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Taming the beast: control of APC/CCdc20–dependent destruction

Pablo Lara-Gonzalez1,2, Taekyung Kim1, and Arshad Desai1,2,@

1Ludwig Institute for Cancer Research

2Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 
92093

Abstract

The anaphase promoting complex/cyclosome (APC/C) is a large multi-subunit ubiquitin ligase that 

triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates Cyclin B 

and securin for destruction. APC/C activity towards these two key substrates requires the co-

activator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high 

accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that 

regulate APC/CCdc20 activity both prior to and during mitosis. We focus our discussion primarily 

on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 

to opposing fates. The findings discussed provide an overview of how cells control the activation 

of this major cell cycle regulator to ensure both accurate and timely cell division.

Introduction

During cell division, genome stability depends on tight regulation of anaphase, the mitotic 

stage in which sister chromatids are separated. Anaphase should only occur after sister 

chromatids of all replicated chromosomes have correctly attached to opposite poles of the 

mitotic spindle (Fig. 1A). Progression into anaphase prior to achieving this fully attached 

state can lead to errors in chromosome segregation and aneuploidy, a hallmark of birth 

defects and cancer (Holland and Cleveland 2012; Santaguida and Amon 2015; Funk et al. 

2016).

In eukaryotes, anaphase onset is triggered by the Anaphase-Promoting Complex/Cyclosome 

(APC/C), a large E3 ubiquitin ligase (Peters 2006; Pines 2011; Primorac and Musacchio 

2013; Barford 2015) (Fig. 1A&B). When the APC/C is active, it promotes the 

polyubiquitination of its substrates, which leads to their proteasome-mediated degradation. 

The essential APC/C substrates for anaphase onset are securin and cyclin B. Securin is the 

inhibitor of separase, the cysteine protease that cleaves a subunit of the cohesin complex that 

holds sister chromatids together. Cyclin B is the activator of Cdk1, the essential kinase that 

drives mitotic entry. Therefore, degradation of securin and cyclin B simultaneously results in 

chromosome segregation and exit from mitosis.
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APC/C activity requires binding to a class of proteins known as co-activators that all harbor 

a C-terminal WD40 domain (Fig. 1C). While there are species-specific APC/C coactivators 

that participate in meiosis, such as Ama1 in S. cerevisiae (Cooper et al. 2000) and Cortex in 

D, melanogaster (Chu et al. 2001), the two widely conserved APC/C coactivators are Cdc20 

and Cdh1. Cdc20 is essential for mitotic progression and Cdc20 depletion or mutation 

results in highly penetrant metaphase arrest and lethality (Dawson et al. 1995; Sigrist et al. 

1995; Lim et al. 1998; Kitagawa et al. 2002; Li et al. 2007). In contrast, depletion or 

mutation of Cdh1 results in milder cell cycle defects (Schwab et al. 1997; Sigrist and Lehner 

1997; Fay et al. 2002; Garcia-Higuera et al. 2008). The current view in the field is that Cdh1 

has important roles in post-mitotic contexts, including during cell differentiation and in the 

formation of the nervous system (Eguren et al. 2011). In this perspective, we discuss Cdc20 

and the control of Cdc20-activated APC/C during the cell cycle, with a focus on new 

findings on the control of this key activity by chromosomes during mitosis.

APC/CCdc20 activity is linked to cell cycle progression (Fig. 2). During the majority of the 

cell cycle, APC/CCdc20 activity is inhibited (Peters 2006; Pines 2011). At mitotic entry, 

APC/CCdc20 is activated by cyclin B-Cdk1, the essential mitotic kinase complex (see below). 

This activation itself could explain the cell cycle oscillator: the rise in Cdk1-cyclin B 

gradually activates APC/CCdc20 and, once its activity reached a critical threshold, APC/

CCdc20 degrades cyclin B to inactivate Cdk1 leading to mitotic exit and reverting APC/

CCdc20 back to its inhibited state. However, this view is too simplistic as APC/CCdc20 

activity is tightly regulated, most importantly by the chromosomal cargo of cell division. 

