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ABSTRACT OF THE DISSERTATION

Advances in Non-Parametric Spatial Temporal Point Process Models

with Applications to Crimes and Infectious Diseases

by

Junhyung Park

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2020

Professor Frederic Paik Schoenberg, Chair

In recent decades there has been tremendous growth in new statistical methods and appli-

cations for modeling random events occurring in space and time. There is a positive outlook

on the demand for research in this field for the coming decades as space- and time-referenced

event data will become more commonly available and high in size and resolution.

This dissertation makes methodological contributions in non-parametric and semi-parametric

self-exciting point processes models and their application to infectious disease spread and

quantitative criminology. For infectious diseases we demonstrate that point process models

can be an effective tool for real-time descriptions and forecasts of an outbreak by compar-

ing its performance to traditional compartmental models. We introduce a purely infection-

driven, non-stationary point process model and its estimation. We propose a non-parametric

implementation of the Recursive Hawkes model. In dealing with gang crime event data, we

address the long standing challenge of distinguishing spatial and temporal inhomogeneity

with true triggering, as well as evaluating event-based treatments that are non-randomized

due to practical and ethical considerations. To this end, we propose a new method to non-

parametrically incorporate spatial covariates in the background rate of crimes. We also intro-

duce a sub-sampling procedure to evaluate non-randomized, clustered treatments in order to

generate synthetic controls to improve causal interpretation. We assess this procedure with

simulation studies.
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The heart of man plans his way, but the Lord establishes his steps.

Proverbs 16:9

The stone the builders rejected has now become the cornerstone.

Psalm 118:22
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CHAPTER 1

Introduction

Some effort was made here to avoid overlap and redundancy with the many great overviews

and introductions to point processes that have been written in the dissertations of former

students working under Professor Schoenberg. Chapters 1 through 3 of Peng (2003) is a

notable example. The reader is referred to Reinhart (2018) for an excellent survey of the

literature on methods and applications. The following short note in Section 1.1 is an ele-

mentary primer that the author hopes will be useful for students approaching this area for

the first time. Section 1.2 is a brief overview of the methodology in Hawkes models which

were a foundational starting point for the author’s research. Section 1.3 outlines the main

contributions and organization of the remaining chapters.

1.1 A Brief Introduction to Point Processes

A spatio-temporal point process {p1, p2, . . . pN} is a random collections of points that rep-

resent the times and locations of events. Each point pi is a vector (ti,x
′
i), where ti is the

occurrence time and xi ∈ Rm is the spatial coordinate of point pi. Most often m = 2 to

represent the longitude and latitude of an event. Examples of events that can be modeled as

point processes are the spread of invasive species (Balderama et al. 2012), epidemic disease

spread (Meyer et al. 2012), earthquakes (Ogata, 1998), financial transactions (Bauwens and

Hautsch, 2009), neuron activity (Johnson, 1996), crimes (Mohler et al. 2011), email networks

(Fox et al. 2016) and terrorist attacks (Porter and White, 2012).

To introduce the conceptual framework of point processes, it is easiest to consider a

purely temporal point process which lacks xi, and is just an ordered collection of occurrence
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times {t1, t2, . . . tN}. Its associated counting process N(t) counts the number of events that

have occurred up to and including time t. The number of events occurred over an interval is

represented by N(tj, tk) = N(tk)−N(tj) where tk > tj.

The simplest form of point process is the homogeneous Poisson process. Such a process

with rate λ satisfies the following:

(a) For any interval (t, t+ ∆t], N(t, t+ ∆t) ∼ Poisson(λ ·∆t).

(b) For any non-overlapping intervals (t, t + ∆t] and (u, u + ∆u], the random variables

N(t, t+ ∆t) and N(u, u+ ∆u) are independent.

Since the expectation of a Poisson random variable is equal to its parameter, the first con-

dition states that the number of events over an interval scales linearly with the length of

that interval, and because this does not depend on t, we say the process is stationary. Notice

that the total number of events in the two non-overlapping intervals in condition (b) are

Poisson distributed with the sum of the two rates, λ(∆t + ∆u). To see this, let X and Y

be independent Poisson random variables with parameters λx and λy. The mass function for

the random variable Z = X + Y is,

Pr(Z = n) =
n∑
k=0

Pr(X = k) Pr(Y = n− k)

=
n∑
k=0

λkxe
−λx

k!

λn−ky e−λy

(n− k)!

=
e−(λx+λy)

n!

n∑
k=0

n!

n!(n− k)!
λkxλ

n−k
y

=
e−(λx+λy)

n!
(λx + λy)

n,

where the last equality uses the binomial theorem.

In order to define a Poisson process whose rate does depend on t, we partition the

observation interval into K regular bin sizes of ∆t such that (0, T ] = (0, t1, . . . , tK−1, tK ]

and tk − tk−1 = ∆t, where k = 1, . . . , K. If we assume that the Poisson rate may be

vary for different bins of time, then the distribution of the number of events in any bin is

2



N(tk, tk + ∆t) ∼ Poisson(λ(tk)∆t). Now, write the random number of events occurring over

an interval (a, b] as N(a, b) = limn→∞
∑n

i=1N(a+ (i− 1)∆t, a+ i∆t), where ∆t = (b− a)/n.

Because we have shown that the sum of independent Poisson random variables is also Pois-

son with a rate as the sum of all rates, N(a, b) must be Poisson distributed with parameter

limn→∞
∑n

i=1 λ(a+ i∆t)∆t. Notice that this is the definition for the Riemann integral of λ(t)

over the range (a,b]. Therefore, an inhomogeneous Poisson process with rate λ(t) satisfies:

(a) For any interval (a, b], N(a, b) ∼ Poisson(
∫ b
a
λ(t)dt).

(b) For any non-overlapping intervals (a, b) and (c, d), the random variables N(a, b) and

N(c, d) are independent.

The quantity λ(t) can be viewed as an instantaneous rate of an occurrence in a moment

of time. To see this, we can make the bin sizes ∆t small enough that the probability of

observing more than one event in any bin becomes negligibly small, and the distribution

of N(tk, tk + ∆t) in the limit becomes a Bernoulli distribution with probability of success

pk = λ(tk)∆t. Let o(∆t) be a function of ∆t that goes to zero faster than ∆t. Then the

probability of observing no event, one event, and more than one event in any kth bin is,

Pr(N(tk, tk + ∆t) = 0) = exp(−λ(tk)∆t)

= 1− λ(tk)∆t+ o(∆t)

Pr(N(tk, tk + ∆t) = 1) = λ(tk) exp(−λ(tk)∆t)

= λ(tk)∆t(1− λ(tk)∆t+ o(∆t))

= λ(tk)∆t+ o(∆t)

Pr(N(tk, tk + ∆t) = c) =
(λ(tk)∆t)

ce−λ(tk)∆t

c!
= o(∆t), c > 1

where the last equalities for each expression uses the Taylor expansion of e−λ(tk)∆t. So mul-

tiplying pk = λ(tk)∆t by ∆t and taken to the limit, we see that the Poisson rate function

λ(t) = lim∆t↓0 Pr(N(t, t + ∆t) = 1)/∆t is the instantaneous expected rate of observing an

event in a moment of time.

3



Because the count of events across different intervals are independent of each other, the

Poisson process described above would not be appropriate to model processes that have a

history dependent structure. A more general mathematical construct that allows for this is

the conditional intensity, which is the infinitesimal rate at which an expected number of

points are accumulating at time t, given the history Ht of all points occurring prior to time

t (Daley & Vere-Jones, 2003)

λ(t|Ht) = lim
∆t↓0

E[N(t, t+ ∆t)|Ht]

∆t
.

To derive the probability distribution of the an event time ti, suppose we observe the

(i − 1)th event at time ti−1 and its preceding history Hti−1
. The probability that the next

event time ti is greater than some time t is simply the probability that there are no events

between ti−1 and t. Therefore

Pr(ti > t|Hti−1
) = exp

(
−
∫ t

ti−1

λ(s|Ht)ds
)
,

and the CDF of the ith event time is

Pr(ti ≤ t|Hti−1
) = 1− exp

(
−
∫ t

ti−1

λ(s|Ht)ds
)
.

The PDF of the ith event time is found by differentiating the CDF,

fti(t|Hti−1
) =

d

dt

(
1− exp

(
−
∫ t

ti−1

λ(s|Ht)ds
))

= λ(t|Ht) exp
(
−
∫ t

ti−1

λ(s|Ht)ds
)
.

Intuitively, this PDF can be seen to have two parts: exp(−
∫ t
ti−1

λ(s|Ht)ds) gives the proba-

bility of observing no events between times ti−1 and t, and λ(t|Ht) characterizes the instan-

taneous rate at which an event occurs right at time t.

The joint density of observing a sequence of events (t1, . . . , tN) over an observation window
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(0, T ] is then,

f(t1, . . . , tN) =
N∏
i=1

(
f(ti|Hti)

)
Pr(N(tN , T ) = 0)

=
N∏
i=1

λ(ti|Hti) exp
(
−
∫ ti

ti−1

λ(s|Ht)ds
)

exp
(
−
∫ T

tN

λ(s|Ht)ds
)

=
N∏
i=1

λ(ti|Hti) exp
(
−
∫ T

0

λ(s|Ht)ds
)
.

The above concepts are readily extended to include a spatial dimension. The conditional

intensity of a space-time would be:

λ(t, x, y|Ht) = lim
∆t,∆x,∆y↓0

E[N
(
(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)

)
|Ht]

∆t∆x∆y
,

where N(. . .) is the number of events in a small space-time volume, and Ht contains the

times, locations and associated marks/covariates of events occurring before time t. With a

parametrized model for λ(t, x, y), the log-likelihood of an observed sequence {(ti, xi, yi); i =

1, . . . , n} over an interval [0, T ] and region A is,

l(θ) =
n∑
i=1

log(λ(ti, xi, yi|Ht))−
∫ T

0

∫ ∫
A

λ(t, x, y|Ht)dtdxdy.

The first term of the log-likelihood is straightforward to compute while the integral term

must be numerically approximated. Ogata (1978) showed that under general conditions the

MLE is consistent, asymptotically unbiased and efficient. Maximizing the likelihood requires

numerical evaluation and can become very slow and numerically unstable depending on the

complexity of λ. In light of this, Schoenberg (2013) gave an analytical approximation to the

integral term in the log-likelihood that is exact if all after shock events are contained within

the observation region. Alternatively, Veen and Schoenberg (2008) showed the likelihood can

be maximized as an EM algorithm by introducing a latent variable ui for each event i to

indicate whether the event came from the background process (ui = 0) or was triggered by

a previous event j (ui = j). This EM procedure reduces issues encountered with numerical
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stability when directly maximizing the likelihood, but problems can still arise (see Mohler

(2014) p. 494). Nonetheless this has become a popular way to fit parametric Hawkes models

in the literature.

1.2 Overview of Hawkes Models

Several model formulations of λ have been proposed in the literature. An important class

of point processes is called self-exciting, where the occurrence of an event increases the

likelihood of observing another event nearby in time and space. An important parametric

temporal model was proposed by Hawkes (1971):

λ(t) = µ(t) +
∑
i:ti<t

g(t− ti) = µ(t) + θ
∑
i:ti<t

ωe−ω(t−ti).

In this model, the background process µ(t), which may or may not depend on time, generates

‘main shock’ events, and each of these contributes a kernel ωeω(t−ti) that generates offspring

or ‘after shock’ events. Typically the triggering function g is constrained to be a density, so

the parameter θ represents the expected number of new events directly attributable to each

event. Since each event is posited to cause an expected number θ of additional events, any

particular event is expected to be an ancestor to θ + θ2 + θ3 + ... = 1
1−θ − 1 total events.

Thus θ should satisfy 0 ≤ θ < 1 in order for the process to be stable. A large ω means that

offspring events are close to the main event and decay quickly, while a small ω corresponds

to after shocks that are more persistent through time. Ogata (1988) incorporated marks into

the conditional intensity,

λ(t) = µ+
∑
i:ti<t

g(t− ti)eβ(mi−Mr)

where earthquakes of large magnitude have more productivity in the number of aftershocks

through eβ(mi−Mr). Ogata (1998) extended this to incorporate both space and time with the
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general form:

λ(t, x, y) = µ(x, y) +
∑
i:ti<t

g(t− ti, x− xi, y − yi;mi)]

= µ(x, y) +
∑
i:ti<t

κ(mi)g(t− ti)f(x− xi, y − yi)]

and fitted various forms of g, κ and f .

A few methods have been introduced to estimate µ, κ, g, and f without assuming any

parametric form. Marsan and Lengliné (2008) proposed Model Indepedent Stochastic Declus-

tering (MISD), which is an iterative non-parametric method to estimate the triggering func-

tion and background rate as a piecewise constant step function by exploiting the cascading

structure of main shocks and after shocks. Central to these methods is the probabilistic

branching structure of earthquakes which is given by a lower triangular probability matrix,

pij =


probability event i was triggered by event j, j < i

probability event i is a background event, i = j

0, j > i

P =


p11 0 0 · · · 0
p21 p22 0 · · · 0
p31 p32 p33 · · · 0
...

...
...

. . . 0
pN1 pN2 pN3 · · · pNN

 (1.1)

with the constraint that each row must sum to one since each event is either a main shock

or an aftershock of a previous event. The sum of the diagonals and off-diagonals is in effect,

the estimated number of main shocks and aftershocks, respectively. Given a correct model

of λ(t), the probability that a point tj occurred exogenously due to the background rate is

pjj =
µ

λ(tj)
, (1.2)

7



and the probability that point ti triggered point tj is

pij =
g(tj − ti)
λ(tj)

. (1.3)

An initial guess, p
(0)
jj and p

(0)
ij where 1 ≤ i < j ≤ T , gives the full probabilistic branching

structure of the point process. This can be used to obtain initial estimates µ(0) and g(u)(0) in

two basic ways; a probability weighted non-parametric density estimation procedure using

{(tk, xk, yk, pkk)}Nk=1 for µ and {(tj − ti, xj − xi, yj − yi, pij)}i<j for g (see Mohler (2011) or

Zhuang (2002)), or a histogram estimator can be used as proposed by Marsan and Lengliné

(2008). Knowing these in turn allows updated probabilities p
(1)
jj and p

(1)
ij to be computed

using (1.2) and (1.3). This is iterated until the largest update in any p
(k)
jj or p

(k)
ij is less

than some small constant ε. Fox et al. (2016) extended this method to have a spatially

varying background rate and a triggering function that is separable in time and space (i.e.,

h(t, x, y) = g(t)f(x, y)), while Gordon et al. (2018) further allowed the spatial distribution

of aftershocks to depend on magnitude and angular separation from the mainshock’s local

fault line.

