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| INVESTIGATION
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Transcriptome of Drosophila serrata Revealed by

High-Dimensional Analysis of Gene Expression
Emma Hine,*,1 Daniel E. Runcie,† Katrina McGuigan,* and Mark W. Blows*

*School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4068, Australia and †Department of Plant
Sciences, University of California, Davis, California

ORCID IDs: 0000-0002-2257-4430 (E.H.); 0000-0002-3008-9312 (D.E.R.); 0000-0002-0525-2202 (K.M.); 0000-0002-1065-5524 (M.W.B.)

ABSTRACT There are essentially an infinite number of traits that could be measured on any organism, and almost all individual traits
display genetic variation, yet substantial genetic variance in a large number of independent traits is not plausible under basic models of
selection and mutation. One mechanism that may be invoked to explain the observed levels of genetic variance in individual traits is
that pleiotropy results in fewer dimensions of phenotypic space with substantial genetic variance. Multivariate genetic analyses of small
sets of functionally related traits have shown that standing genetic variance is often concentrated in relatively few dimensions. It is
unknown if a similar concentration of genetic variance occurs at a phenome-wide scale when many traits of disparate function are
considered, or if the genetic variance generated by new mutations is also unevenly distributed across phenotypic space. Here, we used
a Bayesian sparse factor model to characterize the distribution of mutational variance of 3385 gene expression traits of Drosophila
serrata after 27 generations of mutation accumulation, and found that 46% of the estimated mutational variance was concentrated in
just 21 dimensions with significant mutational heritability. We show that the extent of concentration of mutational variance into such a
small subspace has the potential to substantially bias the response to selection of these traits.

KEYWORDS pleiotropy; gene expression; mutation; genetic constraints

THEphenotype of an organism can essentially bemeasured
in an infinite number of ways (Houle 2010), and the

number of nucleotide changes that could occur to alter the
phenotype exceeds 106 for organisms as complex as Drosoph-
ila (Johnson and Barton 2005). There are two reasons to
suspect that for any large number of measured traits, p, only
n � p independent (orthogonal) dimensions will exhibit lev-
els of genetic variance comparable to the substantial levels
commonly measured in individual traits. First, costs associ-
ated with organismal complexity suggest an evolutionary
advantage to limiting n (Orr 2000); the probability of new
mutations being favorable, the magnitude of the favorable
effects, and the chances of fixation all decrease with increas-
ing n. The disadvantages of high n are predicted to increase

almost exponentially as n exceeds more than a few hundred,
leading to a rapidly declining rate of adaptation in more
complex organisms (Orr 2000). Second, for a population
close to its optimum, and evolving under Gaussian stabilizing
selection acting independently on each trait, genetic loadwill
reduce mean fitness as the number of independently selected
traits increases (Barton 1990; Johnson and Barton 2005).
Based on published estimates of heritability and stabilizing
selection, this basic model of mutation and selection predicts
that population fitness will decrease to unsustainable levels
when n exceeds a few hundred (Barton 1990; Johnson and
Barton 2005).

If n � p, as implied by Fisher’s geometric model (Fisher
1930) and theoretical models of selection and quantitative
variation, much of the genetic variance will be confined to the
smaller n-dimensional subspace. The distribution of genetic
variance is characterized by the empirical spectral distribu-
tion of the p3 p genetic covariance matrix (G). When n is
much less than p, the first n eigenvalues of G will account for
a greater proportion of the genetic variance than expected
when all dimensions of phenotypic space contain substantial
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genetic variance. For a set of p traits, strengthening the co-
variance relationships among them increases the genetic
variance contained in the n-dimensional subspace, in turn
decreasing the genetic variance contained in the complemen-
tary (p–n)-dimensional subspace. This uneven distribution of
genetic variance will affect the predicted response to selec-
tion; as n decreases relative to p, the evolutionary response is
increasingly biased toward those n directions with greater
genetic variance (Walsh and Blows 2009).

There is now considerable evidence from many empirical
studies of small sets of functionally related traits that a sub-
stantial proportionof genetic variance is restricted to a smaller
subspace of the measured phenotype (Blows and Mcguigan
2015). Although this observation is generally consistent
across different trait types and organisms, there are some
important limitations to our current understanding of the
distribution of genetic variance. Sets of functionally related
traits, which are most often analyzed in multivariate quanti-
tative genetic studies, might be expected to exhibit greater
pleiotropic covariance than typical among the disparate func-
tion traits that comprise an organism. These studies may
therefore give a misleading impression of the extent of the
concentration of genetic variance in a smaller subspace. It is
also unclear how the concentration of genetic variance may
scale to a phenome-wide level, as high-dimensional genetic
analyses are few (Runcie and Mukherjee 2013; Blows et al.
2015).

