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Ions lost on their first orbit can impact Alfv�en eigenmode stability
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Some neutral-beam ions are deflected onto loss orbits by Alfv�en eigenmodes on their first bounce

orbit. The resonance condition for these ions differs from the usual resonance condition for a con-

fined fast ion. Estimates indicate that particles on single-pass loss orbits transfer enough energy to

the wave to alter mode stability. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928436]

I. INTRODUCTION

Alfv�en eigenmode stability is a competition between

energy extracted from the fast-ion population and energy lost to

the background plasma.1 The energy that a particle exchanges

in a single orbit is
Þ

e~E �~v dt, where e and~v are the charge and

velocity of the particle, ~E is the wave’s electric field, and the in-

tegral is over the orbit. Customary analysis assumes that fast

ions interact with the mode for many wave cycles. In this case,

a particle may exchange energy on a single orbit but, after

many cycles, only orbits that preserve the wave-particle phase

over multiple orbits exchange net energy. These particles are

the resonant particles. If the wave frequency x is much smaller

than the cyclotron frequency, the resonance condition is

x ¼ nx/ � ðmþ lÞxh; (1)

where x/ and xh are the toroidal and poloidal orbital fre-

quencies, n and m are the toroidal and poloidal mode num-

bers, and l is an integer. Depending on the initial phase,

some resonant particles gain energy from the wave and

others lose energy. In linear theory, the net exchange of

energy between the waves and the particles depends upon

the slope of the distribution function at the resonant fre-

quency, as in Landau damping.

In a DIII-D experiment, Chen et al. discovered that toroidal

Alfv�en eigenmodes (TAE)2 and reversed shear Alfv�en eigenmo-

des (RSAE)3,4 can deflect newly injected beam ions �10 cm on

their first bounce orbit through the mode.5,6 In the experiment,

the loss detectors are spatially localized, so coherent losses are

only measured when the unperturbed orbit passes close to a fast-

ion loss detector.5–7 Presumably, however, the same process

occurs for all ions on similar orbits, irrespective of toroidal

angle. These lost particles do not satisfy the resonant condition,

Eq. (1). Nevertheless, the particles do maintain approximately

constant phase on a single pass through the mode, so the net

energy exchange
Þ

e~E �~v dt is nonzero. Recently, Zhang et al.8

analyzed this situation for a model RSAE and equilibrium. They

found that particles that satisfy a single-pass resonant condition

x ¼ nh _/i � mh _hi (2)

deflect �5 cm as they orbit through the mode for conditions

similar to the experiment. Here, h _/i and h _hi are the average

toroidal and poloidal angular velocities during the portion of

the orbit that traverses the mode. Because the orbit is large

and the Alfv�en eigenmode is of limited spatial extent, h _/i
and h _hi differ considerably from the customary (orbit-aver-

aged) precession and bounce frequencies x/ and xh.

In both theory and experiment, the magnitude of the

deflection depends linearly on the mode amplitude. The direc-

tion of the radial “kick” depends on the phase of the wave dur-

ing the orbit’s transit through the mode. Hamiltonian theory

implies that, in an interaction with a single mode, the change

in particle energy DW is related to the change in toroidal ca-

nonical angular momentum DP/ by the relation

nDW ¼ xDP/: (3)

Ions that are deflected inward to smaller major radius gain

energy from the wave; ions that are deflected outward, lose

energy.

In a normal interaction with a confined non-resonant par-

ticle, a particle that gains energy from the wave eventually

gives it back; similarly, a particle that initially loses energy

eventually regains it. Irrespective of the initial wave-particle

phase, the net energy transfer for non-resonant particles aver-

ages to zero. Only resonant particles produce secular terms

that survive after averaging over many wave cycles.

A loss boundary destroys this reversibility. If the initial

wave-particle phase pushes the ion outward so that it collides

with the wall, it loses energy. Because the ion is lost, the

return cycle is never completed. Ions that initially move

inward gain energy from the wave. Since they move inward,

they remain confined until the phase changes sign. They then

move outward, collide with the wall, and have lost energy.

Irrespective of the initial wave-particle phase, all particles

that are near the loss boundary deliver energy to the wave.

The goal of this paper is to assess the impact of this

effect on mode stability. The rough estimates presented here

show that the power transfer is potentially significant.

