
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Large deviations of affine processes

Permalink
https://escholarship.org/uc/item/6xk7n2f2

Author
Varble, Matthew

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xk7n2f2
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Large deviations of affine processes

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Matthew Varble

Committee in charge:

Professor Alex Shkolnik, Chair
Professor Jean-Pierre Fouque
Professor Carlos Garcia-Cervera
Professor Hector Ceniceros

December 2022



The Dissertation of Matthew Varble is approved.

Professor Jean-Pierre Fouque

Professor Carlos Garcia-Cervera

Professor Hector Ceniceros

Professor Alex Shkolnik, Committee Chair

September 2022



Curriculum Vitæ
Matthew Varble

Doctor of Philosophy in Applied Mathematics, UC Santa Barbara, 2022

Master of Arts in Applied Mathematics, UC Santa Barbara, 2019

Bachelor of Science in Mathematics, Cal Poly San Luis Obispo, 2016

iii



Abstract

Large deviations of affine processes

by

Matthew Varble

This thesis aims to develop a comprehensive picture of large deviations of affine

processes. Affine processes have been studied so extensively, that it would not

be foolish to admit that their theory is somewhat complete. Though some

questions still remain, the thesis of [Cuc11] establishes a comprehensive un-

derstanding of affine processes on general convex state spaces. Starting with

the basic definition of an affine process as a time-homogeneous Markov process

with conditional marginal distributions having a characteristic function with

log-affine dependence on the initial state, this paper establishes numerous useful

properties of the process. Among these properties include that affine processes

have càdlàg modifications (paths have left-limits and are right-continuous), and

such modifications are themselves jump-diffusions with respect to their natural

filtration. This result allowed [KRM15] to prove the transform formula for the

real and complex moments, which establishes existence of the process and its

finite moments, so long as a system of generalized Riccati differential equations

have some solution (which need not be unique).

Despite this very comprehensive understanding, large deviation asymptotics

of families of affine processes do not have a similar general approach. Seeing

as the class of affine processes is quite general, surely there are large deviation
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principles for certain families of affine processes. The simplest of which include

families of state-independent processes like the Brownian motion or Poisson

process, whose large deviations are understood asymptotically ε → 0 as time

and space are scaled linearly with respective factors 1/ε and ε; this is a simple

consequence of the classical Mogulskii’s theorem (see [DZ10]). More general

results indeed exist, like [KK14] which proves a large deviation principle for

continuous affine processes on the so-called canonical state space. We are

concerned with large deviation principles of similar asymptotics—those which

could be interpreted as regularizing the noise of a dynamical system—but on

the level of generality that affine processes are already understood.

Though our original intent was to prove a large deviation principle for the

general class of affine processes on convex state spaces, we discovered other re-

markable facts along the way. The following two are of key interest. Firstly, the

measure-change techniques one often uses in large deviations are typically split

into those of a finite-dimensional (twisting/tilting) and infinite-dimensional (ex-

ponential martingale) flavor, but for affine processes one may in fact parameter-

ize the finite-dimensional measure-densities in terms of the infinite-dimensional

ones. This was not a fact seen in [KK14], which—as they mentioned—forced

them to choose a proof using exponential martingales. We show how their

original finite-dimensional approach was sufficient in establishing an integral

form for their rate function. Secondly, seeing as no large deviations result has

been made on the general level of affine processes, there has been no attempt

at understanding the structure of the associated rate functions. In our work

of developing a proof for the principle, we saw the techniques mentioned in
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[DRL04], which ultimately inspired us to develop a calculus associated with

our rate functions. These results remarkably have no dependence on the affine

assumption, and so if a future large deviation principle is to be proved for

asymptotic families of jump-diffusions of the same regularization, this thesis

will have already established semi-closed forms for the associated rate func-

tion.

All this said, we do still prove a large deviation principle for the general

class of affine processes on convex state spaces. While we require usual light-

tail assumptions, we feel the generality is comparable to the treatment of affine

processes in [Cuc11] and [KRM15]. In fact, we even choose to present affine

processes with similar generality up until the point of us needing the assump-

tion. At this juncture, we are able to represent the affine processes as special

jump-diffusions, which have representations that are far more familiar to the

larger audience that have studied Itô processes. For those that have only seen

continuous diffusions, we also offer an Appendix which we feel is a great refer-

ence to the calculus associated with jump-diffusions.

It goes without saying that our proof is not without the incredible theory

of large deviations that already exists. We in particular discuss it at the level

of understanding one has from reading [DZ10], but we for the most part cite

[FK06] and its large deviation results on the Skorokhod space. We also use

[Puh01] to use a density argument in developing an integral form for our rate

function.
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Notation and conventions

Throughout, unless specifically referenced elsewhere, all notions of this text

are formally defined and explored in [Kal02] or [JS03]. Most of our notation

will coincide with these texts (as well as most other literature), except in re-

gards to some particular conventions. Let us establish some of these here. A

stochastic process X with a marginal-index-set I and state space (X,X ) will

be indifferently recognized as:

• a collection X = (Xt)t∈I of marginals Xt : Ω→ X,

• a map X : Ω× I → X,

• or its curried version X : Ω→ XI .

With this convention, we find it appropriate to denote filtrations F = (Ft)t≥0

of increasing σ-algebras Ft. Seeing as F denotes the actual family of σ-

algebras, we denote the joined algebra with infinity subscript, F∞ :=
∨
t≥0 Ft.

The blackboard notation will generally correspond to a topological space, in-

cluding those objects we typically introduce in analysis.

• The real R, the complex C = R⊕ iR, the and non-negative R+ = [0,∞)

numbers with the usual Euclidean topologies.

• For real normed vector spaces V, W, the space L(V,W) of real linear

maps V→W, equipped with operator norm.

|T | := sup
|v|=1

|Tv|

We also concisely denote L(V) := L(V,V).
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• For the a separable metric space X and an interval I ⊆ R+, the space

D(I,X) of càdlàg functions, equipped with the Skorokhod J1 topology.

• For topological spaces X,Y, the space C(X,Y) of continuous functions,

equipped with the supremum norm.

• For finite-dimensional normed vector spaces V,W and open U ⊆ V, the

subspace C1(U,W) of functions f ∈ C(U,W) in which there is a derivative

map Df ∈ C(U,L(V,W)).

lim
|v|→0

∣∣f(u+ v)− f(u)−Df(u) · v
∣∣

|v|
= 0

For f ∈ C1(U,R), we denote ∇f ∈ C(U,V) the gradient,

〈
v,∇f(u)

〉
:= Df(u) · v,

If there is some canonical, ordered basis (e1, . . . , edimV) of V, denote the

i-th partial derivative by Dif ∈ C(U,R).

Dif(u) := Df(u) · ei, i = 1, . . . , dimV

Lastly, for functions of the form f : R+ ×V→W, we specifically denote

partial in the first coordinate with a dot, to indicate derivatives in time.

ḟ(t, u) :=
∂

∂t
f(t, u) := lim

δ→0

f(t+ δ, u)− f(t, u)

δ

• For finite-dimensional normed vector space V and open U ⊆ V, the sub-

space C2(U,R) of f ∈ C1(U,R) in which we also have ∇f ∈ C1(U,V). In

such a case, we denote D2f ∈ C(U,L(V)) the Hessian.

D2f(u) := D
(
∇f(u)

)
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If there is some canonical, ordered basis (e1, . . . , edimV) of V, denote the

second-order ij-th partial derivative Dijf ∈ C(U,R).

Dijf(u) :=
〈
ei,D

2f(u) · ej
〉
, i, j = 1, . . . , dimV

For any topological space X and subset A ⊆ X, we denote A◦ and A its interior

and closure, respectively. In the case that this topology on X is induced by

some metric d, we denote B(x, δ), B(x, δ) ⊆ X the respectively open and closed

balls centered at x ∈ X with radius δ > 0.

B(x, δ) :=
{
x′ ∈ X : d(x′, x) < δ

}
, B(x, δ) :=

{
x′ ∈ X : d(x′, x) ≤ δ

}
When the topology on X is canonical, we will denote the associated Borel

algebra B(X). Particular examples of this convention are:

• the Borel algebra B(V) associated to the topology induced from a canon-

ical inner-product 〈·, ·〉 on a vector space V.

• the Borel algebra B(X) associated to the relative topology of some subset

X of a space V with itself some canonical topology.

In the case that we are dealing with a finite-dimensional real vector space V

with inner-product 〈·, ·〉, we fix an orthonormal basis e1, . . . , edimV ∈ V and

establish the associated isometric isomorphism V ≡ Rd.

v ∈ V ←→
(
v1, . . . , vdimV); vi := 〈v, ei〉, i = 1, . . . , dimV

Similarly identify any map f : A → V with its respective component maps

f1, . . . , fd : A→ R.

f : A→ V ←→
(
f1, . . . , fd

)
: A→ Rd; fi(a) := 〈f(a), ei〉
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Extend the inner-product symmetrically to a bilinear form on V⊕ iV,

〈
v1 + iw1, v2 + iw2

〉
=
(
〈v1, v2〉 − 〈w1, w2〉

)
+ i
(
〈v1, w2〉+ 〈w1, v2〉

)
,

and define the trace of an operator T ∈ L(V), as follows.

tr(T ) =
d∑
i=1

〈ei, T ei〉

We adopt that (Ω,Σ,P) is an abstract probability space that—through the

process of enlargement via Kolmogorov’s extension theorem—we without loss

of generality assume it is equipped with identifications of various quantities

X : Ω → X into measurable spaces (X,X ) associated with distributions µ on

(X,X ). We typically presume such maps X to be measurable without mention

and will otherwise specify this fact explicitly by using the notation X ∈ Σ/X .

For each probability measure P on (Ω,Σ), we denote the P-distribution of such

X by PX or pushfoward notation, X#P.

PXΓ := (X#P)(Γ) := P(X ∈ Γ) := P
(
X−1Γ

)
, Γ ∈X

For intuition, we will also denote integration against this distribution as follows.∫
X

P(X ∈ dx)f(x) :=

∫
X

PX(dx)f(x) =

∫
Ω

P(dω)f
(
X(ω)

)
=: EPf(X)

Just as EP denotes the expectation operator of the measure P, we will denote

EP(·|G ) the conditional expectation operator of P associated with a filtration

G . Should we choose a target space (Y,Y ) and a natural σ-algebra Y −1Y from

some quantity Y ∈ Σ/Y , we denote EP(·|Y = ·) the factoring of EP(·|Y −1Y )

through Y .

EP(X|Y = y) = EP

(
X|Y −1Y

)∣∣∣
Y=y
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Also, any quantity X : Ω→ X will be identified with the identity map on its

codomain, so that we may abusingly use the convenient expectation notation.

EPXf(X) := EPXf =

∫
X
f(x)PX(dx) =

∫
Ω

f
(
X(ω)

)
P(dω) = EPf(X)

This will particularly be useful for when we discuss Markov processes and their

associated identities.
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Chapter 1

Affine processes

Our first chapter will get us familiar with affine processes. Most of the results

will be simple consequences of [Cuc11] and [KRM15], which pretty much com-

prehensively prove everything there is to know about affine processes on convex

state spaces. It is still important for us to have this chapter, for we will need to

have a careful understanding of how the spaces of finite moments change with

respect to time, and these facts only seem to exist in the case of affine diffusions.

Furthermore, the magnificent papers above provide us so much information at

the cost of being very formal. Readers which have not found themselves fa-

miliar with massive texts like [JS03] may not be able to decipher the results

involving semimartingale characteristics in intuitive terms. It is for this reason

that we found it beneficial to provide some calculus-heavy proofs that somehow

demystify these objects. In particular, we translate many of the results of [JS03]

to the special setting of jump-diffusions—those semimartingales in which the

characteristics are differentiable. While certainly less powerful than their gen-

eral semimartingale brethren, jump-diffusions involve deterministic functions

(β, α, µ) which make calculations far more intuitive. Furthermore, they can
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Affine processes Chapter 1

always be understood as weak solutions to stochastic differential equations in-

volving a Brownian motion and a Poisson random measure, which gives them

a somewhat generative flavor. In the case of affine processes, we may remove

one more layer of abstraction, insisting that the functions each take an affine

form in their respective vector spaces.

β(x1, . . . , xd) = b0 +
d∑
i=1

xibi

α(x1, . . . , xd) = a0 +
d∑
i=1

xiai

µ(x1, . . . , xd, dv) = m0(dv) +
d∑
i=1

ximi(dv)

Any result which does not require this affine property is in Appendix A—a

choice which was made less because the information is unrelated to affine pro-

cesses, and more that the extra generality of non-affine differential character-

istics comes at little-to-no cost. In any case, we suggest the reader familiarize

themselves with Appendix A sooner than later, as we use this material very

often throughout the chapters. The remainder of this chapter is organized as

follows.

Section 1.1. Defines an affine process and identifies some relevant notions from

which we begin our investigation.

Section 1.2. Explores consequences of the affine transform formula on real mo-

ments.

Section 1.3. Lifts the notions of the preceding section from marginals to finite-

dimensional distributions.

2



Affine processes Chapter 1

Section 1.4. Explores more on the path-based properties—particularly the jump-

diffusion nature—of affine processes.

1.1 Formulation

We start by specifying our affine processes as in [KRM15]. That is to say,

we fix a finite-dimensional real vector space V with inner-product 〈·, ·〉 and

select a convex, closed X ⊆ V satisfying 0 ∈ X and spanX = V. Associate this

space with the finite exponentials.

UX :=
{
u ∈ V⊕ iV : sup

x∈X
exp 〈<(u), x〉 <∞

}
We may now define the notion of an affine process on X.

Definition 1.1.1. For a probability space (Ω,Σ,P) with filtration F = (Ft)t≥0,

an affine process X on X is a stochastically continuous, time-homogeneous

(P,F )-Markov process on X in which the bounded moments have the following

log-affine dependence on the initial state.

EPx exp 〈u,Xt〉 = exp Ψ(t, u, x)

Ψ(t, u, x) = ψ0(t, u) +
〈
ψ(t, u), x

〉
,

t ≥ 0, u ∈ UX(1.1.2)

Above, we are denoting (Px)x∈X the conditional P-distributions of X factored

through the initial state x ∈ X.

Remark 1.1.3. (a) See [KRM15, Remark 2.3] for an argument on how our

assumptions on X are at no loss of generality; X may as well be any

nonempty convex set.

3



Affine processes Chapter 1

(b) Note how (1.1.2) specifies the characteristic function of each transition

kernel of the Markov process X; thus, should an affine process exist for

choice of Ψ, only one will exist, up to distribution.

(c) See how our notation (ψ0, ψ) differs from that of [KRM15] and other

papers, which typically use (φ, ψ). We choose to do this because affine

functions prevail throughout our investigation of affine processes, and we

saw this an opportunity to have more cohesive notation of all such affine

functions.

α(x) = a0 +
d∑
i=1

xiai

(d) If we have a vector space A and affine map α : X → A determined by

a0, . . . , ad ∈ A via α(x) = a0 +
∑d

i=1 x
iai, then our linear assumptions

0 ∈ X and spanX = V uniquely determine a0, . . . , ad ∈ A. In particular,

the map Ψ uniquely identifies its parts ψi : R+×UX → C for i = 0, . . . , d.

In [Cuc11, Theorem 1.2.7], it is shown that, without loss of generality on

conditional distributions (Px)x∈X, an affine process X can be chosen to have

càdlàg paths. Thus, each distribution Px may be recognized as a measure on

the Borel algebra associated with the space D([0,∞),X) of càdlàg functions

equipped with the Skorokhod topology. By imposing this regularity, the fol-

lowing theorem tells us that an affine process X as in Definition 1.1.1 is a

(Px,F ) jump-diffusion for each x ∈ X. For relevant definitions and results

pertaining to jump-diffusions, we refer the reader to Appendix A.

Theorem 1.1.4. An affine process X on X is a (Px,F ) jump-diffusion in

which the differential χ-characteristics (βχ, α, µ) are affine maps of the follow-

4



Affine processes Chapter 1

ing form.

βχ(x) := bχ0 +
d∑
i=1

xibχi ,

α(x) := a0 +
d∑
i=1

xiai,

µ(x, dv) := m0(dv) +
d∑
i=1

ximi(dv)

The associated Lévy-Khintchine map Λ then also affine,

Λ(u, x) =
〈
u, βχ(x)

〉
+

1

2

〈
u, α(x)u

〉
+

∫
V

(
e〈u,v〉 − 1−

〈
u, χ(v)

〉)
µ(x, dv)

= L0(u) +
d∑
i=1

xiLi(u)

Li(u) :=
〈
u, bχi (x)

〉
+

1

2

〈
u, ai(x)u

〉
+

∫
V

(
e〈u,v〉 − 1−

〈
u, χ(v)

〉)
mi(x, dv),

and each u ∈ iV induces the following differential equation.

(1.1.5)



ψ0(t, u) = L0

(
ψ(t, u)

)
t ≥ 0

ψ(t, u) = L
(
ψ(t, u)

)
t ≥ 0

ψ0(0, u) = 0

ψ(0, u) = u

Proof: This is simply a restatement of [Cuc11, Theorem 1.5.4].

Remark 1.1.6. By Remark 1.1.3(d) and linearity of differentiation, the equa-

tion in (1.1.5) is equivalent to the following system of equations.

(1.1.7) ∀ x ∈ X,


Ψ̇(t, u, x) = Λ

(
ψ(t, u), x

)
t ≥ 0

Ψ(0, u, x) = 〈u, x〉

5



Affine processes Chapter 1

Henceforth, we fix X a càdlàg affine process with conditional distributions

(Px)x∈X on D([0,∞),X), induced filtration F = (Ft)t≥0, and moment function

Ψ as in Definition 1.1.1. We will use the truncation function χ(v) = v1|v|≤1

and fix the differential χ-characteristics (βχ, α, µ) and Lévy-Khintchine map Λ

as in Theorem 1.1.4.

1.2 Existence of real moments

This section elaborates upon the extension of the transform formula in

(1.1.2) and equations (1.1.5) and (1.1.7) to real moments u ∈ V. Clearly,

should any extension exist for some u ∈ V, the value Λ(u, x) = Ψ̇(0, u, x)

should be well-defined. Throughout this section, we recall our exploration in

Section A.4 of the Lévy-Khintchine map Λ and its essential domain of real

moments.

DΛ :=
{
u ∈ V : Λ(u, x) is well-defined for all x ∈ X

}
These will allow us to establish existence results of Ψ(·, u, ·) for real moments

u ∈ V. The following definition will get us started.

Definition 1.2.1. For each τ ≥ 0 and u ∈ DΛ, we say Qu : [0, τ ] × X → R

satisfies system(Λ, τ, u) if the following hold.

(1.2.2)

∀ t ∈ [0, τ ], x ∈ X, Qu(t, x) = qu0 (t) + 〈qu(t), x〉,

∀x ∈ X,


Q̇u(t, x) = Λ

(
qu(t), x

)
, t ∈ [0, τ ]

Qu(0, x) = 〈u, x〉

6



Affine processes Chapter 1

Now define the following sets.