Here, we briefly review the structure and activity of the APC/C and then discuss 

mechanisms that control APC/CCdc20, with a focus on the chromosomal mechanisms that 

balance the need for accurate segregation with timely mitotic progression.

A brief overview of APC/C structure and mechanism of protein 

ubiquitination

The APC/C is a large complex composed of 14–16 subunits, depending on the species 

(Peters 2006; Pines 2011). Co-activator binding is essential for APC/C activity and for the 

recruitment of substrates. All APC/C co-activators possess a C-terminal WD40 domain that 

is required for substrate recognition. In addition, the C-box and IR tail motifs participate in 

APC/C binding (Schwab et al. 2001; Passmore et al. 2003; Vodermaier et al. 2003). Other 

co-activator-specific motifs correspond to the KLLR motif in Cdh1 (Chang et al. 2015) and 

KILR motif in Cdc20 (Izawa and Pines 2012), which also contribute to APC/C binding (Fig. 

1C). Understanding of APC/C regulation has been greatly advanced in recent years by high-

resolution cryo-EM studies that have revealed how each subunit is assembled into the 

complex, how co-activators promote APC/C activity and how different regulators control 

APC/C activity (Buschhorn et al. 2011; da Fonseca et al. 2011; Frye et al. 2013; Barford 

2015; Chang et al. 2015; Alfieri et al. 2016; Yamaguchi et al. 2016; Zhang et al. 2016) (Fig. 

1B).

The APC/C recognizes substrates that possess degrons (Fig. 1D) known as the D-box 

[RXXL] and KEN box (Glotzer et al. 1991; Pfleger and Kirschner 2000). Other substrate-
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specific degrons such as the A-box in Aurora A (Littlepage and Ruderman 2002) and the O-

box in Orc1 (Araki et al. 2005) have been described, although the latter was subsequently 

found to function as a D-box (He et al. 2013). In addition, Cdc20 and yeast Cdh1 interact 

with proteins containing a motif known as the Phe box or ABBA motif (for Acm1, Bub1, 

BubR1 and cyclin A) (Lu et al. 2014; Di Fiore et al. 2015; Diaz-Martinez et al. 2015) that 

can serve as a degron in some cases, such as for cyclin A (Di Fiore et al. 2015). When bound 

by co-activators, the APC/C forms a bi-partite receptor for D-box substrates that comprises 

the side of the WD40 barrel and the subunit Apc10/Doc1 (Passmore et al. 2003; Carroll et 

al. 2005; Kraft et al. 2005; Matyskiela and Morgan 2009; Buschhorn et al. 2011; da Fonseca 

et al. 2011) (Fig. 1B). In addition, the WD40 barrel serves as the receptor for KEN box and 

ABBA substrates (Chao et al. 2012; He et al. 2013) (Fig. 1D). In vertebrates, the APC/C 

functions with two E2 ubiquitin conjugating enzymes: UbcH10/Ube2C, and UbcH5/Ube2D 

(King et al. 1995; Aristarkhov et al. 1996); in addition, Ube2S participates in ubiquitin chain 

extension (Garnett et al. 2009; Williamson et al. 2009; Wu et al. 2010). On the other hand, 

budding yeast utilizes Ubc4 for mono-ubiquitination and Ubc1 for ubiquitin chain extension 

(Rodrigo-Brenni and Morgan 2007). Inhibitors of the APC/C, such as Emi1 or the mitotic 

checkpoint complex (discussed below), are known to regulate multiple aspects of APC/C 

function, including co-activator binding, substrate recognition and activity/binding of the E2 

enzymes that act in conjunction with the APC/C to catalyze substrate ubiquitination.

APC/CCdc20 inhibition during G2

A major target of the APC/C activated by Cdc20 is cyclin B, the activator of the essential 

mitosis-promoting kinase Cdk1 (Peters 2006; Pines 2011). Thus, APC/CCdc20 activity must 

be kept in check during interphase in order to allow sufficient accumulation of cyclin B for 

mitotic entry.