II. COMPARISON OF RESONANT AND SINGLE-PASS
ENERGY TRANSFER

For fast-ion driven instabilities, the contribution to the

growth rate cdrive is proportional to
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cdrive / NresDWfnet; (4)

where Nres is the number of particles that interact with the

wave, DW is the amount of energy exchanged in an interac-

tion, and fnet depends upon the fraction of the particles that

lose or gain energy. This section compares resonant interac-

tions with single-pass loss interactions for these three factors

qualitatively and quantitatively.

For the quantitative comparison, we use an actual case

(discharge #146096 at 365 ms) that is shown in many figures

in the experimental papers.5,6 At 365 ms, this discharge has a

circular shape (elongation j ’ 1.2), a line-averaged density

of 1.4� 1019 m�3, a plasma current of 0.6 MA, and a toroidal

field of 2.1 T. The minimum and edge safety factor are

qmin¼ 3.5 and q95¼ 6.0, respectively. The neutral beams

inject 4.6 MW of deuterium neutrals at 74 and 80 keV in the

co-current direction, with approximately equal numbers

injected by near-perpendicular and near-tangential sources

(tangency radii of 74 and 115 cm, respectively). The Larmor

radius (banana width) of a typical trapped particle is approxi-

mately 5 (33) cm. The beams drive many Alfv�en modes

unstable, including an n¼ 2, m¼ 7, 117 kHz RSAE with a

peak fluctuation amplitude of dTe/Te ’ 1.4% and a radial

eigenfunction that extends between R¼ 195–215 cm. (Te is

the electron temperature and R is the major radius.) The cal-

culations in Ref. 8 are based on a model RSAE that resem-

bles this mode.

The first factor that determines the growth rate is the

number of resonant fast ions Nres. To interact with the wave

effectively, an ion must be on an orbit that satisfies either the

standard resonance condition (Eq. (1)) or the single-pass res-

onance condition (Eq. (2)). Figure 1 shows the orbit topology

in this equilibrium for ions at the injection energy. The orbits

are classified according to their angular momentum P/ and

magnetic moment l. For these large-orbit fast ions, in addi-

tion to the usual trapped ions and co-passing and counter-

passing circulating ions, there are lost orbits and non-axis

encircling orbits.9 Orbits that satisfy one of the resonance

conditions and transit through the measured RSAE eigen-

function are marked on the orbit topology map. For the

single-pass resonance, the guiding-center orbit must also

pass within 10 cm of the wall. Standard resonances (Eq. (1))

with this mode exist for trapped, co-passing, and counter-

passing orbits. Single-pass resonances (Eq. (2)) exist with

trapped orbits and occupy a different region of phase space

than the standard resonance. The single-pass resonance

occurs on the inner (counter-going) leg of the banana

orbit, where h _/i has opposite sign from the precession

frequency x/.

In addition to the resonance condition, another factor

that influences the number of ions that interact with the wave

is the width of the resonance Dx. The standard resonance is

much narrower than the single-pass resonance. The calcula-

tions in Ref. 8 indicate that Dx is an order of magnitude

wider for the single-pass resonance. For the single-pass reso-

nance, effective wave-particle interaction occurs as long as

the phase variation across the interaction region is �p, so

Dx is large.8

In addition to the resonance conditions and resonance

widths, the number of ions that interact with the mode

depends upon the distribution function. The initial orbits are

determined by the beam deposition; subsequently, Coulomb

scattering populates other orbits. In Fig. 1, the orbital param-

eters that are initially populated by the neutral beams are

overlaid on the resonance map. The calculation10 uses meas-

ured density and temperature profiles and includes orbits that

ionize in the scrape-off layer. The figure shows that the

beams populate the co-passing and trapped portions of phase

space. As a rough estimate of the number of fast ions that

interact with the mode, we count the fraction of deposited

orbits that satisfy a resonance condition (within the reso-

nance width). Approximately 2% of the recently ionized fast

ions interact with the RSAE through the single-pass reso-

nance condition. Approximately 6% of recently ionized fast

ions satisfy a standard resonance condition. The figure shows

orbits at the time of fast-ion birth; however, additional ions

come into resonance with the mode as they thermalize. Since

thermalization causes the banana width to shrink, moving

ions away from loss boundaries, additional single-pass

resonances from thermalizing ions are rare. In contrast,

many confined ions do eventually satisfy a standard reso-

nance condition. To estimate this fraction, we track the de-

posited ions through phase space as they thermalize,

modifying ðW; l;P/Þ and hence the orbital frequencies x/

and xh; at each energy step, we check to see if the tracked

ion encounters a resonance with the observed RSAE.