DΨ(τ) :=
{
u ∈ DΛ : there exists a solution to system(Λ, τ, u)

}
DΨ :=

⋃
τ≥0

(
{τ} × DΨ(τ)

)
Theorem 1.2.3. (a) There exists a map Ψ : DΨ × X→ R of the form

Ψ(t, u, x) = ψ0(t, u) +
〈
ψ(t, u), x

〉
such that, for each (τ, u) ∈ DΨ, Ψ(·, u, ·) is a solution to system(Λ, τ, u)

dominated by all other such solutions. Moreover, this map satisfies the

following for each (τ, u) ∈ DΨ and x ∈ X.

(1.2.4) EPx exp 〈u,Xt〉 = exp Ψ(t, u, x), t ∈ [0, τ ]

(b) If τ ≥ 0, u ∈ V, and x ∈ X◦ are such that EPx exp 〈u,Xτ 〉 < ∞, then

(τ, u) ∈ DΨ.

Proof: With Remark 1.1.6, this is the same as [KRM15, Theorem 2.14].

Now that we have two characterizations for the space DΨ, we seek to un-

derstand properties of it and the associated moment map Ψ : DΨ × X→ R.

Proposition 1.2.5. (a) For each τ > 0, DΨ(τ) is open in D◦Λ,

(b) For each τ > 0 and u ∈ DΨ(τ)∩D◦Λ, Ψ(·, u, ·) from Theorem 1.2.3 is the

unique solution to system(Λ, τ, u).

(c) Ψ is continuously differentiable on D◦Ψ × X.

7
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Proof: Fix τ > 0 and u ∈ DΨ(τ) ∩ D◦Λ. Because u ∈ DΨ(τ), Ψ(·, u, ·)

exists on [0, τ ] × X as a solution to system(Λ, τ, u). As mentioned in Remark

1.1.6, the function ψ(·, u) associated with Ψ(·, u, ·) is a solution to the following

equation,

(1.2.6)

 ψ̇(t, u) = f
(
t, ψ(t, u)

)
t ∈ [0, τ ]

ψ(0, u) = u

where f : R×D◦Λ → V is defined by f(t, u) := L(u). Seeing as f is continuously

differentiable on R×D◦Λ by Lemma A.4.4, we may use [Wal98, III.13 Theorem

X] to ensure some ε > 0 such that the band

Sε :=
{

(t, v) ∈ [0, τ ]× V : |v − ψ(t, u)| ≤ ε
}

is contained in R × D◦Λ and provides us to each (t0, v) ∈ Sε a unique solution

q(·, t0, v) to the following initial value problem, q̇(t, t0, v) = f
(
t, q(t, t0, v)

)
t ∈ [t0, τ ]

q(t0, t0, v) = v

which is continuously differentiable with derivatives ∂t0q(t, t0, v) ∈ V (second

coordinate) and Dq(t, t0, v) ∈ L(V) (third coordinate) satisfying the following

equations.

∂t0q(t, t0, v) = −f(t0, u) +

∫ t

t0

Df
(
s, q(s, t0, v)

)
∂t0q(s, t0, v)ds

Dq(t, t0, v) = idV +

∫ t

t0

Df
(
s, q(s, t0, v)

)
Dq(s, t0, v)ds

In particular, for each v ∈ B(u, ε), we have |v − ψ(0, u)| = |v − u| < ε, and

so (0, v) ∈ Sε; this allows us to disregard the middle coordinate and have

8
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q : [0, τ ]×B(u, ε)→ V such that q(·, v) is the unique solution to q̇(t, v) = L
(
q(t, v)

)
, t ∈ [0, τ ]

q(0, v) = v

and the derivative in the second coordinate Dq(t, v) ∈ L(V) satisfies the fol-

lowing equation.

Dq(t, v) = idV +

∫ t

0

DL
(
q(s, v)

)
Dq(s, v)ds

From here, we may define Q : [0, τ ]×B(u, ε)× X→ R as follows.

Q(t, v, x) := q0(t, v) +
〈
q(t, v), x

〉
q0(t, v) :=

∫ t

0

L0

(
q(s, v)

)
ds

L0(v) := Λ(v, 0)

Because the image of q(·, v) on [0, τ ] remains in D◦Λ, on which L is contin-

uously differentiable, q0 is continuously differentiable with derivatives q̇0 and

Dq0 satisfying the following.

q̇0(t, v) = L0

(
q(s, v)

)
Dq0(t, v) =

∫ t

0

DL0

(
q(s, v)

)
Dq(s, v)ds

By linearity, Q(·, v, ·) is a solution to system(Λ, τ, v) and so v ∈ DΨ(τ). We

now have B(u, ε) ⊆ DΨ(τ), concluding part (a). Meanwhile, any solution Qu to

system(Λ, τ, u) is such that the associated qu solves (1.2.6) and so qu = q(·, u).

From here, it is thus the case that Qu = Q(·, u, ·). This means Ψ from Theorem

1.2.3 is such that Ψ(·, u, ·) is the unique solution to system(Λ, u, τ), concluding

9
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part (b). Lastly, for each x ∈ X, linearity also shows us that Ψ(·, ·, x) is

continuously differentiable in a neighborhood of (t, u), with derivative in the

second coordinate DΨ(·, ·, x) satisfying the following.

DΨ(t, u, x) = Dψ0(t, u) + Dψ(t, u) · x

= Dq0(t, u) + Dq(t, u) · x

=

∫ t

0

DL0

(
q(s, u)

)
Dq(s, u)ds

+

(
idV +

∫ t

0

DL
(
q(s, u)

)
Dq(s, u)ds

)
· x

= x+

∫ t

0

(
DL0

(
q(s, u)

)
Dq(s, u) +

d∑
i=1

xiDLi
(
q(s, u)

)
Dq(s, u)

)
ds

= x+

∫ t

0

D
(
L0 +

d∑
i=1

xiLi

)(
q(s, u)

)
Dq(s, u)ds

= x+

∫ t

0

DΛ
(
q(s, u), x

)
Dq(s, u)ds

= x+

∫ t

0

DΛ
(
ψ(s, u), x

)
Dψ(s, u)ds

This concludes part (c).

Proposition 1.2.7. For each compact set K ⊆ D◦Λ, there exists δ > 0 such

that K ⊆ DΨ(δ). Moreover, Ψ(·, u, ·) from Theorem 1.2.3 is the unique solution

to system(Λ, δ, u) for each u ∈ K.

Proof: Firstly, we recognize that by virtue of K ⊆ D◦Λ being compact, we

have some ε > 0 such that the associated open set

Kε :=
{
u ∈ V : inf

u′∈K
|u− u′| < ε

}
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has closure Kε contained in D◦Λ. Note in particular that this provides us with

a buffer of radius ε around each point in D◦Λ.

B(u, ε) :=
{
u′ ∈ V : |u′ − u| ≤ ε

}
⋃
u∈DΛ

B(u, ε) ⊆ Kε ⊆ D◦Λ

With these sets established, we mitigate the task of finding a solution Qu

to system(Λ, δ, u) to that of finding a solution qu to the related equation.

(1.2.8)

 q̇u(t) = L
(
qu(t)

)
t ∈ [0, δ]

qu(0) = u

For a fixed u ∈ D◦Λ, the existence of some δu > 0 and solution qu to (1.2.8) may

be obtained from the usual fixed-point method (see [Wal98, II.6 Theorem III]).

Indeed, Remark 1.1.3(d) and Lemma A.4.4 provide us a Lipschitz property for

L on B(u, ε),

∣∣L(v)− L(w)| ≤ |v − w|Cu,ε, v, w ∈ B(u, ε)

Cu,ε := sup
u′∈B(u,ε)

∣∣∣DL(u′, x)∣∣∣
and so a Banach space (Bu, ‖·‖Bu) defined by

δu := 1 ∧ ε

supu′∈B(u,ε) |L(u′)|

Bu := C([0, δu],V)

‖f‖Bu := sup
t∈[0,δu]

|f(t)|e−2Cu,εt

is partially equipped with a map T : C([0, δu], K)→ C([0, δu], Kε) defined by

Tf(t) := u+

∫ t

0

L
(
f(s)

)
ds,

11
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satisfying a contraction property,

‖Tf − Tg‖Bu ≤
1

2
‖f − g‖Bu ,

which induces a unique solution qu ∈ C([0, δu], Kε) to the associated fixed-point

equation, Tqu = qu. This solution qu is thus a unique solution to (1.2.8).

From here, we define the following positive δ,

δ := inf
u∈K

δu ≥ 1 ∧ inf
u∈K

ε

supu′∈B(u,ε) |L(u′)|
≥ 1 ∧ ε

supu′∈Kε |L(u′)|
> 0

so that each u ∈ K has a unique solution qu to (1.2.8). This induces the

following map Qu : [0, δ]× X→ R for each u ∈ K.

Qu(t, x) := qu0 (t) +
〈
qu(t), x

〉
qu0 (t) :=

∫ t

0

L0

(
qu(s)

)
ds

By linearity, Qu is a solution to system(Λ, δ, u) for each u ∈ K, and so we have

K ⊆ DΨ(δ). For each u ∈ K ⊆ DΨ(δ), a solution Q̃u to system(Λ, δ, u) is such

that the associated q̃u solves (1.2.8) and so q̃u = qu. From here, it is thus the

case that Q̃u = Qu. This means Ψ from Theorem 1.2.3 is such that Ψ(·, u, ·) is

the unique solution to system(Λ, u, δ) for all u ∈ K.

Proposition 1.2.9. For any compact subset K ⊆ D◦Ψ, there exists CK > 0

such that the following holds for all (t, u) ∈ K.

∣∣Ψ(t, u, x)−Ψ(0, u, x)
∣∣ ≤ CK · t ·

(
1 + |x|

)
Proof: Let K ⊆ D◦Ψ be compact. By Remark 1.1.6 and Proposition

1.2.5(c), we have that the functions ψi for i = 0, . . . , d are continuously differ-
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entiable on D◦Ψ. Thus, we may define the following positive numbers.

CK,i := sup
(t,u)∈K

|ψ̇i(t, u)|, i = 0, . . . , d

CK := max
{
CK,0, CK,1

√
d, . . . , CK,d

√
d
}
<∞

Using the fundamental theorem of calculus and the fact that Ψ(·, u, ·) solves

system(Λ, τ, u), we produce the following bound for all (t, u) ∈ K.

∣∣Ψ(t, u, x)−Ψ(0, u, x)
∣∣ =

∣∣∣ψ0(t, u) +
〈
ψ(t, u)− u, x

〉∣∣∣
≤
∣∣ψ0(t, u)

∣∣+
∣∣ψ(t, u)− u

∣∣ · |x|
=

∣∣∣∣∫ t

0

ψ̇0(s, u)ds

∣∣∣∣+

∣∣∣∣∫ t

0

ψ̇i(s, u)ds

∣∣∣∣ · |x|
≤ CK,0 · t+

( d∑
i=1

C2
K,i

)1/2

· t · |x|

≤ CK · t ·
(
1 + |x|

)

While we will not need the following result until the next chapter, we find

it important to put it here, as a reality check with our spaces DΛ and DΨ.

Proposition 1.2.10. We have DΛ = V if and only if each u ∈ V is such that

there exists τ > 0 in which u is a finite moment of the associated marginal Xτ .

EPx exp 〈u,Xτ 〉 <∞, x ∈ X

Proof: For sufficiency, first see that any u ∈ V is such that B(u, 1) ⊆

V = D◦Λ is compact. By Proposition 1.2.7, we then have some τ > 0 so that

u ∈ B(u, 1) ⊆ DΨ(τ). Then, Theorem 1.2.3(a) gives us the desired finiteness
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condition.

EPx exp 〈u,Xτ 〉 = exp Ψ(τ, u, x) <∞, x ∈ X

Conversely, if u ∈ V satisfies EPx exp 〈u,Xτ 〉 < ∞ for all x ∈ X, then it

certainly does for some x ∈ X◦, and so Theorem 1.2.3(b) gives us (τ, u) ∈ DΨ.

Surely, this then means that u ∈ DΨ(τ) ⊆ DΛ.

1.3 Finite-dimensional distributions

With a good grasp of the finite real moments associated with our affine

process X and their correspondence with Ψ, we now leverage these results

to the finite-dimensional distributions. In other words, this section serves to

lift Theorem 1.2.4 on marginals Xt to one on finite-dimensional distributions

(Xt1 , . . . , Xtn). Let us establish some notation.

For any space A, positive integer n ∈ N, and a ∈ An, adopt the convention

of denoting a = (a1, . . . , an) and

a`:m = (a`, . . . , am) ∈ Am−`+1, 1 ≤ ` ≤ m ≤ n.

For each n ∈ N and t ∈ [0,∞)n, define the projection map πt : X[0,∞) → Xn by

πt(ξ) := ξ(t) :=
(
ξ(t1), . . . , ξ(tn)

)
.

Denote t ` [0,∞) to mean that t is additionally a partition of the following

form.

0 < t1 < · · · < tn

For each such partition t ` [0,∞), associate the following notation.

t0 := 0
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∆tk := tk − tk−1, 1 ≤ k ≤ n

|t| := n

Lastly, for any A ⊆ [0,∞), denote t ` A to mean t ` [0,∞) and t1, . . . , t|t| ∈ A.

For each n ∈ N, extend the linear operations of V to Vn, componentwise.

Similarly, extend the definition of our bilinear form on V⊕iV to one on (V⊕iV)n,

like so.

〈u, v〉 :=
n∑
k=1

〈uk, vk〉

We now clearly specify the extension of Ψ to finite-dimensional projections

from the perspective of Theorem 1.2.3 and equation (1.2.4). Note that this

specifically permits infinite values.

Definition 1.3.1. To each t ` [0,∞), denote the cumulant generating function

of Xt by Ψ(t, ·, ·) : (V⊕ iV)|t| × X→ (−∞,∞].

EPx exp 〈u,Xt〉 =: exp Ψ(t, u, x)

Note that this extends the definition of Ψ in that we may always consider some

time t > 0 as a partition t ` [0,∞).

Before we investigate real moments, let us establish the easier result on

purely complex moments. This will give us intuition for the objects we create

in the sequel.

Lemma 1.3.2. For each t ≥ 0 and u ∈ UX, we have ψ(t, u) ∈ UX.

Proof: This is an immediate result of Definition 1.1.1. For any x ∈ X, we

have the following uniform bound.

exp<
〈
ψ(t, u), x

〉
=
∣∣e〈ψ(t,u),x〉∣∣
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=
∣∣∣e−ψ0(t,u)+Ψ(t,u,x)

∣∣∣
=
∣∣∣e−ψ0(t,u)

∣∣∣ · ∣∣∣EPx exp 〈u,Xt〉
∣∣∣

≤
∣∣∣e−ψ0(t,u)

∣∣∣ · EPx

∣∣∣ exp 〈u,Xt〉
∣∣∣

≤
∣∣∣e−ψ0(t,u)

∣∣∣ · sup
x′∈X

exp<〈u, x′〉

Proposition 1.3.3. For any t ` [0,∞), u ∈ iV|t|, and x ∈ X, we have the

following identity, where we denote n := |t| for brevity.

θn := un

θk := uk + ψ(∆tk+1, θk+1), k = n− 1, . . . , 1

Ψ(t, u, x) =

|t|∑
k=1

ψ0(∆tk, θk) +
〈
ψ(∆tk, θk), x

〉
Proof: We start by recognizing that u ∈ iV means the following identity.

∣∣e〈uk,x〉∣∣ = exp<〈uk, x〉 = 1, k = 1, . . . , n

In particular, we have θn = un ∈ UX; we show θk ∈ UX for k = n− 1, . . . , 1 by

induction and Lemma 1.3.2.

sup
x∈X

exp<〈θk, x〉 = sup
x∈X

∣∣e〈θk,x〉∣∣
= sup

x∈X

∣∣e〈uk+ψ(∆tk+1,θk+1),x〉∣∣
= sup

x∈X

∣∣e〈uk,x〉∣∣ · ∣∣e〈ψ(∆tk+1,θk+1),x〉∣∣
= sup

x∈X
exp<〈ψ(∆tk+1, θk+1), x〉 <∞
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Now observe the following identity.

Ψ(t, u, x)

= log EPx exp 〈u,Xt〉

= log EPx

(
exp

n−1∑
k=1

〈uk, Xtk〉 · exp 〈θn, Xtn〉

)(1.3.4)

= log EPx

(
exp

n−1∑
k=1

〈uk, Xtk〉 · EPx

(
exp 〈θn, Xtn〉|Ftn−1

))

= log EPx

(
exp

n−1∑
k=1

〈uk, Xtk〉 · exp Ψ(∆tn, θn, Xtn−1)

)

= ψ0(∆tn, θn)

+ log EPx

(
exp

n−1∑
k=1

〈uk, Xtk〉 · exp
(〈
ψ(∆tn, θn), Xtn−1

〉))

= ψ0(∆tn, θn)

+ log EPx

(
exp

n−2∑
k=1

〈uk, Xtk〉 · exp
(〈
un−1 + ψ(∆tn, θn), Xtn−1

〉))

= ψ0(∆tn, θn)

+ log EPx

(
exp

n−2∑
k=1

〈θk − ψ(∆tk+1, θk+1), Xtk〉 · exp
(〈
θn−1, Xtn−1

〉))
(1.3.5)

The final term of (1.3.4) is identical to that of (1.3.5) where we have reduced

k = n to k = n − 1. Repeating these equalities inductively k = n − 1, . . . , 1

will result in the desired identity.

Ψ(t, u, x) =
n∑
k=2

ψ0(∆tk, θk) + log EPx exp 〈θ1, Xt1〉
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=
n∑
k=1

ψ0(∆tk, θk) +
〈
ψ(∆t1, θ1), x

〉

As the preceding result shows, the X-affine structure of Ψ allows us to itera-

tively factor the exponentials in our expectation. The problem with extending

this to real moments like in Theorem 1.2.3 is that each of the produced quan-

tities θk need not produce an integrable exponential on which we apply the

transform formula. The next result is our way of coercing such a property to

occur; the map Ut serves to parameterize those moments u ∈ V|t| which the

resulting θ is in
∏|t|

k=1DΨ(∆tk), since this is precisely the set on which we may

perform the calculations between (1.3.4) and (1.3.5). This set turns out to be

important in our discussion, so we will reserve it special notation.

DΨ(t) :=

|t|∏
k=1

DΨ(∆tk), t ` [0,∞)

Proposition 1.3.6. For each t ` [0,∞), the following map Ut is a continuous

injection, where we denote n := |t| for brevity.

Ut : DΨ(t)→ V|t|, Ut(θ) :=
(
θ1 − ψ(∆t2, θ2), . . . , θn−1 − ψ(∆tn, θn), θn

)
Moreover, for each x ∈ X and θ ∈ DΨ(t), we have the following (finite) identity.

(1.3.7) Ψ
(
t, Ut(θ), x

)
=

|t|∑
k=1

ψ0(∆tk, θk) +
〈
ψ(∆t1, θ1), x

〉
Proof: Fix θ ∈ DΨ(t). By definition, this means that to each k = 1, . . . , |t|,

we have θk ∈ DΨ(∆tk), and so ψ(∆tk, θk) is well-defined. This ensures that Ut

is well-defined. Now select another point θ′ ∈ DΨ(t) such that Ut(θ) = Ut(θ
′).
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The final component of Ut ensures that θn = θ′n; by means of induction, we then

get θk−1 = θ′k−1 for k = n, . . . , 2, via the equality on the respective component

map.