We know much less about the extent of pleiotropy gener-
ated by new mutations, and specifically whether mutational
variance, the ultimate source of genetic variance, is concen-
trated in a small subspace or more evenly distributed than
standing genetic variance. Under Fisher’s model, a mutation
possibly affects all traits to some extent (universal pleiot-
ropy), but some traits are affected much more than others
(Orr 2000; Martin and Lenormand 2006), leading to pleio-
tropic covariance among traits and, consequently, a concen-
tration of mutational covariance in a smaller subspace. While
only a few studies have directly characterized the distribution
of eigenvalues of the mutational covariance matrix (M), each
has reported an uneven distribution of mutational variance,
with a small number of eigenvalues accounting for the ma-
jority of the mutational variance (Camara and Pigliucci 1999;
Latimer et al. 2014; McGuigan et al. 2014). In the only em-
pirical study we are aware of to determine the relative size of
the n-dimensional subspace of M, Houle and Fierst (2013)
showed that for p ¼ 20 wing shape traits of Drosophila mel-
anogaster, n ranged between 7 and 19, suggesting n, p as a
consequence of pleiotropy. How these results relate to a
wider set of traits, and if the distribution of mutational var-
iance at a phenome-wide level is similarly uneven, remains to
be determined.

Here,weutilize a recently developed analytical framework
to investigate the distribution of mutational variance across a
very large number of gene expression traits with a wide range
of putative functions. As thenumber of parameters required to
estimate covariance matrices scales with p by p3 ðpþ 1Þ=2;

estimation of such matrices within the context of quantita-
tive genetic experimental designs is particularly challenging
(Blows et al. 2015). The Bayesian sparse factor (BSF) model
of Runcie and Mukherjee (2013) is an extension of factor
analytic modeling that overcomes the estimation challenge
via two key sparsity assumptions: first, few latent factors are
assumed to underlie the phenotypic variance, and second,
most latent factors are assumed to affect relatively few indi-
vidual traits (Runcie and Mukherjee 2013).

We apply the BSF model to investigate mutational covari-
ance among 3385 gene expression traits after 27 generations
of mutation accumulation (MA) in 41 lines of D. serrata
(McGuigan et al. 2014). Although some of the expressed
genes are involved in the same biological processes (Blows
et al. 2015; Collet et al. 2018), there is no a priori reason to
expect strong covariance among this functionally diverse set
of traits. In a previous analysis of these data, frequent muta-
tional covariance was established among small p ¼ 5 random
sets of these 3385 expression phenotypes, indicating that
n � p to some unknown extent (McGuigan et al. 2014).
The BSF model allowed us to directly investigate how many
expression traits are affected by a common latent factor
(the transcriptome-wide extent of mutational covariance),
and whether the total observed mutational variance in this
experiment is consistent with many latent factors (muta-
tions) affecting each trait independently or with few common
factors affecting many traits simultaneously. We then inves-
tigated the potential evolutionary consequences of the extent
of mutational covariance by determining the predicted bias in
the response to selection that would be generated by the
observed distribution of mutational variance.

Materials and Methods

The data and the experimental design from which it was
obtained have been described elsewhere (McGuigan et al.
2014). Briefly, 100 lines were set up from a single inbred line
and maintained for 27 generations of an MA experiment. In
each line, one son and one daughter of a single brother–sister
pair became the parents of the next generation. In the 28th
generation, 11,604 gene expression traits were measured
(using five different probes per trait, with each probe dupli-
cated) on two biological replicates for each of the 41 surviving
MA lines. McGuigan et al. (2014) conducted univariate
mixed effects models on the 11,604 gene expression traits
and reported that 3385 had nonzero estimates of among-line
(mutational) variances, with 1035 significant at a ¼ 0:05;
and 533 remaining significant after false discovery rate
(FDR) correction. Of 677 randomly allocated five-trait sets,
a common component of among-line variance was significant
for 245 (145 at FDR).

Statistical analysis

A recent advance in the analysis of high-dimensional genetic
data hasmade it possible to estimate themutational variances
of, and covariance among, all 3385 traits in a single analysis.
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The BSF genetic (BSFG)model (Runcie andMukherjee 2013)
uses factor analysis to partition the total phenotypic variance
into common phenotypic variance arising from latent factors
and trait-specific phenotypic variance. At the same time, the
BSF model utilizes information from the experimental design
to further partition these variances into their genetic and re-
sidual (environmental, technical etc.) components. Two key
assumptions distinguish the BSF from traditional factor anal-
ysis and make it possible to include so many traits in the one
analysis with relatively small sample sizes. First, few latent
factors are assumed to underlie the phenotypic variance. Sec-
ond, most latent factors are assumed to affect relatively few
individual traits (Runcie and Mukherjee 2013).