The author’s initial research approach was to extend MISD in order to apply non-

parametric Hawkes processes to disease spread and crime. The larger goal was to contribute

to the line of methodological literature stemming from Hawkes (1971) and Ogata (1988,

1998). The recent key works that have been influential to the author are Marsan & Lengliné

(2008), Fox et al. (2016), Fox, Schoenberg & Gordon (2016), Mohler et al. (2011), Veen &

Schoenberg (2008) and Zhuang, Ogata & Vere-Jones (2002).
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1.3 Main Contributions and Organization

Chapter 2 demonstrates how effective Hawkes models can be in forecasting the spread of

Ebola in real time by using data from the Democratic Republic of the Congo during 2018-

2019. Chapter 3 to our knowledge is the first attempt to investigate the triggering function

non-parametrically for infectious diseases and compare the fit and predictive performance of

Hawkes modeling to compartmental modeling (SEIR). The identical data and SEIR model-

ing method from Althaus (2014) was used in the comparison. We demonstrate that simple

Hawkes models can have a superior within-sample fit compared to basic SEIR models and

that there is great potential for point process methods to generate quick and reliable real

time forecasts during outbreaks that do not heavily rely on tuning parameters, initial val-

ues and artistic modeling choices of an expert for good performance. Chapter 4 confronts

the long standing problem of distinguishing space-time inhomogeneity and true triggering

by proposing an algorithm that allows spatial covariates to be used to non-parametrically

estimate the background rate of a Hawkes model, where previous authors have used simple

parametric forms or ignored the use of covariates altogether in favor of kernel smoothers. It

also proposes a method to sub-sample event based interventions (for violent gang crimes) to

generate synthetic controls in order to properly make causal interpretations of treatments

that are non-randomized. Chapter 5 contains preliminary ongoing work to be published,

and future directions. In one section we investigate, through simulation studies, the true

efficacy of the so-called synthetic controls presented in Chapter 4 as well as quantify the

amount of bias caused when non-randomized interventions are erroneously assumed to be a

randomized control trial. We discover that Hawkes models can provide accurate productivity
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estimates even when treatments are non-random and that bias is only caused when ground

truth productivities vary in space and time. We show that the synthetic controls can be

used to correctly recover the ground truth efficacy of the intervention/treatment. In another

section we propose a branching-only point process model with finite average intensity and

non-stationarity (productivity > 1 at times, roughly speaking) in order to better describe

and forecast infectious diseases. Finally, we propose a non-parametric method of estimating

the so-called recursive point process model in Schoenberg et al. (2019).
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CHAPTER 2

Real-time Predictions of the 2018–2019 Ebola Virus

Disease Outbreak in the Democratic Republic of the

Congo using Hawkes Point Process Models

2.1 Introduction

As of June 16, 2019, 2136 confirmed and probable cases of Ebola virus disease (EVD) were

reported in North Kivu and Ituri Provinces of the Democratic Republic of the Congo (DRC)

(WHO, 2019). Security issues resulting from activities of over 100 rebel and other insurgent

groups, including attacks on Ebola treatment centers in Butembo and Katwa, have likely

contributed to the ongoing nature of this EVD outbreak (Damon et al., 2018). Of the>34

prior EVD outbreaks (CDC, 2019), none have occurred in a geographic region with a similar

set of conflict issues. Moreover, the use of case counts from previous EVD outbreaks reported

in the literature have proven unreliable in their ability to forecast an outbreak’s size (Worden

et al., 2018; Asher, 2018). It is likely that additional time and effort will be required before

all of the contributing factors to this outbreak can be properly assessed, parameterized, and

modeled.
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The Hawkes point process model, however, offers the Ebola modeling community a novel,

rapid option to forecast outbreak size and spread (Meyer et al., 2012). Using modern methods,

one can rapidly and nonparametrically estimate short-term outbreak size and rely on minimal

modeling assumptions to do so (Schoenberg et al., 2018; Hawkes, 1971; Park et al. (J. of

Appld. Stat., rev. & resubm.)). Decomposing peak history effects into the contribution of

previous events and an average background rate, this point process model has long been

used in the context of seismology to describe earthquakes and their aftershocks as well

as other environmental science and biological phenomena (Hawkes, 1971; Gerhard et al.,

2017; Schoenberg, 2004; Marsan and Lengliné, 2008). In some cases, Hawkes point process

models have also been used to forecast the spatial and temporal spread of infectious disease

outbreaks (Schoenberg et al., 2018; Meyer and Leonard, 2014; Meyer et al., 2012), including

the 2013–2016 EVD outbreak in West Africa (Park et al. (J. of Appld Stat., rev. & resubm.)).

There is an increasing body of evidence suggesting that short-term forecasts with few

parameters are more reliable than long-term forecasts (particularly early in an outbreak)

that determine the final outbreak size (Worden et al., 2018; Funk et al., 2018; Viboud et al.,

2017; Chowell et al., 2017). In the context of an ongoing outbreak, many published statistical

models have focused on long-term or final outbreak size (Meltzer et al., 2014; Kelly et al.,

2018; Valdez et al., 2015; Chretien et al., 2015; Siettos et al., 2015). Given the advantages

of the Hawkes model and the limitations of other statistical models in the ongoing EVD

outbreak setting (Chowell et al., 2017), we fit the Hawkes point process model to daily

EVD case counts to forecast case counts over subsequent weeks. It is our hope that this

application of the Hawkes point process model may further engage outbreak responders on
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the value of short-term forecasts when making important public health decisions related to

resource allocations.

2.2 Methods

Data were collected from the Ministry of Health and World Health Organization (WHO)

situation reports on EVD case counts occurring in the northeastern region of DRC. The

Ministry of Health initially released daily case counts while WHO situation reports confirmed

these case counts with weekly reports (WHO, 2019). Our dataset included probable and

confirmed EVD cases that occurred from the start of the outbreak on May 3, 2018, until

June 16, 2019 (Supplement 1). (We only included in our models case counts from the EVD

outbreak in the northeastern region of DRC. In 2018, there was another EVD outbreak that

occurred in the western region of DRC, and WHO declared the end of this outbreak on July

24. Although there was a temporal overlap of the EVD outbreaks in DRC, they occurred

approximately 1500 miles apart and there has been no evidence of an epidemiological or viral

genetic link between them).

We fit the Hawkes point process model to daily EVD case counts reported in the north-

eastern region of DRC. Details of this estimation method can be found elsewhere (Park et

al. (J. of Appld. Stat., rev. & resubm.)). Briefly, for point processes, the expected rate at

which points (or cases) accumulate at time t is characterized by the conditional intensity

λ(t). Although versions of Hawkes models have parameters that describe these types of data

in space and time, to be comparable with the SEIR compartmental model here we consider
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a purely temporal Hawkes process (Hawkes, 1971) here, where λ(t) is written as:

λ(t) = µ(t) +K
∑
i:ti<t

g(t− ti).

The Hawkes model is estimated essentially by fitting a step function to the triggering

density g, where the step heights and background rate µ are estimated by maximum like-

lihood, according to the method of Marsan and Lengliné (2008), and the step function is

subsequently smoothed using a Gaussian kernel. The triggering density g indicates the rate

at which infection is spread, and the fitted triggering density shows most secondary infections

occurring within a week (Figure 2.1).

Figure 2.1: Fitted triggering density (smoothed) for the 2018–2019 EVD outbreak from
May 3, 2018 to June 16, 2019. The x-axis represents days since infection as reported by
WHO, where infection day was in some cases estimated based on how long patients were
symptomatic.

The log-likelihood of an observed sequence of infections according to an estimated Hawkes
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model is:

l(θ̂) =
n∑
i=1

log(λ(ti; θ̂))−
∫ T

0

λ(t; θ̂)dt.

Here, θ̂ is the vector of parameter estimates. The log-likelihood can be computed on the data

used to estimate the parameters or can be computed on data outside of the training sample.

The log-likelihood is a measure of fit and is closely related to the entropy or information

gain of the estimated model relative to a stationary Poisson model (Harte and Vere-Jones,

2005).

One application of the Hawkes model is to enable real-time forecasting of an EVD out-

break. Using the median of 1000 simulations of the fitted Hawkes model, we predicted the

number of cases expected to occur over a nine-, six-, and three-week period, starting on April

14, 2019, May 5, 2019 and May 26, 2019, all ending on June 16, 2019, where each subse-

quent forecast uses model parameters re-estimated with updated data. Then using data up

to June 16, we generated probabilistic projections of three-, six-, and nine- weeks based on

prior research showing the degradation of epidemic forecasting accuracy over the long term

(Worden et al., 2018; Chowell et al., 2017). We evaluated the accuracy of our probabilistic

projections by comparing projected vs. actual outbreak sizes, the log-likelihood (information)

score (Brocker and Smith, 2005) and the error per day in the median forecast. On April 14,

2019, May 5, 2019 and May 26, 2019 there were 1312, 1667 and 1956 reported EVD cases, re-

spectively. We conducted all analyses using R 3.4.2 (R Foundation for Statistical Computing,

Vienna, Austria).
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2.2.1 A Word on the Sensitivity of Background Estimate to Start Date

We found that the estimate of µ can be sensitive to the choice of start date of the epidemic.

Usually, the ‘official’ start date is agreed upon by public health experts, but this is an

arbitrary decision and can be much after the date where observations are available. We find

that if the data on the epidemic includes a long initial period of stagnation followed by

a rapid increase in cases, then the background rate estimate will be necessarily small in

order to fit the early part of the epidemic with low intensity. On the other hand, for the

same outbreak, if the data begins with many cases, possibly in the early-middle part of an

outbreak, the background rate estimate will be higher.

The estimation and interpretation of the background rate µ requires caution for diseases

that are not readily contracted exogenously through environmental factors (i.e. no endemic

component). In principle, it ought to be close zero for a disease driven mostly by person to

person contact. As Reinhart (2018) notes, any departures from zero then, must be interpreted

as cases caused by unobserved infections. Further research is needed on this topic.

2.3 Results

As of June 16, 2019, there were 2136 reported EVD cases across 22 health zones in the

provinces of North Kivu and Ituri, DRC. Of these EVD cases, about 95.7% were confirmed

and 4.3% were probable. We used the Hawkes model to generate nine-, six- and three-

week probabilistic forecasts (all ending June 16, 2019) (Figure 2.2). The median simulated

outbreak size on June 16 was 1892 (95% prediction interval [PI]: 1525, 2641), 2236 (95% PI:
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(a) (b)

(c)

Figure 2.2: Median estimate of projected cumulative case counts (grey line) from April 14,
2019 (Fig. 2.2a), May 5, 2019 (Fig. 2.2b) and May 26, 2019 (Fig. 2.2c), all ending June 16,
2019, and the 95% prediction interval (dotted). Actual cumulative case counts are plotted
for comparison (red line) but were not known at the time projections were made.

1881, 2773) and 2206 (95% PI: 2079, 2401) respectively. The errors in the median forecasts

for the nine-, six-, and three-week forecasts were respectively 6.73 cases, 4.96 cases, and

4.85 cases per day. The log-likelihood (per case) evaluated on the data after the forecasts

were made for the nine-, six- and three-week forecasts were 1.60, 1.43 and 1.24, respectively.

The higher log-likelihood per day for the 9-week forecasts appears to be attributable to

the increased number of observed cases during the first few weeks of the forecasting period

causing a sharp increase in the sum of log(λ) term in the log-likelihood.
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(a)

(b)

(c)

Figure 2.3: Epidemic curve, as of June 16 (cutoff at vertical line), followed by three- (Fig.
2.3a), six- (Fig. 2.3b), and nine-week (Fig. 2.3c) probabilistic projections (blue lines) of
case counts, using the Hawkes model (median, red line), both with outbreak history and
zoomed-in.
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In our forecast of the unobserved period using data up to June 16, the three-, six-, and

nine-week probabilistic projections of median outbreak size were respectively as follows: 2317

(95% PI: 2222, 2464); 2440 (95% PI: 2250, 2790); and 2544 (95% PI: 2273, 3205) (Figure 2.3).

The log-likelihood score (per case) of the estimated Hawkes models in Figures 2.2a-2.2c and

2.3 are 0.69, 0.93, 1.04 and 1.06, respectively. Projected and actual outbreak sizes followed

a near linear increase (Figure 2.2).

2.4 Discussion

We employed a non-parametrically estimated Hawkes point process model to generate mul-

tiple probabilistic projections of the ongoing 2018–2019 EVD outbreak size in DRC. As seen

in Figure 2.2, the median nine-week projection experienced some degradation with forecast

errors of 6.73 cases per day, whereas the six- and three-week projections were more reliable,

with errors in the median forecasts of 4.96 and 4.85 cases per day, respectively, and with the

observed number of cases falling well within the estimated 95% prediction window obtained

using simulations of the fitted Hawkes model for the three-week period. These findings were

consistent with other modeling studies that have shown how even short-term forecasts can

degrade over longer periods of time (Funk et al., 2018; Worden et al., 2018). Our results

support earlier work performed using Hawkes point process models to predict the size of

infectious disease outbreaks; our models of the 2013–2016 EVD outbreak in West Africa

reduced root mean squared error (RMSE) by as much as 38% when compared to traditional

compartmental models (Park et al. (J. of Appld. Stat., rev. & resubm.)). Growing evidence,

including the work presented here, suggests that point process models can provide accurate
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estimates of caseloads for a wide variety of epidemics, including both ongoing and previous

Ebola outbreaks (Schoenberg et al., 2017; Park et al. (J. of Appld. Stat., rev. & resubm.)).

The Hawkes model performed well during this outbreak with minimal modeling assump-

tions, and could be a valuable tool for real-time decision making amidst ongoing outbreak

of EVD or other diseases. In its non-parametric form, a disadvantage of the Hawkes model

may be its inability to parameterize contexts that may help explain the current epidemic

trajectory. While these factors (e.g., contact tracing and clinical care) may be considered

in future iterations of the Hawkes model (Funk et al., 2017), developing these parameters

can also delay model development and application. Even with such parameters estimated,

some factors in real biological epidemics, such as political unrest or armed conflict that affect

disease transmission rates, can be challenging to parameterize in statistical models.

While the Hawkes model’s simplicity has advantages, it can also be viewed as a limitation

when, for instance, inhomogeneity of the background rate or changes in productivity lead

to overestimation of fine scale clustering, leading to a triggering function estimate that

may be less biologically plausible. Unanticipated shocks (e.g., introduction of EVD into a

large metropolitan area) that occur after predictions may decrease the model’s accuracy

beyond our uncertainty estimates. In addition, these models estimate future cases via the

triggering function, which requires scrutiny due to its tendency to underestimate secondary

transmission rates. Should dynamics of the disease rapidly change at a time period for which

data was not included (e.g. driving productivity to a value greater than 1), a relatively

simple point process model may not account for such rapid shifts in triggering and may not

be able to anticipate them in forecasts. While the Hawkes model might be able to adjust
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to decreasing numbers of cases as data become available and parameter estimates change,

it may well be that the Hawkes model fails to perform well as the disease cases wane near

the end of an outbreak, and this behavior should be a major subject of future research in

assessing the forecasts made here.

As such, we do not suggest here that these models replace traditional compartmental

models (SIR and their relatives). Rather, we see these models as complementary, and in the

particular case of requiring rapid response and prediction of caseloads, a valuable addition for

efforts that attempt to limit the impacts of an outbreak. In an effort to continue to evaluate

the efficacy of these models in predicting outbreak rates and cumulative cases in real-time

(or near real-time, given the time it takes for corrected caseload data to be released), we

have constructed a free, publicly-accessible website that can track this and other outbreaks,

with purely prospective forecasts and results updated weekly as new data become available

(for full details, see http://www.stat. ucla.edu/∼frederic/ebola).

In conclusion, we are encouraged by the ability of non-parametric Hawkes point process

models to describe epidemic events over the short term and in real time that are consistent

with the 2018–2019 EVD outbreak in DRC. The Hawkes point process is a relatively simple

statistical model, and results suggest that statistical modelers in the public health community

should consider the Hawkes model in their ensemble when engaging in decision-making and

resource allocation of EVD and other emerging infectious disease outbreaks.
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CHAPTER 3

A Non-Parametric Hawkes Model of the Spread of

Ebola in West Africa

3.1 Introduction

Between March 2014 and June 2016, the West African countries of Guinea, Sierra Leone,

and Liberia experienced a historical Ebola outbreak, one that eventually surpassed all other

previous Ebola outbreaks combined in terms of total cases reported (WHO Ebola Response

Team, 2014). The epidemic resulted in nearly 30,000 infections and more than 11,000 deaths

(WHO, 2016), and also took a severe toll on the economy and quality of life in the region,

due to decreased trade, border closures, and decreased foreign investment (United Nations

Development Programme, 2015). To mitigate future outbreaks of highly infectious diseases,

it is important that governments focus on improving detection and response capacity, among

other important public health policy objectives (Spengler et al., 2016). To this aim, statistical

models can play an important role in forecasting the spread of infectious diseases both during

and after an outbreak, leading to more effective allocation and mobilization of public health

resources.

One of the first major breakthroughs in epidemiological modeling was the development
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of the compartmental model by Kermack and McKendrick (1927) which led to the SIR

(Susceptible-Infected-Recovered) model and its variants. Such models involve classifying in-

dividuals according to disease status, and then modeling the changes in numbers of infected,

susceptible, and recovered individuals in each group using a series of differential equation

models. Compartmental modeling has grown to become a primary resource of the epidemi-

ological community for modeling the establishment and spread of many infections such as

HIV, SARS, and influenza. In recent decades, traditional SIR models have been modified

with new parameters or more informed parameter estimates, to better fit individual disease

characteristics (Britton, 2010).

Among these derivations, the SEIR (Susceptible-Exposed-Infected-Recovered) compart-

mental model has become especially popular for describing the dynamics of the Ebola virus,

most notably by Chowell et al. (2004) and applied to the recent West African Ebola outbreak

by Althaus (2014). While effective in predicting some aspects of outbreaks, SEIR models rely

heavily on accurate parameter estimation and rely critically on the assumption of no com-

munity intervention in response to outbreaks as well as the mass action assumption that all

susceptible members of the population are equally likely to be infected (Chowell et al., 2004).

Although departures from these assumptions are common and can result in wildly inaccu-

rate forecasts (Meyers, 2007), these models provided important insights about the potential

progression of the disease without intervention, and played a critical role in eliciting a swift

public health response.