θk−1 − ψ(∆tk, θk) = Ut,k−1(θ) = Ut,k−1(θ′) = θ′k−1 − ψ(∆tk, θ
′
k)

This indicates to us that Ut is an injection, and continuity comes simply from

continuity of each ψ(∆tk, ·) via Proposition 1.2.5(c).

It now remains to show the identity in (1.3.7). This reduces down to re-

peatedly applying iterated expectations; fix x ∈ X and observe the following.

Ψ
(
t, Ut(θ), x

)
= log EPx exp

〈
Ut(θ), Xt

〉

= log EPx

(
exp

n−1∑
k=1

〈
θk − ψ(∆tk+1, θk+1), Xtk

〉
· exp

〈
θn, Xtn

〉)(1.3.8)

= log EPx

(
exp

n−1∑
k=1

〈
θk − ψ(∆tk+1, θk+1), Xtk

〉
· EPx

(
exp

〈
θn, Xtn

〉
|Ftn−1

))

= log EPx

(
exp

n−1∑
k=1

〈
θk − ψ(∆tk+1, θk+1), Xtk

〉
· exp Ψ(∆tn, θn, Xtn−1)

)

= ψ0(∆tn, θn)

+ log EPx

(
exp

n−1∑
k=1

〈
θk − ψ(∆tk+1, θk+1), Xtk

〉
· exp

(〈
ψ(∆tn, θn), Xtn−1

〉))

= ψ0(∆tn, θn)

+ log EPx

(
exp

n−2∑
k=1

〈θk − ψ(∆tk+1, θk+1), Xtk〉 · exp
(〈
θn−1, Xtn−1

〉))
(1.3.9)
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The final term of (1.3.9) is identical to that of (1.3.8), where we have reduced

k = n to k = n − 1. Repeating these equalities inductively k = n − 1, . . . , 1

will result in the desired identity.

Ψ
(
t, Ut(θ), x

)
=

n∑
k=2

ψ0(∆tk, θk) + log EPx exp 〈θ1, Xt1〉

=
n∑
k=1

ψ0(∆tk, θk) +
〈
ψ(∆t1, θ1), x

〉

We now turn to the analogue of Theorem 1.2.3(b), in which Px-finite mo-

ments u ∈ V|t| for initial points x ∈ X◦ are precisely those u ∈ DΨ(t).

Proposition 1.3.10. Fix t ` [0,∞) and denote n := |t| for brevity. If u ∈ V|t|

is such that Ψ(t, u, x) <∞ for some x ∈ X◦, then the following recursion holds.

(1.3.11)
θn := un ∈ DΨ(∆tn)

θk := uk + ψ
(
∆tk+1, θk+1

)
∈ DΨ(∆tk), k = n− 1, . . . , 1

Proof: Consider u ∈ V|t| from which we may not construct the recursion

in (1.3.11). In other words, there exists maximal j ∈ {1, . . . , n} in the recursion

which fails; i.e. θk ∈ DΨ(∆tk) for all k = n, . . . , j + 1 and θj 6∈ DΨ(∆tj). We

now repeat the work as in (1.3.8)-(1.3.9) for a fixed x ∈ X◦ to get the following

identity.

log EPx exp 〈u,Xt〉

= log EPx

(
exp

( n−1∑
k=1

〈uk, Xtk〉
)
· EPx

(
exp

〈
un, Xtn

〉
|Ftn−1

))
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= ψ0(∆tn, un) + log EPx

(
exp

( n−2∑
k=1

〈uk, Xtk〉
)

· EPx

(
exp

〈
un−1 + ψ(∆tn, un), Xtn−1

〉
|Ftn−2

))
= ψ0

(
∆tn, θn)

+ log EPx

(
exp

( n−2∑
k=1

〈uk, Xtk〉
)
· EPx

(
exp

〈
θn−1, Xtn−1

〉
|Ftn−2

))
...

=
n∑

k=j+1

ψ0(∆tk, θk)

+ log EPx

(
exp

( j−1∑
k=1

〈uk, Xtk〉
)
· EPx

(
exp

〈
θj, Xtj

〉
|Ftj−1

))

=
n∑

k=j+1

ψ0(∆tk, θk) + log EPx

(
exp

( j−1∑
k=1

〈uk, Xtk〉
)
· EPXtj−1

exp
〈
θj, X∆tj

〉)
By Theorem 1.2.3, since θj 6∈ DΨ(∆tj), we have EPx′

exp 〈θj, X∆tj〉 = ∞ for

all x′ ∈ X◦, so the above integrand is infinite on the set Xtj−1
∈ X◦. Seeing

as x ∈ X◦, this set is Px non-negligible, and so the quantity is infinite. We

conclude that u 6∈ DΨ(t), which finishes the proof by contrapositive.

Our final result of this section explores more on how finite moments u of

Xt relate to those θ of the increments Xt1−Xt0 , Xt2−Xt1 , . . . , Xtn−Xtn−1 . To

see this, we define the following increment cumulant generating function,

ϕ(t, θ, x) := log EPx exp 〈θ,Xt − x〉 = Ψ(t, θ, x)− 〈θ, x〉

Theorem 1.3.12. Fix t ` [0,∞) and x0 ∈ X◦. The map Ut is a homeomor-

phism from DΨ(t) to the collection of u ∈ V|t| for which Ψ(t, u, x0) < ∞. In

particular, this means u ∈ V|t| satisfies Ψ(t, u, x0) <∞ if and only if u = Ut(θ).
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Moreover, we have the following identity for all x ∈ X|t|.

〈u, x〉 −Ψ(t, u, x0) =

|t|∑
k=1

(
〈θk, xk − xk−1〉 − ϕ(∆tk, θk, xk−1)

)
, u = Ut(θ)

Proof: By Proposition 1.3.6, we have that U is indeed a continuous map

from DΨ(t) into the finite domain of Ψ(t, ·, x0). Conversely, Proposition 1.3.10

indicates to us that, on the finite domain of Ψ(t, ·, x0), a recursively-defined map

Tt from (1.3.11) exists. Denoting n := |t|, we see that this map is continuous

by induction and continuity of compositions.

Tt(u) =
(
Tt,1(u1:n), . . . , Tt,n(un:n)

)
, Tt,n(un:n) = un

Tt,k(uk:n) = uk + ψ
(
∆tk+1, Tt(uk+1:n)

)
Observe that Tt is the inverse of Ut. To see this, fix θ ∈ DΨ(t) and u := Ut(θ).

The final coordinate is obvious,

Tt,n(un:n) = un = Ut,n(θ) = θn,

while an inductive hypothesis Tt,k(uk:n) = θk gives us the next step.

Tt,k−1(uk−1:n) = Ut,k−1(θ) + ψ
(
∆tk, Tt,k(uk:n)

)
= θk−1 − ψ(∆tk, θk) + ψ(∆tk, θk)

= θk−1

Dual to this, fix u ∈ V|t| for which Ψ(t, u, x0) < ∞ and define θ := Tt(u).

Again, we immediately have

Ut,n(θ) = θn = Tt,n(un:n) = un,
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and an inductive hypothesis of Ut,k(θ) = uk results in the next step.

Ut,k−1(θ) = θk−1 − ψ(∆tk, θk) = Tt,k−1(uk−1:n)− ψ
(
∆tk, Tt,k(uk:n)

)
= uk−1

We have now showed that Ut is a homeomorphism with inverse Tt. It

remains to show our identity for a pairing u = Ut(θ).

〈u, x〉 −Ψ(t, u, x0)

=
〈
Ut(θ), x

〉
−Ψ

(
t, Ut(θ), x0

)
=

n−1∑
i=1

〈
θk − ψ(∆tk+1, θk+1), xk

〉
+ 〈θn, xn〉 −

n∑
i=1

ψ0(∆tk, θk)−
〈
ψ(∆t1, θ1), x0

〉
=

n∑
i=1

(
〈θk, xk〉 − ψ0(∆tk, θk)−

〈
ψ(∆tk, θk), xk

〉)
=

n∑
i=1

(
〈θk, xk〉 −Ψ(∆tk, θk, xk)

)
=

n∑
i=1

(
〈θk, xk − xk−1〉 − ϕ(∆tk, θk, xk)

)

1.4 Affine jump-diffusions

This section shows how the notions of jump-diffusions explained in Ap-

pendix A apply in the affine case. These results are useful because—as we

see in Theorem 1.1.4—affine processes are affine jump-diffusions. Through-

out this section, we take X to be an affine jump-diffusion with differential

χ-characteristics (βχ, α, µ), but do not necessarily assume X is an affine pro-

cess, in the sense of Definition 1.1.1. Firstly, we prove the uniform-boundedness

property for the affine jump kernel µ.
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Lemma 1.4.1. The jump kernel µ satisfies the following uniform-boundedness

property. Any function f ∈ B(V)/B(R) that satisfies∫
V
|f(v)|µ(x, dv) <∞

for all x ∈ X then satisfies the following.

x 7→
∫
V
|f(v)|µ(x, dv) bounded on compact sets

Proof: Seeing as 0 ∈ X and spanX = V, we can take appropriate linear

combinations to get finite integrals for each of the parts m0, . . . ,md of µ.

Fi :=

∫
V
|f(v)|mi(dv) <∞, i = 0, . . . , d

From here, the result is a simple effect of our affine property and boundedness

of compact sets.

sup
|x|≤M

∣∣∣∣ ∫
V
|f(v)|µ(x, dv)

∣∣∣∣ = sup
|x|≤M

∣∣∣∣F0 +
d∑
i=1

xiFi

∣∣∣∣ ≤ F0 +M
d∑
i=1

Fi <∞

With this result, we can state succinct versions of the results which exist for

general jump-diffusions. The first of which can be seen as our escape hatch to

representing affine processes X as objects subject to a dynamical system ξ̇ =

β(ξ), subject to both continuous and purely-discontinuous martingale noise.

Proposition 1.4.2. If 0 ∈ D◦Λ, then X is a (Px,F ) special jump-diffusion for

each x ∈ X. The resulting drift map β : X → V in the special semimartingale

decomposition,

Xt = x+ β(X) • `t +Xc + idV ∗ q̃Xt

is also affine, making all the special differential characteristics (β, α, µ) affine.
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Proof: By combining Lemma 1.4.1 and Proposition A.4.10, we get that

X is special. Now, we perform the algebra to see the affine structure of β.

β(x) = βχ(x) +

∫
V

(
v − χ(v)

)
µ(x, dv)

=

(
bχ0 +

d∑
i=1

xibχi

)
+

∫
V

(
v − χ(v)

)(
m0(dv) +

d∑
i=1

ximi(dv)

)

=

(
bχ0 +

∫
V

(
v − χ(v)

)
m0(dv)

)
+

d∑
i=1

xi
(
bχi +

∫
V

(
v − χ(v)

)
mi(dv)

)

Proposition 1.4.3. If the jump kernel satisfies µ(x,V) < ∞ for all x ∈ X,

then X is (Px,F ) locally countable for all x ∈ X. In the resulting factorization,

µ(x, dv) = λ(x)κ(x, dv),

the intensity λ is an affine map and the jump distribution κ is a convex mixture

of probability distributions k0, . . . , kd whenever λ(x) 6= 0.

λ(x) = l0 +
d∑
i=1

xili, κ(x, dv) =
l0
λ(x)

k0(dv) +
d∑
i=1

xili
λ(x)

ki(dv),

Proof: By combining Lemmas 1.4.1 and A.3.2, we get the desired local

countability. Because 0 ∈ X and spanX = V, we are able to take appropriate

linear combinations to ensure finiteness of the quantities li := mi(V) for each

i = 0, . . . , d. This allows us to define our intensity map.

λ(x) := l0 +
d∑
i=1

xili = m0(V) +
d∑
i=1

ximi(V) = µ(x,V)

Now, just as in Remark A.3.3, each non-zero li will produce a probability

distribution ki(dv) := mi(dv)/li; otherwise, simply define ki(dv) := δe1 . This
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way, we have the factoring mi(dv) = liki(dv) for each i = 0, . . . , d. If λ(x) 6= 0,

we see our other desired identity.

κ(x, dv) :=
1

λ(x)
µ(x, dv)

=
1

λ(x)

(
m0(dv) +

d∑
i=1

ximi(dv)

)

=
1

λ(x)

(
l0k0(dv) +

d∑
i=1

xiliki(dv)

)

=
l0
λ(x)

k0(dv) +
d∑
i=1

xili
λ(x)

ki(dv)

Theorem 1.4.4. If 0 ∈ D◦Λ, then any h ∈ D([0,∞),V) of finite variation,

compact support, and image contained in D◦Λ makes exp(h•X) a (Px,F ) special

jump-diffusion and

Zh := exp
(
h •X − Λ

(
h,X

)
• `
)

a martingale for every x ∈ X. Moreover, we may define a new measure Qh by

Qh(dω) := Zh(ω) · P(dω)

such that X is a (Qh,F ) special jump-diffusion with affine (Qh,F ) special

differential characteristics (βh, α, µh).

βh(s, x) := β(x) + α(x)h(s) +

∫
V
v
(
e〈h(s),v〉 − 1

)
µ(x, dv)

µh(s, x, dv) := e〈h(s),v〉µ(x, dv)

Proof: The quantity M = exp
(
h • X − Λ(h,X) • `

)
is a (Px,F ) local

martingale by our hypotheses and Theorem A.4.13. To get the remaining
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martingale property, we first note that the compact support of h means that

there exists τ > 0 such that h(t) = 0 for all t > τ . This makes M = M τ , and

so we only need to consider the martingale property on the interval [0, τ ]. For

this, we use [SV10, Theorem 2.6], which requires the maps

(s, x) 7→
〈
h(s), α(x)h(s)

〉
, (s, x) 7→

∫
V

(
e〈h(s),v〉 − 1− 〈h(s), v〉

)
µ(x, dv)

are bounded on compact sets of points (s, x). This comes from the fact that the

image of h is contained in some compact subset of D◦Λ and that Λ is uniformly

bounded on compact subsets of D◦Λ×X by Lemma A.4.4. The (Qh,F ) special

differential characteristics then come from Theorem A.4.16.

Now that we have results on affine jump-diffusions, the question arises if

they are affine processes in the sense of our Definition 1.1.1. The answer is yes,

so long as the associated differential χ-characteristics (βχ, α, µ) and subsequent

Lévy-Khintchine map have an associated solution to (1.1.7).

Proposition 1.4.5. Assume that are differential χ-characteristics (βχ, α, µ)

are such that the Lévy-Khintchine map Λ has a solution Ψ(·, u, ·) to the follow-

ing system for each u ∈ UX.

Ψ(t, u, x) = ψ0(t, u) +
〈
ψ(t, u), x

〉
∀ x ∈ X,


Ψ̇(t, u, x) = Λ

(
ψ(t, u), x

)
t ≥ 0

Ψ(0, u, x) = 〈u, x〉

Then we have the remaining necessary condition of Definition 1.1.1.

EPx exp 〈u,Xt〉 = exp Ψ(t, u, x), t ≥ 0, u ∈ UX, x ∈ X
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Proof: Fix τ ≥ 0, u ∈ UX, and x ∈ X and denote Mt = exp Ψ(τ−t, u,Xt).

We now apply our jump-diffusion version of Itô’s formula for jump-diffusions

as in Lemma A.1.7, indifferently treating an element of V as one of L(V,R) in

the canonical way.

Mt = exp Ψ(τ, u, x)− exp Ψ(τ − `, u,X)Ψ̇(τ − `, u,X) • `t

+ exp Ψ(τ − `, u,X−)ψ(τ − `, u) •Xt

+
1

2
exp Ψ(τ − `, u,X)

〈
ψ(τ − `, u), α(X)ψ(τ − `, u)

〉
• `

+
(

exp Ψ(τ − `, u,X)− exp Ψ(τ − `, u,X−)−
〈
ψ(τ − `, u), idV

〉)
∗ qX

= exp Ψ(τ, u, x)−MΛ
(
ψ(τ − `, u), X

)
• `t

+M

(〈
ψ(τ − `, u), βχ(X)

〉
+

1

2
〈ψ(τ − `, u), α(X)ψ(τ − `, u)〉

)
• `t

+M−ψ(τ − `, u) •Xc +M−
〈
ψ(τ − `, u), χ

〉
∗ q̃Xt

+M−
〈
ψ(τ − `, u), idV − χ

〉
∗ qXt

+M−

(
exp 〈ψ(τ − `, u), idV〉 − 1−

〈
ψ(τ − `, u), idV

〉)
∗ qX

Now, we use Lemma 1.3.2 to claim that M is bounded, and so it is special by

[JS03, Lemma I.4.24], so we may compensate our jump integrals above.

Mt = exp Ψ(τ, u, x)−MΛ
(
ψ(τ − `, u), X

)
• `t

+M

(〈
ψ(τ − `, u), βχ(X)

〉
+

1

2
〈ψ(τ − `, u), α(X)ψ(τ − `, u)〉

)
• `t

+M−ψ(τ − `, u) •Xc +M−
〈
ψ(τ − `, u), χ

〉
∗ q̃Xt

+M−

(
exp 〈ψ(τ − `, u), idV〉 − 1−

〈
ψ(τ − `, u), χ

〉)
∗ q̂Xt

+M−

(
exp 〈ψ(τ − `, u), idV〉 − 1−

〈
ψ(τ − `, u), χ

〉)
∗ q̃Xt
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= exp Ψ(τ, u, x) +M−ψ(τ − `, u) •Xc

+M−

(
exp 〈ψ(τ − `, u), idV〉 − 1

)
∗ q̃Xt

This shows that M is a local martingale; because it is bounded, it is a martin-

gale, and we have our desired transform.

EP exp 〈u,Xτ 〉 = EP exp Ψ(0, u,Xτ ) = EPMτ = exp Ψ(τ, u,Xτ )
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Chapter 2

Large deviations of affine
processes

This chapter concerns proving, for a fixed x ∈ X◦, a large deviation principle for

a family (Pε
x)ε>0 of distributions Pε

x of affine processes εXε, where each (Pε
x)x∈X

is the family of kernels respectively associated with εXε. The parameterization

that establishes these distributions (Pε
x)ε>0 is stated very simply on the level of

parameterizing fixed special differential characteristics (β, α, µ) which already

associate with an affine process X := X1. To this end, (εXε)ε>0 is a family of

affine processes in which we are effectively regularizing X as ε → 0, and our

large deviation principle explains this regularization.

The principle is established with regarding (Pε
x)ε>0 as a family of measures

Pε
x on the Borel space associated to our Skorokhod topology on D([0,∞),X).

This means that there exists a lower-semi-continuous function,

Ix : D([0,∞),X)→ [0,∞],

known as a rate function, with the characterizing property that any target set

Γ ∈ B(D([0,∞),X)) is such that the probabilities
(
Pε
x(εX

ε ∈ Γ)
)
ε>0

have a
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first-order exponential asymptotic that corresponds to variational problems on

Ix.

