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ABSTRACT OF THE THESIS

Quaternion-Based Aircraft
Attitude Estimation

by

Brian Michael Filarsky

Master of Science Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2016

Mauricio de Oliveira, Chair
Jorge Cortes, Co-Chair

Aircraft attitude estimation requires fusing several sensors in order to recover

both high and low frequency information in an observable manner. This thesis

explores the fusion of gyroscope integration, gravity vector estimation, and magnetic

field vector estimation using a complementary filter and an extended Kalman filter

(EKF), both of which use a unit quaternion to represent the attitude portion of the

state.
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First, a set of models, which contain bias, scale factor errors, alignment errors,

and Gaussian white noise, is introduced to govern the available sensors. The gyro-

scope bias is modeled as a random walk. A calibration routine is then established

to minimize scale factor and bias errors. After some definitions and derivations for

quaternion algebra are established, the attitude solution is then estimated using the

complementary filter. Then the EKF is introduced and used to estimate both the

quaternion state and gyroscope bias.

The thesis is concluded with a Monte Carlo run to compare the complemen-

tary filter with the EKF. Due in large part to the estimation of gyroscope bias in the

EKF, this filter is shown to give a significantly more accurate state estimate. The

robustness is also evaluated, with both filters initialized with the incorrect initial

quaternion and gyroscope bias estimate. The EKF is shown to converge relatively

quickly, while the complementary filter does not reliably converge due to the lack of

gyroscope bias estimation.

x



Introduction

Strap-down airborne navigation systems are everywhere. From spacecraft,

commercial airliners, and military hardware using high-cost, high-precision com-

ponents, to light aircraft using mid-range components, to personal drones using

low-end components, the need to fuse measurements from multiple sensors into an

attitude estimate is ubiquitous. This thesis looks mainly to derive, understand, and

evaluate methods to fuse low-cost sensors for use in an airplane.

The attitude of an air vehicle can be represented in multiple forms. The most

familiar and intuitive representation is the Tait-Bryan angles of heading, pitch, and

roll. The most familiar to engineers is the rotation matrix, and a very useful but

less intuitive is the unit quaternion. Each of the three methods mentioned have

their own benefits and drawbacks. Tait-Bryan angles are very intuitive to visualize

and are the way pilots refer to and think about aircraft attitude; however, they are

mathematically and numerically challenging. They require rigorous use of transcen-

dental functions and are prone to gimbal-lock; whenever the attitude is straight up

or straight down, roll and heading become undefined. Neither rotation matrices nor

quaternions suffer from this phenomenon. Rotation matrices are bound by signifi-

cant constraints (must be orthonormal), which are difficult to maintain, and they

require nine elements to represent a rotation. Rotating either a vector or a rotation

matrix by another rotation matrix, however, is quite simple. Quaternions have a

unit constraint, which does introduce some issues, but it is easier to handle than the

1
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orthonormal constraint on the rotation matrix. Quaternions are also represented

by only four elements, and they can be used to rotate other quaternions with little

effort. While quaternions can be used directly to rotate a vector, it will be shown

to be equivalent to generating a rotation matrix, then rotating the vector by that

matrix. For simplicity, the latter method will be used.

Due to the benefits and drawbacks of the three aforementioned methods, this

thesis uses each of them where best suited. The plant and estimate in all of the

filters are tracked in quaternions; rotation matrices are used to rotate vectors; and

Tait-Bryan angles are generally used for plots.



Chapter 1

Modeling Sensors

Prior to attempting to estimate the vehicle position or attitude, a realistic

model for the various sensors in use is desired. The sensors include a 3-axis rate

gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. First, the equations

governing the data the sensors capture need to be derived. Starting with body-

frame velocity, acceleration, rotation rate, and a given magnetic field, the following

equations are used to model the sensors.

The gyroscope is the simplest IMU component, as it directly measures roll,

pitch, and yaw rate in the body frame, which is an input to the simulation.

ωb =

pq
r

 (1.1)

The Earth’s magnetic field has some dip angle i, which is the angle between

the horizontal and the field lines, with positive being down. There is also a decli-

nation angle δ, which is the angle between true north and the magnetic field, with

positive being to the east. Taking m as the strength of the magnetic field, the field

in body coordinates is [1]:

3
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mb = Cn→bCm→n

m0
0

 (1.2)

The accelerometer measures the force applied to it, which is body acceleration

minus the body gravity vector. To derive the equations for body acceleration [1],

first the mapping between body and local velocity must be completed:

vn = Cb→nv
b (1.3)

Taking the derivative with respect to time:

v̇n = Cb→nv̇
b + Ċb→nv

b (1.4)

Then multiplying from the left by Cn→b:

Cn→bv̇
n = v̇b + Cn→bĊb→nv

b (1.5)

The skew-symmetric matrix Ω is defined:

Cn→bĊb→n = Ω =

 0 −r q

r 0 −p
−q p 0

 (1.6)

Finally, the body acceleration of the vehicle:

ab = v̇b + Ωvb (1.7)

An accelerometer doesn’t directly measure acceleration; it measures the force per

unit mass applied to it, or specific force. Defining the gravity vector in the body

frame:

gb = Cn→b

0

0

g

 (1.8)
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The specific force is acceleration minus the gravity vector:

f b = ab − gb (1.9)

The magnetometer, accelerometer, and gyroscope are modeled with bias,

scale factor errors, alignment errors, and additive white Gaussian noise (AWGN).

Additionally, the gyroscope is modeled with acceleration errors and a bias drift. The

matrix S accounts for scale factor errors and alignment errors, with diagonal terms

indicating scale factor errors and off-diagonal terms indicating alignment errors:

S =

 sxx mxy mxz

myx syy myz

mzx mzy szz

 = I +

η1 η2 η2

η2 η1 η2

η2 η2 η1

 (1.10)

S is modeled as an identity matrix with error terms η1 on the diagonal and η2 off

the diagonal. η1 and η2 are Gaussian with standard deviation depending on the

sensor. The standard deviation of η1 is larger than that of η2 for all sensor models.

Similar to S, the matrix A is used for the acceleration errors on the gyroscope, but

with equal distribuitions on all elements and no identity matrix:

A =

axx axy axz
ayx ayy ayz
azx azy azz

 =

η3 η3 η3

η3 η3 η3

η3 η3 η3

 (1.11)

The b vector is sensor bias (also pulled from a Gaussian distribution), and w

is zero-mean AWGN that is uncorrelated with any other signals.1 The accelerometer

model is then:

ã = Saf
b + ba + wa (1.12)

The magnetometer model is:

m̃ = Smm
b + bm + wm (1.13)

1The standard deviation of all sensor errors is included in the appendix.
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And the gyroscope model is:

ω̃ = Sωω
b + Af b + bω + wω (1.14)

The gyroscope model differs from the accelerometer and magnetometer in that it is

affected by specific force, and that the bias drifts over time as a random walk:

ḃω = wωd (1.15)

While inertial velocity is also a required measurement, integration of the IMU

components is the main focus of this thesis, and the modeling and estimation re-

quired to properly implement inertial velocity measurements was considered beyond

scope. For this reason, the velocity measurement used is a simplified model using

the plant with AWGN.

ṽ = v + wv (1.16)

All of the errors are pulled from a Gaussian distribution pseudo-random

number generator, and the standard distributions of these are varied for each type

of noise to try to give results in line with low-cost sensors. The uncalibrated outputs

of the sensor models in 6 different attitudes are shown in figures 1.1, 1.2 and 1.3.
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Figure 1.1: Uncalibrated gyroscope output in 6 sensor orientations
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Chapter 2

Calibrating Sensors

The accelerometer and gyroscope are run for thirty seconds in each of six

orientations: each axis is aligned directly towards and directly away from the gravity

vector. This allows for an estimation of the bias, scale factor, and alignment errors.