Cdc20 itself is only synthesized in late S-phase and its levels reach a maximum in mitosis 

(Weinstein 1997; Prinz et al. 1998; Shirayama et al. 1998), which may partially contribute to 

limiting APC/CCdc20 activity in interphase. In addition, interphase APC/C is precluded from 

binding to Cdc20 by an auto-inhibitory mechanism that is released upon mitotic 

phosphorylation (see below). However in vitro Cdc20 can efficiently activate interphase, 

non-phosphorylated APC/C (Fang et al. 1998), suggesting that other mechanisms also 

contribute to inhibiting Cdc20 before mitotic entry.

An initial candidate was the APC/C inhibitor Emi1 (Rca1 in Drosophila). (Dong et al. 1997; 

Reimann et al. 2001a; Reimann et al. 2001b; Grosskortenhaus and Sprenger 2002). 

However, while in vitro Emi1 can inhibit both APC/CCdc20 and APC/CCdh1, its 

physiological target appears to be Cdh1 (Di Fiore and Pines 2007; Machida and Dutta 2007). 

An ortholog of Emi, called Emi2 or XErp1, inhibits APC/CCdc20 to maintain the metaphase 

II arrest of mature Xenopus eggs (Schmidt et al. 2005; Tung et al. 2005). A role for Emi2 

beyond meiotic arrest has been reported in developing Xenopus embryos, where it inhibits 

APC/CCdc20 to promote cyclin B accumulation (Tischer et al. 2012). However, a mouse 

knockout of Emi2 is sterile and exhibits defects in meiotic progression but develops 

normally (Gopinathan et al. 2017), suggesting that it does not make a major contribution to 

somatic divisions in other systems. Thus, at present, Cdc20 synthesis and auto-inhibition of 
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the APC/C that is relieved by mitotic phosphorylation are the major mechanisms implicated 

in keeping APC/CCdc20 in check in order to allow sufficient building of Cyclin B and mitotic 

entry.

Cytoplasmic and chromosomal regulation of APC/CCdc20 activity in mitosis

Upon nuclear envelope breakdown, the APC/C binds to Cdc20 and immediately becomes 

active towards substrates such as cyclin A and Nek2A (van Zon and Wolthuis 2010). 

However, cyclin B and securin are only degraded once all chromosomes have attached to 

spindle microtubules via their kinetochores, the protein assemblies build on their centromere 

regions to connect to spindle microtubules (Cheeseman 2014; Musacchio and Desai 2017). 

In addition to forming a dynamic microtubule interface, kinetochores function as signaling 

hubs where kinase and phosphatase activities are integrated to correct attachment errors and 

both promote as well as inhibit APC/CCdc20 activation. A tight connection exists between 

microtubule attachment at kinetochores and APC/CCdc20-mediated degradation of securin 

and cyclin B, which ensures coordinated segregation of all chromosomes and prevents 

chromosome loss. Below we discuss both cytoplasmic and kinetochore-based mechanisms 

that control APC/CCdc20 activity.

Cytosolic APC/CCdc20 activation by phosphorylation

Studies in the late 90s and early 2000s showed that APC/C phosphorylation during mitosis 

was a prerequisite for its activation by Cdc20 (Lahav-Baratz et al. 1995; Peters et al. 1996; 

Patra and Dunphy 1998; Shteinberg et al. 1999; Golan et al. 2002; Kraft et al. 2003). The 

mitotic kinases Cdk1 and Plk1 phosphorylate multiple APC/C subunits and this 

phosphorylation increases binding affinity for Cdc20 (Kraft et al. 2003). However, the 

biochemical and structural mechanism of this phospho-dependent regulation has only 

recently been elucidated (Fujimitsu et al. 2016; Qiao et al. 2016; Zhang et al. 2016) (Fig. 3). 

In brief, the APC/C subunit Apc1 possesses an internal loop that blocks the binding of the 

C-box of Cdc20 to the APC/C subunit Apc8. Thus, apo-APC/C is normally in an auto-

inhibited state (Fig. 3A). Phosphorylation of the Apc1 loop by Cdk1 and Plk1 releases it 

from Apc8 and thereby promotes Cdc20 binding (Fig. 3B). In agreement with this model, 

mutation or deletion of the Apc1 loop permits Cdc20 binding regardless of APC/C 

phosphorylation status (Fujimitsu et al. 2016; Qiao et al. 2016; Zhang et al. 2016).