− inf
ξ∈Γ◦

Ix(ξ) ≤ lim inf
ε→0

ε log Pε
x

(
εXε ∈ Γ

)
≤ lim sup

ε→0
ε log Pε

x

(
εXε ∈ Γ

)
≤ − inf

ξ∈Γ
Ix(ξ)

Having the full strength of the Borel space on D([0,∞),X), our admissible sets

Γ can include a variety of tests on εXε. For instance, suitable selection of Γ

allows us to derive asymptotics of probabilities associated with stopping times,

path-integrals, and finite-dimensional distributions of (εXε)ε>0.

A great resource for a systematic approach to the theory of large deviations

is [DZ10]. This text offers comprehension on the subject with both intuitive

and technically abstract perspectives, along with providing a descriptive history

of the subject. While we only use this text to cite Cramér’s theorem, its

perspective paves the path of our argument. In particular, Cramér is credited

with the measure-change argument we use throughout, which generally could

be explained as defining exponential measure changes,

Zε,θ := exp
(
A(Xε, θ)−B(Xε, θ)

)
(2.0.1)

Qε,θ(dω) := Zε,θ(ω) · Pε
x(dω),

where A is some linear form and B is appropriately compensating it to make

EPεxZ
ε,θ = 1. The object θ in the above expression is a parameter suitably

chosen to make the measure Qε,θ(εXε ∈ Γc) effectively small enough to neglect.

We will explain this more in the chapter, but we find it important to state here

that the nature of our linear form A can be associated with a finite-dimensional
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projection of Xε or be a linear operator on the infinite-dimensional space of

paths.

The expression (2.0.1) looks familiar to our local martingale in Theorem

A.4.13. Such a measure change is of the infinite-dimensional nature, and is

a commonly used tool in the literature of large deviations which we refer to

as the exponential martingale approach. Note that the dynamics in Theorem

A.4.16 allow for easy calibration our density in (2.0.1). A particular case in

which this tool is used is [KK14], where they prove a large deviation principle

for continuous affine (jump-)diffusions with special differential characteristics

(β, α, 0). This approach lends itself to integral expressions which ultimately

find their way in the rate function Ix. Having a rate Ix(ξ) involve an integral

of ξ is very useful for investigating local properties of the family (εXε)ε>0 and

will be explained more in depth in the next chapter.

For the finite-dimensional approach, we may simply use inner-products on

Vn as our operators A in (2.0.1).

exp
( n∑
k=1

〈uk, Xtk〉 −B(t1, . . . , tn, u1, . . . , un)
)
,(2.0.2)

EP exp
n∑
k=1

〈uk, Xtk〉 =: B(t1, . . . , tn, u1, . . . , un)

We refer to this approach as twisting or tilting, as each parameter uk decides

the distribution of the increment Xtk−Xtk−1
for calibration of our density. The

Dawson-Gärtner theorem [DZ10, Theorem 4.6.1] provides a great abstraction

on how to achieve from here a full principle on the paths. This is because a

stochastic process X = (Xt)t≥0—at its weakest—corresponds to a measure on

the projective space (X[0,∞),
⊗

t∈[0,∞) B(X)), and the theorem concerns itself
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with large deviations of abstract projective limit spaces. One issue with this ap-

proach is that the resulting rate function Ix does not have an integral form like

in the exponential martingale approach. In fact, [KK14] specifically mentioned

this issue when proving their principle. Another issue is that the projective

limit space corresponds to a product topology on X[0,∞), which means we can-

not get asymptotics for Γ described above. We need to leverage properties of

the Skorokhod topology to then tighten the principle.

We remark in this chapter that, for affine processes, the exponential mar-

tingale and twisting approaches are nearly identical. The affine map Ψ which

characterizes an affine process provides us with a way of resolving (2.0.2) as

a specific selection of parameter θ in the exponential-martingale approach. In

this way, our proof is different from [KK14], in that we use this resolution to

derive an integral form for our Dawson-Gärtner rate function. A summary of

the proof is as simple as:

prove large deviation principles for finite-dimensional distributions, prove

exponential tightness, conclude large deviation principle on Skorokhod space

which can be compared to Prokhorov’s theorem for weak convergence of mea-

sures on a separable metric space,

prove weak convergence of finite-dimensional distributions, prove tightness,

conclude weak convergence

which was the original intent behind defining the Skorokhod topology (see in

[Sko56]). This comparison is not due to us, for researchers are actively studying

large deviations theory from a weak convergence perspective. Puhalskii has
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actively developed such approaches, and we manipulate a proof from [Puh01]

to get the integral representation of our rate function. For resources on large

deviations on the Skorokhod space, see [FK06], a resource which we use to get

some of our results.

Now that we have introduced the key ideas, the remainder of this chapter

is organized as follows.

Section 2.1. Describes our parameterization (Pε
x)ε>0,

Section 2.2. Delineates our assumptions for the result,

Section 2.3. Proves our principle via twisting,

Section 2.4. Resolves the approach of twisting with that of exponential mar-

tingales,

Section 2.5. Simplifies our rate function to an integral form.

2.1 Asymptotic family

Fix family (εXε)ε>0 of affine processes εXε with associated conditional dis-

tributions (Pε
x)x∈X such that the differential χ-characteristics (βχ,ε, αε, µε) relate

through the following parameterization.

(2.1.1)

βχ,ε(x) =
1

ε
βχ,1(εx), αε(x) =

1

ε
α1(εx), µε(x, dv) =

1

ε
µ1(εx, dv), x ∈ X

In effect, for each x ∈ X, the family (Pε
x)ε>0 is induced by a base distribution

Px := P1
x associated with base affine process X := X1 and base differential
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characteristics (βχ, α, µ) := (βχ,1, α1, µ1). This also implies a similar param-

eterization for the Lévy-Khintchine maps Λε associated with (βχ,ε, αε, µε) in

terms of the base map Λ from (βχ, α, µ).

(2.1.2) Λε(u, x) =
1

ε
Λ(u, εx), u ∈ V, x ∈ X

Using the notation of Appendix A.4, we see that the set DΛ(x) of finite points of

Λ(·, x) is identical to that DΛε(εx) of Λε(·, εx). So long that X is a cone—which

is to say that X an additive set, closed under non-negative-scalar multiplication—

we have X = εX, and so the following sets agree.

DΛ =
⋂
x∈X

DΛ(x) =
⋂
x∈X

DΛε(εx) =
⋂
x∈X

DΛε(x) = DΛε

Note that a parameterization like (2.1.1) or (2.1.2) may exist irrespective

of the affine property on (βχ, α, µ). However, affine processes are distinct in

the existence (from Theorem 1.2.3) of an affine map Ψε : DΨε → R respective

to Xε,

Ψε(t, u, x) = ψε0(t, u) +
〈
ψε(t, u), x

〉
,

in which Ψε(·, u, ·) is the minimal solution of system(Λε, τ, u) (from Theorem

1.2.3) for each (τ, u) ∈ DΨε ,

∀ x ∈ X,

 Ψ̇ε(t, u, x) = Λε
(
ψε(t, u), x

)
, t ∈ [0, τ ]

Ψε(0, u, x) = 〈u, x〉

and is the cumulant generating function of each marginal.

EPεx exp 〈u,Xε
τ 〉 = exp Ψε(τ, u, x/ε), (τ, u) ∈ DΨ, x ∈ X
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Above, note that the x/ε in the last coordinate is because Pε
x is the distribution

associated with εXε, not Xε. The following result shows us that our param-

eterization in (2.1.1) and (2.1.2) applies these cumulant generating functions,

where Ψ := Ψ1 and DΨ := D1
Ψ.

Proposition 2.1.3. Assume X is a cone satisfying spanX = V. For each

ε > 0, we have DΨ = DΨε and the following identities.

Ψε(t, u, x) =
1

ε
Ψ(t, u, εx), ψε0(t, u) =

1

ε
ψ0(t, u), ψε(t, u) = ψ(t, u),

Proof: Start by selecting (τ, u) ∈ DΨ. This means that u ∈ DΨ(τ) and

Ψ(·, u, ·) is a solution to system(Λ, u, τ). Observe that this implies the following

identity for all x ∈ X.

∂

∂t

1

ε
Ψ(t, u, εx) =

1

ε
Ψ̇(t, u, εx) =

1

ε
Λ
(
ψ(t, u), εx

)
= Λε(ψ(t, u), x), t ∈ [0, τ ]

1

ε
Ψ(0, u, εx) =

1

ε
〈u, εx〉 = 〈u, x〉

This means that 1
ε
Ψ(·, u, ε·) is a solution to system(Λε, τ, u). By definition,

existence of a solution means that u ∈ DΨε(τ), and so (τ, u) ∈ DΨε . Theorem

1.2.3 then tells us Ψε(·, u, ·) exists and is dominated by the other solution.

Ψε(t, u, x) ≤ 1

ε
Ψ(t, u, εx), t ∈ [0, τ ], x ∈ X

On the other hand, if we have (τ, u) ∈ DΨε , then u ∈ DΨε(τ), and so

Ψε(·, u, ·) is a solution to system(Λε, τ, u). Now, we have the following identity

for all x ∈ X,

∂

∂t
εΨε(t, u, x/ε) = εΨ̇ε(t, u, x/ε) = εΛε

(
ψε(t, u), εx

)
= Λ(ψ(t, u), x), t ∈ [0, τ ]
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εΨε(0, u, x/ε) = ε〈u, x/ε〉 = 〈u, x〉,

and so εΨε(·, u, ·) is a solution to system(Λ, τ, u). Again, we may conclude from

this that (τ, u) ∈ DΨ and that Ψε(·, u, ·) exists and is dominated by the other

solution.

Ψ(t, u, x) ≤ εΨε(t, u, x/ε), t ∈ [0, τ ], x ∈ X

In total, we have now shown that DΨ = DΨε , and inequalities (2.1) and

(2.1) indicate to us that the following functions agree.

Ψε(t, u, x) =
1

ε
Ψ(t, u, x), (t, u) ∈ DΨ, x ∈ X

This means equality of the following affine expressions.

ψε0(t, u) +
〈
ψε(t, u), x

〉
= Ψε(t, u, x)

=
1

ε
Ψ(t, u, εx)

=
1

ε
ψ0(t, u) +

1

ε

〈
ψ(t, u), εx

〉
=

1

ε
ψ0(t, u) +

〈
ψ(t, u), x

〉
Seeing as spanX = V, we may take appropriate linear combinations to show

the remaining identities.

ψε0(t, u) =
1

ε
ψ0(t, u), ψεi (t, u) = ψi(t, u), i = 1, . . . , d

Remark 2.1.4. Note that the above proof can be applied to complex moments,

since Theorem 1.1.4 and Remark 1.1.6 indicate to us that each Ψε(·, u, ·) is a

solution to following equation, for each u ∈ iV.

∀ x ∈ X,

 Ψ̇ε(t, u, x) = Λε
(
ψε(t, u), x

)
, t ≥ 0

Ψε(0, u, x) = 〈u, x〉
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This parameterization also applies to the liftings Ψε(t, ·, ·) of Ψε to finite-

dimensional projections on partitions t ` [0,∞).

EPεx exp 〈u, εXε
t 〉 =: exp Ψ(t, u, x/ε), u ∈ V|t|, x ∈ X

Denoting Ψ(t, ·, ·) := Ψ1(t, ·, ·), the below result shows just this.

Proposition 2.1.5. Assume X is a cone with spanX = V. Fix t ` [0,∞),

x0 ∈ X◦, and ε > 0 and define Ut as in Proposition 1.3.6. Each u ∈ V|t|

satisfying u = Ut(θ) for some θ ∈ DΨ(t) satisfies

Ψε
(
t, Ut(θ), x0

)
=

1

ε
Ψ
(
t, Ut(θ), εx0

)
<∞,

and if no such θ ∈ DΨ(t) exists, both are infinite.

Ψε(t, u, x0) =
1

ε
Ψ(t, u, εx0) =∞.

Proof: We start by recognizing two facts. Firstly, from Proposition 2.1.3,

we have an identity of the following sets.

(2.1.6) DΨε(t) =

|t|∏
k=1

DΨε(∆tk) =

|t|∏
k=1

DΨ(∆tk) = DΨ(t),

Secondly, Proposition 2.1.3 also shows us that the U ε
t associated with Xε is

identical to that Ut of X, as ψε = ψ. We now show the desired identity by

fixing u ∈ V|t| and considering each case.

First suppose u = Ut(θ) for some θ ∈ DΨ(t). The identity of (2.1.6) tells us

θ ∈ DΨε(t) and so Propositions 1.3.6 and 2.1.3 give us the following.

Ψε(t, u, x0) = Ψε
(
t, Ut(θ), x0

)
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=

|t|∑
k=1

ψε0(∆tk, θk) +
〈
ψε(∆t1, θ1), x0

〉
=

1

ε

( |t|∑
k=1

ψ0(∆tk, θk) +
〈
ψ(∆t1, θ1), εx0

〉)
=

1

ε
Ψ
(
t, Ut(θ), εx0

)
=

1

ε
Ψ(t, u, εx0)

On the other hand, suppose u is not in the image of DΨ(t) under Ut. Seeing

as x0 ∈ X◦ and X is a cone, we have εx0 ∈ X◦. Applying Theorem 1.3.12, we

then have Ψ(t, u, εx0) = ∞. The identity in (2.1.6) also tells us that u is not

in the image of DΨ(t) under Ut. Theorem 1.3.12 now tell us Ψε(t, u, x0) = ∞.

We conclude our final identity.

Ψε(t, u, x0) =
1

ε
Ψ(t, u, εx0) =∞

Now that we have established parameterizations for just about every object

that relates to an affine process, we establish some intuition on the relationship

between these distributions (Pε
x)ε>0. The first of which is immediate from

our preceding result, but it only makes sense when we consider the countable

sequence εm := 1/m for m ∈ N.

Proposition 2.1.7. Assume X is a cone with spanX = V. For a fixed x ∈ X,

the family (Pεm
x )ε>0 corresponds to a mean-field regime. That is to say, if we fix

a probability space (Ω,Σ,P) equipped with a sequence of independent quantities

(X(j))j∈N each distributing according to Px, then we may realize each εmX
εm
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as follows.

εmX
εm =

1

m

m∑
j=1

X(j), m ∈ N

Proof: We will prove this by showing that the finite-dimensional distribu-

tions agree by identity of their characteristic functions. Fixing t ` [0,∞) and

u ∈ V|t|, we apply Proposition 1.3.3 and Remark 2.1.4.

log EP exp
〈

iu,
m∑
j=1

X
(j)
t

〉
= log

(
EPx exp 〈iu,Xt〉

)m
= log

(
exp Ψ

(
t, iu, x

))m
= mΨ

(
t, iu, x

)
= m

( |t|∑
k=1

ψ0(∆tk, θk) +
〈
ψ(∆t1, θ), x

〉)

=

|t|∑
k=1

1

εm
ψ0(∆tk, θk) +

〈
ψ(∆t1, θ), x/εm

〉)

=

|t|∑
k=1

ψεm0 (∆tk, θk) +
〈
ψεm(∆t1, θ), x/εm

〉
= Ψεm(t, u, x/εm)

= log EPεmx exp 〈u,Xt〉

We may also intuitively understand the relationship of (Pε
x)x∈X from a dy-

namical system perspective. In Theorem A.1.14, we see how jump-diffusions X

always correspond to a weak solution of some stochastic differential equation
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driven by standard Brownian motion W and Poisson random measure p.

(2.1.8)

Xt = X0 + βχ(X) • `t + σ(X) •Wt + χ ◦ c(X, idV) ∗ p̃t + χ′ ◦ c(X, idV) ∗ pt

∀ x ∈ X,


µ(x,Γ) =

∫
V

1Γ

(
c(x, v)

)
dv, Γ ∈ B(V− {0})

α(x) = σσ∗(x)

The following proposition gives perspectives on how the processes εXε may

relate through these objects in two different perturbed dynamical systems.

Proposition 2.1.9. Fix a probability space (Ω,Σ,P) equipped with standard

Brownian motion W on V and Poisson random measure p on B(R+ × V).

Let σ : X → L(V) and c : X × V → V satisfy (2.1.8) for the χ-differential

characteristics (βχ, α, µ), as granted by Theorem A.1.14. For each x ∈ X, the

family (Pε
x)ε>0 of distributions Pε

x may be recognized as each Pε
x being a weak

solution to the respective scaled stochastic dynamical system,

εXε
t = x+βχ(εXε)•`t+

√
εσ(X)•Wt+χ◦εc

(
εXε, d

√
ε·idV

)
∗p̃t+χ′◦εc

(
εXε, d

√
ε·idV

)
∗pt,

or the time-changed stochastic dynamical system.

εXε
t = x+ βχ(εXε) • `t + εσ(X) •W ε

t + χ ◦ εc
(
εXε, idV

)
∗ p̃εt + χ′ ◦ εc

(
εXε, idV

)
∗ pεt,

W ε
t := Wt/ε

pε([0, t]× Γ) := p([0, t/ε]× Γ)

Proof: By [JS03, III.2.26], it suffices to check if the characteristics of the

above dynamical systems match those of εXε. We will instead match those of

the scaled Xε; recall its characteristics, as specified by (2.1.1).〈
Xε,c,i, Xε,c,j

〉
=

1

ε
αi,j(εX

ε) • `, q̂X
ε

(ds, dv) =
1

ε
µ(εXε, dv)ds

41



Large deviations of affine processes Chapter 2

Let us first address the first system. Note that for any i, j = 1, . . . , d, we use

[JS03, Theorem I.4.40(d)] to resolve the predictable quadratic covariation of

the continuous local martingale part 1√
ε
σ(εXε) •W of Xε.〈( 1√

ε
σ(εXε) •W

)i
,
( 1√

ε
σ(εXε) •W

)j〉
=
〈 d∑

l=1

1√
ε
σi,l(εX

ε) •W l,

d∑
m=1

1√
ε
σj,m(εXε) •Wm

〉
=

1

ε

d∑
l,m=1

σi,l(εX
ε)σj,m(εXε) •

〈
W l,Wm

〉
=

1

ε

d∑
l=1

σi,l(εX
ε)σj,l(εX

ε) • `

=
1

ε
αi,j(εX

ε) • `

= 〈Xε,c,i, Xε,c,j〉

Note that the accumulated jump process associated from Xε in these dynamics

is the following process.

t 7→
∑

0<s≤t

c
(
εXε

s−,
d
√
ε · ε∆Xε

s

)
This allows us to see that, for a predictable process H : Ω×R+×V→ R+, we

have the following identities, via changing coordinates.

EP

(
H ∗ qXε

∞

)
= EP

∫
R+×V

H
(
·, s, c

(
εXε

s−,
d
√
ε · v

))
p(ds, dv)

= EP

∫ ∞
0

∫
V
H
(
·, s, c

(
εXε

s−,
d
√
ε · v

))
dvds

= EP

∫ ∞
0

∫
V
H
(
·, s, c

(
εXε

s−, v
))1

ε
dvds v ← d

√
ε · v

= EP

∫ ∞
0

∫
V
H(·, s, v)

1

ε
µ(εXε

s−, dv)ds v ← c(Xs−, v)
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Now we address the second system using the same calculations; the continuous

local martingale term of Xε in this case is σ(εXε)•W , and we have the following

identity.〈(
σ(εXε) •W ε

)i
,
(
σ(εXε) •W ε

)j〉
=
〈 d∑

l=1

σi,l(εX
ε) •W ε,l,

d∑
m=1

σj,m(εXε) •W ε,m
〉

=
d∑

l,m=1

σi,l(εX
ε)σj,m(εXε) •

〈
W ε,l,W ε,m

〉
=

d∑
l=1

σi,l(εX
ε)σj,l(εX

ε) •
(
ε−1`

)
=

1

ε
αi,j(εX

ε) • `

= 〈Xε,c,i, Xε,c,j〉

Meanwhile, our time-change of the Poisson random measure immediately gives

us our desired characteristic.