For the accelerometer, since the noise is zero-mean AWGN, E(wa) = 0, and

acceleration is 0, the mean of an equal number of samples for the x-axis aligned with

and away from the gravity vector is:

Samples pointing towards axis︷ ︸︸ ︷
g

 sxx
myx

mzx

+

bxby
bz


Samples pointing away from axis︷ ︸︸ ︷
−g

 sxx
myx

mzx

+

bxby
bz

 = 2

bxby
bz

 (2.1)

This is also the case with the other axes. Bias errors for each axis are cal-

culated by taking the mean of all of the samples for each axis (given the number of

+/- samples for each axis are equal). Scale factor and alignment errors are found

by subtracting the mean of the samples facing away from the gravity vector from

the mean of the samples aligned with the gravity vector. For the x-axis, this is:

9
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g

 sxx
myx

mzx

+

bxby
bz

−
−g

 sxx
myx

mzx

+

bxby
bz


 = 2g

 sxx
myx

mzx

 (2.2)

This isolates the scale and alignment errors for each axis. The procedure is

repeated for each axis, until an estimate of Sa is found. With estimates of both Sa

and ba in hand (using Ŝa and b̂a as the estimate), they can then be applied to the

measurements for calibrated samples:

f̃ cal = Ŝ−1
a (f̃ − b̂a) (2.3)

The gyroscope is calibrated in the same way as the accelerometer, but since

the bias drifts over time (and is allowed to drift for 5 seconds between each cali-

bration orientation), the corrections are not quite as accurate. When adding the

sum of the results in each opposing orientation, bias is once again recovered. When

subtracting the sum, the terms remaining are for A. Without the use of a calibrated

turntable, there is no way to calibrate for Sω. The calibrated gyroscope output is

then given by:

ω̃cal = ω̃ − Âf̃ cal − b̂ω (2.4)

The magnetometer calibration poses some challenges. While determining the

angle of the magnetic field vector then taking measurements with each axis pointed

to and away from it is possible, it can certainly be a bit more of a challenge than

aligning the other sensors with the gravity vector. A more hassle-free calibration

routine is desired for the magnetometer.

The data collect for the magnetometer consists of moving the sensor ran-

domly in every direction in order to fill a sphere of magnetic vectors as fully as

possible, as shown in figure 1.3. The challenge then is to determine the scale error

and bias, as the true orientation of the magnetometer with respect to the magnetic
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field is not known for any of the samples.

The simplest method consists of finding the maximum and minimum values

on each axis, then determining the scale and bias in a similar treatment to the other

sensors. This has a number of drawbacks: the calibration only ends up using six

samples (2 per axis); the maximum and minimum values will be the values affected

by the maximum and minimum noise level, respectively; and it relies on a set of

magnetic field vectors with sufficient coverage pointing towards and away from the

magnetic field on each axis.

In order to accomplish this, first the maximum and minimum values of each

axis are found. As there is AWGN included in the output, the absolute value of the

maximum and minimum value will be inflated. As the maximum value on each axis

will approach 0 on the other 2 axes, the off-diagonal terms in the scale matrix can

be neglected. This gives:m̃x

m̃y

m̃z


max

=

msxxmsyy
mszz

+

bxby
bz

+

ηxηy
ηz

 (2.5)

m̃x

m̃y

m̃z


min

=

−msxx−msyy
−mszz

+

bxby
bz

−
ηxηy
ηz

 (2.6)

Adding (2.5) to (2.6) reveals the bias, as with the accelerometer and gyroscope, but

subtracting (2.6) from (2.5) leads to an overestimate of the scale factor error (using

+/- superscripts to indicate maximum and minimum readings):m̃+
x − m̃−x

m̃+
y − m̃−y

m̃+
z − m̃−z

 = 2

msxxmsyy
mszz

+ 2

ηxηy
ηz

 (2.7)

After finding the standard deviation of the signal noise with the sensors at

rest, assuming η = 2σ and subtracting from the above equation leads to an estimate

of scale matrix, Ŝm.
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While this approach works fairly well in simulation, it leaves much to be

desired. The true efficacy on real hardware is questionable, as the data collection

needs to be near-perfect, and a single “bad” measurement outside that expected by

a Gaussian distribution could significantly impact the accuracy of the calibration.

A significantly more robust approach is to find a best fit for all the calibration

data. Approaching it in this manner removes all of the issues associated with the

first attempt: the fit is applied to all the calibration samples, the effect of the noise

will tend to cancel out, and the accuracy is not dependent on a near-perfect set of

vectors. Using a Gauss-Newton algorithm to find the least squares fit to an off-center

tri-axial ellipsoid was determined to be a much better candidate for calibration.

The initial shape of the measured magnetic field vectors will be a tri-axial

ellipsoid; the semi-principle axes are the scale factor error, and the center is the

bias. By determining these parameters of the ellipsoid, bias and scale factor error

are recovered, and using these to calibrate the sensor effectively shifts and scales

the ellipsoid to be a sphere centered at the origin. The equation for the off-center

tri-axial ellipsoid is:

(x− bx)2

sxx2
+

(y − by)2

syy2
+

(z − bz)2

szz2
= 1 (2.8)

For some multi-variate non-linear function f(x, β), with measured inputs xi

and residuals ri, the Gauss-Newton least squares solution to parameters β is [2]:

ri(βk−1) = yi − f(xi, βk−1) (2.9)

Jij =
∂ri(βk−1)

∂βj
(2.10)

βk = βk−1 − (JTJ)−1JT r(βk−1) (2.11)

Taking β =
(
bx by bz sxx syy szz

)T
each row of the residuals and the
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Jacobian is respectively:

ri(βk−1) = 1− (xi − bx)2

sxx2
− (yi − by)2

syy2
− (zi − bz)2

szz2
(2.12)

Ji =
(

2(xi−bx)
s2xx

2(yi−by)

s2yy

2(zi−bz)
s2zz

(xi−bx)2

s3xx

(yi−by)2

s3yy

(zi−bz)2

s3zz

)
(2.13)

Upon inspection, clearly the right three columns are linearly dependent on the left

three columns. As JTJ needs to be inverted, this will not suffice. However, multi-

plying each term in (2.8) by the denominator and inserting into the framework of

(2.9) gives a Jacobian that is full column rank:

ri(βk−1) = s2
xxs

2
yys

2
zz − (xi − bx)2s2

yys
2
zz − (yi − by)2s2

xxs
2
zz − (zi − bz)2s2

xxs
2
yy (2.14)

Ji =



2(xi − bx)s2
yys

2
zz

2(yi − by)s2
xxs

2
zz

2(zi − bz)s2
yys

2
xx

2sxxs
2
yys

2
zz − 2(yi − by)2sxxs

2
zz − 2(zi − bz)2sxxs

2
yy

2s2
xxsyys

2
zz − 2(xi − bx)2syys

2
zz − 2(zi − bz)2syys

2
xx

2s2
xxs

2
yyszz − 2(xi − bx)2szzs

2
yy − 2(yi − by)2szzs

2
xx



T

(2.15)

Utilizing these equations, the Gauss-Newton algorithm is marched forward

from a starting estimate until convergence. The starting estimate was initially set

to the value expected from a perfect sensor, but this had a tendency to get stuck

in a local minimum and drive the scale to 0. Starting the bias at 0 and the scale at

twice the expected value resolved this.