Interestingly, Apc1 phosphorylation is facilitated by an initial priming phosphorylation of 

the Apc3 subunit by Cdk1, which then recruits Cdk1-Cks complexes to further 

phosphorylate Apc3 and then Apc1. Moreover, the APC/C has been shown to be a weak 

substrate for Cdk1 in vitro and in vivo (i.e. it is only phosphorylated once high Cdk1 activity 

is achieved right before mitotic entry) (Lindqvist et al. 2007; Deibler and Kirschner 2010). 

These mechanisms may enforce a dependence on high Cdk1 activity and make APC/CCdc20 

activation kinetically lag behind initial Cdk1 activation, which may explain why APC/

CCdc20 only starts degrading substrates upon nuclear envelope breakdown. While this model 

has good support from biochemical experiments in Xenopus egg extracts (Fujimitsu et al. 

2016; Qiao et al. 2016), it will be important to assess whether phosphorylation of the Apc1 

loop represents a conserved mechanism restraining activation of APC/CCdc20 to mitosis in a 
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cellular context. Interestingly, the interaction between APC/C and Cdh1 does not appear to 

be significantly affected by APC/C phosphorylation. This may be due to the fact that Cdh1 

binds to the APC/C with higher affinity (Zhang et al. 2016), enabling it to efficiently 

displace the Apc1 loop from Apc8. This feature may explain the switch from APC/CCdc20 to 

APC/CCdh1 in late mitosis (see below).

Kinetochore-mediated Cdc20 activation through dephosphorylation

As discussed above, Cdk1 activity promotes the interaction between APC/C and Cdc20. 

However, paradoxically Cdk1/2 proteins also block the binding of both Cdc20 and Cdh1 to 

the APC/C (Fig. 3B) (Kramer et al. 2000; Yudkovsky et al. 2000). Phosphorylation sites near 

the N-terminal C-box prevent the interaction of co-activators with the APC/C (Labit et al. 

2012; Chang et al. 2015) (Fig. 1C). Phosphorylated Cdc20 is found already in G2 and, in 

human tissue culture cells, its phosphorylation may be important for the accumulation of 

cyclins and mitotic entry (Hein and Nilsson 2016). Interestingly, in C. elegans embryos, 

preventing Cdc20 phosphorylation significantly accelerates anaphase onset (Kim et al. 

2017), indicating that Cdc20 phosphorylation is an important mechanism restraining APC/

CCdc20 activity in mitosis. These observations suggest that Cdc20 must be dephosphorylated 

in order to allow full APC/C activation (Fig. 3B).

In recent work, we showed that Cdc20 dephosphorylation, which contributes to APC/C 

activation, is promoted by kinetochores in C. elegans embryos (Kim et al. 2017) (Fig. 4A). 

During mitosis, Cdc20 is recruited to kinetochores through its interaction with Bub1 (Di 

Fiore et al. 2015; Vleugel et al. 2015; Kim et al. 2017), a conserved component implicated 

in both the spindle assembly checkpoint and chromosome segregation (Bolanos-Garcia and 

Blundell 2011; Elowe 2011). Bub1, along with its binding partner Bub3, is recruited to 

kinetochores through the kinetochore scaffold Knl1, which is phosphorylated on repeats in 

its N-terminus by the kinases Mps1 and Plk1 (London et al. 2012; Shepperd et al. 2012; 

Yamagishi et al. 2012; Espeut et al. 2015; von Schubert et al. 2015). At its extreme N-

terminus, Knl1 possesses “SILK” and RVxF” motifs that recruit the catalytic subunit of 

protein phosphatase 1 (PP1c) (Liu et al. 2010; Meadows et al. 2011; Rosenberg et al. 2011; 

Espeut et al. 2012). Our findings suggest that by bringing Cdc20 to the vicinity of Knl1-

bound PP1, kinetochores catalyze Cdc20 activation by removing the inhibitory 

phosphorylation in its N-terminus (Fig. 4A). In support of this model, blocking Cdc20 or 

PP1 recruitment to kinetochores delays anaphase onset, an effect that can be bypassed by 

mutating the Cdk phosphorylation sites on Cdc20 (Kim et al. 2015; Kim et al. 2017). 