EP

(
H ∗ qXε

∞

)
= EP

∫
R+×V

H
(
·, s, c(εXε

s−, v)
)
pε(ds, dv)

= EP

∫ ∞
0

∫
V
H
(
·, s, c(εXε

s−, v)
)
dv · 1

ε
ds

= EP

∫ ∞
0

∫
V
H(·, s, v)

1

ε
µ(εXε

s−, dv)ds v ← c(Xs−, v)

2.2 Assumptions

We now clearly spell out the assumptions we will need to prove our large

deviation principle. The first of which concerns existence of our affine processes.

As mentioned in the previous section, the base parameters (βχ, α, µ) param-

eterize those (βχ,ε, αε, µε) for each ε > 0. This means that selecting the base
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affine process X immediately imposes the laws εXε for all other ε > 0, should

they exist. Generally speaking, there exist functions (βχ, α, µ) for which there

is no jump-diffusion that makes them differential characteristics. Proposition

2.1.7 indicated that, should distributions (Px)x∈X exist for an affine process X

with differential characteristics (βχ, α, µ), then we can construct distributions

Pεm
x for each m ∈ N and x ∈ X by taking convolutions (recall, εm := 1/m).

However, we find it important to establish our large deviation principle over a

continuously defined family ε > 0. This now motivates the following assump-

tion, which was already implicitly assumed in the previous section.

Assumption 2.2.1. The affine parameters (βχ, α, µ) are chosen so that each

ε ∈ (0, 1], affine processes Xε exist which exhibit the parameters (βχ,ε, αε, µε)

as in (2.1.1).

Remark 2.2.2. (a) If we wanted to show a large deviation principle over

only the family (εmX
εm)m∈N, then this assumption is unnecessary.

(b) Selecting (βχ, α, µ) parameterizes each Λε, which does specify the systems

(1.1.7) and (1.2.2) associated with complex and real moments, respec-

tively. There are already many results which allow one to say that Xε

exists in this scenario. For instance, if our state space is X = Rm
+ × Rn,

then [DFS03, Proposition 7.4] provides us the existence we require, so

long as the parameters are chosen to be admissible. Otherwise, one can

specify weaker assumptions on X at the expense of choosing diffusions

(µ(·, dv) = 0) or pure-jump processes (α = 0) on certain factors of the

space; see [Cuc11, Section 2.5, Section 3.4].
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Our proof ultimately comes from the parameterizations of our moment func-

tions Ψε in the previous section. These relied on X being a cone, so we specifi-

cally mention that here.

Assumption 2.2.3. The space X is a cone and spanX = V.

Remark 2.2.4. Note that spanX is at no loss of generality, per Remark 1.1.3.

Our last assumption is of key importance. Large deviations are best un-

derstood through moment generating functions, which serve no purpose if they

are not finite. For an initial point x0 ∈ X◦, a large deviation principle holds

for a family (Pε
x0

)ε>0 on the projective limit space (i.e. the product topology),

so long as 0 ∈ D◦Λ. However, in order to strengthen this result to the Sko-

rokhod topology—a step which is necessary for interesting asymptotics and an

integral-form of our rate function—we need the full strength of DΛ = V.

Assumption 2.2.5. We have DΛ = V.

Remark 2.2.6. (a) By Lemma A.4.2 and Proposition 1.2.10, this assump-

tion is equivalent to having any of the following statements for any u ∈ V.

•
∫
|v|>1

e〈u,v〉µ(x, dv) <∞ for all x ∈ X,

• There exists τ > 0 such that EPx exp 〈u,Xτ 〉 <∞ for all x ∈ X,

• There exists τ > 0 such that system(Λ, τ, u) has a solution.

(b) It is easy to see in the proofs where we assume DΛ = V versus simply

using 0 ∈ D◦Λ.
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(c) By imposing even the simpler of the two assumptions that 0 ∈ D◦Λ imme-

diately tells us that all Xε are special, and so we proceed the rest of the

chapter with a presentation in terms of special differential characteristics

(β, α, µ).

With this assumption in mind, we state versions of the propositions at the

end of Section 1.2 in our scenario.

Proposition 2.2.7. (a) For each τ > 0, DΨ(τ) is open; in particular, there

exists δ > 0 such that B(0, δ) ⊆ DΨ(τ).

(b) For each τ > 0 and u ∈ DΨ(τ), Ψ(·, u, ·) from Theorem 1.2.3 is the unique

solution to system(Λ, τ, u).

(c) For each M > 0, there exists δ > 0 such that B(0,M) ⊆ DΨ(δ).

(d) For each M > 0, there exist δ > 0 and CM such that the following holds.

∣∣Ψ(t, u, x)−Ψ(0, u, x)
∣∣ ≤ CM ·t·

(
1+|x|

)
, t ∈ [0, δ], u ∈ B(0,M), x ∈ X

Proof:

(a) Proposition 1.2.5(a) tells us that DΨ(τ) is open in D◦Λ, which is now V by

our assumption. Also, seeing as EPx exp 〈0, Xτ 〉 = 1 < ∞ for all x ∈ X,

0 ∈ DΨ(τ). Openness of DΨ(τ) now grants some B(0, δ) ⊆ DΨ(τ).

(b) Proposition 1.2.5(b) gives us uniqueness of Ψ(·, u, ·) as a solution to

system(Λ, τ, u) for any u ∈ DΨ(τ) ∩ D◦Λ, which is now the same thing

as u ∈ DΨ(τ).
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(c) Seeing as DΛ = V, we now have B(0,M) ⊆ D◦Λ, so Proposition 1.2.7 gives

us δ > 0 such that B(0,M) ⊆ DΨ(δ).

(d) Fix M > 0. By part (c), there exists δ > 0 such that B(0, 2M) ⊆ DΨ(2δ).

Now, [0, δ]×B(0,M) is a compact subset of D◦Ψ, and so Proposition 1.2.9

gives us our desired CM .

2.3 Dawson-Gärtner

This section proves our large deviation principle from a perspective similar

to that of Dawson-Gärtner (see [DZ10, Theorem 4.6.1]), in which we prove

the principle for the finite-dimensional projections, so that we get a principle

on the projective space associated with D([0,∞),X) that we may tighten to

the Skorokhod space through exponential tightness. Though we attribute this

approach to the names of Dawson and Gärtner, we specifically use results

in [FK06] which instead use results which appeal more to weak convergence

arguments that are comparable to Prokhorov on an exponential scale.

Theorem 2.3.1. For each x ∈ X◦ and t ` [0,∞), the family (πt#Pε
x)ε>0 satis-

fies a large deviation principle on V|t| with good convex rate function Ψ∗(t, ·, x),

the Fenchel-Legendre transform of Ψ(t, ·, x).

Ψ∗(t, x, x) := sup
u∈V|t|

(〈
u, x
〉
−Ψ(t, u, x)

)
Proof: We first prove a principle on the discrete family (πt#Pεm

x )m∈N for

εm := 1/m. Note that Proposition 2.1.7 allows us to consider a space (Ω,Σ,P)
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equipped with an i.i.d. sequence (X(j))j∈N of elements distributing from Px and

realize each εmX
εm .

εmX
εm =

1

m

m∑
j=1

X(j)

We now use a specific instance of Cramér’s theorem [DZ10, Corollary 6.1.6]

to conclude that if 0 is an interior point in the finite domain of Ψ(t, ·, x),

then our principle is satisfied with good rate function Ψ∗(t, ·, x). Note that

Proposition 2.2.7(a) tells us that 0 ∈ DΨ(t), an open set. Denoting some

ball B(0, δ) ⊆ DΨ(t), Theorem 1.3.12 indicates that UtB(0, δ) is an open set

containing 0 in the finite domain of Ψ(t, ·, x).

Now that we have established a large deviation principle for (πt#Pεm
x )m∈N,

we seek to establish one for (πt#Pε
x)ε>0. We start by defining a map ε 7→ ε̃

which discretizes the nature of ε > 0; denoting [r] ∈ Z the integer part of

r ∈ R, define ε̃ := [ε−1]−1. The following quick inequalities relating ε and ε̃,

ε̃− ε̃2 < ε ≤ ε̃

make it easy to directly show (πt#Pε̃
x)ε>0 satisfies a large deviation principle;

for each Γ ∈ B(V|t|),

− inf
x∈Γ◦

Ψ∗(t, x, x) ≤ lim inf
m→∞

εm log πt#Pεm
x Γ

= lim inf
ε→0

ε̃ log πt#Pε̃
xΓ

≤ lim inf
ε→0

(ε+ ε̃2) log πt#Pε̃
xΓ

= lim inf
ε→0

ε log πt#Pε̃
xΓ

≤ lim sup
ε→0

ε log πt#Pε̃
xΓ
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≤ lim sup
ε→0

ε̃ log πt#Pε̃
xΓ

= lim sup
m→∞

εm log πt#Pεm
x Γ ≤ − inf

x∈Γ
Ψ∗(t, x, x)

To obtain a large deviation principle for our family (πt#Pε
x)ε>0, we show

regularity ε→ πt#Pε
x to lift the principle for the discretized family (πt#Pε̃

x)ε>0.

This notion in the literature is known as an exponential approximation, which

is explored in [DZ10, Section 4.2.2]. From [DZ10, Theorem 4.2.13], it suffices

to construct a probability space (Ω,Σ,P) such that elements (εXε)ε>0 on this

space with distributions (Pε
x)ε>0 satisfy the following exponential equivalence

property.

lim sup
ε→0

ε log P
(
|εXε

t − ε̃X ε̃
t | > δ

)
= −∞

The scaled-dynamics realization from Proposition 2.1.9 will do just this.

Cramér’s theorem—the tool we leveraged to prove the above principle—is

proven by using measure changes induced by densities of the following form.

exp
(
〈u,Xε

t 〉 −Ψε(t, u,Xε
0)
)

Observe that Theorem 1.3.12 gives us a perspective of how this measure de-

pends on the increments; a valid moment u ∈ V|t| for the above expression

must satisfy u = Ut(θ) for some θ ∈ DΨ(t), and the following.

exp
(
〈u,Xε

t 〉 −Ψε(t, u,Xε
0)
)

= exp

|t|∑
k=1

(
〈θk, Xε

tk
−Xε

tk−1
〉 −ϕε

(
∆tk, θk, X

ε
tk−1

))
We denote the above quantity Zε,t,θ, its associated measure change by

Qε,t,θ

x
(dω) := Zε,t,θ(ω) · P(dω),

and observe the nature of how they make our increments distribute.
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Proposition 2.3.2. Fix ε > 0, x ∈ X, t ` [0,∞), and θ ∈ DΨ(t). For each

` = 1, . . . , |t| and θ ∈ V with θ`+θ ∈ DΨ(∆t`), we have the following moments.

EQε,t,θ
x

(
exp 〈θ,Xε

t`
−Xε

t`−1
〉|F ε

t`−1

)
= exp

(
ϕε
(
∆t`, θ` + θ,Xε

t`−1

)
− ϕε

(
∆t`, θ`, X

ε
t`−1

))
This furthermore means we have the following conditional expectations.

EQε,t,θ
x

(
εXε

t`
− εXε

t`−1
|εXε

t1:`−1
= x1:`−1

)
= ∇θ`ϕ(∆t`, θ`, x`−1)

Proof: Denote n := |t| for brevity. We first show the following conditional

expectation for any m = n− 1, . . . , 1.

(2.3.3) EPεx

(
Zε,t,θ|F ε

tm

)
=

m∏
k=1

(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
)
,

by iteratively projecting onto F ε
tn , . . . ,F

ε
tm+1

. For any H ∈ Ftm/B(R+), we

have the following.

EPεx

(
HZε,t,θ

)
= EPεx

(
H

n∏
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
))

= EPεx

(
H

n−1∏
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
)

EPεx

(
exp 〈θn, Xε

tn −X
ε
tn−1
〉|F ε

tn−1

)
exp

(
− ϕε(∆tn, θn, Xε

tn−1
)
))

= EPεx

(
H

n−1∏
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
))

...

= EPεx

(
H

m∏
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
))
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which indicates that (2.3.3) is true. Now choosing H ∈ F ε
t`−1

/B(R+), we apply

(2.3.3) for m = ` and m = `− 1 to see that the following holds.

EQε,t,θ
x

(
exp 〈θ,Xε

t`
−Xε

t`−1
〉H
)

= EPεx

(
exp 〈θ,Xε

t`
−Xε

t`−1
〉HZε,t,θ

)
= EPεx

(
exp 〈θ,Xε

t`
−Xε

t`−1
〉H
∏̀
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
))

= EPεx

(
H

`−1∏
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
)

EPεx

(
exp 〈θ` + θ,Xε

t`
−Xε

t`−1
〉|Ft`−1

)
exp

(
− ϕε(∆t`, θ`, Xε

t`−1
)
))

= EPεx

(
H

`−1∏
k=1

exp
(
〈θk, Xε

tk
−Xε

tk−1
〉 − ϕε(∆tk, θk, Xε

tk−1
)
)

exp
(
ϕε(∆t`, θ` + θ,Xε

t`−1
)− ϕε(∆t`, θ`, Xε

t`−1
)
))

= EPεx

(
exp

(
ϕε(∆t`, θ` + θ,Xε

t`−1
)− ϕε(∆t`, θ`, Xε

t`−1
)
)
HZε,t,θ

)
= EQε,t,θ

x

(
exp

(
ϕε(∆t`, θ` + θ,Xε

t`−1
)− ϕε(∆t`, θ`, Xε

t`−1
)
)
H
)

This gives us our first desired identity.

EQε,t,θ
x

(
exp 〈θ,Xε

t`
−Xε

t`−1
〉|F ε

t`−1

)
= exp

(
ϕε(∆t`, θ` + θ,Xε

t`−1
)− ϕε(∆t`, θ`, Xε

t`−1
)
)

Now that this identity is established, we appeal to Propositions 2.2.7(a), 1.2.9,

and 2.1.3 in specifying an open ball B(θk, δ) ⊆ DΨ(∆tk) on which we may apply

derivatives to get the following identity.

EQε,t,θ
x

(
εXε

t`
− εXε

t`−1
|F ε

t`−1

)
= εEQε,t,θ

x

(
Xε
t`
−Xε

t`−1
|F ε

t`−1

)
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= εEQε,t,θ
x

(
∇θ exp 〈θ,Xε

t`
−Xε

t`−1
〉|θ=0|F ε

t`−1

)
= ε∇θEQε,t,θ

x

(
exp 〈θ,Xε

t`
−Xε

t`−1
〉|F ε

t`−1

)∣∣∣
θ=0

= ε∇θ exp
(
ϕε
(
∆t`, θ` + θ,Xε

t`−1

)
− ϕε

(
∆t`, θ`, X

ε
t`−1

))∣∣∣
θ=0

= ∇θ exp
(
ϕ
(
∆t`, θ` + θ, εXε

t`−1

)
− ϕ

(
∆t`, θ`, εX

ε
t`−1

))∣∣∣
θ=0

= ∇θ`ϕ
(
∆t`, θ`, εX

ε
t`−1

)
Seeing as the above quantity is measurable with respect to the σ-algebra gen-

erated by Xt1:`
, we have our desired identity.

EQε,t,θ
x

(
εXε

t`
− εXε

t`−1
|εXε

t1:`−1
= x1:`−1

)
= ∇θ`ϕ

(
∆t`, θ`, εX

ε
t`−1

)

Understanding these measures Qε,t,θ

x
will be important for our next section,

where we relate the seemingly alternative exponential martingale method to

studying large deviations. We now proceed from that short tangent back to

our large deviation principle.

Proposition 2.3.4. For each x ∈ X, the family (Pε
x)ε>0 is exponentially tight

on D([0,∞),X).

Proof: First note that each family (πt#Pε
x)ε>0 of finite-dimensional dis-

tributions is exponentially tight by Theorem 2.3.1. This is because each ρ > 0

produces a compact set Kρ := Ψ∗(t, ·, x)−1[0, ρ] ⊆ V|t| (by goodness of the rate

function) clearly satisfying the following.

lim sup
ε→0

ε log πt#Pε
x(K

c
ρ) ≤ − inf

x∈Kc
ρ

Ψ∗(t, x, x) ≤ −ρ
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By [FK06, Theorem 4.1] (rather, an adaptation of it involving a continuously

parameterized family), our desired exponential tightness is obtained if we pro-

duce to each ε, δ, λ, T > 0 a random variable γε(δ, λ, T ) with the following

dominating property over all t ∈ [0, T ], s ∈ [0, δ],

EPx

(
exp

(
ε−1λ

(
|εXε

t+s − εXε
t | ∧ 1

)
|F ε

t

)
≤ EPx

(
exp γε(δ, λ, T )|F ε

t

)
,(2.3.5)

such that the following equalities are true for all λ > 0.

lim
δ→0

lim sup
ε→0

ε log EPx exp
(
ε−1λ

(
|εXε

δ − εXε
0| ∧ 1

))
= 0(2.3.6)

lim
δ→0

lim sup
ε→0

ε log EPx exp γε(δ, λ, T ) = 0(2.3.7)

To show this fact, first note that, by Proposition 2.2.7(d), to each λ > 0 there

exist δλ > 0 and Cλ > 0 such that the following inequality holds.

∣∣Ψ(t, u, x)−Ψ(0, u, x)
∣∣ ≤ Cλ · t ·

(
1 + |x|

)
, t ∈ [0, δλ], u ∈ B(0, λ

√
d), x ∈ X

We then define the following function fε(·, δ, λ) : X→ R for each ε > 0, λ > 0,

and δ ∈ [0, δλ].

fε(x
′, δ, λ) := log 2d+

1

ε
· Cλ · δ ·

(
1 + |x|

)
We now define γε(δ, λ, T ) := fε

(
εXε

t , δ, λ
)
.

Note that for all λ, ε, t > 0, δ ∈ [0, δλ], and s ∈ [0, δ], we use Proposition

2.1.3 to get the following.

EPx

(
exp

(
ε−1λ

(
|εXε

t+s − εXε
t | ∧ 1

)
|F ε

t

)
≤ EPx

(
exp

(
ε−1λ

∣∣εXε
t+s − εXε

t

∣∣)|F ε
t

)
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≤
1∑
`=0

d∑
i=1

EPx

(
exp

(〈
(−1)`ε−1λ

√
dei, εXε

t+s − εXε
t

〉)
|F ε

t

)

=
1∑
`=0

d∑
i=1

exp

(
ε−1Ψ

(
s, (−1)`λ

√
dei, εXε

t

)
− ε−1

〈
(−1)`λ

√
dei, εXε

t

〉)
≤ 2d · exp

(
1

ε
· Cλ · δ ·

(
1 + |εXε

t |
))

= exp fε(εX
ε
t , δ, λ)

(2.3.8)

Note that (2.3.8) makes (2.3.5) true.