Using the above methods to calibrate the three sensors, the data is adjusted

and shown below in figures 2.1, 2.2, and 2.3. For brevity, unless needed for clarity, all

sensor outputs will be assumed to have been calibrated via the preceding methods,

and will not be indicated with a “cal” subscript.
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Figure 2.1: Calibrated gyroscope output in 6 sensor orientations
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Figure 2.2: Calibrated accelerometer output in 6 sensor orientations
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Chapter 3

Quaternion Algebra

A quaternion is an extension of complex numbers. Just as a complex number

has a real part and an imaginary part i, a quaternion has a real part and three

imaginary parts: i, j, and k. Notations vary between texts; this thesis will follow the

JPL proposed standard convention [7], using the first three values as the imaginary

part and the last value as the real part. Quaternions will be notated as a letter with

an overbar, ie q̄1:

q̄ =


q1i

q2j

q3k

q4

 (3.1)

Much like complex numbers, the square of any of the imaginary parts of a quater-

nion is equal to -1. Multiplying two different imaginary parts is noncommutative;

reversing order changes the sign. The imaginary combinations are:

i2 = −1 ij = −k ji = k (3.2)

j2 = −1 jk = −i kj = i

k2 = −1 ki = −j ik = j

1The quaternion identities in this section follow from [8]

16
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Note that this definition differs from that which Hamilton used.

As the multiplication of imaginary parts of a quaternion is noncommutative,

quaternion multiplication is also noncommutative. The product of two quaternions

can be derived by multiplying each element of two quaternions:

q̄ ⊗ p̄ = q1p1i
2 + q1p2ij + q1p3ik + q1p4i (3.3)

+ q2p1ji+ q2p2j
2 + q2p3jk + q2p4j

+ q3p1ki+ q3p2kj + q3p3k
2 + q3p4k

+ q4p1i+ q4p2j + q4p3k + q4p4

Substituting the definitions of individual complex products (3.2):

q̄ ⊗ p̄ =− q1p1 − q1p2k + q1p3j + q1p4i (3.4)

+ q2p1k − q2p2 − q2p3i+ q2p4j

− q3p1j + q3p2i− q3p3 + q3p4k

+ q4p1i+ q4p2j + q4p3k + q4p4

Then grouping the individual complex components into a new quaternion:

q̄ ⊗ p̄ =


(+q1p4 − q2p3 + q3p2 + q4p1)i

(+q1p3 + q2p4 − q3p1 + q4p2)j

(−q1p2 + q2p1 + q3p4 + q4p3)k

−q1p1 − q2p2 − q3p3 + q4p4

 (3.5)

The multiplication of the two quaternions is therefore equivalent to:

q̄ ⊗ p̄ =


q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4



p1

p2

p3

p4

 ≡ L(q̄)p̄ (3.6)

L(q̄) ≡
[
Ψ(q̄) q̄

]
(3.7)
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q̄ ⊗ p̄ =


p4 −p3 p2 p1

p3 p4 −p1 p2

−p2 p1 p4 p3

−p1 −p2 −p3 p4



q1

q2

q3

q4

 ≡ R(p̄)q̄ (3.8)

R(p̄) ≡
[
Ξ(p̄) p̄

]
(3.9)

L(q̄)p̄ ≡ R(p̄)q̄ (3.10)

The Ξ matrix has a few useful properties that will be leveraged in chapter 5, namely:

Ξ(q̄)TΞ(q̄) = I3×3 (3.11)

Ξ(q̄)Ξ(q̄)T = I4×4 − q̄q̄T (3.12)

Ξ(q̄)T q̄ = 0 (3.13)

Multiple products are as follows:

p̄⊗ q̄ ⊗ r̄ =L(p̄)L(q̄)r̄ (3.14)

=L(p̄)R(r̄)q̄

=R(r̄)L(p̄)q̄

=R(r̄)R(q̄)p̄

The dot product between two quaternions is calculated the same way as a vector

dot product.

q̄ · p̄ = q̄T p̄ = q1p1 + q2p2 + q3p3 + q4p4 (3.15)

The identity quaternion Ī has real part equal to 1, and all imaginary parts equal to

0.

Ī =


0

0

0

1

 (3.16)

A pure quaternion has real part 0, and any value for the imaginary parts. A pure
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quaternion will generally be built from a vector; the pure quaternion made from a

vector v will be:

v̄ =

[
v

0

]
=


v1

v2

v3

0

 (3.17)

The quaternion conjugate is found by multiplying all imaginary parts by -1:

q̄∗ =


−q1

−q2

−q3

q4

 (3.18)

The norm of a quaternion is the standard vector euclidian norm:

‖q̄‖ =
√
q2

1 + q2
2 + q2

3 + q2
4 (3.19)

The inverse of a quaternion is the conjugate divided by the norm:

q̄−1 =
q̄∗

‖q̄‖
(3.20)

Unit quaternions are defined as having a norm of 1, and hence their inverse is just

their conjugate:

‖q̄‖ = 1⇔ q̄−1 = q̄∗ (3.21)

Unit quaternions can be used to define three dimensional rotations, much like a

rotation matrix. According to Euler’s rotation theorem, any rotation in three di-

mensional space can be defined by a single rotation about some fixed axis. Defining

that axis as β, a quaternion rotation can be defined as a rotation of angle α about

β:

q̄rotation =


sin α

2
cos βx

sin α
2

cos βy
sin α

2
cos βz

cos α
2

 (3.22)

Note that since a positive rotation about a positive axis is equivalent to a negative
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rotation about a negative axis, quaternions are not unique to a given rotation. Each

quaternion has a single corresponding quaternion that represents the same rotation,

that is q̄ ≡ −q̄. Just as with rotation matrices, multiplying a quaternion from the

left by a second quaternion rotates the first quaternion by the second. Hence in the

same manner that a rotation matrix can be calculated via the multiplication of 3

rotation matrices from right (first rotation) to left (last rotation) of yaw, pitch, and

roll, so too can a quaternion be calculated:

q̄φ =


sin φ

2

0

0

cos φ
2

 q̄θ =


0

sin θ
2

0

cos θ
2

 q̄ψ =


0

0

sin ψ
2

cos ψ
2

 (3.23)

q̄n→b = q̄φ ⊗ q̄θ ⊗ q̄ψ (3.24)

For small angles, this may be approximated with:

q̄n→b ≈


φ
2
θ
2
ψ
2

1

 (3.25)

Note that this approximation results in a non unit-length quaternion.

Vectors can be rotated from the local frame to the body frame by a quaternion

by forming a pure quaternion with the vector of interest as the imaginary part:

v̄n =


vx
vy
vz
0

 (3.26)

The pure quaternion is multipied by the rotation quaternion on the left and the

rotation quaternion inverse (quaternion conjugate for unit quaternion) on the right.