We refer the reader to Runcie and Mukherjee (2013) for a
detailed description of the BSF genetic model for a one-way
experimental design utilizing pedigree information in an an-
imal model. Here, we modify this model to accommodate
the experimental design outlined above. Note that Runcie
andMukherjee (2013) use the BSF model to infer the genetic
variance–covariance matrix (G), whereas here we are esti-
mating mutational (co)variances, which can be summa-
rized with the covariance matrix M. Further, Runcie and
Mukherjee’s model assumed one probe per gene, and so we
extended the model here to allow for multiple uncorrelated
probes per gene.

Prior to analysis, we took the log10 of the mean of two
measurements per probe on an array. A genetic variant was
known to be segregating in this set of MA lines (McGuigan
et al. 2014), so we extracted the residuals from simple linear
models for each set of log 10 mean expression measures,
and standardized them to unit variance. Let ydefg represent
these standardized residuals for line d 2 1; 2; . . . ;D ¼ 41;
replicate e 2 1; 2; gene f 2 1; 2; . . . ; F ¼ 3385, and probe
g 2 1; 2; . . . ;G ¼ 5: ydefg is modeled as

ydefg ¼ mf þ Probefg þ Linedf þ Repdef þ edefg (1)

where mf is the global mean for gene f, Probefg is the mean
effect of the two replicates per array of probe gwithin gene f,
Linedf is the mean effect of line d on gene f, Repdef is the mean
effect for replicate e on gene f, and edefg is the residual error.
The line, replicate, and residual effects are considered ran-
dom (with modeled variance), and the mean and probe ef-
fects are considered fixed.

To model the mutational covariance among multiple gene
expression traits, we assume that the random effects have the
following distributions:

Lined: � MVNFð0;MÞ
Repde: � MVNFð0;RÞ
edefg � N

�
0;s2

fg
�

where the period in the index represents a vector formed from
all F ¼ 3385 genes, MVNF is the F-dimensional multivariate
normal density, and M and R are covariance matrices of the
gene expression traits caused by mutation and by microarray

technical errors plus biological noise, respectively. Mutation
and residuals are assumed uncorrelated across lines and rep-
licates, respectively.

Equation 1 can be reparameterized using hierarchical
centering. This technique reduces correlations among param-
eters making Markov Chain Monte Carlo (MCMC) sampling
more efficient. In particular, we introduce the latent variable
wdef to model the gene-level effects in each rep:

ydefg ¼ wdef þ Probefg þ edefg
wdef ¼ mf þ Linedf þ Repdef

(2)

In Equation 2, edefg are residuals of the probe measurements
around a “true” transcript expression, and Repdef are resid-
uals of the transcript expression around the line means. Pa-
rameterized as such, the model for wdef has an identical form
to the model presented in Runcie and Mukherjee (2013).
Therefore, we embedded the BSFG Gibbs sampler from
Runcie and Mukherjee (2013) in a Gibbs sampler for the
Probefg and s2

fg parameters, sampling each parameter indi-
vidually conditionally on the current sample of wdef :

As in a traditional factor analysis, we assume that any
phenotypic covariance among the observed traits is caused
by k latent factors, which we refer to as phenotypic common
factors (PCFs), and allow specific mutational and residual
variances for individual traits such that the phenotypic co-
variance matrix can be expressed as:

P ¼ LLT þ cm þ cr

where L is the F3 k matrix of PCF loadings, and cm and cr
are the diagonal matrices of specific mutational and residual
variances, respectively. Under the BSF model, the mutational
covariance is modeled by allowing each latent PCF to have its
own heritability. This heritability is the cumulative effect of
new mutations, and it should not be confused with the per
generation mutational heritability often reported in MA stud-
ies, VM=VE; where VM is the among-line variance divided by
twice the number of generations of MA.

The mutational (M) covariance matrix can then be recov-
ered through the equation:

M ¼ LSh2L
T þ cm (3)

whereSh2 is the k3 k diagonal matrix of PCF heritabilities. In
our results, we refer to the common, specific, and total mu-
tational variances of the individual traits, which correspond
to the diagonals ofLSh2L

T ; cm, andM, respectively. Further,
we present mutational variances of the estimated PCFs,
rather than attempting to interpret a spectral decomposition
of M.