Notably, a role for kinetochore-localized Bub1-Bub3 in promoting APC/CCdc20 activation 

has also been reported in budding yeast (Yang et al. 2015). As preventing Cdc20 recruitment 

to kinetochores does not result in a mitotic arrest, cytosolic phosphatases likely also promote 

Cdc20 dephosphorylation independently of kinetochores; alternatively, Cdc20 N-terminal 

phosphorylation may not be sufficient to fully block its binding and activation of the APC/C.

In addition to its regulation by Cdk1/2, human Cdc20 is also inhibited by phosphorylation 

on Ser92 by Plk1 (Craney et al. 2016; Jia et al. 2016; Lee et al. 2017) (Fig. 1C). This 

phosphorylation is facilitated by Bub1 and is suggested to inhibit the recruitment of the E2 

ubiquitin conjugating enzyme Ube2S to the APC/C. In late mitosis, Ser92 phosphorylation 
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is reversed by PP2A-B56 docked onto either BubR1 or the APC/C itself. While this 

mechanism has biochemical support (Craney et al. 2016; Jia et al. 2016), its importance in 

an in vivo context is unclear, given that deletion of Ube2S (Wild et al. 2016) or mutation of 

Ser92 in Cdc20 (Lee et al. 2017) result in relatively mild effects on mitotic exit.

Kinetochore-dependent APC/CCdc20 inhibition by the spindle assembly checkpoint

Phosphorylation of the APC/C at mitotic entry that relieves inhibition of Cdc20 binding 

might explain why degradation of APC/CCdc20 substrates such as cyclin A and Nek2A 

begins right at nuclear envelope breakdown, when mitotic kinases are active (van Zon and 

Wolthuis 2010). However, degradation of cyclin B and securin only occurs after microtubule 

binding to all kinetochores in order to prevent errors in chromosome segregation (Fig. 2). A 

large body of work has focused on how chromosomes regulate APC/CCdc20 to prevent 

premature cyclin B and securin degradation, which is discussed below.

The spindle checkpoint is the mechanism that inhibits degradation of cyclin B and securin 

by APC/CCdc20 in the presence of chromosomes with unattached kinetochores (Fig. 4B). 

When unattached, kinetochores catalyze the formation of an APC/CCdc20 inhibitor known as 

the Mitotic Checkpoint Complex or MCC, composed of BubR1 (Mad3 in yeast and 

nematodes), Bub3, Mad2 and Cdc20 (Sudakin et al. 2001). The spindle checkpoint has been 

subjected to extensive mechanistic analysis (for detailed reviews, see Lara-Gonzalez et al. 

2012; Jia et al. 2013; Musacchio 2015; Etemad and Kops 2016; Corbett 2017). Here, we 

briefly summarize current understanding of how kinetochores control formation of the MCC 

and an interesting intertwining with the kinetochore-based APC/C activation mechanism that 

acts on Cdc20.

The initiation step in spindle checkpoint signaling is recruitment of the Mad1-Mad2 

complex to kinetochores (Chen et al. 1996; Li and Benezra 1996; Chen et al. 1998; 

Maldonado and Kapoor 2011) (Fig. 4B). Once localized, the Mad1-Mad2 complex recruits 

free, cytosolic Mad2, which is in an “open” conformation, and converts it into a “closed” 

form that captures Cdc20 (Mapelli and Musacchio 2007; Luo and Yu 2008; Rosenberg and 

Corbett 2015). The Mad2-Cdc20 dimer interacts with the BubR1-Bub3 complex to assemble 

the full MCC (Sudakin et al. 2001). The MCC then binds APC/CCdc20 and inhibits the 

recruitment of substrates; this is achieved by a conserved D-box–ABBA–KEN–ABBA 

cassette in BubR1 that prevents the formation of the bi-partite Cdc20–Apc10 D-box 

substrate receptor, directly blocks the binding of KEN-box substrates, and partially prevents 

the recruitment of E2 enzymes (Burton and Solomon 2007; Sczaniecka et al. 2008; 

Malureanu et al. 2009; Elowe et al. 2010; Lara-Gonzalez et al. 2011; Chao et al. 2012; Izawa 

and Pines 2015; Alfieri et al. 2016; Di Fiore et al. 2016; Yamaguchi et al. 2016; Sewart and 

Hauf 2017). Mps1, an essential spindle checkpoint kinase, is required for many steps in 

spindle checkpoint signaling, including the recruitment of the Bub1-Bub3 and Mad1-Mad2 

complexes to kinetochores (Hewitt et al. 2010; Maciejowski et al. 2010; Santaguida et al. 