While effective in predicting some aspects of outbreaks, SEIR models rely heavily on

accurate parameter estimation and rely on the mass action assumption (Meyers, 2007) that
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all susceptible members of the population are equally likely to be infected, which is typically

violated in practice, often resulting in inaccurate forecasts and require intense field efforts

to accurately classify infection status. For instance, compartmental SEIR models applied

to the spread of SARS in China in 2003 estimated a high transmission rate and suggested

30,000 to 10 million SARS cases would occur in the first 4 months of the spread of disease in

China, resulting in fears of a widespread pandemic (Meyers, 2007). Ultimately, only about

5,300 cases were reported in China (World Health Organization, 2003). These discrepancies

in estimated as compared to observed cases suggests that there remains room for predictive

improvement. An alternative lies in the use of non-parametrically estimated Hawkes point

process models to characterize the dynamics of the spread of disease.

We put forth a simple, non-parametrically estimated Hawkes point process model as an

addition to the many popular methods used in the disease modeling and forecasting tool-

box. Hawkes models are currently widely used in seismology to describe earthquake catalogs.

Though these models have outperformed their competitors in earthquake forecasting exper-

iments (Schorlemmer et al. 2010, Zechar et al. 2013), rarely have they been applied to the

emergence and spread of infectious diseases. In seismology, unlike for infectious diseases, the

parametric form of the Hawkes model components has been well established over decades of

research. Because infectious diseases is a relatively newer application of the Hawkes model,

we choose to make no parametric assumptions about the model components.

Self-exciting point processes were used to model the occurrence of smallpox in Brazil by

Becker (1977), and by Farrington et al. (2003) to describe the effect of vaccinations on cases

of measles in the United States. Recently, Balderama et al. (2012) fit a modified Hawkes
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model to sightings of one invasive species of red banana trees spreading in a Costa Rican

rainforest, and Meyer et al. (2012) used a parametric Hawkes model for the incidence of

invasive meningococcal disease (IMD) in humans, and the results proved useful for estimating

spread rates and for the detailed description of properties of the outbreak. However, both

Balderama et al. (2012) and Meyer et al. (2012) relied on parametric forms for the triggering

function rather than more general non-parametric methods, and neither compared the fit or

performance of their fitted model with those of more traditional compartmental models.

Here, for the first time, we compare the performance of non-parametrically estimated

Hawkes point process models to more traditional compartmental models (SEIR) for estimat-

ing the spread of an infectious disease outbreak. While many variants and advances exist for

SEIR modeling, including time-varying transmission rates and additional compartments for

pending funerals, hospitals and exposed health care workers (see Viboud et al. 2018, Funk

et al. 2018, Champredon et al. 2018), such modifications and parameterizations are often

made retrospectively, leaving open the possibility of overfitting and questions about what

choices to make regarding model specification and choices of parameters in situations where

prospective forecasting is desired. We sought to test the most general, least parameterized

versions of each model class to enable a baseline-to-baseline comparison.

Fortunately, the application to the spread of Ebola in West Africa by Althaus (2014)

provides an ideal test case, where simple SEIR models have already been proposed, fitted,

and shown by an expert to provide a good description of an outbreak in a well-vetted, large

dataset with replicates across varying environmental and economic conditions in Guinea,

Liberia and Sierra Leone. To follow Althaus (2014), separate models are fit for each of
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the three study regions. There are other reasons to consider in support of estimating three

separate models for this particular outbreak. Outbreaks may unfold very differently based

on public health practices, social behavior, treatment of the dead, etc. In particular, the

three countries developed outbreaks in different months, and Sierra Leone and Liberia closed

borders within two weeks of their respective outbreaks, suggesting minimal mixing.

Comparisons between point process models and compartmental models are particularly

illuminating, as the two types of models rely on different assumptions and operate under

fundamentally different mathematical frameworks. As such, Hawkes models may provide

different insights into the spread of epidemics and invasive species as compared to more

typical models, including a description of the spread via an estimated triggering kernel.

Point process models and compartmental models may be used in complementary fashion,

as the two types of models rely on different assumptions and operate under fundamentally

different mathematical frameworks. In particular, Hawkes models may provide new insights

into the spread of epidemics and invasive species as compared to more typical models, includ-

ing a description of the spread via an estimated triggering kernel. Meanwhile, compartmental

models have the advantage of providing estimates of an age structured basic reproductive

number, as well as the dynamics between different sections of the population that are healthy,

recovered, infected and dead. These are important in public health for helping to identify

portions of the population at particularly high risk.

The structure of this paper is as follows. A description of the data is given in Section 3.2,

followed by a brief review of Hawkes and SEIR models in Section 3.3, as well as methods for

model fitting and assessing their fit. In Section 3.4, we compare the fit of the two models in
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Guinea, Sierra Leone, and Liberia. A discussion and some concluding remarks are given in

Section 3.5.

3.2 Data

Data were collected and aggregated from the World Health Organization (WHO) outbreak

reports on Ebola during and after the outbreak period (WHO, 2016). These reports are

typically released sub-weekly by WHO and include the country, geographic location within

country (either by region, closest city, or village) as well as confirmed cases and deaths from

Ebola virus. Following Althaus (2014), data were filtered to include only a count of infection

cases from Ebola at regular, reported time points in three regions: Southeast Guinea, Eastern

Sierra Leone, and Northwest Liberia. The time range of these observations begins on 2014-

03-23 and ends on 2014-09-07, again to align with Althaus (2014). In fitting Hawkes models,

estimated occurrence times were distributed uniformly within report dates. The first reported

cases were distributed uniformly over the previous 2 days, which is half the average time

between report dates thereafter. We emphasize that the results here are not sensitive to how

this is done, and the prediction of the first week is removed in the overall evaluation of the

models.

For a small number of report dates, the cumulative count of cases was subsequently revised

downwards by WHO; these revisions are ignored in the current analysis, as in Althaus (2014).

The cumulative count of cases reported by the WHO, and the data used to fit Hawkes models

are plotted in Figure 3.1. The weekly occurrence of cases is displayed as solid lines in Figure

3.3. A copy of the code, the data used in Althaus (2014) and the data extending beyond
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the scope of this study, including the peak and decline of the outbreak can be found at

http://www.stat.ucla.edu/∼frederic/ebola.

Figure 3.1: Point process vs. WHO cumulative case counts

(Left to right): Guinea SE, Sierra Leone East, Liberia NW. Solid = cumulative number of cases reported
by WHO, dashed = cumulative number of cases reported by WHO with times uniformly spread within
WHO report dates. The start dates of outbreak from left to right are 2014-03-23, 2014-05-27 and 2014-04-05
respectively.

3.3 Methods

3.3.1 Hawkes Models and Their Non-parametric Estimation

A temporal point process is a collection of points occurring on the real line. Its associated

counting process N(t) counts the number of points occurring between time 0 and time t,

inclusive. Such a process is usually characterized via its conditional intensity λ(t), which is

the instantaneous expected rate at which points are accumulating at time t, given the history

Ht of all points occurring prior to time t (Daley & Vere-Jones, 2003):
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λ(t) = lim
∆t↓0

E[N(t+ ∆t)−N(t)|Ht]

∆t
.

Because the conditional intensity is a function of time, it is convenient for describing events

that may happen with rates that change dynamically. Hawkes models are often extended

to data occurring in both space and time. However, to provide an equivalent comparison to

SEIR modeling where cases are aggregated over an entire spatial region as in Althaus (2014),

we consider a purely temporal Hawkes process (Hawkes, 1971), where λ(t) is written as:

λ(t) = µ+K
∑
i:ti<t

g(t− ti). (3.1)

This is sometimes called a branching or epidemic process (Ogata, 1988) because every oc-

currence ti contributes a secondary series of occurrences (aftershocks) occurring at a time-

varying rate Kg(t− ti), which in turn produces its own aftershock sequence, and so on.

The triggering function g in equation (3.1) describes the temporal distribution of sec-

ondary infections and is constrained to be a density, so the parameter K represents the

expected number of new infections directly attributable to each case. Since each case is

posited to cause an expected number K of secondary infections, any particular case is ex-

pected to be an ancestor to K + K2 + K3 + ... = 1
1−K − 1 total infections. Thus K should

satisfy 0 ≤ K < 1 in order for the process to be stable.

For many processes, the triggering density g(u) decays gradually as the time delay u in-

creases. Model fitting typically involves choosing a parametric form for g(u), and maximizing
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the log-likelihood function (Daley & Vere-Jones, 2003),

l(θ) =
∑
k

log[λ(tk; θ)]−
∫ T

0

λ(t; θ)du (3.2)

where θ is the vector of parameters governing the shape of g and [0, T ] is the time window of

observation. All parameters and triggering densities are estimated separately for each region

as in Althaus (2014).

We non-parametrically estimate the triggering function g, constant background rate µ

and productivity constant K using the method proposed by Marsan and Lengliné (2008).

This method assumes that g is a piecewise constant step function with user-defined number

of steps and unknown heights estimated by approximate maximum likelihood. Although

the number of steps is set by the user and the step heights are estimated, the method

is non-parametric in that no specific parametric model is assumed for the shape of the

triggering function. A key principle driving this methodology is that, given a model for λ(t),

the probability that a point tj occurred exogenously due to the background rate is

pjj =
µ

λ(tj)
, (3.3)

and the probability that point ti triggered point tj is

pij =
Kg(tj − ti)

λ(tj)
, (3.4)

as noted in Zhuang, Ogata and Vere-Jones (2002). Initial estimates, p
(0)
jj and p

(0)
ij for 1 ≤
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i < j ≤ N(T ), dictate the full probabilistic branching structure of the point process, and

this is used to obtain estimates µ(0), K(0), and the steps heights of g(u)(0) following the non-

parametric procedure described in Marsan and Lengliné (2008) and Fox et al. (2016). Using

these estimates, one computes updated estimates of the probabilities p
(1)
jj and p

(1)
ij using (3.3)

and (3.4). This is iterated until the largest update in any p
(k)
jj or p

(k)
ij is less than some small

constant ε.

The Hawkes model uses occurrence times that are uniformly randomized between report

dates. To examine the sensitivity of the estimates to this randomization, for each country

we estimate the model on 50 randomized datasets and plot the distribution of the resulting

estimated triggering density in Figure 3.2b.

In simulating a Hawkes process, an infection can be categorized into one of two types:

(1) An infection triggered by a previously occurring infection, (2) a background infection

resulting from the constant rate µ not attributed by the model to any previous parent infec-

tion. The number of first generation triggered infections is a Poisson(K) random variable,

and they are randomly placed in time according to the temporal distribution given by g in

equation (3.1).

3.3.2 SEIR Models and Their Estimation.

The SEIR (Susceptible-Exposed-Infected-Recovered) compartmental model embodies the

idea that the infected population spreads the disease at time t with rate β(t), but can only

spread the disease to the proportion of the population still susceptible, and these rates and

proportions can change as an outbreak proceeds. It has been frequently used to describe
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Ebola disease dynamics and is characterized by the following set of ordinary differential

equations (Chowell et al., 2004):

dS

dt
= −β(t)

SI

N
(3.5)

dE

dt
= β(t)

SI

N
− σE (3.6)

dI

dt
= σE − γI (3.7)

dR

dt
= γI. (3.8)

Here S is the size of the susceptible population, E is the size of the population that

has contracted Ebola but is not yet infectious (“latent population”), I is the size of the

infectious population, and R is the size of the recovered/deceased population. These four

quantities sum to N , the total population. The populations were treated as discrete entities

as in Althaus (2014).

When modeling the infectious phase, the primary quantity of interest in this model is

β(t), the transmission rate. Under this model, it is assumed to decline exponentially at rate

κ:

β(t) = β0e
−κt, (3.9)

where t is the number of days from the start of the outbreak (Lekone and Finkenstädt, 2006).

Other parameters in the SEIR model include the rate of infectious onset, σ, and the rate of

death or recovery, γ. In model fitting, γ and σ are typically assumed constant, as in Althaus

(2014).
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A central feature to compartmental SIR/SEIR modeling is the reproductive number,

R0(t). In the model, R0(t) at any time is given by the transmission rate, β(t), multiplied

by the average duration of infectiousness, 1/γ. Here R0(t) represents the average number

of new infections generated by an infected person until the infected person dies or recovers.

The critical threshold for R0(t) is 1: if R0(t) is above 1, the epidemic can spread to infect a

large proportion of the population. When R0(t) drops below 1, the epidemic is unsustainable

(Diekmann and Heesterbek 2000, Lipsitch et al. 2003).

As in Althaus (2014), parameter estimates for SEIR models were obtained using maxi-

mum likelihood estimation (MLE) assuming that occurrences of new cases follow a Poisson

distribution. In simulating the model forward, we assume new cases follow a Poisson dis-

tribution. SEIR models were fit separately for Guinea, Sierra Leone, and Liberia using the

original discretely reported Ebola outbreak data containing only cases and deaths at each

reporting date, as in Althaus (2014). The theoretical SEIR model outlined above is purely

deterministic, so to convert this process into a stochastic model for simulating real-world out-

breaks forward, and to facilitate model evaluation using statistical methods, the tau-leaping

approximation of Cao et al. (2007) was applied. Under the Tau-leaping simulation method

applied to SEIR, transitions from each of the S, E, I, and R populations are simulated based

on a Markov-Chain Monte Carlo (MCMC) process. Transition probabilities from S to E, E

to I, and I to R are all calculated using the current state populations and the fitted R0(t),

κ, σ, and γ. Under each round of simulation, at random one person at one time point will

transfer to a new population based on these probabilities. The transition probabilities are

then recalculated based on the new state populations. The process continues until the end
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of the observed time window is reached.

Under this process, new exposures, infections, and recoveries occur randomly as a Poisson

arrival process at probabilities based on R0, κ, σ, and γ. With each new transition, the

probabilities of these events update to reflect the new S, E, I, and R populations. This

approach is identical to the SEIR model used by Althaus (2014), and as a result, we were

able to recreate the parameter estimations and model output of this work for each country

to allow for direct comparison with Hawkes models.

As in Althaus (2014), the Nelder-Mead algorithm and the deSolve R package (Soetaert

et al., 2010) are used for SEIR parameter estimation, and the tau-leaping method in the

adaptivetau R package (Johnson, 2016) is used to simulate SEIR forward in time.

3.3.3 Evaluation Techniques

Simulations of both SEIR and Hawkes models were used in order to assess statistically the

compatibility of the observations with forecasts made with each model. SEIR and Hawkes

parameter estimates obtained using all available data for each country were used for each of

1,000 simulations, and the mean of simulations for each week and each country were recorded

and compared to the actual number of infections per week. Here, different scoring rules are

possible as surveyed in Gneiting and Katzfuss (2014), and we focus primarily on the root

mean square error (RMSE) of weekly predictions and note that our main findings do not

appear to be substantially influenced by the choice of scoring rule. SEIR simulations require

assumed values for the starting populations on day 0. Hawkes models do not require such

assumptions. However, according to the fitted Hawkes model, simulated infections near the
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beginning of the recording period are assumed to result exclusively from the background

process rather than contagion, which may lead to under-predictions in week 1. Since both

models are impractical for estimating cases in week 1, only estimates from week 2 and beyond

are used for comparison.

The susceptible population was set based on the most recently published census data

from Guinea (National Institute of Statistics, 2015), Sierra Leone (Sierra Leone Statistics,

2016), and Liberia (LISGIS, 2009), under the assumption that everyone in the population is

susceptible. The infectious populations were set based on the observed data from the WHO.

In a separate analysis to account for the possibility of over-fitting in a retrospective

analysis such as this, and to assess the ability of the models to forecast spread during an

actual outbreak, parameter estimates were fitted using only the infections occurring in the

first 75% of the observation window, and the resulting fitted models were then used to project

cumulative infections for the remaining period. This analysis also involved 1,000 simulations

per country for both SEIR and Hawkes.

The SEIR and Hawkes models were also evaluated using superthinning (Clements et

al., 2013). In superthinning, the existing data points are first thinned where each point is

randomly kept independently of the others with probability min{b/(λ̂(t)), 1}, and then new

points are superposed according to a Poisson process over the observed time window [0, T ],

with rate (b− λ̂(t))+. Superthinning requires an initial choice of the tuning parameter, b, and

as suggested in Clements et al. (2013), we used the simple default value of the total number

of cases divided by the length, in days, of the observation period. For the SEIR model, the

value of β̂(t) multiplied by the size of the infectious population at time t was used as the
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estimated rate function λ̂(t) to calculate thinning and superposing probabilities. For the

Hawkes model, λ̂(t) corresponds directly to the estimated conditional intensity function in

equation (3.1), which is calculated with estimates µ̂, K̂, ĝ(·). After superthinning, the result-

ing residual process is a homogeneous Poisson process with rate b if and only if the estimate

of the conditional intensity, λ̂, is correct (Clements et al., 2013), and thus one may examine

the superthinned residuals for uniformity. Sparsity of points in the superthinned residuals

corresponds to areas where the model over-predicted, whereas clustering in the superthinned

residuals indicates areas where the model under-predicted the number of observed cases.