Parameter expansion: When assessing model convergence
(see below), we noticed poormixing ofL ¼ ½lij�; and strongly
negative posterior correlations between individual lij and the
SD of the individual PCF scores (fj). To combat this, we imple-
mented the parameter expansion for factor models proposed
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by Ghosh and Dunson (2009). We introduced a new param-
eterCF; a diagonal matrix, and replaced the parametersL, F,
and Fa in the original BSFG model (Runcie and Mukherjee
2013) with working parameters L*, F*, and F*a with the fol-
lowing distributions:

L* ¼
h
l*ij

i
; lij � N

�
0;f21

ij t21
j

�

F* � MN
�
ZF*a; I;C

1=2
F ðI2Sh2ÞC1=2

F

�

F*a � MN
�
0;A;C1=2

F Sh2C
1=2
F

�

CF ¼ Diag
�
cFj

�
; cFj � GaðaF; bFÞ

where fij; tj;Z;A; and Sh2 are defined as in Runcie and
Mukherjee (2013).

For each posterior sample, we rescale F*, F*a, and L* to
recover the original parameters and to ensure that the vari-
ance of each (fj) is equal to one:

LðiÞ ¼ L*ðiÞCðiÞ1=2
F Ŝ

ðiÞ1=2
F

FðiÞ ¼ F*ðiÞCðiÞ21=2
F Ŝ

ðiÞ21=2
F

FðiÞa ¼ F*ðiÞa C
ðiÞ21=2
F Ŝ

ðiÞ21=2
F

where ŜF is a diagonal matrix of the empirical variance of F
from each posterior sample.

Further investigations of Gibbs sampler performance iden-
tified the dj; j 2 1; . . . ; k parameters as exhibiting especially
poor mixing and strong correlations among parameters.
Since updates of individual dj parameters are relatively fast,
we iterated through the sampling of these parameters 1003
per iteration of the remaining parameters in the Gibbs
sampler.

Prior distributions and hyperparameters: We used the
same prior distributions as in Runcie and Mukherjee (2013)
(with some changes to the hyperparameters, discussed be-
low), and refer the reader to their paper for a detailed de-
scription. A summary of the prior distributions outlined
below, and the values we ultimately used for their hyperpara-
meters, are listed in Supplemental Material, Table S1. Briefly,
the PCFs are modeled through a hierarchical distribution on
the PCF loadings. Each lij is assigned a normal distribution as
a prior with a unique variance drawn from an inverse g dis-
tribution. Modeling the PCF loadings in this way imposes
sparsity on the PCFs and ensures that the variance explained
by successive PCFs decreases to zero at some sufficiently
large k*.

The remaining parameters are estimated with more
straightforward prior distributions. The heritability of the
PCFs are modeled with a 50% probability of h2j ¼ 0 and the
remaining 50% distributed equally across a discrete set of
evenly spaced values in the interval 0, x#1: The muta-
tional and residual specific variances, forming the diagonal
elements of cm and cr, are modeled with inverse g prior
distributions. We also used inverse g prior distributions to
model the residual probe variances that form the diagonal

of Sy:; which were not present in the original BSF genetic
model presented in Runcie and Mukherjee (2013).

We explored the effect of changing the hyperparameter
values used in Runcie andMukherjee (2013) for three aspects
of the prior distribution relating to the PCF trait loadings
(Table S2). We ran the BSF model with five different random
seeds for each of nine sets of values for the three hyperpara-
meters. For each analysis, we retained 1000 samples with a
thinning rate of 100 after a burn-in period of 300,000 sam-
ples. The total mutational variance estimated for the 3385
gene expression traits was consistent among the 45 analyses,
with correlations between pairs of analyses ranging from
0.95 to 1.00. In contrast, the number of heritable PCFs and
the amount of mutational variance accounted for by PCFs
(common mutational variance) was sensitive to the hyper-
parameter values (Table S2).

Model convergence: From the45prior analyses,we identified
the one that detected the greatest number of heritable PCFs
(Table S2) and continued the chain. After discarding an
additional 100,000 samples (taking the burn-in period to
400,000), then retaining 1000 samples at a thinning rate of
100,wewere satisfiedwith the convergencediagnostics of the
model. Autocorrelation statistics for the PCF heritabilities and
specific variances are summarized in Figure S1. A single
specific mutational variance exceeded our nominal autocor-
relation threshold of 0.2. Autocorrelations for 630 of 152,325
PCF trait loadings exceeded 0.2 (Figure S2). We concluded
from trace plots of these parameters (specific mutational
variance not shown; samples of PCF trait loadings presented
inFigureS3) that thehighautocorrelationswereunlikely tobe
cause for concern. We note that the PCFs most represented
among thehighlyautocorrelated trait loadings (PCFs1,2,4,5,
7, 8, 17, and 18; Figure S2) are among those with very low
(median posterior sample = 0), nonsignificant estimates of
PCF heritability, which we do not interpret.