FIG. 1. Orbit topology map for DIII-D discharge #146096 at 365 ms for

W¼ 75 keV. The abscissa is the toroidal canonical angular momentum nor-

malized to the poloidal flux at the last-closed flux surface. The ordinate is

the magnetic moment normalized by the particle energy and magnetic field

at the magnetic axis. Orbits that satisfy the standard resonance condition

(Eq. (1)) for l¼�3 to 3 and that pass through the RSAE eigenfunction are

indicated by squares; orbits that satisfy the single-pass resonance condition

(Eq. (2)), which pass through the RSAE eigenfunction, and pass within

10 cm of the wall are indicated by diamonds. The small triangles represent

orbits that are populated by the injected neutral beams. The various orbit

types listed in the legend are lost orbits (including orbits on open field lines),

co-passing orbits that do not encircle the magnetic axis, trapped orbits, axis-

encircling co-passing orbits, and counter-passing orbits.
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Ultimately, �20% of the injected ions eventually encounter

a resonance with the RSAE. (For this estimate, resonances

between l¼�3 and 3 in Eq. (1) are considered.)

The second factor is the amount of energy exchanged in

the interaction DW. This depends on the time-averaged value

of
Þ

e~E �~v dt, where the average is over many cycles for the

standard resonance and over one cycle for the single-pass

resonance. Calculations with a model RSAE (Figs. 2 and 3

of Ref. 8) find that the most effective standard resonances

exchange about twice as much energy as the single-pass res-

onance. In the calculation, single-pass resonant particles

exchange �3.5% of their energy. An independent estimate

of the energy exchange can be found from the measured dis-

placement. Experimentally, the single-pass resonant particles

are deflected �10 cm. This deflection implies a change in

average flux surface Dw/w, where w is the poloidal flux.

With the assumption that DP/=P/ ’ Dw=w, Eq. (3) implies

DW/W ’ 13%.

The third factor is the fraction of resonant particles that

gain or lose energy from the wave fnet. As argued in Sec. I,

virtually all single-pass resonant particles ultimately deliver

energy to the wave, so fnet ’ 1 for the single-pass resonance.

In contrast, for the standard resonance, the fraction of particles

that deliver energy to the wave depends upon the slope of the

distribution function. Since Alfv�en waves are driven by the

spatial gradient of the distribution, the relevant slope is

@F=@P/. In the nonlinear theory of Landau damping,11 par-

ticles that are trapped by the wave exchange net energy. The

fast-ion spatial gradient is steep for some of the resonances

shown in Fig. 1 and is shallow for others. For the resonance

with co-passing particles at P/=wwall ¼ 0:25; lB0=W ¼ 0:3,

a NUBEAM calculation12 indicates that the slope of the

distribution function near the injection energy is

ð@F=@P/;normÞ=F ’ 10. Assuming that the wave flattens the

distribution over a range of DP/;norm ¼ 60:25, which corre-

sponds to a spatial step>10 cm, this implies that twice as

many ions lose energy as gain energy, so the effective energy

transfer of a typical resonant particle is approximately

ðflose � fgainÞ=ðflose þ fgainÞ ’ 1
3
.

Comparing these factors for the specific case in Fig. 1,

the fast-ion drive from the standard resonance is larger

than the fast-ion drive from the single-pass resonance by a

factor of

cstandard

csingle

¼ Nstandard

Nsingle

DWstandard

DWsingle

fstandard

fsingle
� 10ð Þ 2ð Þ 1

3

� �
’ 7:

(5)

For this case, the estimated contribution to the fast-ion drive

by the single-pass resonances is sub-dominant but not negli-

gible. It is evident that, for different conditions (particularly

different beam deposition), single-pass resonances could pro-

vide the dominant drive term.

The estimates given above are for a finite amplitude wave

at the nominal experimental amplitude of dTe/Te ’ 1%. Since

the energy transferred to the wave is proportional to (dB)2 for

both the standard resonance and the single-pass resonance, the

ratio of drive terms is independent of mode amplitude. (Here,

dB is the mode amplitude.) For the standard resonance, the

width of the trapping region scales as
ffiffiffiffiffiffi
dB
p

; assuming that all

trapped particles acquire the wave speed yields an energy

transfer that scales as (dB)2@F/@v.11 For the single-pass reso-

nance, the displacement scales linearly with mode amplitude,

which implies that the number of ions that reach the loss

boundary Nres scales linearly with dB. Through Eq. (3), the

energy lost by an ion DW also scales linearly with dB. Since

the energy transfer is proportional to NresdW, the transferred

energy scales with (dB)2.