3.4 Results

3.4.1 Model Fitting and Weekly Estimates

Figure 3.2a displays non-parametric estimates of the Hawkes triggering density in (3.1)

for each country. Figure 3.2b plots the distribution of estimated triggering densities for 50

different random imputations of occurrence times. According to the fitted model, in Guinea

and Liberia, an infected individual directly triggered new infections on the scale of up to 3

days. In Sierra Leone, this density appeared to decay somewhat faster, with most triggering

occurring within 1 day, according to the fitted Hawkes model. Note that the estimated

triggering times in Figure 3.2a are times between recorded diagnoses of cases of Ebola; such

recordings may be substantially more clustered than actual transmissions of the disease, for

instance, due to small reporting delays common in epidemic data.

Table 3.1 shows the estimated parameters of the Hawkes model (3.1) for each country.
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Figure 3.2: Estimate and sensitivity of triggering

(a) Estimated Hawkes triggering density

(Left to Right): Guinea SE, Sierra Leone East, Liberia NW. Whiskers represent ± 2 standard errors computed
as in Fox et al. (2016).

(b) Sensitivity of triggering histogram to randomly imputed data

(Left to Right): Guinea SE, Sierra Leone East, Liberia NW. Bar heights represent the median. Whiskers
represent the 95th percentile interval.

More intense clustering was observed in Liberia and a significantly smaller percentage of the

points are attributed to the background rate according to the fitted Hawkes model. According

to the fitted Hawkes model (3.1), 89% of cases in Guinea were attributable to contagion

from other observed cases in Guinea, whereas in Sierra Leone an estimated 93% of cases

were attributed to contagion from other observed cases, and in Liberia the corresponding

estimate was 99%.
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Table 3.1: Hawkes parameter estimates and standard errors

Guinea Sierra Leone Liberia
Background rate µ̂ 0.544 0.91 0.037

(0.053) (0.089) (0.015)

Productivity constant K̂ 0.893 0.931 0.997
(0.011) (0.0067) (0.0012)

Standard errors in parentheses are calculated following Fox et al. (2016).

The first row of Table 3.2 contains the RMSE’s corresponding to the simulation based

goodness-of-fit study in Figure 3.3. Hawkes models had a correspondingly lower RMSE in

weekly predictions compared to SEIR models, for all three countries. The total RMSE across

all countries combined was 59.8 cases/week using SEIR and 37.1 cases/week using the Hawkes

model (3.1), which represents a 38% decrease in the RMSE. Weekly estimates of total infec-

tions per week based on the mean of 1000 simulations of the Hawkes and SEIR models are

displayed along with the observed number of infections in Figure 3.3. The weekly simulation

means for the fitted SEIR model resemble a lagged version of the observed weekly counts

with a lag of two weeks. This is not surprising given that the rate of infectiousness for SEIR

modeling is a function of the current infectious population, and the incubation time of the

Ebola virus is approximately 8-12 days (Chowell et al. 2004).

Hawkes models show a similar dependence on past fluctuations in cases due to the cas-

cading nature of Hawkes processes; a large number of cases in the previous week will be

expected to trigger more simulated infections into the following week. However, the week to

week dependence is weaker and more complex than in the fitted SEIR model. For example,

in weeks 18 through 20 in Guinea SE, the Hawkes weekly projection behaves like a one week

lag of the actual data. At other times, however, the Hawkes estimate appears to be more
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Figure 3.3: Weekly forecasts of new infections from SEIR and Hawkes models

(Top to bottom): Guinea SE, Sierra Leone East, Liberia NW. Solid curve = observed new case incidence
per week as reported in WHO data, dashed curve = SEIR forecast, dotted curve = Hawkes forecast. As
in Figure 3.4, the start dates of outbreak from top to bottom are 2014-03-23, 2014-05-27 and 2014-04-05
respectively. Each weekly forecast is the mean of 1000 simulations. For each week, simulations of new cases
were conducted using model parameters fitted over each country’s entire data set. Each week’s simulations
began with the same number of initial infected cases based on the history of reported infections preceding
each week’s simulation start date.

adaptive than a mere one week lag, such as in forecasting the sudden decrease in infections

from week 11 to 12 in Guinea SE, or the rise in infections from week 5 to 7 in Sierra Leone

East. Across all three countries the Hawkes models tend to produce more accurate weekly

estimates with less extreme errors.
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Table 3.2: RMSE of weekly forecasts for SEIR and Hawkes

Guinea Sierra Leone Liberia
SEIR Hawkes SEIR Hawkes SEIR Hawkes

in-sample 33.25 17.85 91.84 49.91 55.03 42.31
out-of-sample 26.63 2.87 46.75 46.50 357.10 93.88

First row contains RMSE corresponding to Figure 3.3, in units of cases. Second row contains RMSE corre-
sponding to the first two weeks of Figure 3.5. Guinea, Sierra Leone, Liberia observed 861, 1434 and 2081
total cases respectively, of which 403, 641 and 1189 occurred in the final 25% of the observation window.

Figure 3.4: Weekly estimates of R0 over time, denoted R(t).

(Top to bottom): Guinea SE, Sierra Leone East, Liberia NW. Point estimates of the SEIR reproductive
number, R0, by week. As in Figure 3.3, the start dates of outbreak from top to bottom are 2014-03-23, 2014-
05-27 and 2014-04-05 respectively. Each weekly point estimate is based on the actual case counts observed
up until that point in time. Note that for Sierra Leone East, estimates are off the charts at weeks 2 and 4
with 12.75 and 40.46, respectively.

3.4.2 Prospective Out-of-Sample Prediction

Figure 3.5 shows simulations of SEIR and Hawkes models fitted using only the first 75%

of data for each outbreak and simulated for the remaining 25% of the time. For Sierra
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Leone, the SEIR model simulations forecast the trajectory of the number of new infections

quite accurately, especially during the first 16 days of the simulations. The SEIR model

significantly underestimated the number of new infections in Guinea throughout the course

of the simulation. For Liberia, the simulations of the fitted SEIR model initially tended

to overestimate the number of observed infections, due to the approximately exponential

predicted acceleration characteristic of the SEIR model.

Figure 3.5: SEIR and Hawkes projections using first 75% of data for fitting

(Left to right): Guinea SE, Sierra Leone East, Liberia NW. Starts dates of simulations from left to right
are 2014-07-28, 2014-08-13 and 2014-08-19 respectively. Thin curves in top panels show 1,000 simulations
of Hawkes model (2) with parameters fit using first 75% of the data for the corresponding country and
simulated forward for the last 25% of the observed time period. Thin curves in bottom panels show 1,000
simulations of SEIR model with parameters fit using first 75% of the data for the corresponding country and
simulated forward on the last 25%. Dashed curve = mean of simulations. Solid curve = actual cumulative
total number of observed cases as reported by WHO.

Simulated Hawkes processes for Guinea were remarkably accurate for the first 20 days of

the simulations, and tended on average to underpredict the number of new infections after
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30 days. The simulations of the Hawkes model in Sierra Leone and Liberia also tended to

slightly underpredict the number of infections. In all three countries, the variation in the

Hawkes simulations was much greater than that of the SEIR model. Using the average of

the simulations as a forecast, the weekly RMSE in each country for the first two weeks is

shown in the second row of Table 3.2. The total RMSE of the forecasts in the first two

weeks for SEIR was 208.5 cases/day, compared to 60.5 cases/day for the Hawkes model,

representing a 71% reduction in error. The results suggest that overfitting is not responsible

for the improved performance of the Hawkes model for describing the spread of Ebola in

these 3 countries, since in these comparisons the models were assessed using data not used

in the parameter estimation.

The amount of data used to fit both SEIR and Hawkes models has a large impact in

determining the direction and variability of simulations. For SEIR, simulations were affected

by the estimated populations of infected individuals for each country. If a model was fit at a

time point right after a reported sharp increase in case load, such as in Liberia when estimat-

ing using only the first 75% of the data, the simulations would project large increases. Given

a time period culminating in few new infections, the SEIR model tended to forecast a contin-

ued period of very few new infections, which was inconsistent with the actual observations.

For all Hawkes simulations, the average simulated path was approximately linear because

according to the fitted Hawkes model, the background rate of new infections is constant and

the number of triggered infections stemming from any single infection is finite.
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3.4.3 Superthinning Analysis

Superthinning results are displayed in Figure 3.6 for all three regions. The superthinned

residuals corresponding to the SEIR model for Guinea have obvious clustering during the

first week and around 2014-06-01 and 2014-08-20, indicating times when the model underes-

timated the number of new infections. This likely occurs because the estimated conditional

intensity is heavily dependent on the current infectious population which can be highly

variable. Immediately after an unexpected surge in observed infections, the modeled rate

according to the SEIR model tends to remain relatively low for approximately 2 weeks, and

as a result, most of the observed points are retained after superthinning, resulting in intense

clustering in the residuals.

The gaps in Figure 3.6 indicate time periods where the model overestimates the rate at

which infections are occurring. An example is the large gap in Figure 3.6 for Sierra Leone

East around 95 days after the start of the overall West African Ebola outbreak (2014-03-23),

which corresponds to the large overestimate by SEIR in Sierra Leone East 6 weeks after 2014-

05-27 as seen in Figure 3.3. The SEIR superthinned residuals for Guinea also have noticeable

gaps and regions of sparsity of points, particularly around 2014-07-01, corresponding to the

SEIR model overestimating the number of new cases around week 12 and 13 in Figure 3.3.

Overestimation from a lack of points is seen in several places in Guinea but most noticeable

around June 26th. The superthinned residuals corresponding to Sierra Leone indicate poor

fit in many places as well and most notably underestimation of the number of new infections

around 2014-05-21, as well as overestimation around 2014-07-01. The superthinned residuals

for Liberia corresponding to the SEIR model show few noticeable departures from uniformity
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Figure 3.6: Superthinning using Hawkes and SEIR infection rate parameters

(Left to right): Guinea SE, Sierra Leone East, Liberia NW. Top = Hawkes, bottom = SEIR. Thinned original
points are marked with plus signs, and superposed points are marked with circles. X-axis indicates days from
2014-03-23, the beginning of the West African Ebola outbreak. The y-coordinates are uniform(0,1) random
coordinates.

despite some sparsity of points around 2014-08-05.

The superthinned residuals corresponding to the fitted Hawkes models, shown in Figure

3.6, show no substantial departures from homogeneity for all three countries. The Hawkes

model does not have any gross inaccuracies in Guinea, Sierra Leone, or Liberia and appears

to more closely describe the spread of new infections in these three countries.
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3.5 Discussion

The application of non-parametric Hawkes point process models to predict the spread of

Ebola virus in West Africa indicates that these novel methods have the potential to be

a useful addition to the pallet of available methods for disease forecasting. The root-mean-

square errors in forecasts made using data used in parameter estimation as well as in forecasts

of data not used in parameter estimation, as well as the uniformity of superthinned residuals

all clearly suggested that in each case the simple Hawkes models fit as well as, or better

than, the corresponding SEIR models. Our results do not suggest traditional SEIR models

should be discounted; rather, they highlight the utility of Hawkes processes as an alternative

and novel framework with which to predict disease spread to reveal new insights to how

outbreaks may evolve. SEIR and Hawkes models provide two very different descriptions of

an outbreak and focus on different aspects of the disease spread. We suggest that using both

types of forecasts may provide additional insights to inform public health decision making.

For instance, in weekly forecasts, Hawkes models appeared to provide more accurate

predictions than SEIR. This is possibly because a Hawkes model, unlike SEIR, works by

estimating the temporal distribution of times between individual reported infections via the

triggering kernel. This provides new information about the dynamics of an outbreak that is

highly localized in time.

One might object that, in a retrospective analysis such as this, the improvement in fit

might be due to fitting a more complex model with more free parameters, in which case

overfitting might be a problem and the improvement would be unlikely to be replicated in

further applications, particularly if the model were used in forecasting. However, we found
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that even when models were fit using one portion of the data and assessed on a different

portion of the data, simulating performance during an outbreak, Hawkes models were more

accurate than SEIR by a 71% reduction in RMSE for the first two weeks of forecasting.

This suggests that Hawkes models may in the future be used for more accurately forecasting

the spread of epidemic diseases, which could help facilitate and inform surveillance and

mitigation efforts to help curb outbreak spread as it occurs.

One limitation of our Hawkes models is their reliance on a constant supply of exogenous

infections from the background rate for the continued propagation of the disease. According

to the fitted model, subsequent triggered infections eventually die out since each infection

only directly triggers a Poisson(K) number of new infections where K < 1. Such a Hawkes

model would fit poorly to data exhibiting intense clustering of observed cases. This may also

lead to difficulty in properly modeling the first few weeks of a contagious outbreak when

the total cumulative number of cases is low or the latter parts of an outbreak where disease

spread is nearly saturated and slowing down due to human containment or intervention.

Some modifications to Hawkes models have been proposed to account for this issue and show

promising results (Schoenberg et al., 2019). In addition, where the background rate is known,

rather than estimated by maximum likelihood, the triggering kernel of a Hawkes process

could perhaps be estimated more accurately and this is a subject of ongoing research. The

results in this paper demonstrate that basic Hawkes modeling can be effective in forecasting

caseloads up to a few weeks after an outbreak has emerged. A conservative estimate of when

forecasts based on the Hawkes model lose most of their predictive power is around 2 weeks,

as evidenced not only by the results in this paper but also particularly in Kelly & Park et
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al. (2019).

It should be noted that the WHO data considered here consist of periodically updating

counts of cases (on average 4 days between updates). A higher temporal resolution will be

particularly desirable for future research in order to improve the accuracy and assessment of

point process models. The data are likely not comprehensive in accounting for every case of

Ebola at the correct time due to limits on human resources in managing the large area and

population of the three study regions. Because SEIR modeling is heavily dependent on the

current population of infected and susceptible individuals, it may be hypothesized to be more

sensitive to missing data and errors in reporting, though this should be studied and quantified

in future research. With improved surveillance and reporting measures, as well as more

frequent measurements, it is possible that SEIR models would show significant improvements.

While the spread of Ebola in West Africa in 2014 is one case study that demonstrates the

effectiveness of Hawkes modeling, SEIR and Hawkes models may perform differently for other

diseases, regions, and time periods. It is recommended that future investigations compare the

fit of Hawkes and SEIR models to data on other diseases and in other regions, and to perform

prospective analyses to evaluate the forecasting performance of the two types of models. Such

work could help determine whether Hawkes modeling will provide a generalizable framework

for prediction across a variety of infectious diseases, with highly disparate outbreak periods.

Another important area for future study is to use spatial-temporal triggering densities

in Hawkes models, to describe the detailed spatial-temporal distribution of infections when

sufficient spatial precision is available. Whether classic exponential and power law kernels

work just as well as the non-parametric approach can be checked as well. In this paper,

47



we limited the Hawkes model to purely temporal triggering in each spatial region, in order

for the Hawkes and SEIR models to be comparable and so both models could be estimated

using the data of Althaus (2014). However, one advantage of Hawkes models is their natural

generalization to the case of further spatial precision. By contrast, compartmental modeling

is generally limited due to its assumption of spatial homogeneity of each compartment’s

population. In the case of an outbreak across adjacent countries, a single SEIR model that

incorporates some dependencies from neighbors may be an important topic of future study

for expert SEIR modelers. Other attempts have been made in this regard through meta-

population modeling and spatial compartmental modeling by Keeling & Rohani (2007) and

Guofo et al. (2014), respectively. The latter, for example, propose a fractional SEIR model

using separate S, E, I, and R compartments for each neighboring major metropolitan region

in New Zealand with additional terms for the spread between these regions, such models still

spatially aggregate the observations resulting in the loss of some information and resolution

compared with spatial-temporal point process models such as Hawkes models. These con-

siderations should provide impetus for future model refinement and improvements for each

model class that are likely to further improve our understanding of the evolutionary nuances

of disease outbreaks.
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CHAPTER 4

Investigating Clustering and Violence Interruption in

Gang-Related Violent Crime Data Using

Spatial-Temporal Point Processes with Covariates

4.1 Introduction

Crime occurrences are highly clustered in space and time (Weisburd 2016, Mohler 2019).