EPx

(
exp

(
ε−1λ

(
|εXε

t+s − εXε
t | ∧ 1

)
|F ε

t

)
≤ exp fε(εX

ε
t , δ, λ)

= exp γε(δ, λ, T )

= EPx

(
exp γε(δ, λ, T )|F ε

t

)
For (2.3.6), we also use (2.3.8).

lim
δ→0

lim sup
ε→0

ε log EPx exp
(
ε−1λ

(
|εXε

δ − εXε
0| ∧ 1

))
= lim

δ→0
lim sup
ε→0

ε log EPxEPx

(
exp

(
ε−1λ

(
|εXε

δ − εXε
0| ∧ 1

))
|F ε

0

)
≤ lim

δ→0
lim sup
ε→0

ε log EPx exp fε(εX
ε
0, δ, λ)

= lim
δ→0

lim sup
ε→0

(
ε log 2d+ Cλ · δ ·

(
1 + |x|

))
= 0

Using Proposition 2.2.7(a), to each λ > 0, there exists δ′λ > 0 such that

B(0, δλ) ⊆ DΨ(δ′λ). Now, for any δ < δλ∧δ′λ/(2Cλ
√
d), we again use Proposition
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2.1.3 to get the following.

ε log EPx

(
exp γε(δ, λ, T )

)
= ε log EPx

(
exp fε(εX

ε
t , δ, λ)

)
= ε log 2d+ Cλ · δ + ε log EPx exp

(
ε−1Cλδ|εXε

t |
)

≤ ε log 2d+ Cλ · δ + ε log
1∑
`=0

d∑
i=1

EPx exp
〈
(−1)`ε−1Cλδ

√
dei, εXε

t

〉
≤ 2ε log 2d+ Cλ · δ + max

`=0,1
i=1,...,d
k=1,...,|t|

ε log EPx exp
〈

(−1)`ε−1Cλδ
√
dei, εXε

t

〉

≤ 2ε log 2d+ Cλ · δ + max
`=0,1
i=1,...,d
k=1,...,|t|

Ψ
(
t, (−1)`Cλδ

√
dei, x

)

This gives us (2.3.7).

Theorem 2.3.9. For each x ∈ X◦, the family (Pε
x)ε>0 satisfies a large deviation

principle on D([0,∞),X) with good rate function Ix : D([0,∞),X)→ [0,∞] as

follows.

(2.3.10) Ix(ξ) =


sup
t`∆c

ξ

Ψ∗
(
t, ξ(t), ξ(0)

)
ξ(0) = x

∞ otherwise

Above, ∆ξ ⊆ [0,∞) denotes the points of discontinuity of ξ.

Proof: Provided we have some t ` [0,∞) the vector t̂ associated with

prepending 0 to t,

t̂ = (0, t1, . . . , t|t|),

induces the following finite-dimensional distributions.

πt̂#Pε
x = δx ⊗ πt#Pε

x
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For these partitions, it is easy to see from Theorem 2.3.1 that the large devia-

tions principle for (πt̂#Pε
x)ε>0 has good rate function as below.

(x0, x1, . . . , x|t|) 7→

 Ψ∗(t, x, x0), x0 = x

∞ otherwise

By [FK06, Theorem 4.28], we now use Theorem 2.3.1 and Proposition 2.3.4 to

get a large deviations principle for the family (Pε
x)ε>0 with good rate function

Ix.

2.4 Exponential martingales

Now that we have our principle, we discuss how various exponential martin-

gales Zε,h induce changes of measure alternative to those Zε,t,θ which themselves

inspire a different flavor of proof. We start by defining the building blocks of

these exponential martingales.

HΛ :=
{
h ∈ D([0,∞),V) : h has compact support and finite-variation

}
G : D([0,∞),X)×HΛ → R,

G(ξ, h) :=
〈
ξ(0), h(0)

〉
−
∫ ∞

0

ξ(s−)dh(s)−
∫ ∞

0

Λ
(
h(s), ξ(s)

)
ds

Proposition 2.4.1. For each ε > 0 and h ∈ HΛ, we have the following iden-

tities, where E(H) denotes the Doléans-Dade exponential of H.

Zε,h := exp
(1

ε
G(εXε, h)

)
= exp

(〈
Xε

0, h(0)
〉
−
∫ ∞

0

Xε
s−dh(s)−

∫ ∞
0

Λε
(
h(s), Xε

s

)
ds

)
= exp

(
h •Xε

∞ − Λε
(
h,Xε

)
• `∞

)
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= E
(
h •Xε,c −

(
e〈h,idV〉 − 1

)
∗ q̃Xε

)
∞

Furthermore, Zε,h is integrable and t 7→ EPx(Z
ε,h|Ft) is a martingale.

Proof: We start by establishing the first two identities. Realizing h as a

predictable, finite-variation process, we apply integration by parts (see [JS03,

Proposition I.4.49(b)]) to get the following identity.

1

ε
G(εXε, h) =

1

ε

(〈
εXε

0, h(0)
〉
−
∫ ∞

0

εXε
s−dh(s)−

∫ ∞
0

Λ
(
h(s), εXε

s

)
ds
)

=
〈
Xε

0, h(0)
〉
−
∫ ∞

0

Xε
s−dh(s)−

∫ ∞
0

Λε
(
h(s), Xε

s

)
ds

=
〈
Xε

0, h(0)
〉
−Xε

− • h∞ − Λε(h,Xε
−) • `∞

= h •Xε
∞ − Λε(θ,Xε

−) • `∞

The remaining identity is a special case of that from [JS03, Theorem III.7.24],

but we will perform the Itô calculus here for completion’s sake. Note that

Theorem 1.4.4 tells us that exp(h•Xε) is a (Px,F ) jump-diffusion, and (A.4.15)

from Theorem A.4.13 gives us its special semimartingale decomposition.

exp
(
h •Xε

t

)
=
(

exp
(
h •Xε

)
· Λ(h,Xε)

)
• `t +

(
exp

(
h •Xε

−
)
· h
)
•Xε,c

t

+ exp
(
h •Xε

−
)(
e〈h,idV〉 − 1

)
∗ q̃Xε

t

Note that this allows us to define the process H inside the alleged Doléans-Dade

exponential.

H = h •Xε,c +
(
e〈h,idV〉 − 1

)
∗ q̃Xε

Observe that, by definition of the Doléans-Dade exponential and the special

semimartingale decomposition of Xε,

Xε
t =

1

ε
β(εXε) • `+Xε,c

t + idV ∗ q̃X
ε

t ,
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〈
Xε,c,i, Xε,c,j

〉
=

1

ε
α(εXε) • `,

q̂X
ε

(ds, dv) =
1

ε
µ(εXε, dv)ds,

we have the following.

log E(H)t = Ht −H0 −
1

2
〈Hc, Hc〉t +

(
log(1 + idR)− idR

)
∗ qHt

= h •Xε
t
,c +

(
e〈h,idV〉 − 1

)
∗ q̃Xε

t

− 1

2
〈h •Xε,c, h •Xε,c〉t −

(
e〈h,idV〉 − 1− 〈h, idV〉

)
∗ qXε

t

= h •Xε
t
,c −

(
e〈h,idV〉 − 1− 〈h, idV〉

)
∗ q̂Xε

t

− 1

2
〈h, αε(Xε)h〉 • `t + 〈h, idV〉 ∗ q̃X

ε

t

= h •Xε
t − βε(Xε) • `t − 〈h, idV〉 ∗ q̃X

ε

t −
(
e〈h,idV〉 − 1− 〈h, idV〉

)
∗ q̂Xε

t

− 1

2
〈h, αε(Xε)h〉 • `t + 〈h, idV〉 ∗ q̃X

ε

t

= h •Xε
t − Λε(h,Xε) • `t

Note that this is one argument that Zε,h = E(H)∞ corresponds to a (P,F )

local martingale, since H is (see [JS03, Theorem I.4.61(b)]). In any case, the

martingale nature comes from Theorem 1.4.4.

The above proposition prescribes another change of measure. For each

ε > 0, h ∈ HΛ, and x ∈ X, define

Qε,h
x (dω) := Zε,h(ω) · Pε

x(dω).

Let us explore the distribution of εXε over these spaces.

Proposition 2.4.2. Fix ε > 0, h ∈ HΛ, and x ∈ X. The process Xε is a

(Qε,h
x ,F ε) special semimartingale with the following decomposition.

Xε
t = x/ε+

1

ε
βh(·, εXε

−) • `t +Xε
t
,c + idV ∗ q̃h,X

ε

t ,
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where the drift βh, diffusion α, and jump predictable compensator q̂h,X
ε

(above,

we have q̃h,X
ε

= qX
ε − q̂h,Xε

) are as follows.

βh(s, x) := β(x) + α(x)h(s) +

∫
V
v
(
e〈h(s),v〉 − 1

)
µ(x, dv)

〈Xε,c,i, Xε,c,j〉 =
1

ε
αi,j(εX

ε
−) • `

q̂h,X
ε

(ds, dv) := e〈h(s),v〉1

ε
µ(εXε

s−, dv)ds

Moreover the distributions Qε,h
x weakly converge to a degenerate measure δξh at

the solution ξh to the following dynamical system.

(2.4.3)


ξ̇h(t) = βh

(
t, ξh(t)

)
t ≥ 0

ξh(0) = x

Proof: The (Qε,h
x ,F ε) dynamics of Xε simply come from Theorem 1.4.4.

As far as weak convergence is concerned, this is immediate from the exponential

tightness of our family and convergence of finite-dimensional distributions.

From here, a large deviation principle may be approached by concentrating

probability on a ball and using Chebyshev-like bounds on Zε,h.

ε log Pε
x

(
εXε ∈ B(ξ, δ)

)
= ε log EQε,hx

(
(Zε,h)−11B(ξ,δ)(εX

ε)
)

= ε log EQε,hx

(
exp

(
− 1

ε
G(εXε, h)

)
1B(ξ,δ)(εX

ε)
)

≤ − inf
ξ′∈B(ξ,δ)

G(ξ′, h)

Showing lower semi-continuity of G(·, h) would then result in us being able to

say

lim
δ→0

ε log Pε
x

(
εXε ∈ B(ξ, δ)

)
≤ −G(ξ, h),
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for all h ∈ HΛ, and so we’d have

lim
δ→0

ε log Pε
x

(
εXε ∈ B(ξ, δ)

)
≤ − sup

h∈HΛ

G(ξ, h)

Meanwhile, the lower bound would be approached by showing HΛ is suitably

rich to have a dense family of limit functions ξh as in (2.4.3) of Proposition

2.4.2, on which suph′∈HΛ
G(ξh, h

′) = G(ξh, h), and so a large deviations lower

bound is attained from the following bound.

ε log Pε
x

(
εXε ∈ B(ξh, δ)

)
= ε log EQε,hx

(
(Zε,h)−11B(ξh,δ)(εX

ε)
)

= ε log EQε,hx

(
exp

(
− 1

ε
G(εXε, h)

)
1B(ξh,δ)(εX

ε)
)

≥ − sup
ξ′∈B(ξh,δ)

G(ξ′, h) + ε log Qε,h
x

(
εXε ∈ B(ξh, δ)

)
≥ −G(ξh, h) + ε log Qε,h

x

(
εXε ∈ B(ξh, δ)

)
= − sup

h′∈HΛ

G(ξh, h
′) + ε log Qε,h

x

(
εXε ∈ B(ξh, δ)

)
The benefit of this approach is that our rate function ξ 7→ suph∈HΛ

G(ξ, h)

has an integral form. Instead of proving the large deviation principle in this

alternative fashion, we reconcile the measure changes that appear in each of

the approaches.

It is readily evident that Qε,h
x is a generalization of Qε,t,θ

x
, as we are replacing

summations in Zε,t,θ with integrals in Zε,h.

(2.4.4)
Zε,t,θ = exp

|t|∑
k=1

(〈
θk, X

ε
tk
−Xε

tk−1

〉
− ϕε

(
∆tk, θk, X

ε
tk−1

))
Zε,h = exp

(∫ ∞
0

h(s)dXε
s −

∫ ∞
0

Λε
(
h(s), Xε

s

)
ds
)

The summand 〈θk, Xε
tk
−Xε

tk−1
〉 relates to the integral term h(s)dXε

s, while

ϕε(∆tk, θk, X
ε
tk−1

) relates to Λε
(
h(s), Xε

s

)
ds. To explicitly resolve these two
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expressions, we disambiguate the operations in Zε,t,θ involving Xε.

G(·, t, θ) : D([0,∞),X)→ R,

G(ξ, t, θ) :=

|t|∑
k=1

(〈
θk, ξ(tk)− ξ(tk−1)

〉
−Ψ

(
∆tk, θk, ξ(tk−1)

))
We now have a common notation for factoring Xε through each density.

Zε,t,θ = exp
(1

ε
G
(
εXε, t, θ

))
, Zε,h = exp

(1

ε
G
(
εXε, h

))
We now state the main theorem of this section, which resolves the twist-

ing/tilting approach of measure changes Qε,t,θ in Proposition 2.3.2 with the

exponential martingale approach of measure changes Qε,h in Proposition 2.4.2.

It relies on the following parameterization of maps h(·, t, θ) over t ` [0,∞) and

θ ∈ DΨ(t).

(2.4.5) h(t, t, θ) =

|t|∑
k=1

1[tk−1,tk)(t)ψ(∆tk, θk)

Theorem 2.4.6. For each t ` [0,∞) and θ ∈ DΨ(t), we have h(·, t, θ) ∈ HΛ,

and for any semimartingale H,

G(H, t, θ) = G
(
H, h(·, t, θ)

)
.

Thus, for any ε > 0 and x ∈ X, we have the following identities.

Zε,t,θ = Zε,h(·,t,θ), Qε,t,θ

x
= Qε,h(·,t,θ)

x

Proof: It is clear that h(·, t, h) is compactly supported on the intervals

of t. Meanwhile, Proposition 1.2.5(c) tells us that h(·, t, θ) is differentiable

everywhere but potentially the nodes of t, and so it is of finite variation. This

concludes h ∈ HΛ.
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Seeing as Ψ is X-affine and stochastic integration is linear, we can use a

simplified version of Itô’s formula below (again using Proposition 1.2.5(c)).

G(H, t, θ) =

|t|∑
k=1

(〈
θk, Htk −Htk−1

〉
− ϕ

(
∆tk, θk, Htk−1

))
=

|t|∑
k=1

(
Ψ
(
tk − tk, θk, Htk

)
−Ψ

(
tk − tk−1, θk, Htk−1

))
=

|t|∑
k=1

∫ tk

tk−1

dΨ(tk − ·, θk, H·)

=

|t|∑
k=1

(
−
∫ tk

tk−1

Ψ̇(tk − t, θk, Ht)dt+

∫ tk

tk−1

ψ(tk − t, θk)dHt

)

=

|t|∑
k=1

(∫ tk

tk−1

ψ(tk − t, θk)dHt −
∫ tk

tk−1

Λ
(
ψ(tk − t, θk), Ht

)
dt

)

=

|t|∑
k=1

(∫ tk

tk−1

h(t, t, θ)dHt −
∫ tk

tk−1

Λ
(
h(t, t, θ), Ht

)
dt

)
= h(·, t, θ) •H∞ − Λ

(
h(·, t, θ), H

)
• `∞

From here, as we did in Proposition 2.4.1, we apply integration by parts to

complete the equality.

G(H, t, θ) = h(·, t, θ) •H∞ − Λ
(
h(·, t, θ), H

)
• `∞

= 〈h(0, t, θ), H0〉 −
∫ ∞

0

Hs−dh(s, t, θ)−
∫ ∞

0

Λ
(
h(·, t, θ), Hs

)
ds

= G
(
H, h(·, t, θ)

)
Evaluating this identity at εXε now gives us the remaining equalities.

Remark 2.4.7. Note that a conditional cumulant ϕ and Lévy-Khintchine map

Λ may be defined for any jump-diffusion, despite not generally being X-affine.

ϕ(t, θ, x) = EPx exp 〈θ,X − x〉,

62



Large deviations of affine processes Chapter 2

Λ(u, x) =
〈
u, β(x)

〉
+

1

2

〈
u, β(x)u

〉
+

∫
V

(
e〈u,v〉 − 1−

〈
u, v
〉)
µ(x, dv)

Furthermore, we may always construct (local) measure changes like Zt,θ and

Zh in (2.4.4) and postulate an equivalence like Theorem 2.4.6.

exp

|t|∑
k=1

(〈
θk, Xtk −Xtk−1

〉
− ϕε

(
∆tk, θk, Xtk−1

))
= exp

(∫ ∞
0

h(s)dXs −
∫ ∞

0

Λε
(
h(s), Xs

)
ds
)

This is the very result which would generally prove that the approaches of twist-

ing/tilting and martingales are in fact identical. However, our construction in

(2.4.5) clearly uses ψ, an object that only exists in the affine context.

Corollary 2.4.8. For each t ` [0,∞) and θ ∈ DΨ(t), the distributions Qε,t,θ

x

converge weakly to the degenerate measure δξt,θ at the solution ξt,θ to the dy-

namical system in which ξt,θ(0) = x and for each k = 1, . . . , |t|, we have the

following equation.

ξ̇t,θ(t) = β
(
ξt,θ(t)

)
+ α

(
ξt,θ(t)

)
ψ(tk − t, θk)

+

∫
V
v
(
e〈ψ(tk−t,θk),v〉 − 1

)
µ
(
ξt,θ(t), dv

)
,

t ∈ [tk−1, tk)

Proof: This is simply substituting h(·, t, θ) for h in Proposition 2.4.2.

2.5 Integral representation of rate function

So far, for each x ∈ X◦, Theorem 2.3.9 provides us a large deviation prin-

ciple for (Pε
x)ε>0 with good rate function Ix as in (2.3.10). This section is con-

cerned with simplifying the nature of Ix to take a more explicit integral form,

63



Large deviations of affine processes Chapter 2

comparable to existing principles for other families of stochastic processes.

Ix(ξ) =


∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt ξ(0) = x, ξ ∈ A([0,∞),X)

∞ otherwise

To show this, we start by defining a map I which composes the initial state

through our rate functions (Ix)x∈X, to remove the finiteness condition of each

Ix in (2.3.10).

I(ξ) := Iξ(0)(ξ) = sup
t`∆c

ξ

Ψ∗
(
t, ξ(t), ξ(0)

)
In the following results, we will–without mention–assume evaluations of I(ξ)

for ξ(0) ∈ X◦, so that we can use Theorem 1.3.12. Note that this is at no loss

of generality, since we are resolving our rate function Ix for a large deviation

principle that already requires x ∈ X◦.

Lemma 2.5.1. If ξ 6∈ A([0,∞),X), then I(ξ) =∞.

Proof: Fix some ξ ∈ D([0,∞),X) with ξ 6∈ A([0,∞),X). That is to say,

there exists some τ > 0 for which ξ 6∈ A([0, τ ],X). For any ρ > 0, we now

use Proposition 2.2.7(d) to produce some δ > 0 and Cδ,ρ > 0 such that the

following bound holds.