Significance testing: We use a local false sign rate (LFSR)
approach to declare the significance of PCF heritabilities and
trait loadings. LFSR is theprobabilityofassigning the incorrect
sign to an estimate. For PCF heritabilities, we assign LFSR as
theproportionof posterior samples equal to zero. For PCF trait
loadings, we assign LFSR values as the proportion of posterior
samples equal to zero, or on the other side of zero from the
median posterior sample. For example, if we declared all trait
loadings with 75% of the posterior samples. 0 to be positive,
we expected to be wrong 25% of the time, so LFSR ¼ 0:25:
We report the number of trait loadings per significantly her-
itable PCF with LFSR, 0:025 (being two-tailed tests) in Ta-
ble S3. We also compute an average error rate for each set of
heritable PCF trait loadings (Stephens 2017), and report the
number of trait loadings for which the resulting s-value
remains , 0.005 (Table S3). The s-value is analogous to
Storey’s q-value (Storey 2003; Stephens 2017), and implies
that we can expect 99% of the trait loadings declared signif-
icant to actually be different from zero.
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Randomizations: We conducted two types of randomiza-
tions, referred to as type 1 and type 2. For type 1 randomiza-
tions, we tested whether the BSF model would allocate
mutational variance to PCFs in the absence of a true covari-
ance signal. To do this, we preserved the mutational variance
of individual traits but disrupted trait covariances by shuffling
line replicate pairs within traits. That is, we reassigned probe
measurement ydefg to yd*efg; where all five probe measure-
ments of the fth gene for both replicates of the dth line
(d ¼ 1; 2; :::; 41) take on the corresponding measurements
for the fth gene of the d*th line, where d* is the dth element
of the shuffled vector of integers 1–41, shuffled indepen-
dently for each gene expression trait. For type 2 randomiza-
tions, we tested whether the BSF model would spuriously
allocate heritability to PCFs given the observed trait covari-
ances, but in the absence of mutational variance. We pre-
served the covariance structure among traits but disrupted
the mutational variance of individual traits by shuffling the
rows (representing individual replicates) of the 823 16,925
data matrix. For each type of randomization, we generated
100 data sets. We ran the BSF model for each data set, col-
lecting 1000 samples at a thinning rate of 100 after 300,000
burn-in samples.

Predicted response to selection: To explore how the distri-
bution of the total mutational variance (sum of both common
and specific mutational variances as described in Equation 3)
might affect the adaptive potential of this population,we used
M in place of G in the multivariate breeders’ equation (BE),
Dz = Gb. We calculated the predicted response to selection,
Dz, for 1,000,000 random selection gradients, b, and subse-
quently determined the angle between b andDz as ameasure
of evolutionary bias, ranging from zero (no bias) to 90�
(strong bias). Each of the 3385 elements of the million ran-
dom bs was drawn from a uniform distribution between 21
and 1. For each of 1000 posterior samples ofM, we calculated
Dz for a subset of 1000 random bs, generating the total dis-
tribution of 1,000,000 predicted evolutionary responses to
random directions of selection.We compared the distribution
of angles between b and Dz to the distribution generated
when b was applied to M with a null covariance structure
(i.e., our first randomization as outlined above). For the ran-
domized data, we applied the same set of 1,000,000 bs, al-
locating 100 bs to each of 100 posterior samples of M from
each of the 100 randomized data sets.

Data availability

The original data set is available at the Gene Expression
Omnibus under accession number GSE49815. The subset
of gene expression traits used in this analysis is avail-
able at espace.library.uq.edu.au under accession number
uql.2017.783. MATLAB code to implement the BSF analysis,
MATLAB output, R code used to process the output, and
univariate REML estimates are also available at espace.li-
brary.uq.edu.au under accession numbers uql.2018.121,
uql.2018.111, uql.2018.101, and uql.2018.113. Supplemental

material available at Figshare: https://doi.org/10.25386/
genetics.6460916.