2010; London et al. 2012; Shepperd et al. 2012; Yamagishi et al. 2012).

Microtubule attachment silences spindle checkpoint signaling employing at least three 

different mechanisms. First, microtubules promote the dynein motor-dependent “stripping” 

of spindle checkpoint proteins from the kinetochore (Howell et al. 2001; Wojcik et al. 2001). 
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Second, microtubule attachment promotes PP1c recruitment to the kinetochore, which 

dephosphorylates the MELT repeats on Knl1 and therefore removes Bub1-Bub3 from 

kinetochores (Liu et al. 2010; Lesage et al. 2011; London et al. 2012; Espert et al. 2014; 

Nijenhuis et al. 2014). Third, microtubule binding by Ndc80 displaces Mps1 from 

kinetochores (Hiruma et al. 2015; Ji et al. 2015) (although this is not the case in budding 

yeast, where Mps1 persists at kinetochores even after microtubule attachment; Aravamudhan 

et al. 2015). In addition, cytosolic mechanisms such as p31-TRIP13 and Apc15-mediated 

Cdc20 autoubiquitination contribute to APC/CCdc20 activation by catalyzing MCC 

disassembly (Habu et al. 2002; Xia et al. 2004; Reddy et al. 2007; Yang et al. 2007; Hagan 

et al. 2011; Jia et al. 2011; Mansfeld et al. 2011; Teichner et al. 2011; Westhorpe et al. 2011; 

Foster and Morgan 2012; Uzunova et al. 2012; Eytan et al. 2014; Ye et al. 2015; Yamaguchi 

et al. 2016; Zhang et al. 2016).

Integration of mechanisms activating and inhibiting APC/CCdc20 at the kinetochore

As mentioned above, unattached kinetochores signal through the spindle checkpoint to 

inhibit APC/CCdc20. However, we have found that kinetochores also promote APC/CCdc20 

activation by removing inhibitory phosphates on the N-terminus of Cdc20 (Kim et al. 2017). 

How can then these opposing functions be reconciled? A key observation is that both 

mechanisms depend on the recruitment of Cdc20 to kinetochores (Fig. 4). Cdc20 is recruited 

through Bub1, which possesses a Cdc20-binding “ABBA” motif (Di Fiore et al. 2015; 

Vleugel et al. 2015; Kim et al. 2017). Notably, this recruitment is highly dynamic with 

kinetochore-bound Cdc20 exhibiting a half-life of 0.5-2 seconds (Kallio et al. 2002; Kim et 

al. 2017). Thus, Cdc20 is rapidly fluxing through kinetochores via interaction with Bub1’s 

ABBA motif. Mutation of the ABBA motif on Bub1 not only prevents the kinetochore-

dependent anaphase promoting function but also abolishes spindle checkpoint signaling (Di 

Fiore et al. 2015; Vleugel et al. 2015; Kim et al. 2017). Bub1 is critical to recruit the Mad1-

Mad2 complex to unattached kinetochores (Klebig et al. 2009; London and Biggins 2014; 

Moyle et al. 2014; Zhang et al. 2017), although this function is independent of the ABBA 

motif (Vleugel et al. 2015; Kim et al. 2017). Therefore, recruitment of Cdc20 to the ABBA 

motif of Bub1 likely promotes formation of the MCC by bringing it in close proximity to 

active Mad1-Mad2 that is also bound to Bub1 (Fig. 4B). Interestingly Mps1 phosphorylation 

of the C-terminus of Mad1, which is essential for Mad1-Mad2 activation (Faesen et al. 