∣∣Ψ(t, u, x)−Ψ(0, u, x)
∣∣ ≤ Cδ,ρ · t ·

(
1 + |x|

)
, t ∈ [0, δ], u ∈ B(0, ρ), x ∈ X

Because ξ 6∈ A([0, τ ],X), there exists ε > 0 and a partition tρ ` [0, τ ] such that

|tρ|∑
k=1

∆tρk < δ ∧
(
Cδ,ρ

(
1 + sup

t∈[0,τ ]

|ξ(t)|
))−1

|tρ|∑
k=1

∣∣ξ(tρk)− ξ(tρk−1)
∣∣ ≥ ε
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The countable nature of ∆ξ allows us to further impose that tρ ` ∆c
ξ. This,

along with Theorem 1.3.12, results in the following inequality.

sup
t`[0,∞)

Ψ∗
(
t, ξ(t), ξ(0)

)
≥ sup

ρ>0
Ψ∗
(
tρ, ξ(tρ), ξ(0)

)
≥ sup

ρ>0
sup

θ∈DΨ(t)

|tρ|∑
k=1

(
〈θk, ξ(tρk)− ξ(t

ρ
k−1)〉 − ϕ

(
∆tρk, θk, ξ(t

ρ
k−1)

))
= sup

ρ>0

|tρ|∑
k=1

sup
θk∈DΨ(∆tρk)

(〈
θk, ξ(t

ρ
k)− ξ(t

ρ
k−1)

〉
−
(

Ψ
(
∆tρk, θk, ξ(t

ρ
k−1)

)
−Ψ∗

(
0, θk, ξ(t

ρ
k−1)

)))
≥ sup

ρ>0

|tρ|∑
k=1

(
ρ
∣∣ξ(tρk)− ξ(tρk−1)

∣∣− Cδ,ρ ·∆tρk · (1 + |ξ(tρk−1)|
))

≥ ε · sup
ρ>0

ρ− 1

=∞

Lemma 2.5.2. For each ξ ∈ A([0,∞),X), t ` [0,∞) and θ ∈ DΨ(t), we have

an identity similar to that of Theorem 2.4.6.

G(ξ, t, θ) = G
(
ξ, h(·, t, θ)

)
=

∫ ∞
0

(〈
h(t, t, θ), ξ̇(t)

〉
− Λ

(
h(t, t, θ), ξ(t)

))
dt.

Proof: Similar to as in Theorem 2.4.6, we use Propositions 1.2.5(c) and

2.2.7(a) and apply the fundamental theorem of calculus and integration by

parts.

G(ξ, t, θ) =

|t|∑
k=1

(〈
θk, ξ(tk)− ξ(tk−1)

〉
− ϕ

(
∆tk, θk, ξ(tk−1)

))
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=

|t|∑
k=1

(
Ψ
(
tk − tk, θk, ξ(tk)

)
−Ψ

(
tk − tk−1, θk, ξ(tk−1)

))
=

|t|∑
k=1

∫ tk

tk−1

∂

∂t
Ψ
(
tk − t, θk, ξ(t)

)
dt

=

|t|∑
k=1

∫ tk

tk−1

(
− Ψ̇

(
tk − t, θk, ξ(t)

)
+
〈
ψ(tk − t, θk), ξ̇(t)

〉)
dt

=

|t|∑
k=1

∫ tk

tk−1

(〈
ψ(tk − t, θk), ξ̇(t)

〉
− Λ

(
ψ(tk − t, θk), ξ(t)

))
dt

=

∫ ∞
0

(〈
h(t, t, θ), ξ̇(t)

〉
− Λ

(
h(t, t, θ), ξ(t)

))
dt

=
〈
h(0, t, θ), ξ(0)

〉
−
∫ ∞

0

ξ(t−)dh(t, t, θ)−
∫ ∞

0

Λ
(
h(t, t, θ), ξ(t)

)
dt

= G
(
ξ, h(·, t, θ)

)

Proposition 2.5.3. For each ξ ∈ A([0,∞),X), we have the following upper

bound.

I(ξ) ≤
∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt

Proof: Fix t ` [0,∞) and u ∈ V|t|. Observe that if Ψ
(
t, u, ξ(0)

)
=∞, we

immediately have the following inequality.

〈
u, ξ(t)

〉
−Ψ

(
t, u, ξ(0)

)
= −∞ ≤ 0 =

∫ ∞
0

Λ∗
(
ξ̇(t), ξ(t)

)
dt

Otherwise, Theorem 1.3.12 tells us that u = Ut(θ) for some θ ∈ DΨ(t). By

Lemma 2.5.2, we now see the same inequality.

〈
u, ξ(t)

〉
−Ψ

(
t, u, ξ(0)

)
=

|t|∑
k=1

(〈
θk, ξ(tk)− ξ(tk−1)

〉
− ϕ(∆tk, θk, ξ(tk−1)

))
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= G(ξ, t, θ)

=

∫ ∞
0

(〈
h(t, t, θ), ξ̇(t)

〉
− Λ

(
h(t, t, θ), ξ(t)

))
dt

≤
∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt

Thus, we have the following upper bound.

I(ξ) = sup
t`∆c

ξ

Ψ∗
(
t, ξ(t), ξ(0)

)
= sup

t`[0,∞)

sup
u∈V|t|

(〈
u, ξ(t)

〉
−Ψ

(
t, u, ξ(0)

))
≤
∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt

Lemma 2.5.4. Fix τ > 0 and h ∈ C([0, τ ],X). For each ε > 0, there exists a

partition t ` [0, τ ] and θ ∈ DΨ(t) such that we have the following approximation.

sup
t∈[0,τ)

∣∣h(t, t, u)− h(t)
∣∣ < ε

Proof: Denote M := supt∈[0,τ ] |h(t)| and fix ε > 0. We start by using

Proposition 2.2.7(d) to guarantee δ0 > 0 and CM > 0 such that the following

bound holds.

∣∣Ψ(t, u, x)−Ψ(0, u, x)
∣∣ ≤ CM · t ·

(
1 + |x|

)
, t ∈ [0, δ0], u ∈ B(0,M), x ∈ X

From here, we use the affine structure of Ψ to see the following inequality.

∣∣ψ(t, u)− u
∣∣ = 3CM

√
d · t, (t, u) ∈ [0, δ0]×B(0,M)

Seeing as h ∈ C([0, τ ],V), it is uniformly continuous. Fix δ1 > 0 such that all

s, t ∈ [0, τ ] with |t− s| < δ1, we have the following inequality.

∣∣h(t)− h(s)
∣∣ < ε/2
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Fix an integer N ∈ N large enough to impose the following inequality.

τ

N
<

ε

6CM
√
d
∧ δ0 ∧ δ1

Now define partition t by tk = kτ/N for k = 1, . . . , N . This way, for each

k = 1, . . . , N , and t ∈ [tk−1, tk), we have∣∣∣h(t, t, h(t)
)
− h(t)

∣∣∣ =
∣∣∣ψ(tk − t, h(tk)

)
− h(t)

∣∣∣
≤
∣∣∣ψ(tk − t, h(tk)

)
− h(tk)

∣∣∣+
∣∣h(tk)− h(t)

∣∣
< 3CM

√
d · (tk − t) + ε/2

< ε.

Proposition 2.5.5. For each ξ ∈ A([0,∞),X), we have the following inequal-

ity.

I(ξ) ≥
∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt

Proof: We proceed in a way similar to that of [Puh01]. Define a map

f : [0,∞)× V→ R as below.

f(t, θ) :=
〈
θ, ξ̇(t)

〉
− Λ

(
θ, ξ(t)

)
For a fixed ε > 0, t ∈ [0,∞), we define the following set.

Γεt :=

{
θ ∈ V :

(
sup
θ′∈V

f(t, θ′)− ε
)

+
∧ 1

ε
≤ f(t, θ) ≤ 1

ε

}
Continuity of f(t, ·) and the least upper bound property guarantees Γεt is

nonempty and measurable. Thus, we may construct a measurable selection
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h : [0,∞) → V for Γε, which is to say h is Lebesgue measurable and the

following holds.

(2.5.6) f
(
t, h(t)

)
∈ Γεt, t ∈ [0,∞)

We now use Luzin’s theorem to approximate h|[0,1/ε] with h̃ ∈ C([0, 1/ε],V) to

the following extent.

(2.5.7)

∫
h̃6=h

dt < ε2

Now, we combine our inequalities from (2.5.6) and (2.5.7) to see that∫ 1/ε

0

(
f
(
t, h̃(t)

)
∨ 0
)

dt

=

∫ 1/ε

0

f
(
t, h(t)

)
dt+

∫
h̃6=h

((
f
(
t, h̃(t)

)
∨ 0
)
− f(t, h(t)

))
dt

≥
∫ 1/ε

0

((
sup
θ∈V

f(t, θ)− ε
)
∧ 1

ε

)
dt−

∫
h̃6=h

1

ε
dt

=

∫ 1/ε

0

((
Λ∗
(
ξ̇(t), ξ(t)

)
− ε
)
∧ 1

ε

)
dt− ε(2.5.8)

By Lemma 2.5.4, the fact that each f(t, 0) = 0, and continuity of each f(t, ·),

we may now use Fatou’s lemma to guarantee some t ` [0,∞) and θ ∈ DΨ(t)

such that

(2.5.9)

∫ 1/ε

0

f
(
t, h(t, t, θ)

)
dt ≥

∫ 1/ε

0

(
f
(
t, h̃(t)

)
∨ 0
)

dt− ε

Combining (2.5.8) and (2.5.9), we now see that∫ 1/ε

0

f
(
t, h(t, t, θ)

)
dt ≥

∫ 1/ε

0

((
Λ∗
(
ξ̇(t), ξ(t)

)
− ε
)
∧ 1

ε

)
dt− 2ε.

By Theorem 1.3.12 and Lemmas 2.5.1 and 2.5.2, the above inequality gives us

the following.

Ix(ξ) ≥ Ψ∗
(
t, ξ(t), ξ(0)

)
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≥
|t|∑
k=1

(〈
θk, ξ(tk)

〉
−Ψ

(
∆tk, θk, ξ(tk−1)

))
=

|t|∑
k=1

∫ tk

tk−1

(〈
ψ(tk − t, θk), ξ̇(t)

〉
− Λ

(
ψ(tk − t, θk), ξ(t)

))
dt

=

∫ 1/ε

0

f
(
t, h(t, t, θ)

)
dt

≥
∫ 1/ε

0

((
Λ∗
(
ξ̇(t), ξ(t)

)
− ε
)
∧ 1

ε

)
dt− 2ε

Taking ε→ 0 now yields our desired result.

Ix(ξ) ≥
∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt

Theorem 2.5.10. For each x ∈ X◦, the family (Pε
x)ε>0 satisfies a large devia-

tion principle on D([0,∞),X) with good rate function Ix : D([0,∞),X)→ [0,∞]

as follows.

(2.5.11) Ix(ξ) =


∫ ∞

0

Λ∗
(
ξ̇(t), ξ(t)

)
dt ξ ∈ A([0,∞),X), ξ(0) = x

∞ otherwise

Proof: Theorem 2.3.9 gives us our large deviation principle with rate

function Ix as in (2.3.10). Fix ξ ∈ D([0,∞),X). If ξ(0) 6= x, then we already

have Ix(ξ) = ∞. Otherwise, Ix(ξ) = Iξ(0)(ξ) = I(ξ), and so Lemma 2.5.1 tells

us Ix(ξ) = ∞ if ξ 6∈ A([0,∞),X). If ξ ∈ A([0,∞),X), then Propositions 2.5.3

and 2.5.5 tell us that

Ix(ξ) =

∫ ∞
0

Λ∗
(
ξ̇(t), ξ(t)

)
dt.

This concludes that I can be written as in (2.5.11).
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Large deviation rate functions

We dedicate this final chapter to interpreting the rate function (2.5.11) from

Theorem 2.5.10 and deriving a semi-closed form for Λ∗ which illustrates more

on the nature of our distributions (Pε
x)ε>0. Before doing this, let us establish

some intuition with what our integral form already tells us.

Firstly, we recognize that a large deviation principle introduces a first-order

exponential asymptotic; the principle shows us that the following limit holds,

lim
δ→0

lim
ε→0

ε log Pε
x

(
εXε ∈ B(ξ, δ)

)
= −Ix(ξ),

and so we may introduce a correction term o(ε, δ),

Pε
x

(
εXε ∈ B(ξ, δ)

)
= exp

(
− 1

ε
Ix(ξ) + o(ε, δ)

)
,

which satisfies growth smaller than 1/ε, in the explicit sense of the following

limit.

lim
δ→0

lim
ε→0

εo(ε, δ) = 0

By ignoring this expression o(ε, δ), we are concerning ourselves with a first-order

exponential approximation of the following probabilities.

(3.0.1) Pε
x

(
εXε ∈ B(ξ, δ)

)
≈ exp

(
− 1

ε
Ix(ξ)

)
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To this end, Ix interprets properties of ξ that the family (εXε)ε>0 is systemat-

ically trending towards/against. Should Ix(ξ) be large, the decay of (3.0.1) is

faster, demonstrating that ξ exhibits some property that the family (εXε)ε>0

does not tend to satisfy. Thus is the notion of Ix governing a principle for what

behaviors make a path ξ largely deviate from the typical behavior of (εXε)ε>0.

The integral nature of Ix indicates to us that there are local properties that

the family (εXε)ε>0 systematically exhibits which lends to faster/slower decay

from some ξ. Take, for instance, if we perturbed some ξ only on some interval

[t, τ ], coercing the values of Λ∗(ξ̇(s), ξ(s)) to be larger on this interval s ∈ [t, τ ].

This will increase the value of Ix(ξ), indicating that it was this behavior on

the interval [t, τ ] that produced a deviation from the behavior of our family

(εXε)ε>0. Knowing this, it is imperative that we derive some form for Λ∗.

Doing so will allow us to see local properties that the family (εXε)ε>0 exhibits.

Unfortunately, the X-affine nature of Λ provides us no simplification in

evaluating Λ∗.

Λ∗(ẋ, x) = 〈u, ẋ〉 − Λ(u, x)

= 〈u, ẋ〉 −
〈
u, βχ(x)

〉
− 1

2

〈
u, α(x)

〉
−
∫
V

(
e〈u,v〉 − 1− 〈u, χ(v)〉

)
µ(x, dv),

However, by looking to existing rate functions from the literature [DRL04,

DZ10, KK14, GZ18], we will be able to build an intuition and a toolbox for de-

veloping a semi-closed form for Λ∗. We find this result remarkable for multiple

reasons.

1. The representation of Λ∗ will feel familiar to already-known results

2. The representation of Λ∗ will generalize the results we list
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3. The representation (though not the large deviation principle) of Λ∗ and

the corresponding rate function Ix exist independently of the affine as-

sumption.

This chapter is very example heavy, and so we find it to be the most intuitive

of the chapters. By the end, we hope rate functions, as well as large deviations,

will be better understood from a general perspective. All this said, let us now

proceed to our final chapter, which is organized as follows.

Section 3.1. Introduces an important large deviation principle for stochastic

processes with independent increments.

Section 3.2. Introduces tools which allow us to lift the preceding principles to

stochastic processes with state-dependence.

Section 3.3. Introduces a trick which allows one to evaluate rate functions in

the case of there being multiple sources of randomness.

Section 3.4. Establishes our main result of developing a semi-closed form for

Λ∗.

Section ??. Discusses the intuition and potential extensions of our result.

3.1 Mogulskii’s theorem

A surprisingly powerful theorem in the theory of large deviations of stochas-

tic processes is that of Mogulskii (see [DZ10, Theorems 5.1.2 and 5.1.19 and
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Exercise 5.122]). Fixing a family (Vj)j∈N of independent quantities distributing

with common distribution κ with light tails,

(3.1.1) Λκ(u) := log

∫
V
e〈u,v〉κ(dv) <∞, u ∈ V

this theorem provides a large deviation principle for the laws associated to

quantities Y ε as below.

Y ε
t = ε

[t/ε]∑
j=1

Vj, t ∈ [0, τ ]

It states that the associated laws (Pε)ε>0 satisfy a large deviation principle

on the space L∞[0, τ ] of bounded functions [0, τ ] → V, equipped with the

supremum norm. The rate function, like ours, is an integral of the Fenchel-

Legendre transform of Λκ.

ξ 7→


∫ τ

0

Λ∗κ
(
ξ̇(t)

)
dt ξ(0) = 0, ξ ∈ A([0, τ ],V)

∞ otherwise

Very minor adjustments can actually make this theorem similar to the context

of our principle. Firstly, the principle may be lifted to the space L∞loc[0,∞) of

locally bounded functions [0,∞)→ V, equipped with the weighted supremum

norm,

(ξ, ξ′) 7→ sup
t∈[0,∞)

e−t|ξ(t)− ξ′(t)|,

for this metric is consistent with ξn → ξ if and only if ξn|[0,τ ] → ξ|[0,τ ] uniformly

for all τ ≥ 0, which is the same as the projective limit space induced by the

restriction maps.

(ξτ )τ>0 ∈ lim
←τ

L∞[0, τ ]
ξτ=ξ|[0,τ ]←−−−−→ ξ ∈ L∞loc[0,∞)
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Applying Dawson-Gärtner [DZ10, Theorem 4.6.1], the rate function over this

space is as follows.

ξ 7→


sup
τ>0

∫ τ

0

Λ∗κ
(
ξ̇(t)

)
dt ξ(0) = 0, ξ ∈ A([0, τ),V) for all τ > 0

∞ otherwise

From here, we recognize that each process Y ε is càdlàg; if ν is supported on X,

the process takes values in D([0,∞),X), and so we may restrict our principle

(see [DZ10, Lemma 4.1.5(b)]). Our rate function then takes the same form

(recall the local definition of absolute continuity A([0,∞),X)).

(3.1.2) ξ 7→


∫ ∞

0

Λ∗κ
(
ξ̇(t)

)
dt ξ(0) = 0, ξ ∈ A([0,∞),X)

∞ otherwise

Example 3.1.3 (Brownian motion). Applying Mogulskii’s theorem when our

increment distribution κ is Normal(0, idV), the integral in our rate function in

(3.1.2) becomes the following.

(3.1.4)

∫ ∞
0

1

2

∣∣ξ̇(t)∣∣2dt

Furthermore, for a Brownian motion W , the process
√
εW ends up being expo-

nentially equivalent to Y ε,

lim sup
ε→0

ε log P
(
|
√
εW − Y ε| ≥ δ

)
= −∞,

which makes the family
√
εW satisfy the large deviation principle with rate

function (3.1.4); this result is known as Schilder’s theorem (see [DZ10, Theorem

5.2.3]).

Note that (
√
εW )ε>0 is a family of affine processes covered Theorem 2.5.10.

We have εXε =
√
εW , where the base process X has special differential char-

acteristics (0, idV, 0). The easiest way to see this is by considering Proposition

75



Large deviation rate functions Chapter 3

2.1.9 with initial state x = 0. Our theorem also immediately resolves (2.5.11)

the same rate function.