Theory suggests that the observed clustering in crime event data is driven by two main effects:

(1) spatial heterogeneity in local risk factors and (2) the dependence on recent crimes which

may incite repeat offenses or retaliations (Heckman 1991). Unfortunately the two effects are

difficult to disentangle in observed data and often confounded in statistical analyses (Johnson

2008, Chp. 9.6 Diggle 2014).

Spatio-temporal clustering is particularly characteristic of gang violent crime (Valasik

2017, Martinez 2016). Explanations for the clustering in gang violent crime also point to a

combination of stable, structural differences between neighborhoods (i.e., spatial heterogene-

ity) (Barton 2019) and the local dynamics of tit-for-tat attacks (i.e., statistical dependence)

(Brantingham 2019, Papachristos 2009). Gangs tend to cluster in areas with high rates of
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poverty, high unemployment, under-performing schools, high rates of female-headed house-

holds, high residential instability, and high percentages of the population under the age of

18, all well-known indicators of concentrated disadvantage that change very slowly over time

(Kubrin 2003, Sampson 1997, Papachristos & Kirk 2006). These neighborhood characteris-

tics undermine a community’s ability to exert social control and limit the activity of gangs

(Curry 1988, Valasik 2017). Gangs are thus enduring features of the social landscape with

territorial footprints that are very stable over time (Brantingham 2019, Patillo-McCoy 1999).

Gang violent crime therefore tends to cluster where gangs are most active, particularly along

gang territorial boundaries (Brantingham 2012, Tita & Ridgeway 2007). Moreover, since

gang territories can be large (e.g., covering whole neighborhoods), or small (e.g., limited

to a single street block), very fine-grained spatial heterogeneity may play a key role in the

clustering of gang crime.

Superimposed on these structural generators of crime are gang social dynamics that

operate both within and between neighborhoods. Gang crimes are often retaliatory in nature

(Decker 1996, Klein and Maxon 2006). Interactions between gangs that threaten geographic

territory or gang reputation can easily escalate to a shooting, while a shooting or homicide

often demands retribution in kind (Hughes & Short 2005, Jacobs & Wright 2006), ultimately

driving a sequence of tit-for-tat reciprocal attacks (Bjerregaard and Lizotte 1995, Rosenfeld et

al. 1999, Howell 2011). Retaliatory aggression may be linked to a deep-seated moral instinct

(Daly and Wilson 1998), street codes that demand quick and decisive retribution (Anderson

1999, Jacobs and Wright 2006, Decker 1996), commitment to delinquent peers (Esbensen et

al. 1993), and social networks that promote the rapid spread of rumors (Hughes & Short
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2005, Green, Horel, Papachristos 2017).

It has recently been argued that Hawkes process models offer a concise statement of these

two important effects (Mohler et al. 2011, Mohler 2014, Reinhart & Greenhouse 2018). In

Hawkes models clustering is attributed to both causal and non-causal mechanisms: an event

occurring in a particular location increases the likelihood that other events will occur in its

vicinity in the near future (causal), while some events occur exogenously due to a chronic,

spatially inhomogeneous background component (non-causal). While useful at a theoretical

level, a Hawkes process model also has important practical implications. Specifically, causal

clustering suggests an opportunity to prevent crime by disrupting the underlying, local dy-

namical processes (Mohler et al. 2011, Mohler et al. 2015, Green, Horel and Papachristos

2017). One such program with the goal to disrupt retaliatory gang violence has been imple-

mented in Los Angeles since 2009.

The City of Los Angeles Mayor’s Office of Gang Reduction and Youth Development

(GRYD) is a city-funded comprehensive gang prevention and intervention program. GRYD

is guided by four foundational approaches: (1) community engagement through educational

campaigns, events and public-private partnerships; (2) prevention programming aimed at

youth ages 9-14 at risk for joining gangs; (3) intervention programming to assist youth and

young adults 15-25 in leaving gangs; and (4) violence interruption that seeks to reduce the

likelihood of retaliations when violent gang crimes do occur (Tremblay, Herz & Kraus 2019,

Cespedes & Herz 2011, Cespedes 2012, Skogan et al. 2009). Our research is focused on this

latter effort, called the GRYD Incident Response (IR) program. In brief, GRYD IR tasks

civilian community intervention workers (CIWs) with responding quickly to violent gang
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incidents as they occur. In the field, CIWs work to control rumors, proactively diffuse tensions

and deliver services to victims and their families. CIWs coordinate with regional program

coordinators (RPCs) in the GRYD Office who remain in close communication with the LAPD

about gang suppression and investigative activities. This Triangle Partnership ensures that

effective lines of communication remain open and allows CIWs to work separately from,

but in parallel with the Los Angeles Police Department (Tremblay, Herz & Kraus 2019).

However, due to both resource limitations and discretion in the reporting process, violence

interruption is usually only deployed for a subset of reported gang-related violent crimes. A

central question of interest therefore is whether the GRYD IR Program is effective and how

much, if at all, it reduces retaliatory crime. If it is effective, then the argument can be made

that efforts should be made to ensure that GRYD IR is deployed more widely to cover more

of the gang-related violent crime occurring on the streets.

We suspect that the effectiveness of GRYD IR is closely tied to how much causal trig-

gering is present in gang related crime. In general, the more causal triggering there is, the

greater the opportunity to disrupt retaliations with rapid response. Thus discriminating be-

tween causal clustering and inhomogeneity in the gang-related violent crime data is central

to our study of the effect of GRYD IR. Discriminating between causal clustering and in-

homogeneity is a difficult problem arising frequently in the study of spatial-temporal point

processes (see Chp. 9.6 of Diggle 2014). Indeed, in fitting spatial-temporal Hawkes processes,

it is often inadvisable to use identical data to estimate parameters governing the background

rate (inhomogeneity) and the triggering density (causal clustering), as these parameters may

not be jointly identifiable. For this reason, Ogata (1998, section 4.2) suggests modeling the
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background rate for earthquakes using only the largest events in the catalog, for instance.

For crimes, there is no such natural partitioning of events based on magnitude to guide the

estimation of the background rate. In the case of reported gang-related crimes in South Los

Angeles, we attempt to model the inhomogeneity non-parametrically using generalized addi-

tive modeling. Specifically, we model spatially-varying crime rates given observable covariates

linked to social and economic variations in the urban environment. With these factors ac-

counted for, additional clustering observed in the data may be more reasonably attributed

to retaliatory criminal behavior.

Spatially varying covariates have previously been used to model the background spatial

inhomogeneity in Hawkes processes by Reinhart and Greenhouse (2018). However, simple

parametric forms of the background rate were required for tractable analytic maximization

steps in the EM-algorithm. We propose an iterative procedure that allows for use of any

supervised learning method using covariates. For the first time, we compare the fit and pre-

dictive performance between using covariates for estimating the background rate of crime

and the more common method of kernel smoothing over all crimes as in Mohler (2011,

2014). Methodological choices in bandwidth selection for kernel smoothing are examined.

We demonstrate through our results that kernel smoothing over all reported crimes in the

dataset can lead to confounded estimates of background inhomogeneity and causal clus-

tering/retaliation. We assess how this affects the estimated amount of retaliation and its

space-time decay rates.

One challenge in evaluating the efficacy of the GRYD IR Program is that its response

to violent events are not randomized due to serious practical and ethical considerations;
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One cannot legitimately refuse to provide services to a victim’s family for the purposes of

experimental purity. Rather, GRYD CIWs use their highly specialized knowledge of the local

gang dynamics and intervene in areas believed to be more prone to retaliations (Tremblay,

Herz & Kraus 2019). As a result, excitation/retaliation rates are naturally biased upward

for crimes exposed to the GRYD IR Program compared to untreated crimes, even after

controlling for spatial inhomogeneity of the background rate of reported crimes. We propose

a simple method inspired by point process thinning (Lewis & Shedler, 1979) to sample

untreated crimes so that they are distributed similarly in space and time to the crimes

exposed to GRYD IR Program efforts. This allows an approximate treatment vs. control

comparison of the GRYD IR Program. The results reveal that the GRYD IR Program is

effective, reducing rates of reported retaliations by an estimated 18.3% over two different

spatial scales and reducing such retaliation rates within a spatial scale by an estimated

14.2% according to the fitted model.

The rest of this paper is organized as follows. A brief description of the data is provided

in Section 4.2. Our proposed iterative method to incorporate non-parametric regression for

the background rate of a Hawkes process while simultaneously estimating the triggering

component is explained in Section 4.3 along with a description of methods for covariate

selection, out-of-sample prediction log likelihoods, residual analysis, and sampling controls

to compare with the GRYD IR Program. The results and a discussion are given in Sections

4.4 and 4.5 respectively.
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4.2 Data

Reports of gang-related violent crimes from 2014-2017 were collected by the Los Angeles

Police Department (LAPD) and the City of Los Angeles Mayor’s Office of Gang Reduction

Youth Development (GRYD). GRYD operates in 23 zones throughout Los Angeles (GRYD

2017 Evaluation Report). We focus on ten GRYD Zones in South Los Angeles that represent

7% of the total land of Los Angeles ( 1,302 km2) and approximately 15.5% of the total

population (3.9 million). This region accounted for 44.7% of all officially reported gang-

related violent crimes in Los Angeles between the beginning of 2014 to the end of 2017. Of the

3627 reported crimes in our study, 1100 were exposed to GRYD IR Program efforts. Multiple

records, representing multiple victims of an identical crime, are collapsed to one report.

LAPD officers record the locations of crimes at the level of street addresses or intersections.

For privacy reasons, latitudes and longitudes are uniformly randomized over a 15 meter

interval centered at each reported crime.

Demographic and socio-economic covariates are compiled at the census tract block level,

which is currently the highest resolution published by the U.S. Census. These data are

obtained from the American Community Survey (ACS, 2017), publicly available at https:

//factfinder.census.gov. We use the same eight variables used in Kyriacou et al. (1999),

who previously studied the relationship between socioeconomic factors and gang violence

in the city of Los Angeles: per capita income, unemployment, percentage with high school

degree, percentage of single-parent families, percentage of males, percentage under 20 years

of age, percentage black, and percentage Hispanic. We also include population density as

a potential covariate since in point process modeling our outcome variable is essentially
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reported crime rate per unit of time and space while Kyriacou et al. (1999) studied reported

crimes per 100,000 people.

Latitudes and longitudes are geocoded to census block identifiers using https://geocoding.

geo.census.gov. Data on the land mass of each census block uses the latest publicly avail-

able source, the 2010 Census of Population and Housing (U.S. Census, 2012). Our study

region consists of 410 census blocks. The average size of each block is approximately 0.22

km2, and the median number of reported crimes in each census block over the 4 years of

observation is 7.

4.3 Methods

We note at the outset that most of our inferences are based on the particular formulation

of the Hawkes model in equation (4.10) below, with background rate estimated using (4.9).

We will later refer to this as model (IV). For comparison and to motivate this model and

estimation procedure, we also consider various alternatives described in what follows.

4.3.1 Overview of Hawkes models

We consider crime data as a marked space-time point process {(ti, xi, yi,mi) : i = 1 . . . .N},

representing the times, locations, and mark information associated with gang-related violent

crimes. In our study, the marks recorded are indicators of whether crimes were exposed

to GRYD IR Program efforts or not. The rate of occurrences of points with any mark is
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characterized via the conditional intensity,

λ(t, x, y|Ht) = lim
∆t,∆x,∆y↓0

E[N
(
(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)

)
|Ht]

∆t∆x∆y
.

Daley & Vere-Jones (2003) showed that all finite dimensional distributions of a simple point

process (i.e. a process with almost surely no coincident points) are uniquely determined by

its conditional intensity. In the study region S, where (x, y) ∈ S ⊂ R2 and t ∈ [0, T ), N(A)

counts the random number of occurrences over the set A ⊂ S × [0, T ) given the history Ht

of all points occurring prior to time t. The conditional intensity λ can be interpreted as the

instantaneous expected rate of a reported crime per volume of space-time.

When the data features clustering over space and time, it is common to model λ using

self-exciting point process models, where each event triggers further events by temporarily

and locally boosting the conditional intensity λ. A Hawkes model is a particular formulation

for a self-exciting process that has been successfully used to model the spread of invasive

species (Balderama et al. 2012), epidemic disease spread (Meyer et al. 2012), earthquakes

(Ogata, 1998), financial transactions (Bauwens & Hautsch, 2009), neuron activity (Johnson,

1996), reported burglaries (Mohler et al. 2011), email networks (Fox et al. 2016) and terrorist

attacks (Porter & White, 2012). The Hawkes model can be specified as

λ(x, y, t) = µ(x, y, t) +
∑
i:ti<t

κ(i)g(x− xi, y − yi, t− ti), (4.1)

where the triggering density g governs the spatial-temporal distance of triggered events

from their antecedent events and is usually modeled to decay with distance from the origin
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over time and space. Previous authors have typically modeled the background rate µ as

spatially varying but constant in time. The spatial-temporal distribution of triggered events

is commonly assumed to be separable, meaning g(x, y, t) = g1(x, y)g2(t). We scale g1 and g2

to be densities as suggested in Schoenberg (2013), which implies the productivity κ(i) > 0

represents the expected number of events triggered directly by event i, and we let κ(i) = κ1

if crime i is exposed to GRYD IR Program efforts and κ2 otherwise, where κ1 and κ2 are

scalar parameters to be estimated. In the absence of the GRYD IR Program, any particular

crime is expected to be an ancestor to κ2 + κ2
2 + κ3

2 + ... = 1
1−κ2 − 1 total retaliatory crimes.

Productivities must be nonnegative and are constrained to be less than 1 in order for the

process to be stable.

Our parametric specification of g follows Mohler (2014) and Reinhart and Greenhouse

(2018). Consider g2(t− ti) = ωe−ω(t−ti) where ω controls the decay rate of triggering and 1/ω

is the average response time. The spatial distribution of triggered crimes, g1, is assumed to

be isotropic, that is g1(x, y) = h(r) in polar coordinates where r =
√
x2 + y2 and h(r, θ) =

h(r). Given
∫ ∫

A
g1(x, y)dA =

∫∞
0

∫ 2π

0
g1(r cos θ, r sin θ)rdrdθ =

∫∞
0

∫ 2π

0
h(r)rdrdθ = 1, set

g1(x, y) = h(r)/2πr so that h(r) is the probability density function for the distance r between

a reported crime and any reported retaliation it triggers. The function h of distance may be

any density on the real half-line, such as the truncated Gaussian centered at zero,

h(r) =

√
2√
πσ2

exp(− r2

2σ2
). (4.2)

Given a parametrized model for λ(t, x, y), the log-likelihood of an observed sequence of
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N reported crimes over an interval [0, T ] in region S is (Daley & Vere-Jones 2003)

l(Θ) =
N∑
i=1

log(λ(ti, xi, yi|Ht))−
∫ T

0

∫ ∫
S

λ(t, x, y|Ht)dxdydt. (4.3)

Ogata (1978) showed that under general conditions the maximum likelihood estimate (MLE)

is consistent, asymptotically unbiased and efficient, with standard errors estimated using the

square root of the diagonal elements of the inverse Hessian of the loglikelihood.

4.3.2 Background Rate Estimation

Accurate estimation of the background rate µ is critical for accurately estimating the param-

eters in (4.1), and is especially important for the discrimination between spatial-temporal

inhomogeneity and causal clustering. The key idea is that after properly accounting for

background inhomogeneity, the remaining clustering can be reliably attributed to retalia-

tion. Background rate estimation is thus the subject of careful study here, and we consider

two different estimates for the background rate µ(x, y, t) in (4.1).

4.3.2.1 Kernel Smoothing with Stochastic Declustering

The background process µ(x, y, t) represents the expected rate of reported crimes in the

absence of retaliation. In applying such Hawkes models to reported crimes, Mohler et al.

(2014) propose estimating µ using a time-invariant smoother over all events, using mark

dependent weights β(i), for example:
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µ̂(x, y, t) = µ(x, y) =
N∑
i=1

β(i)

2πη2T
exp

(
− (x− xi)2 + (y − yi)2

2η2

)
. (4.4)

Here T is the length of the observation period and N is the total number of observed points.

The smoothing bandwidth η is typically constrained to be identical to the triggering band-

width σ in (4.2) in order to achieve numerical stability in optimization and identifiability of

the parameters (Mohler et al. 2014). In our study, we choose not to impose these constraints

on the smoothing nor triggering bandwidths and instead estimate them separately in what

follows below.