2017), may also create a binding site for Cdc20 (Ji et al. 2017). Thus Bub1’s ABBA motif 

may help generate a locally high concentration of Cdc20 at kinetochores that, if Mad1-Mad2 

is present and phosphorylated, places Cdc20 on the Mad1 C-terminus in close proximity to 

the conformationally converting Mad2 and promotes formation of the Mad2-Cdc20 complex 

that matures into the MCC (Fig. 4B).

The above-mentioned data suggests that Cdc20 recruited to kinetochores on a single site has 

two opposite fates: APC/C activation through Cdc20 dephosphorylation and APC/C 

inhibition through its incorporation on the MCC (Kim et al. 2017). Given that the spindle 

assembly checkpoint is only active at unattached kinetochores, the choice between these two 

fates is dependent on the status of kinetochore-microtubule interactions (Fig. 4A&B). At 

unattached kinetochores, spindle checkpoint signaling would cause Cdc20 to be primarily 

incorporated onto the MCC to prevent premature APC/CCdc20 activation, whereas following 
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microtubule attachment, when the spindle checkpoint is silenced, Cdc20 would be primarily 

dephosphorylated and activated to promote anaphase onset. The switch between these two 

fates could be further sharpened by PP1c recruitment, which may be promoted or dependent 

on microtubule attachment (Trinkle-Mulcahy et al. 2003; Liu et al. 2010; Kim et al. 2017). It 

is possible that Cdc20 dephosphorylation occurs throughout mitosis, regardless of 

kinetochore-microtubule interactions. Regardless, the responsiveness of checkpoint 

signaling to microtubule attachment would still shift the balance between the opposing 

Cdc20 fates.

APC/CCdc20 inactivation in late mitosis

Once securin and cyclin B are degraded, the APC/C is thought to switch coactivators from 

Cdc20 to Cdh1 (Fig. 2). APC/CCdh1 activity in late mitosis is essential for the degradation of 

Aurora kinases (Floyd et al. 2008). In addition, APC/CCdh1 is required in G1 for the 

degradation of cyclins in order to allow the loading of pre-replication complexes onto 

chromatin for the subsequent S-phase (reviewed in Sivaprasad et al. 2007).

The Cdc20-Cdh1 switch is likely explained by the decline in Cyclin B-Cdk1 activity, 

enabling phosphatases to dephosphorylate the APC/C and reduce its affinity for Cdc20. At 

the same time, Cdh1, which is kept inactivated by Cdk-dependent phosphorylation 

throughout most of the cell cycle, would become dephosphorylated and bind to and activate 

the APC/C (Peters 2006; Pines 2011). However, some APC/CCdc20 activity persists in late 

mitosis and indeed, many late APC/C substrates, such as Plk1, survivin and Cenp-F are 

reliant on Cdc20 for their degradation (Floyd et al. 2008; Gurden et al. 2010). Regardless, at 

anaphase onset, Cdc20 itself becomes an APC/C substrate and therefore, by G1, the APC/C 

is mostly Cdh1-bound.

Final remarks

Since its discovery in the early 90s as the machine that drives mitotic exit (King et al. 1995; 

Sudakin et al. 1995), the APC/C and its co-activator Cdc20 have been extensively studied. In 

the last five years, advances in high-resolution cryo-EM, combined with biochemical and 

cell-based assays have lead to an explosive increase in our understanding of APC/CCdc20 

enzymology and mechanisms of its regulation.

Interestingly, the APC/C is not only required in dividing cells but also plays important roles 

in differentiated tissues, such as the nervous system (Huang and Bonni 2016). While most of 

these functions dependent on Cdh1, Cdc20 is expressed in some neuronal types and is 

required for their differentiation (Kim et al. 2009; Yang et al. 2009; Kowalski et al. 2014; 

Watanabe et al. 2014; Mao et al. 2015). These findings highlight the potential for new 

studies focused on understanding how post-mitotic APC/C functions are regulated. For 

example, a cyclin-dependent kinase called Cdk5 is present in sensory neurons, where it 

regulates multiple signaling events (Kawauchi 2014); therefore, Cdk5 may substitute for 

Cdk1 in neurons to regulate the interaction between APC/C and its co-activators in a manner 

similar to what has been observed during cell cycle progression (Maestre et al. 2008; Veas-

Perez de Tudela et al. 2015). Given that Cdk5 has garnered a significant amount of interest 
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for its role in Alzheimer’s disease progression (Fuchsberger et al. 2017), its mechanistic 

connection with the APC/C in the nervous system is likely to be the focus of future work.