Results and Discussion

After detailed investigation of the effect of several prior
distribution hyperparameter values, and confirmation of con-
vergence of the selected final BSFmodel (Materials andMeth-
ods), we conducted two sanity checks to ensure the final BSF
model provided a good representation of the known charac-
teristics of the experimental design and data. First, we used
the Marcenko–Pastur law from random matrix theory for
large sample covariance matrices to form an expectation of
howmany PCFswe could reasonably expect the BSFmodel to
detect (Nadakuditi and Edelman 2008). Our experimental
design of 82 independent experimental units and 3385 traits
should have sufficient power to detect, with high probability,
a minimum of 37 dimensions of phenotypic variance (Figure
S4). The BSF model identified 45 PCFs (Figure 1), indicating
that the model had converged on a realistic number of PCFs
given our experiment. Second, the mutational variances for
the 3385 individual expression traits previously estimated
from standard univariate REML analyses (McGuigan et al.
2014) were highly correlated (r = 0.84, d.f. = 3383, P ,
0.001) with the BSF estimates (Figure S5), indicating that

Figure 1 Phenotypic and mutational variances of the phenotypic com-
mon factors (PCFs), as a proportion of the total phenotypic variance
across the 3385 gene expression traits. Before dividing by the total phe-
notypic variance, the phenotypic variance (gray filled circles) of a given
PCF is defined as the sum of its squared trait loadings. The phenotypic
variance is multiplied by the corresponding PCF heritability to give the
mutational variance attributable to the PCF. Black filled and unfilled cir-
cles depict mutational variances for PCFs with significant (s,0:01) and
nonsignificant PCF heritabilities, respectively.
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the mutational variance in individual expression traits was
recovered well by the more complex BSF model.

Mutational heritability was significant at s, 0:01 for 21 of
the 45 PCFs (Figure 1 and Figure S6), with 0:30#h2 # 0:99
(Figure 2). We compared the observed PCF heritabilities and
their LFSR values to those obtained for the randomized data
sets (Figure 3). For the type 1 randomizations, which simu-
late traits with uncorrelated mutational effects, a single PCF
from 3 of the 100 data sets was, by chance, highly heritable
(.0.8, Figure 3A). The remaining PCF heritabilities esti-
mated from the type 1 randomized data sets were all ,0.1,
well below the smallest observed PCF heritability. For the
type 2 randomizations, which simulate traits with phenotypic
covariance but no mutational variance, most of the PCF her-
itabilities were concentrated near zero. Only 1.4% of the type
2 randomized data PCF heritabilities exceeded the smallest
observed PCF heritability. These results demonstrate that,
despite the limited genetic d.f., there is only a small proba-
bility that any of the observed heritable PCFs were spuriously
generated by the BSF model.

There was considerable variation in the way individual
traits contributed to the heritable PCFs. Overall, 1193 of the
3385 expression traits contributed significantly at s, 0:005
to at least one of the 21 heritable PCFs (Figure 4). The num-
ber of trait loadings on a given PCF ranged from 3 to 266
(s, :005; Figure 4 and Table S3). Most expression traits con-
tributed significantly to only a single PCF, but some contrib-
uted to up to four (Table S3). In general, the extent of shared
expression traits across PCFs scaled with the size of the PCF;
the three largest PCFs had the most individual expression
traits that contributed to multiple PCFs (Table S3). Further-
more, the two heritable PCFs associated with the greatest
phenotypic and mutational variance (PCFs 9 and 10) dis-
played individual trait loadings that were biased to one side
of zero. This is consistent with the major axis of standing
genetic variance in gene expression in this species (Blows
et al. 2015), which is also characterized by a majority of trait
loadings being biased in one direction.

Overall, the 21 significantly heritable PCFs accounted for
46% of the total mutational variance estimated across the
3385 individual expression traits. This number dropped to 45%
when the two least heritable PCFs (for which LFSR. 0:05)
were excluded from the calculation. The remaining muta-
tional variance was accounted for by the 24 nonheritable
PCFs (12%) and the 3385 trait-specific mutational variances
(42%). Nonheritable PCFs might truly capture mutational
covariance, but below the level statistically detectable with
our design. Statistically, we cannot interpret the specific mu-
tational variances, as there are 3385 of these parameters
and only 40 d.f. at the among-line level. Biologically, the
among-line variance partitioned into the specific mutational
variance may arise from truly nonpleiotropic mutations
and/or the mixture of many pleiotropic mutations of rela-
tively small effect.