Estimating the background rate by smoothing over all points with equal weights, regard-

less of whether each point is more likely to be a background point or a retaliation, may lead

to mis-attribution of triggering as background and vice versa. In addition, in the presence of

intense spatial clustering, a fixed bandwidth may yield noisy estimates in sparse areas and

over-smoothed estimates between dense and sparse areas (Zhuang et al., 2002). Thus, as an

alternative to (4.4), we obtain a weighted, variable-bandwidth, stochastically de-clustered

background rate estimate:

µ̂(x, y, t) =
N∑

i:(xi,yi)6=(x,y)

wi
2πd2

iT
exp

(
− (x− xi)2 + (y − yi)2

2d2
i

)
. (4.5)

In (4.5), the variable bandwidth di is the radius of the smallest disk centered at point

(xi, yi, ti) that includes at least np other events; each di is constrained to be at least some

minimal value ε representing the approximate size of errors in location estimates. The weight

wi is the estimated probability, according to the fitted model (4.1), that crime i is a back-
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ground event, and is computed as

wi =
µ̂(ti, xi, yi)

λ̂(ti, xi, yi)
. (4.6)

The algorithm, originally proposed in Zhuang et al. (2002), works by iteratively estimating

the parameters of h and updating estimates of {wi}Ni=1.

4.3.2.2 Temporal Variation in Background Rate

According to (4.5), the temporal density of background events is stationary (1/T ), and

the spatial distribution does not change over time. However, given the pronounced temporal

fluctuations in reported gang-related violent crimes shown in Figure 4.1, a constant temporal

background rate is unrealistic and may lead to inflated estimates of productivity (i.e. mis-

attribution of background crimes as triggered events). Therefore, as in Fox et al. (2016), we

allow the temporal distribution of background crimes to be non-stationary:

µ̂(x, y, t) = v(t) ·
N∑

i:(xi,yi)6=(x,y)

wi
2πd2

i

exp
(
− (x− xi)2 + (y − yi)2

2d2
i

)
. (4.7)

To estimate the temporally varying component v(t) in the background rate (4.7), we

follow the component-wise procedure of Fox et al. (2016), obtaining the estimate v̂(t) =

cf̂1(h)f̂2(d)f̂3(y) where h ∈ [0, 24), d ∈ {0, . . . , 6} and y ∈ {0, 1, 2, 3} represent hours, days

and years respectively. We estimate the daily cycle f̂1(h) via kernel smoothing the times of the

days of the reported events; the repeating weekly cycle f̂2, and year-to-year variations f̂3 are

simply estimated via histogram estimators representing the proportion of crimes occurring
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on certain days d and years y, i.e. f̂2 =
∑N

i=1 I(di = d)/N and f̂3 =
∑N

i=1 I(yi = y)/N .

The estimated daily, weekly, and multi-year components of v(t) are shown in Figure 4.1. No

substantial annual cycle was observed for reported gang-related violent crimes in this study

period. The constant c is chosen to ensure that
∫ T

0
v̂(t)dt = 1 and is accurately approximated

by a Riemann sum.

Figure 4.1: Temporal distribution of all gang crimes

(Left to right): Daily cycle, weekly cycle, and year-to-year variations in crime used for components of v̂(t).

4.3.2.3 Generalized additive modeling of covariates

Rather than estimating the background rate µ by smoothing over observed events, an alter-

native way to estimate the background rate is to use information on the spatial heterogeneity

in demographic and socio-economic covariates. Reinhart and Greenhouse (2018) used covari-

ates to model the background rate of a Hawkes process for reported burglaries in Pittsburgh

with the parametric form

µ(x, y) = exp
(
v(x, y)′γ

)
, (4.8)
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where γ is a vector of coefficients to estimate and v(x, y) is a vector of covariates measured at

location (x, y). In our application, following covariate selection using gam, v(x, y) represents

the covariates per capita income, population density, male percentage, single parent rate and

unemployment rate for the census block containing the location (x, y).

Instead of requiring the background rate to follow an exponential or some other particular

functional form, we propose allowing µ̂(x, y) = f̂(v(x, y)), where f̂ is estimated nonparamet-

rically, e.g. by generalized additive modeling (GAM). A simplistic approach would be to

first estimate f by nonparametric regression of the observed crimes on the covariates v(x, y).

The problem with such an approach, however, is that both background and triggered crimes

would be used in estimating f , though in principle only background crimes should be used.

We propose the following iterative solution. Suppose the study region is divided into 410

census blocks {Bk}410
k=1, where Bk is a set of indices of crimes belonging to the kth census

block. Given a fitted model, we estimate the background crime rate of census block k as∑
i∈Bk

wi/ak where wi is defined in (4.6) and ak is the area in km2. We propose to estimate

f via nonparametric regression of
∑

i∈Bk
wi/ak on covariates in the following algorithm:

Algorithm 1

1. Initialize l← 0, w
(0)
i ← null and µ(0)(x, y)← 10.

2. Using maximum likelihood estimation, fit

λ(x, y, t) = c · v(t) · µ(l)(x, y) +
∑
i:ti<t

κ(i)g1(x− xi, y − yi)g2(t− ti)

where v(t), κ, g1, g2 are as defined previously and c is an estimated parameter
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governing the proportion of events attributed to the background rate.

3. Calculate wi from (4.6) and update w
(l+1)
i ← wi for i = 1 . . . N .

4. Fit

µ̂(x, y) = f̂(v(x, y)), (4.9)

where f is estimated by nonparametric regression of
∑

i∈Bk
wi/ak on census block

level covariates and update µ(l+1)(x, y)← f̂(v(x, y)).

5. If maxi |w(l+1)
i −w(l)

i | > ε, where ε is a small positive number, then update l← l+1

and go to step (2). Otherwise stop.

The function f can be estimated using any nonparametric regression method in step (4),

and we estimate f via GAM in the application here for maximal flexibility.

4.3.3 Near and Far-Field triggering

The smoothness of the estimated background rate using spatial covariates depends not only

on the variability of the covariates across different spatial units, but also on the resolution

of the spatial units themselves. In practice, the observed spatial covariates are piecewise

constant. Even when using the highest available spatial resolution kept by the U.S. Census

where the average size of a census block is equivalent to an area of a 470 by 470 meter square

containing only a median of 7 crimes over 4 years, clustering in the reported crimes is still

evident within the scale of a census block, especially in census blocks with high 4 year crime

counts.
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Therefore, when estimating models with background rates using covariates, we allow

different parameters for the near and far-field triggering, using the following modification to

the total triggering rate:

λ(x, y, t) = v(t)µ(x, y)+
∑
i:ti<t

κnear(i)
h1(r)

2πr
ω1e

−ω1(t−ti)+
∑
i:ti<t,
r≥d

κfar(i)
h2(r)

2πr
ω2e

−ω2(t−ti), (4.10)

where h1 is a half-normal density over the positive real line with triggering bandwidth σ1

and h2 is a half-normal density centered at d (d km’s away from the originating reported

crime) with support [d,∞) and with triggering bandwidth σ2. We estimate d using the

median distance from the observed crimes to their nearest neighbors in different census

blocks (130m). We use the notation κnear(i) = κ1 and κfar(i) = κ3 if crime i is associated

with the GRYD IR Program, and otherwise κnear(i) = κ2 and κfar(i) = κ4, where κ1, κ2, κ3

and κ4 are scalar parameters to be estimated by maximum likelihood.

4.3.4 Integral Approximation

The first term of the log-likelihood in (4.3) is straightforward to compute while the integral

term must be numerically approximated, which can be a substantial computational challenge

(Harte 2013). In all models investigated in this paper, we use the analytic integral approxi-

mation in Schoenberg (2013), and find parameter estimates by MLE using the quasi-Newton

method developed by Broyden, Fletcher, Goldfarb and Shanno (1970). The integral approx-

imation is based on interchanging the order of the integral in (4.3) and the sum in (4.1);

this approximation is perfect if all triggering is confined to the spatial-temporal region being

observed (Schoenberg 2013).
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For example, the approximate log-likehood for the model with background rate (4.7) is:

l(κ1, κ2, β1, β2, ω, σ, η) =
N∑
i=1

log[λ(xi, yi, ti)]−
N∑
i=1

[
wi + κ(i)

]
. (4.11)

As a baseline for comparison, we also consider a model with a spatially constant background

rate

µ(x, y, t) = c · v(t), (4.12)

whose log-likelihood is

l(κ1, κ2, c, ω, σ) =
N∑
i=1

log[λ(xi, yi, ti)]− c · |S| −
N∑
i=1

κ(i), (4.13)

where |S| is the area of the observation region being studied.

4.3.5 Sampling non-GRYD crimes as controls for GRYD IR Program crimes

After attempting as carefully as possible to distinguish inhomogeneity from causal cluster-

ing, we seek to evaluate whether the GRYD IR Program effectively reduces retaliations by

comparing the estimated productivity for reported crimes with exposure to violence inter-

ruption with the productivity of reported crimes without such exposure. If the GRYD IR

Program violence interruption efforts were randomly assigned over space and time, this com-

parison would be straightforward. However, it is well known that the decision by the GRYD

IR Program when and whether to intervene is made based on attempts to maximize the

effect of violence interruption with limited resources, using specialized knowledge of local

gang dynamics in an attempt to intervene following crimes believed most likely to spark
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retaliation (Skogan et al. 2009; Tremblay, Herz & Kraus 2019). Thus, the reported crimes

associated with the GRYD IR Program are more likely to occur in areas of high reported

gang-related activity, for instance, and thus to occur in areas of higher subsequent reported

crime incidence despite the possible effectiveness of the violence interruption.

Instead of using just two marks for the GRYD IR Program and non-GRYD, we intro-

duce a third mark which is sampled from non-GRYD crimes that are spatially-temporally

distributed similarly to GRYD IR Program crimes. Our aim is to obtain a sample of non-

GRYD crimes with similar spatial-temporal characteristics as the GRYD IR Program crimes

to isolate the effect of the GRYD IR Program.

Figure 4.2: Temporal distribution of marks (hourly)

(Left to Right): Kernel density of GRYD IR Program crime events, average kernel density of 50 samples of
non-GRYD crimes and remaining unsampled non-GRYD. Dotted: 5th and 95th percentile of 50 estimated
kernel densities.

We suppose that reported crimes exposed to GRYD IR Program efforts occur with an

intensity varying over space, hour of the day and day of the week, given by P (x, y, h, d) =

P1(x, y)P2(h)P3(d), and that non-GRYD crimes follow Q(x, y, h, d) = Q1(x, y)Q2(h)Q3(d).

Spatial distributions P1 and Q1 are estimated using kernel density estimation with Gaussian

kernels and default bandwidths along each dimension given by Sheather & Jones (1991). The
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Figure 4.3: Temporal distribution of marks (weekly)

Proportion of occurences each day. (Left to Right): GRYD IR Program crime events, average of 50 samples
of non-GRYD crimes and remaining unsampled non-GRYD. Whiskers: 5th and 95th percentile proportion
of 50 samples.

24 hour cycles P2, Q2 and day-to-day weekly cycles P3, Q3 are estimated in the same manner

as the components of v(t) in (4.7) and displayed in Figures 4.2 and 4.3. We then sample the

same number of non-GRYD crimes as there are reported crimes for the GRYD IR Program,

without replacement, using sampling weights νi given by

νi =
P̂1(x, y)P̂2(h)P̂3(d)

Q̂1(x, y)Q̂2(h)Q̂3(d)
. (4.14)

This results in a sample of non-GRYD crimes whose spatial-temporal distribution is similar

to that of GRYD IR Program crimes, and this sampling can be performed repeatedly. The

results of one such sampling are shown in Figure 4.4. This sampling is repeated 50 times,

and the associated productivities are estimated by maximum likelihood each time. We then

compare the average estimated productivity of GRYD IR Program crimes with the average

estimated productivity of the sampled control crimes to evaluate the efficacy of the violence

interruption efforts.
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Figure 4.4: Spatial distribution of marks

(Left to Right): Locations of GRYD IR Program crime events, one sample of non-GRYD crimes and remaining
unsampled non-GRYD crimes. The union of crimes in these three panels are used to estimate models in Table
4.1.

4.3.6 Evaluation Methods

Four types of models and background rate estimation methods are investigated: (I) constant

background model in (4.12), (II) kernel smoothed background model in (4.7), (III) covariate

background model in (4.9), all with triggering as in (4.2), and (IV) covariate background

model (4.9) with near and far-field triggering as in (4.10). To assess the efficacy of the

GRYD IR Program, we also evaluate the fit of the model (IV) with sampled non-GRYD

control marks as detailed in Section 4.3.5. Log-likelihood scores are used to compare the

goodness of fit on training data from 1/1/14 to 12/31/16, the same data used in the fitting.

To investigate possible over-fitting, out-of-sample log-likelihood scores for each model are

also computed, using data from 1/1/14 to 12/31/16 in the fitting and data from 1/1/17 to

12/31/17 for evaluation. Superthinned point process residuals, described below, are used to

examine the model forecasts from 1/1/17 to 12/31/17.

Superthinning involves both thinning the original data points and superposing a new set
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of points, and is an effective way to evaluate the fit of a point process model (Clements et al.

2013, Bray and Schoenberg 2013). The observations are first thinned, i.e. each observation

is randomly kept with probability min
{
b/λ̂(t), 1

}
, where b is a tuning parameter chosen

by the user. Next, a Poisson process with constant rate b is generated over the space-time

observation region, each point of this Poisson process is independently kept with probability

max
{

(b− λ̂(t))/b, 0
}

, and these remaining points are superposed, i.e. added to the collection

of thinned observations. The resulting residual process should be a homogeneous Poisson

process with rate b if and only if the modeled conditional rate is correct (Clements et al.

2013), and thus departures from homogeneity in the residuals can be detected as evidence of

lack of fit of the model. Sparsity of points in the superthinned residuals corresponds to areas

where the model over-predicted, whereas clustering in the residual points indicates areas

where the model under-predicted the number of observed events. For all models considered

here, we use identical candidate points to be superposed, so that our comparisons are not

impacted by random fluctuations in the superposition step, and we use the mean number of

observed points per unit of space-time as the default estimate of b, as suggested by Clements

et al. (2013).

4.4 Results

4.4.1 Spatial-Temporal and Covariate Effects

The spatial distribution of the GRYD IR Program events, non-GRYD events sampled ac-

cording to (4.14), and other non-GRYD events are shown in Figure 4.4, and the temporal

distributions of the three classes of events are shown in Figures 4.2 and 4.3. If GRYD IR
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Program events were assigned purely at random, then the point patterns shown in the three

panels of Figures 4.4, 4.2 and 4.3 would be distributed identically. As expected, however, the

GRYD IR Program events are substantially more clustered than the non-GRYD events de-

picted in the rightmost panel of Figure 4.4. The temporal distributions of GRYD IR Program

and non-GRYD events in Figures 4.2 and 4.3 show modest deviations.

The following five variables are selected by the stepwise selection procedure in the R

package gam (Hastie, 2018): income per capita, unemployment, population density, percent

male and percent single parent families. These same variables were selected even when differ-

ent initial models were used for the stepwise procedure. The estimated additive predictors for

the GAM regression background rate are shown in Figure 4.5. Estimated background rates

of reported gang-related violent crimes are higher in areas with high population density and

in areas with low income per capita and high unemployment rates. A slight increase in the

estimated background rate of reported crimes is associated with areas where the proportion

of males is lower and the percentage of single parent families is higher, though these effects

appear to be rather minimal.

The estimated spatial background rates (excluding the global non-stationary component

v(t)) for models (II) and (IV) are depicted in Figure 4.6. With all three models, the estimated

background rates indicate substantial inhomogeneity. Certain hot spots are noticeable, such

as near Hyde Park (-118.335o, 33.98o) and Crenshaw (-118.35o, 34.02o) as well as along

Normandie Avenue (longitude -118.3o). The eastern half of the study region generally appears

to have a higher background rate.
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Figure 4.5: Estimated additive predictors of GAM background

Dotted=95% confidence intervals. The y-axes are the individual additive contributions of each covariate
towards the output which is in units of background crimes per square km. All covariates are estimated with
2 degrees of freedom.

4.4.2 Model Fit and Estimates

Parameter estimates and log-likelihood scores for models fit using data from 2014-2016 are

reported in Table 4.1. Comparison of the fit of models (I), (II), and (III) reveals that all

three have serious inadequacies in untangling causal clustering from inhomogeneity. Model

(I) fits worse than the others as indicated by its much lower log-likelihood in-sample (for

2014-2016). Model (I) also fits the worst on the out-of-sample testing data from 2017. Model

(IV) has considerably higher log-likelihood than the other models, indicating superior fit
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Figure 4.6: Estimated spatial background rates

(Left, Right): Kernel smoothed background rate with variable bandwidth and weights of model (II), gener-
alized additive model (GAM) background rate of model (IV).

to the in-sample, 2014-2016 data. In contrast to model (II), models (III) and (IV) have a

higher log-likelihood while their estimated background rates attribute more reported crimes

to triggering (18% and 22% respectively). Between models (III) and (IV), the more complex

model (IV) with independent triggering for near and far-field retaliations has higher in-

sample log-likelihood.