This will result in another pure quaternion, and the rotated vector may be extracted
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from the imaginary part of the resultant quaternion.

v̄b = q̄n→bv̄
nq̄∗n→b (3.27)

Using this definition, the corresponding rotation matrix can easily be found.(
vb

0

)
= L(q̄)R(q̄∗)

(
vn

0

)
(3.28)

= R(q̄∗)L(q̄)

(
vn

0

)
(3.29)

=
[
Ξ(q̄∗) q̄∗

] [
Ψ(q̄) q̄

](vn
0

)
(3.30)

=
[
Ξ(q̄∗) q̄∗

]
q4 q3 −q2

−q3 q4 q1

q2 −q1 q4

−q1 −q2 −q3

vn (3.31)

=


q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

q1 q2 q3 q4



q4 q3 −q2

−q3 q4 q1

q2 −q1 q4

−q1 −q2 −q3

vn (3.32)

(
vb

0

)
=


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 0 0

vn (3.33)

vb =

 q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3



q4 q3 −q2

−q3 q4 q1

q2 −q1 q4

−q1 −q2 −q3

vn (3.34)

vb = Ξ(q̄)TΨ(q̄)vn (3.35)

Cn→b(q̄n→b) = Ξ(q̄n→b)
TΨ(q̄n→b) (3.36)

The rotation quaternion can be found from the rotation matrix through one of the



22

following relationships, where T is the trace of the rotation matrix.

q̄n→b(Cn→b) =


√

(1 + 2C11 − T )/4

(C12 + C21)/(4q1)

(C13 + C31)/(4q1)

(C23 − C32)/(4q1)

 =


(C12 + C21)/(4q2)√

(1 + 2C22 − T )/4

(C23 + C32)/(4q2)

(C31 − C13)/(4q2)

 (3.37)

=


(C13 + C31)/(4q3)

(C23 + C32)/(4q3)√
(1 + 2C33 − T )/4

(C12 − C21)/(4q3)

 =


(C23 + C32)/(4q4)

(C31 + C13)/(4q4)

(C12 − C21)/(4q4)√
(1 + T )/4

 (3.38)

Using a pivotal element of zero will result in a singular quaternion, but at least one

of the pivotal elements will be nonzero. For best numerical accuracy, the form with

the largest pivotal element should be used. This corresponds to the largest value of

C11, C22, C33, and T .



Chapter 4

Attitude Estimation with

Complementary Filter

Using the calibrated gyroscope, accelerometer, and magnetometer output,

the objective is to find an estimate of the attitude of the vehicle, which can be

represented by a rotation quaternion q̄n→b. The most straightforward way to obtain

an attitude would be to integrate the output from the gyroscopes. As this estimate

integrates all errors, the solution diverges quickly and is therefore useless on its

own. A solution that does not diverge can be found by comparing the measured

gravity vector and magnetic field vector to the assumed gravity and magnetic field

vector, then solving for the rotation to align the two. The measured body-frame

magnetic field vector is simply the calibrated output from the magnetometer. The

measured body-frame gravity vector is solved for via the accelerometer, gyroscope,

and airspeed measurements. From (1.7) and (1.9), the measurement of the gravity

vector is obtained by:

g̃b = ãb − f̃
b

(4.1)

23
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ab = v̇b + Ωvb (4.2)

v̇b ≈ 0 (4.3)

vb ≈

ṽ0
0

 (4.4)

ãb =

 0

ω̃zṽ

−ω̃yṽ

 (4.5)

g̃b =

 −ãx

ω̃zṽ − ãy

−ω̃yṽ − ãz

 (4.6)

Utilizing the magnetic field vector, the gravity vector, and the cross product

of the two, an estimate of the rotation matrix can be found [4, p. 340]:

C̃n→b

 | | |
ĝn m̂n ĝn × m̂n

| | |

 =

 | | |
g̃b m̃b g̃b × m̃b

| | |

 (4.7)

C̃n→b =

 | | |
g̃b m̃b g̃b × m̃b

| | |


 | | |
ĝn m̂n ĝn × m̂n

| | |


−1

(4.8)

As this calculation depends on the matrix of gravity and magnetic field vectors to

be nonsingular, the determinant is:∣∣∣∣∣∣∣
 | | |
ĝn m̂n ĝn × m̂n

| | |


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 mx −gmy

0 my gmx

g mz 0


∣∣∣∣∣∣∣ = g2(m2

x +m2
y) (4.9)

Hence the matrix is singular if and only if the local magnetic field vector points

straight up or down. This is as expected, as this would cause the magnetic field and
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gravity vectors to be coincident, and therefore linearly dependent.

The resulting C̃n→b is unlikely to be orthonormal; in order to find the closest

orthonormal matrix to the computed matrix, a Singular Value Decomposition (SVD)

is computed. The SVD decomposes the rotation matrix into UΣV*, where U and V*

are orthonormal matrices that are effectively rotation matrices, and Σ is a scaling

factor. By setting Σ = I , the closest orthonormal rotation matrix is computed as

UV*.

While the attitude estimate based on aligning the gravity and magnetic field

vectors won’t diverge over time, it is subject to a significant amount of high frequency

noise due to the AWGN on all of the sensors; other factors not modeled, such

as turbulence, would also contribute to the noise on this measurement. Luckily,

gyroscopic integration is much more stable over short-term estimates. By fusing

the data together, a much more robust estimation of the air vehicle attitude can be

found than either estimate gives individually.

Accelerometer

Gyroscope
Integrator

1/s
High Pass Filter

s/(s+?)

Low Pass Filter
?/(s+?)

Output

atan2(x, y)

Figure 4.1: Complementary filter

A common method to fuse gyroscopes and accelerometers in two dimensions

is a complementary filter. The complementary filter combines a high-pass filter on

the integrated gyroscope output, and a low-pass filter on the angle found from the

accelerometer output as shown in figure 4.1. Adding the transfer functions of the

two must equal 1, indicating the total gain is unity. The transfer functions for the
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high-pass and low-pass filters are:

TFHP =
s

s+ α
(4.10)

TFLP = 1− s

s+ α
=

α

s+ α
(4.11)

The angles measured by using a first order numerical integration of the gyroscope

and finding the acceleration vector from the accelerometer are:

θ̃kgyro = θ̃k−1
gyro + ∆t

˜̇θ (4.12)

θ̃accel = atan2(ã1, ã2) (4.13)

The calculated integrated gyroscope angle and acceleration vector angle are then

inserted into their respective high-pass and low-pass filters:

θ̂k = αθ̂k−1 + α(

∆t
˜̇
θ︷ ︸︸ ︷

θ̃kgyro − θ̃k−1
gyro) (4.14)

θ̂k = αθ̂k−1 + (1− α)θ̃accel (4.15)

The high-pass filter uses the first order derivative of the integrated gyroscope output,

which by rearranging the terms in (4.12) can be seen to be the gyroscope output

multiplied by the timestep. Using linearity, the two filters are then combined into

the complementary filter:

θ̂k = α (θ̂k−1 + ∆t
˜̇θ)︸ ︷︷ ︸

1

+(1− α) θ̃accel︸︷︷︸
2

(4.16)

This type of filter is very simple to implement, yet effective at finding a

reasonable estimate of the angle. It is desired to use a similar filter design for

a full attitude solution. The filter effectively interpolates between the previous

estimate updated with gyroscopic measurements in part 1 and the estimate based

on the accelerometer in part 2, with a higher k factor giving more weight to the
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gyroscopic update. While interpolation can not be easily computed between two

rotation matrices, it can be easily computed between two quaternions.

The quaternion equivalent to (4.12) is:

˜̄qkn→b = ˜̄qgyro ⊗ ˜̄qk−1
n→b (4.17)

˜̄qn→b represents the integrated value, and ˜̄qgyro is the quaternion that rotates the

previous integrated value by the new integrated value; ˜̄qgyro can be found simply

using the small angle approximation and first order integrator:

˜̄qgyro =


1
2
∆tω̃x

1
2
∆tω̃y

1
2
∆tω̃z
1

 (4.18)

Likewise, the analog to (4.13) is:

˜̄qaccel = q̄n→b(C̃n→b) (4.19)

This converts the measured rotation matrix C̃n→b calculated in (4.7) to a quaternion.