III. POWER ESTIMATES

This section presents a back-of-the-envelope calculation

that demonstrates the plausibility of appreciable power trans-

fer from single-pass resonances.

The measured losses occur during neutral-beam injec-

tion. The beams that populate these lost orbits inject a power

Pinj. The fraction of these injected particles that are lost

through single-pass resonance and give energy to the wave is

fdepo. When a particle is lost, a fraction of its energy

fE¼DW/Winj is delivered to the wave. Here, Winj is the injec-

tion energy. Putting these factors together, the power deliv-

ered to the wave is

Pdrive ¼ fdepofEPinj ¼ ð0:02Þð0:13Þð4:6e6Þ ¼ 12 kW; (6)

for the example of Fig. 1.

To estimate the power required to sustain the mode,

assume a saturated state, where cdrive ’ cdamp. For an Alfv�en

wave, the energy density u is approximately twice the mag-

netic energy density (the other half is kinetic energy density),

so u¼ 2(dB)2/2l0. The volume of the mode is roughly

V¼ (2pR)(2pr)DR so the power required to sustain the mode

is approximately

Pdamp ¼
2

2l0

dB

B

� �2

B2 2pRð Þ 2prð ÞDR
cdamp

x
x: (7)

For dB/B¼ 10�3, r¼ 0.2 m, DR¼ 0.1 m, and cdamp/x¼ 10�2,

Pdamp ’ 30 kW.

These estimates indicate that it is plausible that single-

pass losses help sustain the mode. In comparison, a NOVA-

K calculation of the fast-ion drive due to standard resonan-

ces13 finds a stronger contribution to mode stability, cdrive

’ 6cdamp, for an n¼ 2 DIII-D RSAE. Thus, for the case con-

sidered here, we again conclude that single-pass losses make

a significant but sub-dominant contribution to mode stability.

IV. DISCUSSION

We have assumed that virtually all single-pass resonant

particles ultimately lose energy to the mode. This assump-

tion is reasonable for the example considered here but could

be invalid elsewhere. If a particle that gains energy is dis-

placed so that it no longer interacts with the wave (for exam-

ple, by crossing a topological boundary), it is unable to

return the gained energy to the wave when the phase

changes. In our case, the loss boundary is nearer than other

topological boundaries for most resonant ions but this need

not be the case in general.
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Nonlinear effects are another neglected complication.

Experimentally, when multiple Alfv�en eigenmodes produce

coherent losses on the fast-ion loss detector (FILD) signals,

peaks at sum and difference frequencies often appear in the

FILD spectra.14 Presumably, these nonlinear interactions al-

ter the energy delivered to the fundamental modes; however,

since the nonlinear spectral peaks are typically an order of

magnitude smaller than the fundamental peaks, the impact

on the estimates given here is small.

V. CONCLUSION

In conclusion, a comparison of the factors that influ-

ence energy transfer to the wave (Eq. (4)) shows that, under

certain conditions, single-pass loss orbits can play an impor-

tant role in mode destabilization. Rough estimates for an

actual DIII-D case suggest a 10%–30% contribution to the

fast-ion drive. These estimates motivate more accurate cal-

culations of the actual energy transfer using realistic mode

structures, beam deposition, distribution functions, and loss

boundaries.

Although loss boundaries have been considered in the

previous work, the importance of single-pass resonances that

expel particles is new. For example, in their analysis of the

energetic particle driven geodesic acoustic mode (EGAM),

Berk and Zhou15 find that the loss boundary for counter-

passing particles plays an important role in mode excitation.

In a stability calculation using the standard resonance condi-

tion, a loss boundary enhances the drive because the slope of

the distribution function is infinite at the boundary between

confined and lost particles; this effectively increases our fnet

factor to unity. What distinguishes our work from the previ-

ous studies is the recognition that, for a single-pass loss orbit,

the resonance condition occupies a different region of phase

space. The contribution of single-pass loss orbits to EGAM

stability should be considered in future work.

The effect discussed here is unimportant for the main

fusion-product population in burning plasmas. In a success-

ful ignited reactor, few fusion products will populate regions

near loss boundaries. On the other hand, in present-day mag-

netic-fusion experiments, neutral beams often deposit appre-

ciable power on orbits that are near loss boundaries. In these

plasmas, single-pass resonances can impact mode stability.
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