The variable bandwidth estimate (4.5) used in model (II) appears less smooth than model

(IV) in Figure 4.6, and as a result attributes only 16% of reported crimes to triggering. The

background rate in model (II) uses np = 15, which is the minimum recommended number

by Fox et al. (2016). The 25th, 50th and 75th percentile of the varying bandwidths are

respectively 275, 351 and 437 meters, and is comparable to the bandwidth selected using

Sheather & Jones (1991).
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Table 4.1: Productivity and background rate parameter estimates, log-likelihood

(Model Number): Background Type

(I): Constant
(II): Variable

Bandwidth/Weights
(III): Covariate (IV): Covariate

GRYD IR Program, κ1 0.184 0.144 0.172 0.170
(0.018) (0.017) (0.018) (0.014)

non-GRYD, κ2 0.197 0.170 0.187 0.186
(0.012) (0.011) (0.012) (0.011)

Constant background, c 24.644
(0.560)

GRYD IR Program, κ3 (far-field) 0.102
(0.027)

non-GRYD, κ4 (far-field) 0.00893
(0.0014)

Percent Background 0.807 0.838 0.818 0.782
Log-likelihood 0 143.17 177.64 187.22
Out-of-sample log-likelihood 0 59.8 73.3 75.9

The standard errors of the parameter estimates are in parentheses. Spatial units are in kilometers and
temporal units are in days. Log-likelihoods are the difference with respect to model (I), where the log-
likelihood was -11148.84 and the out-of-sample log-likelihood was -3964.9.

In Table 4.2, the estimated spatial triggering bandwidth σ in models (I), (II), and (III)

are all very local, between 12 to 15 meters, and the respective estimates of the temporal

decay ω, are consistently small with a median time to response of almost 180 days. This

would suggest that triggered crimes are near-repeat and chronic, and there are few swift

retaliations across gang territories. Model (IV) investigates whether there exists any addi-

tional triggering beyond the scale of census tract blocks. The estimated percentage of crimes

attributed to background, non-triggered crimes (78.2%) in model (IV) is smaller than models

(I), (II) and (III). According to the fitted model (IV), an estimated 18.1% of crimes in this

dataset are triggered within the scale of a census block and 3.7% are triggered by preceding

crimes occurring at least 130 meters away. These estimates are found by a weighted aver-

age of (κ1, κ2) and (κ3, κ4), respectively. The estimated spatial bandwidth for the far-field

triggering is 200 meters and the estimated median time to retaliation is 13 days. Thus, the

fitted parameters in model (IV) suggest that there exists a small but non-trivial amount of

74



triggering which occurs across distances of several hundred meters within short inter-event

times.

Table 4.2: Triggering shape parameter estimates

(Model Number): Background Type

(I): Constant
(II): Variable

Bandwidth/Weights
(III): Covariate (IV): Covariate

Temporal decay ω1 0.00391 0.00389 0.00391 0.00391
(0.00019) (0.00021) (0.00020) (0.00021)

Temporal decay ω2 (far-field) 0.0519
(0.0099)

Spatial triggering bandwidth σ1 0.0151 0.0121 0.0139 0.0138
(0.001) (0.0009) (0.0010) (0.001)

Spatial triggering bandwidth σ2 (far-field) 0.200
(0.012)

The standard errors of the parameter estimates are in parentheses. Spatial units are in kilometers and
temporal units are in days.

4.4.3 Out-of-Sample Evaluation

The log-likelihood evaluated on the testing data using models with parameters estimated

using only data from 2014-2016 and assessed on data from 2017 are listed in the bottom row

of Table 4.1. Not surprisingly, the constant background model (I) offers a poor fit compared

to all models. Between models (III) and (IV), the more complex model (IV) has slightly

higher out-of-sample log-likelihood while both out-performed model (II). The results suggest

that the superior in-sample fit of models (III) and (IV) relative to (II) is not a result of

over-fitting.

Superthinned residuals are shown in Figure 4.7. Model (I) shows clustering of residual

points east of Normandie Avenue and sparsity in the North Western quarter of the obser-

vation region. There is identifiable clustering (underprediction) in northern census tracts for

kernel smoothed background model (II) while the covariate model (IV) does not exhibit this

75



feature.

Figure 4.7: Superthinned Residuals

(Left to right): Constant background model (I), variable bandwidth - variable weighted kernel smoothed
background model (II). GAM background model (IV). Dots: Kept original points. Crosses: superposed points.

4.4.4 Efficacy of the GRYD Program

Table 4.3 shows the average of 50 estimates of model (IV) using all 4 years of data with

sampled non-GRYD control marks detailed in Section 4.3.5. The estimated productivities

show that the GRYD IR Program appears to have an effect on reducing triggered reported

gang-related violent crimes. For distances less than 130m within census blocks, the GRYD

IR Program appears to reduce retaliation rates from 0.240 to 0.206 retaliations per crime,

for a decrease of 14.2%, compared with events in similar locations but without the GRYD

IR Program. Over distances greater than 130m, the GRYD IR Program appears to reduce

retaliatory triggering rates from 0.197 to 0.161 retaliations per crime, for a decrease of 18.3%.

Note that the estimated productivities for GRYD IR Program and non-GRYD crimes in

Table 4.1 offer a biased estimate of the impact of GRYD IR Program violence interruptions

because they are not a random assignment over space and time, as seen in Figures 4.4,4.2

and 4.3. The parameter estimates in Table 4.3 are preferable for this purpose.
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Table 4.3: Estimated productivity and smoothing weights for sampled controls

Model (IV) with sub-sampled control marks
GRYD IR Program, κ1 0.206

(0.017)

Sampled non-GRYD controls, κ2 0.240
(0.018)

Remaining non-GRYD, κ3 0.196
(0.014)

GRYD IR Program, κ4 (far-field) 0.161
(0.033)

Sampled non-GRYD controls, κ5 (far-field) 0.197
(0.033)

Remaining non-GRYD, κ6 (far-field) 0.0002
(0.0028)

Log-likelihood -14610.16

The standard errors of the parameter estimates are in parentheses. Data from 1/1/2014 to 12/31/2017 are
used.

4.5 Discussion

This paper proposes an algorithm to non-parametrically estimate the background rate of a

marked spatial-temporal point process model using spatial covariates. After fitting a vari-

ety of models designed to describe the inhomogeneity in the background rate as accurately

as possible, we find evidence of chronic, near-repeat clustering within the scale of a census

tract. For models (I), (II) and (III), this sub-census tract clustering dominated the estimated

triggering parameters, which suggested that almost no retaliations occur swiftly across gang

territories. Model (IV) performed better both within and out-of-sample, and its fitted pa-

rameters suggest that an estimated 18.1% of reported crimes in this dataset occur in a slow

and chronic response to preceding crimes occurring within the scale of a census block and

3.7% are swift retaliations to preceding crimes occurring at least 130 meters away.

To evaluate the efficacy of the GRYD IR Program, we propose a sampling method to find
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a subset of un-intervened crimes to serve as controls. This revealed that, after accounting

for the fact that GRYD IR Program violence interruption efforts occurred in locations of

generally high rates of gang-related violent crimes, the GRYD IR Program appears to reduce

reported retaliations occurring 130 meters away or more by approximately 18.3%, and appear

to decrease reported retaliations within 130 meters of the original reported crime by 14.2%.

Future research will explore spatially varying retaliation rates.

Methods for bandwidth selection are critical when using kernel smoothing methods for

background rate estimates, which can in turn have a large impact on estimates of triggering,

as any observations not attributed by the model to the background rate are necessarily

attributed to retaliation. To allow for more accurate estimation, we use variable bandwidth

kernel smoothing , allowing the bandwidths used in the estimation of the background rate to

be different from those governing the triggering kernel. Over-fitting is also a serious concern,

and we find no evidence here of over-fitting for model (III) and (IV), which offer superior fit

to the data from 2014-2016 used in the model fitting, as well as high log-likelihoods evaluated

on external data from 2017 used for testing compared to models (I) and (II). Therefore using

covariates to estimate the background rate, rather than simply smoothing over the observed

points, appears to be preferable.

78



CHAPTER 5

Preliminary Work on Ongoing Extensions

This chapter contains some ongoing work to be published. Section 5.1 validates and assesses

the procedure in Section 4.3.5. In Section 5.2 we introduce a point process model of disease

spread with no background rate of infections, and smoothly varying productivities that are

allowed to be greater than 1. Section 5.3 proposes a non-parametric algorithm to estimate

the Recursive Point Process model introduced in Schoenberg et al. (2019).

5.1 Event-Based Interventions, Synthetic Controls and the Law

of Crime Concentration

5.1.1 Introduction

Violence interventions may be non-randomized because a controlled trial would pose both

practical and ethical problems. We saw evidence of this in Chapter 4, Figure 4.2 and 4.3.

This caused biased in the estimates of the productivity associated with the intervened crimes,

where naive results showed that violence interventions had no effect or even worsened the pro-

ductivity of retaliations. The so-called synthetic controls introduced in Section 4.3.5 allowed

an approximate treatment-to-control comparison of intervened and un-intervened crimes.
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Through simulation studies in the following sections, we recreate conditions in which esti-

mated probabilities become biased due to the non-random nature of treatments. We discover

that simple Hawkes models can provide accurate productivity estimates even when treat-

ments are non-random and that bias is only caused when ground truth productivities vary in

space and time. We quantify the amount of bias caused when non-randomized interventions

are erroneously assumed to be a randomized control trial and we show that the synthetic con-

trols can be used to correctly recover the ground truth efficacy of the intervention/treatment

even with non-random assignments.

5.1.2 Methods

5.1.2.1 Simulation 1

We simulate a space-time Hawkes process over the space (xi, yi) ∈ S = [0, 1]× [0, 1] and the

window ti ∈ [0, T ], where T = 365. The ground truth background rate is set to be

µ(x, y, t) = N · v(t)
(
a1G1 + a2G2

)
(5.1)

where a1 = a2 = 1
2

and v(t) = ( cos(t·2π)
2

+ 1)/T and G1, G2 are bivariate Gaussian densities

with means µ1 = (1
3
, 1

3
)′ and µ2 = (2

3
, 2

3
)′ respectively and covariances Σ1 = Σ2 = 0.1∗I. Here,

v(t) represents the diurnal pattern commonly observed in crime data and is set to integrate

to 1 over [0, T ] such that
∫
T

∫
S
µ(t)dSdt = N . The spatial distribution of one simulation is

plotted in Figure 5.1. The corresponding temporal distribution is in Figure 5.2.

The overall intensity λ(x, y, t) follows a simple Hawkes process
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Figure 5.1: An even mixture of two Gaussian intensities with unit variance and zero covari-
ance.

Figure 5.2: One unit of time is equal to 24 hours. The simulation roughly mimics diurnal
cycles. In Los Angeles data, crimes bottom out at 6am and peak around 11pm.
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λ(x, y, t) = µ(x, y, t) +
∑
i:ti<t

κ(i)g1(x− xi, y − yi)g2(t− ti). (5.2)

As in Park et al. (JASA, rev. & resubm.), the temporal triggering density g2 is set to decay

exponentially, g2(t − ti) = ωe−ω(t−ti), and g1(x, y) = h(r)/2πr where h(r) is the probability

density function for the distance r between a crime and its triggered crimes and h is the

truncated Gaussian density over the real half-line with spatial triggering bandwidth σ. The

productivities κ(i) = κ1I(ιi = 1) + κ2I(ιi = 0). The simulation of the (n × 1) vector of

interventions, (ι1 . . . ιn), is detailed below (ιi=1 if a crime i receives intervention). Here we

set κ1 = 0.2, κ2 = 0.4, σ = 0.01 and ω = 1/7 (i.e. average time to retaliation is one week).

Given a simulated set of n points, each intervention ιi ∈ (ι1 . . . ιn) is a Bernoulli random

variable with success pi = µ(xi, yi, ti)/D such that times and areas with higher rates of

crime are more likely to receive an intervention. We set D = 50 which roughly equates to

about 11% of crimes to be intervened on. In Figure 5.3 and 5.5 we plot the spatial and

temporal (respectively) distribution of a simulated set of points and its interventions under

this setting. With such interventions we hypothesize that biased productivity estimates will

be produced. Specifically, that the estimate of k1 will be biased upward. On the other hand,

if interventions are perfectly randomized, we hypothesize that estimates of κ1 and κ2 will be

unbiased. For comparison, we also simulated a perfectly randomized intervention and plot

its distribution in Figure 5.4. We repeat the simulation 50 times and examine the median of

50 estimates.
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Figure 5.3: Clustered intervention probability pi = µ(xi, yi, ti)/D. Black represents un-
intervened simulated crimes. Red represents interventions.

Figure 5.4: Random intervention where probability pi set to 0.11. Black represents un-
intervened simulated crimes. Red represents interventions.
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Figure 5.5: Transparent blue represents temporal distribution of interventions with proba-
bility pi = µ(xi, yi, ti)/D. Red represents the same for un-intervened crimes.

5.1.2.2 Simulation 2: Time and Space Dependent Productivities

Here we maintain all ground truth parameters set in Section 5.1.2.1, except that productiv-

ities κi not only depend on the intervention but also on space and time. Specifically,

λ(x, y, t) = µ(x, y, t) +
∑
i:ti<t

κ(xi, yi, ti, ιi)g1(x− xi, y − yi)g2(t− ti).

Here, we define a point’s community membership to A or B. We call any descendant of

a point generated from the process G1 or G2 in (5.1) to belong to community A or to B,

respectively. Let IA(i) and IB(i) indicate community membership. We also define a point i to

have occurred during the ‘day’ with the indicator Iday(i) = 1 if (ti mod 1) ∈ [0.2, 0.8]. Also

consider the treatment indicator I(ιi = 1) from (5.2) and define r to be the rate of violence
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reduction due to an intervention. The ground truth productivity is set to be

κ(xi, yi, ti, ιi) =
(
1− r · I(ιi = 1)

)(
α1 ∗

[
IB(i) + IA(i)Iday(i)

]
+α2 ∗ IA(i)

[
1− Iday(i)

])
. (5.3)

Simply put, all un-intervened points have a productivity of α1 = 0.2 unless if it belongs

to community A and occurs at night, where α2 = 0.4. Hence, community B is safer than

A because in the latter, there is potential for crimes to occur at night and have a high

productivity of α2 > α1. All interventions reduce the productivity by r = 0.25.

We simulate the interventions to occur more frequently in times and places where it is less

safe, similar to what is thought to have been observed in Park et al. (JASA, rev. & resubm.).

Therefore night crimes belonging to community A receive an intervention with probability

1/3 and all other crimes with probability 1/9. This equates to about 16% of crimes receiving

an intervention.

After simulating such a point process, we estimate the model (50 repetitions) in (5.2),

where κ1 represents the productivity associated to crimes receiving an intervention and

κ2 for all other crimes. Since around 30% of points are night crimes in community A, we

expect the productivity estimate of un-intervened crimes to be a weighted average of roughly

(1− 0.3)α1 + 0.3α2 = 0.26. Since interventions reduce the productivity of all crimes by r%,

we expect the estimate to be roughly (1− r) ∗ 0.26 ≈ 0.2 if there is no bias. We also repeat

the simulation and estimation where interventions have no effect, r = 0.
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5.1.2.3 Simulation 3: Synthetic Controls

We hypothesize that productivity estimates will be biased upward for interventions that are

non-randomly assigned as they are in Simulation 1 or Simulation 2. In order to reduce this

bias and better evaluate the efficacy of interventions, we implement the procedure intro-

duced in Park et al. (JASA, rev. & resubm.) to randomly subsample un-intervened crimes as

synthetic controls. The resulting space-time distribution of the synthetic controls are similar

to the actual interventions.

For a simulated dataset of n points, the number of un-intervened crimes is n−
∑n

i=1 ιi = J .

For indices j ∈ (1 . . . J) we compute weights νj = P̂1(x, y)P̂2(t)/Q̂1(x, y)Q̂2(t) where P̂1

and P̂2 is an estimate of the space-time distribution of interventions and Q̂1 and Q̂2 is an

estimate of the space-time distribution of un-intervened crimes. The set of un-intervened

crimes is sampled using weights νj without replacement to obtain a set of synthetic controls.