Using the final form of the complementary filter in (4.16), the analogous

Spherical Linear intERPolation (Slerp) is applied to interpolate between the inte-

gration quaternion ˜̄qgyro and ˜̄qaccel via (4.20), where Ω = cos−1(q̄1 · q̄2) is the angle

subtended by the arc, and α is the interpolation parameter. It should be noted that

since q̄ = −q̄ in representation of rotation, the angles are checked to see which of

±q̄2 is closer to q̄1, to avoid interpolating the long way around. Additionally, the

trivial case where q̄1 = ±q̄2 is undefined by the Slerp expression; since they are

equivalent, no evaluation is necessary. [3]

q̄slerp =
sin[αΩ]

sin Ω
q̄1 +

sin[(1− α)Ω]

sin Ω
q̄2 (4.20)
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ˆ̄qkn→b =
sin[αΩ]

sin Ω
˜̄qgyro ⊗ ˆ̄qk−1

n→b +
sin[(1− α)Ω]

sin Ω
˜̄qaccel (4.21)

There are now three identified methods for tracking attitude: Gyroscope

Integration, Magnetic/Gravity Vector alignment, and a complementary filter using

the first two measurements. Figures 4.3, 4.2, and 4.4 show the results of all three

approximations with the plant through a series of maneuvers. First a standard rate

(3 deg/sec) coordinated turn is made to the right, covering 360 degrees. After that,

a steady heading sideslip is made at 24 degrees of bank. Then a loop is completed,

followed by a roll.

The integrated value diverges as expected, and is clearly of little use on its

own. The estimate obtained from the gravity and magnetic field vector follows

the plant throughout the entire simulation, but it contains a significant amount

of high-frequency noise. The complementary filter does a good job of fusing the

two measurements together to get a reasonable estimate of the state. The biggest

shortcoming of this approach is the lack of an estimate of the gyroscope bias; as

time goes on and the bias drifts, the filter will lose accuracy. The extended Kalman

filter overcomes this, and is explored in chapter 5.
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Figure 4.2: Roll estimate through several maneuvers
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Figure 4.3: Pitch estimate through several maneuvers
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Figure 4.4: Heading estimate through several maneuvers



Chapter 5

Extended Kalman Filter (EKF)

While the complementary filter does reasonably well with attitude estima-

tion, it does not estimate errors; the only error correction comes from the calibration

routine, and this not only fails to capture all of the errors, it also becomes less rel-

evant over time as the gyroscope drifts. Using an extended Kalman filter will allow

estimation of the gyroscope bias over time, leading to a stable solution that does

not drift with gyroscope bias.

The Kalman filter can be derived as follows1. Assuming a state space discrete-

time linear time-varying (LTV) system with no inputs, and uncorrelated zero-mean

AWGN wk and vk of the form:

xk = Fkxk−1 +Gkwk (5.1)

yk = Hkxk + vk (5.2)

The expected value x of the state after one time step is simply:

E(x̂k) = Fkx̂k−1 (5.3)

1The derivation of the Kalman filter follows [9].
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Defining the state error ∆x:

∆x = x− x̂ (5.4)

The covariance matrix P is the covariance of the state, or the expected value of the

outer product of the error:

Pk = E(∆xk∆xTk ) (5.5)

As the system is linear, the expected value of the error and covariance after one

time step is:

∆xk = Fk(∆xk−1) +Gkwk (5.6)

Pk = E[(Fk(∆xk−1) +Gkwk)(Fk(∆xk−1) +Gkwk)
T ] (5.7)

Pk = E[Fk

Pk−1︷ ︸︸ ︷
(∆xk−1)(∆xk−1)T F T

k (5.8)

+ Fk(∆xk−1)wT
kG

T
k

+GkwkFk(∆xk−1)T

+Gkwkw
T
k︸ ︷︷ ︸

Qk

GT
k ]

As wk is uncorrelated with ∆xk−1, the second and third terms are 0, and the first

and fourth terms simplify to:

Pk = FkPk−1F
T
k +GkQkG

T
k (5.9)

This can be propagated forward along with (5.3) to give the predict stages of the

Kalman filter.

Measurements can be taken from any available sensors at any time; they do

not need to be taken with every prediction stage. The measurements map to the

state through the H matrix. The output from the sensor ỹk can be compared to
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the estimated value from the state ŷk = Hkx̂k to give the innovation zk = ỹk − ŷk.

This simplifies to:

zk = ỹk −Hkx̂k (5.10)

With the innovation, the covariance of the measurements Rk, and the state covari-

ance Pk, the expected value of the state and state covariance can be updated. With

x̂ and ỹ jointly Gaussian, px̂|ỹ ∼ N (m,Σ) with:

m = mx̂ + Σx̂ỹΣ−1
ỹỹ(ỹ − ŷ) (5.11)

Σ = Σx̂x̂ − Σx̂ỹΣ−1
ỹỹΣỹx̂ (5.12)

As ỹk = Hkxk + vk,

(
xk
ỹk

)
is Gaussian with mean and covariance:

(
x̂k
Hkx̂k

)
,

[
Pk PkH

T
k

HkPk HkPkH
T
k +Rk

]
(5.13)

Utilizing superscripts on the state and covariance to indicate pre-(x̂− and

P−) and post-(x̂+ and P+) measurement update values, the measurements can be

incorporated. Substituting the variables of (5.13) into (5.11) and (5.12), the optimal

estimate for x̂+
k and P+

k can be found via:

x̂+
k = x̂−k +

Lk︷ ︸︸ ︷
P−k H

T
k (HkP

−
k H

T
k +Rk)

−1

zk︷ ︸︸ ︷
(ỹk − ŷk) (5.14)

P+
k = P−k − P

−
k H

T
k (HkP

−
k H

T
k +Rk)

−1︸ ︷︷ ︸
Lk

HkP
−
k (5.15)
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These give the update equations of the Kalman filter.

Predict

x̂−k = Fkx̂
+
k−1 (5.16)

P−k = FkP
+
k−1F

T
k +GkQkG

T
k (5.17)

Update

zk = ỹk −Hkx̂
−
k (5.18)

Lk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (5.19)

x̂+
k = x̂−k + Lkzk (5.20)

P+
k = (I − LkHk)P

−
k (5.21)

The nonlinear variant, the extended Kalman filter (EKF), is found simply

by replacing the predicted state estimate from (5.16) with the nonlinear state tran-

sition equation f(x̂+
k−1) and replacing the observation matrix from (5.10) with the

nonlinear observation equation h(x̂−k ). The F and H matrices used in the covariance

calculations are then the jacobian of f and h for the respective time step.

