig. 2B) had an effect on overall RT and
an effect on the shape of the learning trajectory. Models with
a lower input strength showed a small increase in RT at the
beginning of the pattern trials, but this did not persist to the
middle blocks.

Learning rate(Fig. 2C) also had an effect on the shape
of the learning trajectory. This was due to the fact that the
network initially shows an increase in RT at the beginning of
training. By decreasing the learning rate, this increase was
pushed forward in time into the pattern trials. Thus, one rea-
son that some groups show an increase during the pattern tri-
als in the SRT task might be that they are still in this initial
learning phase.

Number of hidden units(Fig 2D) had an effect similar to
input strength. Fewer hidden units resulted in longer overall
RTs and a small increase at the beginning of the pattern trials.

Temperature(Figs. 2E & 2F) had an effect on the overall
RT at the beginning of the pattern trials, but did not capture
the change in the shape of the learning curve.

Discussion

Several parameters produced changes in the network’s me-
dian RT and learning trajectory. Changes ininput strength,
learning rate, and number of hidden unitscan account for
some of the changes in the shape of the learning trajectory
observed behaviorally. As discussed above, however, specific
SNPs and individual differences in language ability are likely
to have multiple functional effects. Thus, we may find a better
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Figure 2: Results of Simulation 1. For each simulation, the
set of parameters producing effects similar to those seen inthe
fast RT groups was used as a baseline (solid lines in figures),
and individual parameters were varied (dashed lines).

2233



fit to the behavioral data by examining the combined effects
of multiple parameters. This was done in Simulation 2.

Simulation 2
In the second set of simulations, we varied multiple parame-
ters in the model simultaneously, allowing us to explore the
parameter space of the network further. Five values were
tested for the number of hidden units, and four were tested
for each other parameter, yielding a total of 5,120 combina-
tions. The simulation procedure was the same as Simulation
1, except that 50 repetitions of each combination were run.

Results
In order to determine which parameter sets reflected the fast
and slow RT groups in the behavioral data, pairwise com-
parisons were made and the difference scores were fit to
quadratic functions (the pattern of the differences in the learn-
ing trajectories). Thus, for each comparison there was a set
of parameters corresponding to the slow RT groups and a set
corresponding to the fast RT groups.

Several pre-processing criteria were used to exclude sets
that did not show correct performance on the SRT task (i.e.,
better performance over the course of the pattern trials) and
comparisons that would not yield a pattern consistent with
the difference between groups in the behavioral data (i.e.,
quadratic). The remaining pairs were then fit to quadratic
functions using the least squares method, and R2 was used to
determine the goodness of fit.

R2 values greater than 0.9 were found for 0.47% of the
pairs. To determine which parameters drove the effect, we
computed the mean parameter values for the slow and fast RT
groups for these pairs. The mean values for each parameter
for the two groups are shown in Table 1. Some parameters
did not differ between the groups, whereas others differed
greatly. We found that the parameters in Simulation 1 that
produced changes in the learning trajectory (learning rate,
number of hidden units, and input strength) had similar ef-
fects when varied in conjunction withtemperature. Fig. 3A
shows the responses of the model when these parameters are
varied simultaneously.

Adjusting the parameters by hand allowed us to distill the
set of parameters down to two,learning rateandtemperature,
that accounted for the difference in learning trajectoriesfor
the first half of the pattern trials, but not the second half (the

Table 1: Simulation 2 results.

Parameter Slow RT Fast RT
Context strength 0.48 0.53
Input strength 0.83 0.90
Hidden units 5.9 9.5
Learning rate 0.13 0.18
Temperature (hidden) 0.39 0.52
Temperature (output) 0.38 0.44
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Figure 3: Results of Simulation 2. (A) Responses of the
model whenlearning rate, input strength, number of hidden
units, and temperatureare varied simultaneously. (B) Re-
sponses whenlearning rateandtemperatureare varied simul-
taneously. Five hundred repetitions of each condition were
run to produce the figures.

slow RT model did not reach the same RT by the end of the
pattern trials). Fig. 3B shows the responses of the model
when these parameters are varied together.

Discussion
The results of this simulation show that the combined effects
of several parameters together can better approximate the dif-
ference in learning trajectories. This suggests that this ap-
proach can be used to determine which combinations of pa-
rameters mirror the behavioral data. Additional exploration
of the parameter space (i.e., testing a larger range of values)
may allow us to find a better fit.

General discussion
The results of these simulations suggest that several func-
tional aspects of sequence processing contribute to the dif-
ferences in SRT performance observed behaviorally and that
by examining multiple factors at the same time, we can get
a better estimate of the effects of language impairment and
genetic variation. This fits with the notion that genetic differ-
ences are likely to have multiple functional consequences.

Recently, McMurray et al. (2010) used a similar approach
to determine which parameters in TRACE (McClelland & El-
man, 1986) corresponded to differences between NL and SLI
children in a spoken word recognition task. They found that
variation in the network’s decay parameter produced differ-
ences similar to those between the SLI and NL groups. This
parameter is related to competition. In the SRN used here,
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the temperatureparameter corresponds to competition (e.g.,
a lower temperature parameter for the output unit activation
function leads to greater activation for the competitor units).
Thus, these two sets of of simulations, modeling different
tasks with different networks, provide converging evidence
that competition between internal representations may be a
critical mechanism in language processing that produces dif-
ferences between NL and SLI children.

The simulations presented here provide a first step towards
assessing the role of genetic variation and language ability
in procedural learning, and they suggest several functional
properties that may be influenced by these differences. More
broadly, they show that exploring the parameter space of a
computational model may offer an approach to studying the
effects of genetic factors on cognitive systems.
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