Then the model in (5.2) is estimated with three marks instead of two, where κ1 represents

productivities for interventions, κ2 for synthetic controls and κ3 for all remaining crimes.

For a given simulated catalog of crimes, this can be repeated multiple times. We simulate

50 point processes and repeat this sub-sampling procedure 30 times, for a total of 1500

estimations.

5.1.2.4 Simulation 4: No Triggering and No Interventions

A major source of criticism against the application of Hawkes models for crimes is the asser-

tion that crimes are purely driven by spatial and temporal inhomogeneity and that Hawkes

models are over-specified and mis-attributing the inhomogeneity as triggering. Therefore the
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reliability of the magnitudes of estimated productivities is also a subject of interest here.

We simulate a process that is purely driven by the background rate in (5.1) and estimate a

misspecified model with a triggering term and a single productivity parameter.

5.1.3 Estimation

We use the same basic kernel smoother for all background rate estimates in Simulation 1-4,

µ̂(x, y, t) = v(t)
N∑
i=1

β

2πη2
exp

(
− (x− xi)2 + (y − yi)2

2η2

)
(5.4)

where v(t) is estimated as in Fox et al. (JASA, 2016) and Park et al. (JASA, rev. & resubm.).

Parameter estimates are obtain by maximizing the log-likelihood using the quasi-Newton

method developed by Broyden, Fletcher, Goldfarb and Shanno (1970). For instance, the

log-likelihood for models estimated for Simulations 1 and 2 is approximated as

l(κ1, κ2, β, ω, σ, η) =
N∑
i=1

log[λ(xi, yi, ti)]−
N∑
i=1

[
β + κ(i) ∗

[
1− exp

(
− ω(T − ti)

)]]
. (5.5)

5.1.4 Synthetic Controls Without Repeated Simulation

After computing sampling weights νj as detailed in Section 5.1.2.3, surrogate controls are

sub-sampled from un-intervened crimes to simulate indicators ιcontroli = 1 if the ith is selected

to serve as an approximate control. The productivity of the model in Simulation 3 is κ(i) =

κ1ιi + κ2ι
control
i + κ3(1 − ιcontroli ) where ιi are indicators representing the actual treatments,

consistent in the above sections.
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This requires multiple draws of ιcontroli and estimations for each draw and can be time

consuming. The productivity of treated crimes κ1 and the productivity of an approximate

control crime κ2 could be obtained without repeated simulation and estimation by defining

the productivity as κ̃(i) = κ1ιi + κ2νi + κ3(1− νi), hence using the sampling weights defined

in Section 5.1.2.3 as covariates where the productivity of an untreated crime is a weighted

average of κ2 and κ3; The weight is higher for crime i if it is similar in space and time

distribution to treated crimes. This may seem like an arbitrary formulation but it derives

from the fact that E(κ(i)) = κ̃(i).

5.1.5 Results

The median estimated productivity of intervened and un-intervened crimes in Simulation 1

was 0.213 and 0.376 respectively. Contrary to our hypothesis, this is reasonably close to the

ground truth of 0.2 and 0.4. This means that a simple Hawkes model can correctly estimate

the productivity of interventions that are non-random and concentrated in times and places

where the background rate is high.

The median estimated productivity of intervened and un-intervened crimes in Simulation

2 was 0.240 and 0.222 respectively. In the ground truth simulation, interventions were reduc-

ing the productivity by 25% but these biased estimates would suggest that the intervention

has no effect or causes more crime. In the other ground truth where interventions reduced

the productivity by 0%, the median estimated productivity of intervened and un-intervened

crimes was 0.290 and 0.232. Simply as a result of the non-random assignment that favored

times and areas with high productivity, the estimated of productivity of the interventions
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was 25% higher than crimes that had the same ground truth productivity.

In Simulation 3, after 1500 simulations and estimations, the median productivity of in-

terventions, their synthetic controls, and other crimes was (0.230, 0.306, 0.214). The percent

decrease in the intervention productivities relative to the synthetic controls is 25% which is

consistent with the ground truth reduction of 25%.

The median of 50 productivity estimates resulting from Simulation 4 was arbitrarily

close to zero. This shows evidence that productivity estimates will be close to zero for point

processes generated with only spatial and temporal inhomogeneity, even when using a simple

background rate estimator.

5.1.6 Discussion

Through simulation studies, we have validated and assessed the sub-sampling procedure in

Park et al. (JASA, rev. & resubm.). We found that simple Hawkes processes can accurately

recover the true intervention effect even when interventions are clustered and non-random

and erroneously assumed to be a randomized trial. We discovered that the bias from non-

random interventions only appears when the ground truth productivity varies in space-time

and when interventions favor areas with higher productivity. Even with a simple model

where productivities are constant in space and time, we are able to accurately recover true

intervention effect. Further work on providing measures of uncertainty and examining the

sensitivity to simulation parameters is in order.
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5.2 A Purely Epidemic Non-Stationary Point Process Model of

Infectious Disease Spread

One constraint of a Hawkes model in the context of disease spread is that events are generated

through two sources: (1) an endemic background component and (2) a self-exciting, epidemic

component. This is appropriate for diseases that can be contracted both exogenously from

the environment or endogenously from an infected neighbor, such as in Meyer et al. (2012).

But this may be inappropriate for many types of diseases which are spread purely from

infections beginning with one ‘patient-zero’. Brémaud & Massoulié (2001) studied a Hawkes

model only sustained by the epidemic component and found that for a finite non-degenerate

long run average intensity, the average number of off-springs per event (i.e. ‘productivity’)

must not only be constant in time but strictly equal to one. During a actual outbreak, the

productivity is time-variant and at times greater than one.

This section outlines preliminary work on a purely epidemic point process model of disease

spread and propose an algorithm to estimate the productivity as a smooth function of time

that is not restricted to be equal or less than one, and also propose/derive several estimates

of the temporal distribution of off-springs. The accuracy of the estimation procedure can be

examined using simulated catalogs of infections. A simulation based approach for uncertainty

quantification of the estimates is proposed.

Consider a sequence of infections 0 < t1 < t2 < . . . < tN . The intensity of occurrences at

any point t is time variant and depends on the history Ht of all points leading up to time t.

The conditional intensity is the infinitesimal rate at which points occur at time t:
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λ(t) = lim
∆t↓0

E[N(t+ ∆t)−N(t)|Ht]

∆t
.

We formulate a conditional purely driven by self-excitation as:

λ(t) =
∑

j:tj<tN

θ(tj)g(t− tj).

Any point occurring at time tj causes secondary infections into the future at a rate of

θ(tj)g(t− tj). Here g integrates to 1 and describes the temporal distribution of secondary in-

fections. The expected number of cases caused by any infection occurring at tj is represented

by θ(tj).

Besides t1 (i.e. patient zero), all other infections must be triggered by some other prior

infection. A latent branching structure χij can be written according to this, where

χij =


1, if case i was caused by a prior case j, j < i

0, otherwise.

Given χij, the complete data log-likelihood can be written as,

lc(t1, . . . , tN ; θ, g) =
N∑
j=1

[∑
i>j

χij log
(
θ(tj)g(ti − tj)

)
−
∫ tN

tj

θ(tj)g(t− tj)dt
]
.
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Although χij are unobserved, it can be probabilistically defined with the matrix P ,

P =



0 0 · · · · · · 0

1 0 · · · · · · 0

p31 p32 0 · · · 0

...
...

...
. . . 0

pN1 pN2 · · · pN,N−1 0


. (5.6)

The elements pij represent the probability that an infection i was caused by a prior infection

j. Note that the second observed case t2 is necessarily caused by t1, hence p21 = 1. Since all

points must have been triggered by a prior case,
∑N−1

j=1 pij = 1 for any i.

Given the probabilistic branching structure P and a model for λ, the E-step at some

iteration v of an EM-algorithm can be written as

E
[
χij|θ(v), g(v)

]
= p

(v)
ij =

θ(v)(tj)g
(v)(ti − tj)

λ(v)(ti)
,

where θ(v) and g(v) represent the current estimates of the productivity and triggering function.

The expected complete data log-likelihood is then given by

E
[
lc(θ, g)|θ(v), g(v)

]
=

N∑
j=1

∑
i>j

p
(v)
ij

(
log θ(tj) + log g(ti − tj)

)
−

N∑
j=1

θ(tj) ·G(tN − tj) (5.7)

where G(x) =
∫ x

0
g(s)ds. Note that there is no integral approximation in the second summa-

tion of (5.7). In many applications like in Fox et al. (2016), an integral approximation allows

tractable estimates in the M-step at the expense of some acceptable amount of boundary
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error. But as will be seen below, in our study, this would cause underestimation of the pro-

ductivity of infections towards the end of the dataset. It is crucial to correct this in order to

generate prospective forecasts of the productivity.

The simple approach proposed here for finding smooth estimates of θ and g is to smooth

over point-wise optimums. The first order condition for the θ at some point tj is

∂E

∂θ(tj)
=
∑
i>j

p
(v)
ij

1

θ(tj)
−G(tN − tj) = 0 (5.8)

⇒ θ̃(tj) =
1

G(tN − tj)
∑
i>j

p
(v)
ij . (5.9)

Simply put, the estimated productivity of point tj is the jth column sum of P . For most

points, G ≈ 1, but for points closer to tN , the estimated productivity is a column sum of P

with an inflation factor of 1/G(tN − tj). In similar fashion to θ, we find point-wise optimums

of g at inter-time differences sk, where k = 1 . . . N(N − 1)/2. We replace the integral G in

(5.7) with its Riemann approximation in order to take the partial derivative of the expected

complete data log-likelihood with respect to g at some inter-time distance sk,

∂E

∂g(sk)
= p(v)

sk

1

g(sk)
−
( ∑
j:sk<tN−tj

θ(tj)

)
g(sk)∆sk = 0. (5.10)

The notation psk refers to a certain ijth element of the matrix P where ti − tj = sk. The

superscript v denotes the estimate of psk at the vth iteration. The summation in (5.10) is

due to a given g(sk) appearing in only a subset of the summands in the second sum of (5.7).

Riemann intervals are denoted by ∆sk.

Due to not having integrated away G in (5.7) with an approximation, it is difficult to
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analytically separate and solve for both θ and g. The maximum at g(sk) depends on the

maximized value of θ at various time points, which in turn depends on the integral G in

(5.9). Since g is generally expected to decay over time and G ≈ 1 for most points at the

beginning of a dataset, we suggest substituting G in (5.9) with the estimate of G from the

previous iteration. For v = 1, a reasonable guess such as an exponential decay can be used

and the sensitivity of the results can be checked

θ̃(tj) =
1

G(v−1)(tN − tj)
∑
i>j

p
(v)
ij .

Plugging in θ̃ and solving for g(sk) in (5.10) yields,

g̃(sk) =

√√√√ p
(v)
sk

∆sk
∑

j:sk<tN−tj θ(tj)
.

Finally, kernel regression can be used to smooth over θ̃ and g̃ to obtain smooth estimates θ̂

and ĝ.

There are some alternative proposals for the estimator of g that would yield similar

results. The distribution g can be specified as a histogram with fine bins containing only

one or no points. These bin heights can be maximized by the first order condition in (5.10)

where the partial derivative of the second summand in (5.7) can be treated as negligibly

close to zero with fine Riemann bins and a Lagrange multiplier for the constraint that the

histogram integrates to one can be added. The noisy bin heights can be smoothed using

kernel regression. Alternatively, we could find the kernel density estimate of all inter-time

differences sk over the support (0,∞) with weights p
(v)
sk .
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This estimation procedure can be validated by simulating catalogs of infections using a

ground truth for θ and g then examining the estimates. Uncertainty of any one estimate from

a given dataset can be found by repeatedly simulating catalogs of infections using θ̂ and ĝ

and tabulating the variability of each re-estimate. Prospective forecasts can be obtained by

extrapolating θ̂ with some polynomial fit and simulating catalogs into the future.

5.3 Non-Parametric Estimation of the Recursive Point Process

Model

Schoenberg et al. (2019) introduced the Recursive Hawkes model

λ(t) = µ+

∫ t

0

H(λt′)g(t− t′)dN(t′),

where µ > 0, g > 0 is a density function, and λt′ means λ(t′). The novel feature of this model

is that the productivity of a point t′ not only varies in time but depends on the conditional

intensity at time t′ through the parametric function H.

In this section, the author of this thesis proposes a non-parametric estimation of Schoen-

berg’s Recursive Hawkes model. This methodology is implemented as joint work in Kaplan

et al. (subm.) in a comparison to the SVEILR (Susceptible, Vaccinated, Exposed, Infected,

Lightly infected, Recovered) compartmental model applied to data on mumps in Pennsylva-

nia.

The primary challenge in implementing an EM-styled estimation here is that the elements

of P cannot be used to identify the bin heights of both g and H simultaneously; in order
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to estimate the heights of g, we need to have updated elements of P , which requires having

updated λ and this cannot be done without an estimate of H which in turn depends on

λ. The key ‘trick’ in this methodology is to begin the iterations with a naive guess of H

as a constant. We suggest
∑

i

∑
i>j p̂ij/n. In subsequent iterations, the bin heights of g are

updated using ‘fresh’ updated values of P while the heights of H are updated with ‘stale’ or

trailing estimates of λ from the previous iteration.

Suppose a purely temporal point process of the form τ1, τ2, . . . , τn is observed over the time

interval [0, T ] where n is th number of events observed. Define P as a matrix of probabilities

such that elements pij is the estimated probability that event i was triggered by a prior

event j. This probability matrix is lower-triangular since an event j can only trigger later

events. Each diagonal entry pii represents the probability that infection i is a background

event stemming from the process µ. The sum of any row of P must therefore equal 1 since

each event must either be a background event or have been triggered by some prior event.

The temporal distribution of triggered events, g, is assumed to be a step function and H is

similarly estimated as a step function with bins corresponding to intervals of the conditional

intensity λ. The background rate µ is constant and is an estimated parameter.

After randomly initializing P and guessing H as a constant, the M-step update of a

certain bin height of g is given as

ĝl =

∑
j

∑
i>j I(τi − τj ∈ Bl)p̂ij

wl
∑

i

∑
i>j p̂ij

where Bl represent a bin corresponding to an interval of the real line containing some of the
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interevent times and wl is the bin width. The background rate µ is updated as

µ̂ =
1

T

n∑
i

p̂ii.

With estimates of g, µ and a previous trailing estimate of H, we can calculate λ as

λ̂(τi) = µ̂+
i∑

j=1

Ĥj ĝ(τi − τj).

With the newly calculated λ, the bin heights of Hi = H(λ(τi)) can be updated. For each bin

Ck corresponding to an interval of the real line containing some values of λ̂(τj), the kth bin

height given by

Ĥk =

∑
j

∑
i>j I(λ̂ ∈ Ck)p̂ij∑
j I(λ̂ ∈ Ck)

provided
∑

j I(λ̂ ∈ Ck) > 0 and Ĥk = 0 otherwise.

After updating g, µ and H from the M-step, we can update the matrix P in the E-step.

p̂ij =
ĝ(τi − τj)Ĥj

µ̂+
∑i−1

k=1 ĝ(τi − τk)Ĥk

.

These iterations are repeated until a convergence criteria is met, such as the maximum

change update of an element of P being less than ε.
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CHAPTER 6

Conclusion and future work

We have presented advances in the methodology and application of point process models.

For disease spread, we showed that point process models have great potential in becoming a

useful tool for forecasting diseases and performed residual analysis to assess its descriptive

performance. Further testing and real time validation is needed in order to increase the popu-

larity and credibility of these methods. Further research on how to non-parametrically model

contagion through space will be an important topic, but will depend on the availability of

high resolution surveillance data. In modeling crimes, we have tackled the deep problem of

identifying true inhomogeneity and clustering. In doing so we introduced a method to non-

parametrically estimate the background rate as a function of spatial covariates. In evaluating

non-randomized event-based interventions, we have introduced a simple method to generate

synthetic controls to improve causal interpretation of estimates. Through simulation studies

we have quantified the potential bias caused by erroneously treating non-random interven-

tions as a randomized-trial and demonstrated that synthetic controls can effectively be used

to recover the true intervention effect. Future studies in modeling non-separable marks and

variable space-time productivities will be important.

The author hopes to continue research in these regards as well as in other outstand-

98



ing challenges in the field such as: studies in marked spatio-temporal point processes and

predictability of marks; dealing with large N and high dimensional point processes; non-

likelihood based inference; advancing methods and applications for neuro-science and net-

work science, residual analysis for space-time models, and filling in the theoretical gap in

the statistical properties of modern non-parametric models and estimators for point process

models.
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