Predict

x̂−k = f(x̂+
k−1) (5.22)

Fk =
∂f

∂x

∣∣∣
x̂+
k−1

(5.23)

P−k = FkP
+
k−1F

T
k +GkQkG

T
k (5.24)

Update

ẑk = ỹk − h(x̂−k ) (5.25)
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Hk =
∂h

∂x

∣∣∣
x̂−
k

(5.26)

Lk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (5.27)

x̂+
k = x̂−k + Lkzk (5.28)

P+
k = (I − LkHk)P

−
k (5.29)

Defining the state of the EKF as the rotation quaternion q̄n→b and the gyro-

scope bias, and dropping the subscript from the quaternion2:

x(t) =

(
q̄(t)

b(t)

)
(5.30)

Using the pure quaternion ω̄ from the rotation rate vector ω, the rotation quaternion

satisfies the following differential equation.

d

dt
q̄(t) =

1

2
ω̄(t)⊗ q̄(t) (5.31)

Substituting the measured value ω = ω̃−bω−wω gives the set of coupled differential

equations for the state:

d

dt
q̄(t) =

1

2
L(˜̄ω − b̄ω − w̄ω)q̄(t) (5.32)

d

dt
b(t) = wωb (5.33)

Noting that from (3.7), (3.10), and (3.17), for any pure quaternion v̄:

L(v̄)q̄ = R(q̄)v̄ (5.34)

=
[
Ξ(q̄) q̄

](v
0

)
(5.35)

L(v̄)q̄ = Ξ(q̄)v (5.36)

2This implementation of the Quaternion EKF follows closely with [6], with expansion, clarifi-
cation, and a different measurement approach.
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The quaternion state equation can then be redefined as:

d

dt
q̄(t) =

1

2
L(˜̄ω)q̄(t)− 1

2
Ξ(q̄(t))bω(t)− 1

2
Ξ(q̄(t))wω(t) (5.37)

And hence the continuous-time state equation is:

d

dt
x(t) = F (t)x(t) +G(t)w(t) (5.38)

F (t) =

[
1
2
L(˜̄ω) −1

2
Ξ(q̄)

03×4 03×3

]
(5.39)

G(t) =

[
−1

2
Ξ(q̄) 04×3

03×3 I3×3

]
(5.40)

w(t) =

(
wω(t)

wωb(t)

)
(5.41)

Discretizing the equation with the assumption that the gyroscope output is constant

over the integration interval, a quaternion is generated to rotate the state by the

integrated angle. Ξ(q̄) can easily be integrated, as the q̄ is held constant at q̄k−1

over the timestep. With q̄(ω̂k) indicating the small angle approximation of the

quaternion rotating by angle ω̂k (3.25), holding q̄ and ω̃ constant over the timestep

at q̄k−1 and ω̃k, and defining ω̂k =
∫ tk
tk−1

ω̃ dt, the discretized equations are:

q̄k =

∫ tk

t0

1

2
L(˜̄ω(t))q̄(t)− 1

2
Ξ(q̄(t))b(t) dt (5.42)

=

∫ tk−1

t0

1

2
L(˜̄ω(t))q̄(t)− 1

2
Ξ(q̄(t))b(t) dt︸ ︷︷ ︸

q̄k−1

+

∫ tk

tk−1

1

2
L(˜̄ω(t))q̄(t)− 1

2
Ξ(q̄(t))b(t) dt

(5.43)

= q̄k−1 +
1

2
L(ˆ̄ωk)q̄k−1 −

1

2
∆tΞ(q̄k−1)bk−1 (5.44)

= (I +
1

2
L(ˆ̄ωk))q̄k−1 −

1

2
∆tΞ(q̄k−1)bk−1 (5.45)
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=


1 1

2
ω̂3 −1

2
ω̂2

1
2
ω̂1

−1
2
ω̂3 1 1

2
ω̂1

1
2
ω̂2

1
2
ω̂2 −1

2
ω̂1 1 1

2
ω̂3

−1
2
ω̂1 −1

2
ω̂2 −1

2
ω̂3 1

 q̄k−1 −
1

2
∆tΞ(q̄k−1)bk−1 (5.46)

= L(q̄(ω̂k))q̄k−1 −
1

2
∆tΞ(q̄k−1)bk−1 (5.47)

Giving the discrete time state transition matrix:

Fk =

[
L(q̄(ω̂k)) −1

2
Ξ(q̄k−1)∆t

03×4 I3×3

]
(5.48)

The small angle approximation of q̄(ω̂) leads to the introduction of several

errors, including: a resulting quaternion that is no longer unit length; accuracy loss

for angles larger than the small angle approximation of sin and cos are valid; and

higher order errors from the assumption that the quaternion and rotation rates are

held constant over the integration period. With small enough time steps for the

rotation rates expected, the small angle and higher order errors become negligible.

The approximation will, however, tend to increase the length of the quaternion over

time, which will occasionally need to be divided by the quaternion norm in order to

keep the unit length constraint.

Just as with the complementary filter, there are two vectors available for

measurements: the vector from the magnetometer and the estimated gravity vector

from the accelerometer, corrected with the gyroscope and velocity measurements

(4.6). The nonlinear measurement function, based on the assumed-known local

magnetic field vector, is:

ŷmk = hm(x̂−k ) = Cn→b(ˆ̄qk)m
n (5.49)

The jacobian for the magnetometer, Hm
k , is:

Hm
k =

∂hm

∂x

∣∣∣
x̂−
k

= 2
[
c1 c2 c3 c4 03×3

]
(5.50)
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c1 =

mxq1 +myq2 +mzq3

mxq2 −myq1 +mzq4

mxq3 −myq4 −mzq1

 c2 =

−mxq2 +myq1 −mzq4

mxq1 +myq2 +mzq3

mxq4 +myq3 −mzq2


c3 =

−mxq3 +myq4 +mzq1

−mxq4 −myq3 +mzq2

mxq1 +myq2 +mzq3

 c4 =

 mxq4 +myq3 −mzq2

−mxq3 +myq4 +mzq1

mxq2 −myq1 +mzq4


The measurement matrix for the estimated gravity vector is similar to the magne-

tometer, but simpler due to the zero x and y components of the gravity vector:

ŷak = ha(x̂−k ) = Cn→b(ˆ̄qk)g
n (5.51)

Ha
k = 2g

 q3 −q4 q1 −q2 0 0 0

q4 q3 q2 q1 0 0 0

−q1 −q2 q3 q4 0 0 0

 (5.52)

Assuming a small stochastic error ∆q̄ on the quaternion estimate ˆ̄qk, due to

the unit constraint on both the plant and estimate quaternion, the error will be

nearly orthogonal to the deterministic estimate quaternion at every timestep, as

shown in figure 5.13.

∆q̄Tk ˆ̄qk ≈ 0 (5.53)

From that, it follows that

(
ˆ̄qk
0

)
is a null vector of P :

∆xk∆x
T
k =

(
∆q̄k
∆bk

)(
∆q̄Tk ∆bTk

)
(5.54)

∆xk∆x
T
k

(
ˆ̄qk
0

)
=

(
∆ˆ̄qk
∆bk

)(
∆q̄Tk ∆bTk

)(ˆ̄qk
0

)
︸ ︷︷ ︸

≈0

(5.55)

E

(
∆xk∆x

T
k

(
ˆ̄qk
0

))
≈ 0 (5.56)

3It it important to note that ∆q̄ is stochastic and ˆ̄qk is deterministic, but they will always be
approximately perpendicular for small angles due to the unit constraint on both the quaternion
plant and the quaternion estimate.
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v v

Δv
^

Figure 5.1: Unit constrained state, demonstrating that a small state error is nearly
orthogonal to state estimate

Pk

(
ˆ̄qk
0

)
≈ 0 (5.57)

The covariance matrix is therefore nearly singular. In the simulations con-

ducted for this thesis, sensors with significant noise levels were used, and double

precision floating point numbers were used in all calculations. The nearly singular

covariance matrix has not been an issue due to both of these mitigating factors, al-

though single or half precision floating point calculations and/or lower noise sensors

will exacerbate the problem. In order to rectify these problems, a full-rank reduced

representation of the covariance matrix is desired.