To calibrate the biological consequence of the uneven
distribution of mutational variance generated by the PCFs,

we adopted a random skewers approach using the BE. The BE
is effectively a rotation of the vector of selection through G,
resulting in the potential for the response to selection to be
biased away from the direction of selection (Walsh and Blows

Figure 2 Phenotypic common factor (PCF) scores of mutation accumu-
lation line replicate pairs for the 21 heritable PCFs. Scores were estimated
within the Bayesian sparse factor model for the two replicate assays from
each of the 41 mutation accumulation lines. The solid line shows the 1:1
value. Any deviation of the points from this line reflects the presence of
nongenetic (other biological or technical) variation. PCFs are numbered
according to their descending phenotypic variance (as per Figure 1).
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2009). As the distribution of variance becomes more uneven
in G, this bias will increase, on average, for random selection
gradients. The distribution of angles between a large number
of random selection gradients and their corresponding

responses therefore allows a quantification of the potential
biological impact of the observed distribution of variance.
Here, we replacedGwithM, so that we could use the rotation
in the BE to determine how the observed distribution of
mutational variance might influence evolutionary trajecto-
ries of this population.

Figure 5 compares the distribution of angles between the
selection gradients and their resulting predicted change in
trait means for observed and type 1 randomized data. For
both the observed and randomized data, rotating any given
random selection gradient through M resulted in at least
some bias of the response away from the direction of selec-
tion. This happens in the randomized data, even thoughmost
mutational covariances are small, because the mutational
variances are not equal across traits. That is, we expect some
nonzero angle between the selection gradient and its re-
sponse for anyM that is not exactly proportional to the iden-
tity matrix. The majority of angles for the randomized data
fell between 30� and 35�, indicating a small to moderate bias
on the response to selection. In contrast, the bias in the pre-
dicted response to selection away from the direction of selec-
tion was consistently.76� for the observedM. Overall, these
results suggest that if evolution depended solely on new mu-
tations, uneven magnitudes of mutational variance among
individual traits may have modest effects on the direction
of phenotypic evolution. In contrast, the observed uneven
distribution of mutational variance generated by mutational
covariance could strongly bias evolutionary responses if it
is in turn reflected in the distribution of standing genetic
variance.

Several previous experiments have all reported a similar
pattern to that observed here, where mutation does not
equally generate variance in all directions of phenotypic space
(Camara and Pigliucci 1999; Houle and Fierst 2013; Latimer
et al. 2014). A caveat of both the current study and those
previous investigations is that the distribution of mutational
variances uncovered represents only the effect of those mu-
tations that occurred during the generations of experimental
MA. It remains to be determined whether multivariate phe-
notypes with low mutational variance detected in these
experiments represent inherent bias in the production of var-
iation or merely stochastic sampling of mutations. Houle and
Fierst (2013) compared mutations affecting 20 morphologi-
cal traits in two independent MA populations. Although trait
covariances differed between the two populations, the gen-
eral pattern that variance was predominantly restricted to
relatively few dimensions was common to both, and interest-
ingly, there was evidence that the region of phenotypic space
with low mutational variance was shared between the pop-
ulations (Houle and Fierst 2013), suggesting a repeatable
difference in the magnitude of mutational variance across
the phenotypic space.

Itwill be important todeterminewhether subspacesof low-
standing genetic variance can be predicted by subspaces with
low mutational variance. The G-matrices of natural popula-
tions represent mutation–selection–drift balance over longer

Figure 3 Comparison of significant and nonsignificant estimated pheno-
typic common factor (PCF) heritabilities from observed data (black filled
and open circles, respectively) with PCF heritabilities from randomized
data (gray circles). (A) Type 1 randomizations (same mutational variance
as observed data, but null phenotypic and therefore mutational covari-
ance). A single PCF heritability from three of these 100 randomized data
sets was in the range of the observed PCF heritabilities. Two of these
estimates sit under the single gray point in the bottom right of (A). The
remaining 3899 PCF heritabilites from across the 100 data sets were all ,
0.1. (B) Type 2 randomizations (phenotypic covariances as per observed
data, but null mutational (co)variance). Of the 5082 estimated PCF her-
itabilities across the 100 data sets, only 73 (1.4%) were greater than the
smallest significant observed PCF heritability.
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timescales than MA experiments, where regions of pheno-
typic space with low genetic variance must represent multi-
variate phenotypes with either low fitness or little mutational
input (Blows and Mcguigan 2015). Recently, Houle et al.

(2017) analyzed several Drosophila data sets to compare
patterns of among-species divergence in wing shape with
within species patterns of standing genetic and mutational
variance. Both the directions of divergence among species
and the distribution of standing genetic variance within a
species were strongly explained by the patterns of muta-
tional variance, with directions of maximum divergence
and of maximum standing genetic variance corresponding
to maximum mutational variance. These results are consis-
tent with there being long-term consequences of the con-
centration of mutational variance, and might also be
interpreted as revealing the evolution of M to match the
fitness surface (Draghi and Wagner 2008; Pavlicev et al.
2011; Jones et al. 2014).