Finally, understanding of APC/CCdc20 mechanism and regulation has opened the possibility 

for new therapies targeting the APC/C in cancer (Wang et al. 2015; Zhou et al. 2016). 

Current treatments employ spindle poisons to activate the spindle assembly checkpoint and 

induce apoptosis but are limited by cells slipping out of mitosis due to residual APC/C 

activity (Brito and Rieder 2006; Gascoigne and Taylor 2008). A number of studies have 

shown that directly inhibiting mitotic exit is a more efficient approach to killing cancer cells 

(Huang et al. 2009; Manchado et al. 2010). Two small-molecule APC/C inhibitors have been 

developed, proTAME and Apcin (Zeng et al. 2010; Sackton et al. 2014), which block the 

interaction between co-activators and the APC/C. When added to cells in combination, 

proTAME and Apcin efficiently block mitotic exit (Sackton et al. 2014). Once optimized to 

act in a clinical context, these drugs have the potential to synergize with commonly 

employed microtubule poisons that activate the spindle checkpoint (Giovinazzi et al. 2013; 

de Lange et al. 2015) and contribute to improving this widely used chemotherapeutic 

strategy.
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Figure 1. APC/C structure and mechanism of substrate recognition.
(A) Cartoon illustrating the metaphase-to-anaphase transition, which is promoted by APC/

CCdc20 activity. Microtubules are in yellow, chromosomes in blue and kinetochores in grey. 

(B) Structure of APC/CCdc20 bound to a D-box-containing substrate, Hsl1 (Zhang et al. 

2016). The substrate binds to the interphase between Cdc20 and the APC/C subunit Apc10 

(adapted from Corbett 2017). (C) Schematic illustrating the domains in human Cdc20. The 

C-box, KILR and IR tail motifs contribute to APC/C binding, whereas the WD40 domain is 

involved in substrate recognition. Inhibitory Cdk1 phosphorylation sites are shown in red, 

whereas S92, which is phosphorylated by Plk1, is in orange. Note that the KILR motif is 

also the Mad2 interacting motif. (D) Structure of the WD40 domain of S.cerevisiae Cdh1 

bound to an inhibitor, Acm1 (He et al. 2013). The structure shows the interaction sites for 

the three APC/C degrons: D-box, KEN box and ABBA motif (adapted from Corbett 2017).
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Figure 2. Regulation of APC/C activity during the cell cycle.
Schematic illustrates the current model for the temporal regulation of the activities of Cdk1-

Cyclin B (red), APC/CCdh1 (orange) and APC/CCdc20 towards cyclin A (blue) or cyclin B 

(green).

Lara-Gonzalez et al. Page 19

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Control of APC/CCdc20 activity by phosphorylation.
(A) Schematic of apo-APC/C, showing auto-inhibition by the Apc1 loop. (B) The Cdk1 and 

Plk1 kinases phosphorylate the Apc1 loop, which releases the APC/C auto-inhibition 

mechanism. At the same time, Cdk1 phosphorylates the N-terminal tail of Cdc20, which 

prevents its interaction with the APC/C. De-phosphorylation of Cdc20 by phosphatases 

(PPase) would cause its activation and binding to the APC/C.
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Figure 4. The two fates of Cdc20 at kinetochores.
During mitosis, Cdc20 is recruited to kinetochores by Bub1/Bub3, which is bound to 

phospho-Knl1. (A) When kinetochores are attached by microtubules, kinetochores promote 

Cdc20 de-phosphorylation by kinetochore-localized PP1c, which allows its activation. 

Cdc20 may also be dephosphorylated at the cytosol, likely through PP2A-B56. (B) When 

microtubules are unattached, signal from the spindle assembly checkpoint catalyzes the 

incorporation of Cdc20 into the mitotic checkpoint complex (MCC), which binds and 

inhibits APC/CCdc20 activity. See text for more details.
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