Rather than defining the quaternion error as the difference between the plant

and the estimate, ∆q̄ = q̄ − ˆ̄q, it can instead be defined as the quaternion required

to rotate the estimate to the plant. Assuming this is a small angle, the information

of interest is contained entirely within the vector part of the quaternion (the real
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part ≈ 1). Using (3.11) and (3.13), the error quaternion δq̄ can be defined as:

q̄ = δq̄ ⊗ ˆ̄q (5.58)

= R(ˆ̄q)δq̄ (5.59)

=
[
Ξ(ˆ̄q) ˆ̄q

](δq
δq4

)
(5.60)

= Ξ(ˆ̄q)δq + ˆ̄qδq4 (5.61)

Ξ(ˆ̄q)T q̄ = Ξ(ˆ̄q)TΞ(ˆ̄q)︸ ︷︷ ︸
I3×3

δq + Ξ(ˆ̄q)T ˆ̄q︸ ︷︷ ︸
0

δq4 (5.62)

δq = Ξ(ˆ̄q)T q̄ (5.63)

δq = Ξ(ˆ̄q)T (∆q̄ + ˆ̄q) (5.64)

δq = Ξ(ˆ̄q)T∆q̄ + Ξ(ˆ̄q)T ˆ̄q︸ ︷︷ ︸
0

(5.65)

δq = Ξ(ˆ̄q)T∆q̄ (5.66)

The full quaternion state error can be recovered from the reduced representation

using (3.12) and (5.53):

δq = Ξ(ˆ̄q)T∆q̄ (5.67)

Ξ(ˆ̄q)δq = Ξ(ˆ̄q)Ξ(ˆ̄q)T∆q̄ (5.68)

Ξ(ˆ̄q)δq = (I4×4 − ˆ̄q ˆ̄qT )∆q̄ (5.69)

Ξ(ˆ̄q)δq = ∆q̄ − ˆ̄q ˆ̄qT∆q̄︸ ︷︷ ︸
≈0

(5.70)

∆q̄ = Ξ(ˆ̄q)δq (5.71)

Defining the deterministic matrix ξ̂ below, the entire state error ∆x can be converted

to the reduced representation ∆x̌ and back, using (5.66) and (5.71):

ξ̂ =

[
Ξ(ˆ̄q) 04×3

03×3 I3×3

]
(5.72)
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∆x̌ = ξ̂T∆x (5.73)

∆x = ξ̂∆x̌ (5.74)

The reduced representation of the covariance matrix can then be defined:

P̌ = E(∆x̌∆x̌T ) (5.75)

= E(ξ̂T∆x∆xT ξ̂) (5.76)

= ξ̂TE(∆x∆xT )ξ̂ (5.77)

P̌ = ξ̂TP ξ̂ (5.78)

The full covariance matrix is then recovered from the reduced representation:

∆x̌∆x̌T = ξ̂T∆x∆xT ξ̂ (5.79)

ξ̂∆x̌∆x̌T ξ̂T = ξ̂ξ̂T∆x∆xT ξ̂ξ̂T (5.80)

=

(
I7×7 −

[
ˆ̄q ˆ̄qT 04×3

03×4 03×3

])
∆x∆xT

(
I7×7 −

[
ˆ̄q ˆ̄qT 04×3

03×4 03×3

])
(5.81)

=

∆x−

[
ˆ̄q ˆ̄qT 04×3

03×4 03×3

]
∆x︸ ︷︷ ︸

ˆ̄q ˆ̄qT ∆q̄≈0


∆xT −∆xT

[
ˆ̄q ˆ̄qT 04×3

03×4 03×3

]
︸ ︷︷ ︸

∆q̄T ˆ̄q ˆ̄qT≈0


(5.82)

ξ̂∆x̌∆x̌T ξ̂T = ∆x∆xT (5.83)

E(ξ̂∆x̌∆x̌T ξ̂T ) = E(∆x∆xT ) (5.84)

ξ̂P̌ ξ̂T = P (5.85)

With the ability to easily convert from P to P̌ and back, the reduced covari-

ance matrix can be inserted into the EKF framework. Conceptually, tracking the

covariance as P̌ and converting to P whenever it is needed, then reducing back to P̌
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for storage gives the following in all EKF equations that use the covariance matrix:

Predict

P̌−k = ξ̂T (Fkξ̂P̌
+
k−1ξ̂

TF T
k +GkQkG

T
k )ξ̂ (5.86)

= ξ̂TFkξ̂P̌
+
k−1ξ̂

TF T
k ξ̂ + ξ̂TGkQkG

T
k ξ̂ (5.87)

Update

Lk = ξ̂P̌−k ξ̂
THT

k (Hkξ̂P̌
−
k ξ̂

THT
k +Rk)

−1 (5.88)

P̌+
k = P̌−k − ξ̂

TLkHkξ̂P̌
−
k ξ̂

T ξ̂ (5.89)

Then by defining:

F̌ = ξ̂TF ξ̂ (5.90)

Ǧ = ξ̂TG (5.91)

Ȟ = Hξ̂ (5.92)

Ľ = ξ̂TL (5.93)

F̌ can be simplified (3.11):

F̌ =

[
Ξ(ˆ̄q)T 03×3

04×3 I3×3

][
L(q̄(ω̂k)) −1

2
Ξ(q̄k−1)∆t

03×4 I3×3

][
Ξ(ˆ̄q) 04×3

03×3 I3×3

]
(5.94)

=

[
Ξ(ˆ̄q)TL(q̄(ω̂k))Ξ(ˆ̄q) −1

2
Ξ(ˆ̄q)TΞ(ˆ̄q)∆t

03×4 I3×3

]
(5.95)

=

[
Λ −1

2
∆tI3×3

03×4 I3×3

]
(5.96)

Where Λ (derived in the appendix) is:

Λ =

 1 1
2
ω̂3 −1

2
ω̂2

−1
2
ω̂3 1 1

2
ω̂1

1
2
ω̂2 −1

2
ω̂1 1

 (5.97)
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Likewise Ǧ can also be simplified:

Ǧ =

[
Ξ(ˆ̄q)T 03×3

04×3 I3×3

][
−1

2
Ξ(q̄) 04×3

03×3 I3×3

]
(5.98)

=

[
−1

2
I3×3 03×3

03×3 I3×3

]
(5.99)

Making the replacements, the entire EKF can then be run without ever

computing the full covariance matrix P . The final form of the Quaternion EKF is

then4:

Predict

x̂−k = Fkx̂
+
k−1 (5.100)

P̌−k = F̌kP̌
+
k−1F̌

T
k + ǦkQǦ

T
k (5.101)

Update

zk = ỹk −

(
Cn→b(ˆ̄q−k )mn

Cn→b(ˆ̄q−k )gn

)
(5.102)

Ȟk =

[
Hm
k

Ha
k

]
ξ̂ (5.103)

Ľk = P̌−k Ȟ
T
k (ȞkP̌

−
k Ȟ

T
k +R)−1 (5.104)

x̂+
k = x̂−k + ξ̂Ľkzk (5.105)

P̌+
k = P̌−k − ĽkȞkP̌

−
k (5.106)

As the EKF does not model acceleration-induced bias, gyroscope scale factor, or

any alignment errors, the simulation is first run with those error sources removed in

order to verify the filter properly tracks the attitude and gyroscope bias. Covariance

matrices are given in the appendix. Figures 5.2, 5.3, and 5.4 show that the EKF

4Values used in the simulation for P̌0, Q, and R can be found in the appendix
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tracks the attitude of the vehicle accurately through all the maneuvers, and figures

5.5, 5.6, and 5.7 show the bias estimate of the gyroscope follows the plant very

closely.

At approximately 264 and 273 seconds in the simulation, the aircraft passes

through the two singularities of the Tait-Bryan angle representation (straight up

and straight down respectively). While this is not a problem for the quaternion

representation the state uses, it does cause issues when attempting to plot the

representation using Tait-Bryan angles; both the heading and roll plots diverge in

this region. Figure 5.8 shows the underlying quaternion components of the state and

the state estimate, where it is clear there are no issues with the quaternion state in

either of these regions.