A second caveat of the current and previous experiments is
that among-line covariances in MA experiments can be gen-
erated via both linkage and pleiotropy. Nonpleiotropic co-
variance can arise when some lines harbor more mutations
than others (Keightley et al. 2000) and through sampling
when the direction of mutation is biased (for example, for
life history traits) (Keightley et al. 2000; Estes et al. 2005).
Notably, investigations of nucleotide variation at specific loci
indicate the general potential for pleiotropy to generate co-
variance among hundreds of expression traits (e.g., Gerstung
et al. 2015; Utrilla et al. 2016), as observed here. We further
note that the number of traits inferred to be mutationally
correlated by our approach is similar to the number of traits
inferred by other approaches to be pleiotropically affected
by mutation. Recent estimates from several QTL and gene
knockout/knockdown studies place the median degree of

Figure 5 Angles between random selection gradients and the corre-
sponding evolutionary response predicted by M. The evolutionary re-
sponses predicted by the posterior samples of the observed data (open)
and the randomized data sets (gray) are each plotted.

Figure 4 Phenotypic common factor (PCF) trait loadings for the 21 heri-
table PCFs. PCF trait loadings with s , 0.005 are plotted with black
circles. Nonsignificant trait loadings are plotted with gray circles. PCFs
are presented in the same order as in Figure 2. Note that PCF trait load-
ings are limited to an approximate range of 21 to 1, due to the scaling of
the data to unit variance.
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pleiotropy in the range 1–9% for morphological and physio-
logical traits, and � 0:2% for gene expression (Wagner and
Zhang 2011). Here, the proportion of traits loading signifi-
cantly (s , 0.005) onto one of the 21 heritable PCFs ranged
from , 0.1 to 7.9% with median 1.1% (Figure 4 and Table
S3). Nonetheless, further investigation would be required to
determine whether the observed concentration of mutational
variance was generated through pleiotropic mutation or link-
age among individual mutations, each with independent ef-
fects on different traits.

Although our results indicate a substantial concentration of
the mutational variance in relatively few phenotypic dimen-
sions, the combined effects of the uneven distribution of the
mutational variance and their selective effects may result in an
even more limited effective dimensionality. Under the frame-
work of Fisher’s geometric model, and assuming universal
pleiotropy, the empirical distribution of fitness effects of new
mutations can be used to estimate ne, the effective phenotypic
complexity (Martin and Lenormand 2006; Le Nagard and
Tenaillon 2013) as:

ne ¼ p

1þ CVðlÞ2 ¼ 2
EðsÞ2
VðsÞ (4)

where CVðlÞ is the coefficient of variation of the eigenvalues
of SM, where S is the matrix of selective effects of the muta-
tions on each trait, and EðsÞ and VðsÞ are the mean and var-
iance of the distribution of the effects of mutations on fitness,
respectively. When the eigenvalues of SM are all equal, then
CVðlÞ ¼ 0 and all traits are mutationally and selectively in-
dependent (ne ¼ p). As CVðlÞ increases, the number of in-
dependent traits decreases. In this approach, the eigenvalues
of S and M remain unobserved, and ne is estimated from
empirical estimates of EðsÞ and VðsÞ: Estimates of ne from
the distribution of fitness effects are remarkably small, in
the range 0:2, ne , 3:0 for organisms as diverse as viruses
and Drosophila (Lourenço et al. 2011; Tenaillon 2014). How-
ever, these are likely to be underestimates if, contrary to a
basic assumption of the method, each mutation does not
affect all traits (i.e., if pleiotropy is not strictly universal)
(Lourenço et al. 2011). Direct estimation of M and S is
likely to be required to determine the relationship between
ne and n.

The concentration of mutational variance in a small sub-
space has implications beyond our understanding of evolu-
tion in natural populations. Pleiotropic effects of mutations
have been demonstrated across different human diseases
(Sivakumaran et al. 2011; Cross-Disorder Group of the Psy-
chiatric Genomics Consortium et al. 2013; Chesmore et al.
2018), and there is a growing recognition that taking pleiot-
ropy into account can greatly aid the detection of causal var-
iants and the underlying mechanisms of human diseases
(Denny et al. 2010; Andreassen et al. 2013; Pendergrass
et al. 2013; Liley and Wallace 2015; Mitteroecker et al.
2016). Since we can expect n � p in human populations,
genetic analyses that simultaneously consider many widely

disparate disease phenotypes have the potential to greatly
enhance our understanding of the impact of mutation on
human health.
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