After reintroducing the scale factor errors in the instruments and using the

same covariance matrices and random number draws, the effect can clearly be seen

(figures 5.9 through 5.14). The gyroscope bias estimate is more accurately a gy-

roscope error estimate; the introduction of acceleration bias and gyroscope scale

factor errors results in an estimate that includes all three. The bias estimate shows

the EKF tracking the actual bias plus a near-constant offset (normal force-induced

bias) with significant changes in the offset during rotations (scale factor error).
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Figure 5.2: Extended Kalman filter roll estimate with no scale factor errors
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Figure 5.3: Extended Kalman filter pitch estimate with no scale factor errors
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Figure 5.4: Extended Kalman filter heading estimate with no scale factor errors
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Figure 5.5: Extended Kalman filter x-gyroscope bias estimate with no scale factor
errors
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Figure 5.6: Extended Kalman filter y-gyroscope bias estimate with no scale factor
errors



51

0 50 100 150 200 250 300 350 400

Time (sec)

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

B
ia

s
 (

D
e
g
/s

e
c
)

Z-Gyro Bias Estimate

Plant

Extended Kalman Filter

Figure 5.7: Extended Kalman filter z-gyroscope bias estimate with no scale factor
errors
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Figure 5.8: State quaternion components with no scale factor errors
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Figure 5.9: Extended Kalman filter roll estimate with scale factor errors
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Figure 5.10: Extended Kalman filter pitch estimate with scale factor errors
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Figure 5.11: Extended Kalman filter heading estimate with scale factor errors
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Figure 5.12: Extended Kalman filter x-gyroscope bias estimate with scale factor
errors
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Figure 5.13: Extended Kalman filter y-gyroscope bias estimate with scale factor
errors
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Figure 5.14: Extended Kalman filter z-gyroscope bias estimate with scale factor
errors
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Figure 5.15: State quaternion components with scale factor errors



Chapter 6

Filter Comparison

In order to truly compare the performance of the two filters, one set of

random numbers is not sufficient. A Monte Carlo of twenty-four runs each was

conducted, and the maximum and minimum values at each timestep for all of the

runs was plotted. All of the sensor errors (bias, scale factor, AWGN) were pulled

from a different set of random numbers on each run, and both the EKF and the

complementary filter used the same sets.

Figures 6.1, 6.2, and 6.3 show the performance of the two filters in roll, pitch,

and heading respectively. Upon inspection, it becomes clear that pitch is measured

most accurately, followed by heading and then roll. Pitch is simplest to calculate

because it is directly observable at all times by the gravity vector, and it is observable

at some times by the magnetic field vector. Heading becomes slightly more difficult,

as it is only observable by the magnetic field vector. Roll is the most troublesome,

as it is only indirectly observable by making some reasonable assumptions and then

combining multiple noisy sensors to obtain an estimate, which is sensitive to sensor

errors.

Through each of the three figures, it is clear that the EKF performed sig-

nificantly better than the complementary filter. While the complementary filter
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loses accuracy over time as the gyroscope drifts, the EKF retains relatively high

accuracy throughout the run, with only minor short-term errors due to aggressive

maneuvering.

In order to demonstrate robustness of the system, a second Monte Carlo was

conducted with incorrect initial conditions given to the filters: the heading and roll

were both 180◦ off, pitch was 45◦ off, and the gyroscope bias estimate was set to

0. This is shown in figures 6.4, 6.5, and 6.6. Clearly, the complementary filter

in this form is useless (due to the gyroscope bias error), while the EKF converges

within about one minute. While there are other methods of dealing with drifting

gyroscopes for a complementary filter, this certainly underscores the importance of

estimating gyroscope drift in attitude estimation.
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Figure 6.1: Monte Carlo run comparing complementary to EKF roll estimate
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Figure 6.2: Monte Carlo run comparing complementary to EKF pitch estimate
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Figure 6.3: Monte Carlo run comparing complementary to EKF heading estimate
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Figure 6.4: Monte Carlo run comparing complementary to EKF roll estimate with
incorrect initial conditions
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Figure 6.5: Monte Carlo run comparing complementary to EKF pitch estimate with
incorrect initial conditions
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Figure 6.6: Monte Carlo run comparing complementary to EKF heading estimate
with incorrect initial conditions



Chapter 7

Conclusion

Both the complementary filter and the EKF are powerful tools for aircraft

attitude estimation. The simplicity of the complementary filter makes it a very

attractive option despite its shortcomings. The primary drawback of the comple-

mentary filter in this implementation was the lack of gyroscope bias estimation;

for short flights (e.g. remote control airplane), or with the incorporation of other

techniques for tracking bias, the complementary filter could be used. However, the

flexibility and power of the EKF makes it the default option for most commercial

and military grade attitude and heading reference systems; the ability to incorpo-

rate the statistics of the process noise and the measurements into the state estimate

makes it a very capable tool.
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Appendix

All of the sensors are modeled with errors pulled from the following Gaussian

distributions (see Chapter 1):

Accelerometer:

Sa = N


1 0 0

0 1 0

0 0 1

 ,
 .01 .0009 .0009

.0009 .01 .0009

.0009 .0009 .01


 (A.1)

ba = N


0

0

0

 ,

1

1

1


m/s2 (A.2)

wa = N


0

0

0

 ,

.0278

.0278

.0278


m/s2 (A.3)

Magnetometer:

Sm = N


1 0 0

0 1 0

0 0 1

 ,
 .09 2.5e−7 2.5e−7

2.5e−7 .09 2.5e−7

2.5e−7 2.5e−7 .09


 (A.4)

bm = N


0

0

0

 ,

.0025

.0025

.0025


G (A.5)

wm = N


0

0

0

 ,

1e−4

1e−4

1e−4


G (A.6)
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Gyroscope:

Sω = N


1 0 0

0 1 0

0 0 1

 ,
6.25e−4 6.25e−6 6.25e−6

6.25e−6 6.25e−4 6.25e−6

6.25e−6 6.25e−6 6.25e−4


 (A.7)

A = N


0 0 0

0 0 0

0 0 0

 ,
2.5e−7 2.5e−7 2.5e−7

2.5e−7 2.5e−7 2.5e−7

2.5e−7 2.5e−7 2.5e−7


 (A.8)

bω = N


0

0

0

 ,

.01

.01

.01


 rad/s (A.9)

wω = N


0

0

0

 ,

2.5e−5

2.5e−5

2.5e−5


 rad/s (A.10)

wωd = N


0

0

0

 ,

2.5e−9

2.5e−9

2.5e−9


 rad/s2 (A.11)

The EKF (Chapter 5) uses the following covariance matrices:

P̌0 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1.25e−6 0 0

0 0 0 0 1.25e−6 0

0 0 0 0 0 1.25e−6


(A.12)

Q =



5e−6 0 0 0 0 0

0 5e−6 0 0 0 0

0 0 5e−6 0 0 0

0 0 0 3e−8 0 0

0 0 0 0 3e−8 0

0 0 0 0 0 3e−8


(A.13)
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R =



1e−4 0 0 0 0 0

0 1e−4 0 0 0 0

0 0 1e−4 0 0 0

0 0 0 3e−2 0 0

0 0 0 0 2e−1 0

0 0 0 0 0 2e−1


(A.14)

The derivation of the Λ matrix from Chapter 5 is given on the following page.
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Λ
≡

Ξ
(ˆ̄ q

)T
L

(q̄
(ω̂

k
))

Ξ
(ˆ̄ q

)
=

  q 4
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q 1
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q 1
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−
q 3
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q 1
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