Λ∗(ẋ, x) = sup
u∈V

(
〈u, ẋ〉 − 1

2
〈u, idV · u〉

)
=

1

2
|ẋ|

Example 3.1.5 (Poisson). One may apply a very similar argument for when

our increment distribution κ is Poisson(1). In this case, the integral in the rate

function in (3.1.2) evaluates to

(3.1.6)

∫ ∞
0

(
ξ̇(t) log

(
ξ̇(t)

)
− ξ̇(t) + 1

)
dt,

so long as ξ(t) ≥ 0 for Lebesgue-almost-every t ≥ 0 (otherwise, it is infinite). In

the case that ξ(t) = 0, we are taking the continuous extension of the integrand,

i.e. 0 log(0) := 0. Similar to the work of Schilder’s theorem, we may show, for a

standard Poisson process N , εN·/ε is exponentially equivalent to this Y ε, which

makes the family satisfy a large deviation principle with rate function (3.1.6).

In fact and exercise of our reference text, [DZ10, Exercise 5.2.12], suggests the

reader to show just this.

Again, such a family (εN·/ε)ε>0 is covered by Theorem 2.5.10. To see this,

consider a base affine process X on (R,B(R)) with special differential charac-

teristics as below, where δ1 denotes the degenerate distribution at 1 ∈ R.

β(x) = 1, α(x) = 0, µ(x, dv) = δ1(dv)

Setting the initial state x = 0 and looking at Proposition 2.1.9, we may say

that εXε can be realized as follows.

εXε
t = t+ ε1[0,1](idR) ∗ p̃εt
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= t+ ε1[0,1](idR) ∗ pεt − ε1[0,1](idR) ∗ p̂εt

= t+ εp([0, t/ε]× [0, 1])−
∫ t/ε

0

∫
R
ε1[0,1](v)dvds

= εp([0, t/ε]× [0, 1])

As stated in [JS03, Theorem II.4.8], this Poisson random measure p is a Pois-

son point process with Lebesgue intensity. This means that, for each t ≥ 0,

Nt := p([0, t] × [0, 1]) distributes Poisson(t), and Nt − Ns = p((s, t] × [0, 1]) is

independent of Ns = p([0, s], [0, 1]) for each 0 ≤ s < t. In other words, N is a

standard Poisson process and

εXε
t = εp([0, t/ε]× [0, 1]) = εNt/ε.

As with the normal increments, our rate function (2.5.11) resolves this imme-

diately.

Λ∗(ẋ, x) = sup
u∈V

(
uẋ− u−

∫
R

(
euv − 1− uv

)
δ1(dv)

)
= sup

u∈V

(
uẋ− eu + 1

)

=

 ẋ log ẋ− ẋ+ 1, ẋ ≥ 0

∞, otherwise

3.2 Transformations

While Mogulskii’s theorem specifies that the processes (Y ε)ε>0—by design—

have independent increments, we may use transformation arguments to produce

large deviation principles for families of processes with state-dependent incre-

ments. The two ways of leveraging this are via the contraction principle or

measure-change arguments.
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The contraction principle states that mapping the quantities F (Y ε) via a

continuous map F produces a large deviation principle for the family (F#Pε)ε>0

of measures F#Pε associated with these respective quantities F (Y ε) (see [DZ10,

Theorem 4.2.1]). Seeing as this section serves as a survey for intuition on

rate functions, we will digress from discussing the specifics of continuity of F

on restricted spaces and/or exponentially equivalent families in our example

below.

Example 3.2.1 (Diffusions). We can leverage Example 3.1.3 to a family of

processes (εXε)ε>0,

εXε = x+ β(εXε) • `+
√
ε •W,

where the drift β : V → V is bounded and Lipschitz. Having a map Fβ which

implicitly solves the equation,

(3.2.2) Fβ(ω) = ξ, ξ(t) = x+ β(ξ) • `t + ωt,

will make Fβ(
√
εW ) = εXε for each ε > 0, so the contraction principle states

that the distributions of (εXε)ε>0 satisfy a large deviation principle in which

the rate function Iβ is derived from that IW from Example 3.1.3.

Iβ(ξ) := inf
{
IW (ω) : Fβ(ω) = ξ

}
,

IW (ω) :=


∫ ∞

0

1

2

∣∣ω̇(t)
∣∣2dt, ω(0) = 0, ω ∈ A([0,∞),V),

∞, otherwise

When Fβ(ω) = ξ, equation (3.2.2) tells us ξ(0) = x and ω̇ = ξ̇ − β(ξ), and so
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we have the following.

Iβ(ξ) =


∫ ∞

0

1

2

∣∣∣ξ̇ − β(ξ(t))∣∣∣dt, ξ(0) = x, ξ ∈ A([0,∞),V),

∞, otherwise

Similarly, we may introduce a bounded, Lipschitz diffusion α = σσ∗ : V→ L(V)

in which each α(x) is invertible, so that the dynamics become as follows.

(3.2.3) εXε = x+ β(εXε) • `+
√
εσ(εXε) •W,

Having a map Fβ,α which implicitly solves the equation,

Fβ,α(ω) = ξ, ξ(t) = β(ξ) • `t + σ(ξ) • ωt,

will allow us to repeat the above argument to get a large deviation principle for

(εXε)ε>0 with rate function Iβ,α; when ξ(0) = x, ξ ∈ A([0,∞),V), we get the

following.

Iβ,α(ξ) =

∫ ∞
0

1

2

〈(
ξ̇(t)− β

(
ξ(t)

))
, α
(
ξ(t)

)−1
(
ξ̇(t)− β

(
ξ(t)

))〉
dt

The true details of this result, attributed to Freidlin-Wentzel [DZ10, Theo-

rems 5.6.3 and 5.6.7], are rather complicated, and the above argument is just

a heuristic. Also, note that this result does not apply to the general class of

affine diffusions, as β, α are generally not bounded or Lipschitz, and α need not

be invertible. However, [KK14]—a paper which inspires parts of our proof—

first proved that affine (jump-)diffusions with special differential characteristics

(β, α, 0) satisfy a large deviation principle with rate function similar to that

above. Our rate function (2.5.11) from Theorem 2.5.10 immediately resolves

an identical representation.

Λ∗(ẋ, x) = sup
u∈V

(
〈u, ẋ〉 −

〈
u, β(x)

〉
− 1

2

〈
u, α(x)u

〉)
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=


1

2

〈(
ẋ− β(x)

)
, α(x)†

(
ẋ− β(x)

)〉
, ẋ− β(x) ∈ imageα(x),

∞, otherwise

Above, a† ∈ L(V) denotes the pseudoinverse of a ∈ L(V).

The above result leveraged a large deviation principle for Brownian mo-

tions (
√
εW )ε>0 to one on state-dependent diffusions (εXε)ε>0 via the mappings

εXε = F (
√
εW ) for each ε > 0. The analogue of the Brownian motion W for

jump processes—in the sense of homogeneous independent-increments—is the

Poisson process N . To introduce state-dependence to our sequence (εN·/ε)ε>0

from Example 3.1.5, we may perform a measure-change argument.

Example 3.2.4 (Continuous-branching/Hawkes). Consider our sequence

(εN·/ε)ε>0 derived from a Poisson process N , as in Example 3.1.5. Denoting Pε

and F ε the distribution and filtration, respectively, of each J ε := εN·/ε, we may

construct a measure Qε
τ � Pε|F ε

τ
for each τ > 0, in which 1

ε
J ε has Qε intensity

1
ε
λ(J ε) for affine function λ.

λ : R+ → R+, λ(x) = l0 + l1x

The martingale that induces this change of measure is familiar from Theorem

A.4.16, selecting h(s, x) = log λ(x). The Lévy-Khintchine map associated with

1
ε
J ε is Λ(u, x) = 1

ε
(eu − 1), and it resolves to the following.

Zε := exp

(
1

ε
log λ(J ε−) • J ε +

1

ε

(
1− λ(J ε)

)
• `

)
The associated measure Qε

τ (dω) := Zε(ω) · Pε|F ε
τ
(dω) makes 1

ε
J ε have the de-

sired intensity 1
ε
λ(J ε). The large deviation principle associated with (Qε

τ )ε>0
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then comes from that of (Pε|F ε
τ
)ε>0. The change in rate function comes from

exponential corrections of our martingale term. Indeed, we observe that if J ε

is uniformly within δ > 0 of some absolutely continuous increasing ξ on some

compact interval [0, τ ], then we have the following inequalities.∣∣∣∣ ∫ τ

0

(
1− λ

(
J εt
))

dt−
∫ τ

0

(
1− λ

(
ξ(t)

))
dt

∣∣∣∣ ≤ `1δτ∣∣∣∣ ∫ τ

0

log λ
(
J εt−
)
dJ εt −

∫ τ

0

log λ
(
ξ(t−)

)
dJ εt

∣∣∣∣
≤ sup

t∈[0,τ ]

∣∣∣ log λ
(
J εt
)
− log λ

(
ξ(t)

)∣∣∣ · J εT
≤ l1
l0
δ
(
ξ(τ) + δ

)
,∣∣∣∣ ∫ τ

0

log λ
(
ξ(t−)

)
dJ εt −

∫ τ

0

log λ
(
ξ(t−)

)
dξ(t)

∣∣∣∣ ≤ log λ
(
ξ(τ)

)
δ∣∣∣∣ ∫ τ

0

log λ
(
J εt−
)
dJ εt −

∫ τ

0

log λ
(
ξ(t−)

)
dξ(t)

∣∣∣∣ ≤ l1
l0
δ
(
ξ(τ) + δ

)
+ log λ

(
ξ(τ)

)
δ

Then these give us the following identity, revealing the rate function.

lim
δ→0

lim
ε→0

ε log Qε
τ

(
J ε|[0,τ ] ∈ B(ξ, δ)

)
= lim

δ→0
lim
ε→0

ε log EPε

(
exp

(1

ε

∫ τ

0

log λ(J εs−)dJ εs +
1

ε

∫ τ

0

(
1− λ(J εs)

)
ds
)

1Jε|[0,τ ]∈B(ξ,δ)

)
=

∫ τ

0

log λ
(
ξ(s−)

)
dξ(s) +

∫ τ

0

(
1− λ

(
ξ(s)

))
ds

+ lim
δ→0

(
l1δτ +

l1
l0
δ
(
ξ(τ) + δ

)
+ log λ

(
ξ(τ)

)
δ
)

+ lim
δ→0

lim
ε→0

ε log P
(
εN·/ε|[0,τ ] ∈ B(ξ, δ)

)
=

∫ τ

0

(
ξ̇(s) log λ

(
ξ(s)

)
− λ
(
ξ(s)

)
+ 1
)

ds−
∫ τ

0

(
ξ̇(t) log ξ̇(t)− ξ̇(t) + 1

)
ds

= −
∫ τ

0

(
ξ̇(s) log

( ξ̇(s)

λ
(
ξ(s)

))− ξ̇(s) + λ
(
ξ(s)

))
ds

From here, we lift our large deviation principle back to the interval [0,∞) by

another application of Dawson-Gärtner.
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Of course, many technical details are missing in the above argument, but we

again reiterate that this is merely to gather intuition on rate functions. For a

rigorous proof involving such analysis, we refer the reader to [GZ18], where they

prove a large deviation principle for an asymptotic family of nonlinear Hawkes

processes. In any case, we again note that Theorem 2.5.10 covers the large

deviation principle and rate function mentioned above. A continuous-branching

process X with intensity λ(X) has special semimartingale decomposition as

below,

X = 1 ∗ qX = 1 ∗ q̂X + 1 ∗ q̃X = λ(X) • `+ 1 ∗ q̃X

which lends itself to the following special differential characteristics (β, α, µ),

β(x) = λ(x), α(x) = 0, µ(x, dv) = λ(x)δ1(dv)

and so the corresponding integrand in (2.5.11) evaluates the following function.

Λ∗
(
ẋ, x
)

= sup
u∈R

(
uẋ− uλ(x)−

∫
R

(
euv − 1− uv

)
λ(x)δ1(dv)

)
= sup

u∈R

(
uẋ− λ(x)eu + λ(x)

)

=


ẋ log

( ẋ

λ(x)

)
− ẋ+ λ(x), ẋ ≥ 0, λ(x) ≥ 0

∞, otherwise

We may even extend this to Hawkes processes (εXε)ε>0 induced by base

process,

X = r
(
µ−Xt

)
• `+N, N intensity λ(X),

for this process X has affine special differential characteristics.

β(x) = r(µ− x) + λ(x), α(x) = 0, µ(x, dv) = λ(x)δ1(dv)
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The rate function then involves the following expression,

Λ∗(ẋ, x) = sup
u∈R

(
uẋ− u

(
r(µ− x)− λ(x)

)
−
∫
R

(
euv − 1− uv

)
λ(x)δ1(dv)

)
= sup

u∈R

(
u
(
ẋ− r(µ− x)

)
− λ(x)eu + λ(x)

)

=


ẋ log

( ẋ− r(µ− x)

λ(x)

)
− ẋ+ λ(x), λ(x) > 0, ẋ− r(µ− x) ≥ 0,

∞, otherwise

which is similar to the linear case of [GZ18].

3.3 Coupling

The previous result did not include any examples in which the jump distri-

bution was non-degenerate. Intuitively speaking, there is no way to naturally

transform a Poisson process to a compound-Poisson process, for the distribution

of the jumps introduces a new source of randomness. This intuition coincides

with our difficulties in evaluating our rate function (2.5.11) for such processes.

Consider the simple example of a compound-Poisson process X driven by

standard Poisson process N and independent jumps (Vk)k∈N distributing with

common distribution κ satisfying the light-tails condition (3.1.1).

Xt =
Nt∑
k=1

Vk

This process has special differential characteristics (β, α, µ) as below,

β(x) = κ, α(x) = 0, µ(x, dv) = κ(dv),

where κ :=
∫
V vκ(dv) denotes the mean of κ. Associating an asymptotic family

(εXε)ε>0 with this base process X will result in the large deviation principle
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of Theorem 2.5.10, where the rate function (2.5.11) will involve the following

expression,

Λ∗(ẋ, x) = sup
u∈V

(
〈u, ẋ〉 − 〈u, κ〉 −

∫
V

(
e〈u,v〉 − 1− 〈u, v〉

)
κ(dv)

)
= sup

u∈V

(
〈u, ẋ〉 − eΛκ(u) + 1

)
,

where we recall Λκ is the cumulant generating function associated with κ. The

arbitrary nature of this function means that resolving even a semi-closed form

for the above expression is a difficult task.

Our expression Λ∗ is determined by the special differential characteris-

tics (β, α, µ) associated with X, which—if we are familiar with the theory

of semimartingales—serve as the predictable projections of a semimartingale.

This somehow suggests to us that Λ∗ is insufficient in understanding the devi-

ations of X, since the jump times of N are totally inaccessible. This raises the

question of if somehow coupling (X,N) will provide us more information. From

the technical perspective of σ-algebras, the answer is no, since X determines

N . However, as moot of a discussion as this is from a technical perspective, it

turns out to head us in the right direction.

We will see in the below examples that coupling (X,N) will give us semi-

closed forms for our rate function. For illustrative purposes, these examples

will again include heuristics on how to prove a principle and derive the rate

function without Theorem 2.5.10. However, these arguments are no longer

backed by results in literature, for we are now entering uncharted territory. We

reiterate that these results need not extend past heuristics, for Theorem 2.5.10

already provides us the principle.
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Example 3.3.1 (Compound-Poisson). Returning to the example above, let

us consider the following family (εXε)ε>0 determined by base path X.

εXε
t = ε

Nt/ε∑
k=1

Vk

To understand the deviations of this object, we observe how it appears to be a

composition of two processes.

εXε
t = εAεεNε

t
=
(

(εAε) ◦ (εN ε)
)
t
, εAεt := ε

[t/ε]∑
k=1

Vk, εN ε
t := εNt/ε

Note that the deviations of εAε are understood by Mogulskii’s theorem, while εN ε

are understood from Example 3.1.5. Moreover, these processes are independent,

so it is easy to see that (εAε, εN ε)ε>0 satisfies a large deviation principle with

rate function in which the finite points evaluate as the following integral.

IAN(γ, η) =

∫ ∞
0

(
η̇(t) log η̇(t)− η̇(t) + 1 + Λ∗κ

(
γ̇(t)

))
dt

From here, (εXε, εN ε)ε>0 should satisfy a large deviation principle via the con-

traction principle of εXε = εAε ◦ εN ε. The rate function is then as follows.

IXN(ξ, η) = inf
{
IAB(γ, η) : ξ = γ ◦ η

}
From here, we recognize that the condition ξ = γ ◦ η implies γ̇ = ξ̇◦η−1

η̇◦η−1 and

so substituting this in IAB and making a time-change t ← η−1(t) (on only the

final term) will reduce to the following expression for finite points.

(3.3.2) IXN(ξ, η) =

∫ ∞
0

(
η̇(t) log η̇(t)− η̇(t) + 1 + η̇(t)Λ∗κ

( ξ̇(t)
η̇(t)

))
dt

This integrand should make intuitive sense when we recognize that (ξ, η) serves

as a proxy for (X,N). The first three terms accumulate rate for deviations in
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the arrivals of N , while the last term is accumulating rate for deviations in the

jump sizes. The term ξ̇(t)/η̇(t) is a deviation of X normalized against one in

N , which is effectively a deviation from a jump Vk. Deviations of a jump Vk are

measured by Λ∗κ, and they are arriving at a rate of N , hence the final expression

in the rate function. For more detail on how a large deviation principle could

be proven with this type of argument, we refer the reader to [DRL04]. In fact,

Theorem 4 in this paper inspired us to use coupling as an argument.

In any case, we may still refer to Theorem 2.5.10 for a rigorous argument.

Denote (Ω,Σ,P) the space that includes all these quantities, FN the filtration

associated with N , and X̂ε = (Xε, N·/ε). It is clear that X̂ε is a pure jump

process,

X̂ε
t = idV×R+ ∗ qX̂

ε

t ,

and that any predictable H : Ω×R+×(V×R+)→ R+ is such that the following

holds.

EP

(
H ∗ qX̂ε

∞

)
= EP

∫ ∞
0

H(·, s,∆Xs, 1)dNs/ε

= EP

∫ ∞
0

H(·, εs,∆Xεs, 1)dNs

= EP

(
EP

(∫ ∞
0

H(·, εs,∆Xεs, 1)dNs|FN
∞

))
= EP

(∫
V

∫ ∞
0

H(·, εs, v1, 1)dNsκ(dv1)

)
=

∫ ∞
0

∫
V
H(·, εs, v1, 1)κ(dv1)ds

=

∫ ∞
0

∫
V
H(·, s, v1, v2)

1

ε
κ(dv1)δ1(dv2)ds, s← εs
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This means that we have the following predictable compensator,

q̂X̂
ε
(ds, dv̂) =

1

ε
κ(dv1)δ1(dv2)ds

which by our light-tails (3.1.1) and Proposition 1.4.2 means that X̂ε is special

and has the following decomposition.

X̂ε = idV×R+ ∗ q̂X̂
ε

t + idV×R+ ∗ q̃X̂
ε

t =
1

ε

κ
1

 • `t + idV×R+ ∗ q̃X̂
ε

t

This means that the special differential characteristics (βε, αε, µε) of X̂ε are as

follows.

βε(x̂) =
1

ε

κ
1

 , αε(x̂) = 0, µε(x̂, dv̂) =
1

ε
κ(dv1)δ1(dv2)

This parameterization, along with our light-tails (3.1.1) means that we have the

hypotheses of Theorem 2.5.10. Note that the associated Lévy-Khintchine map

Λ is as follows.

Λ(û, x̂) = 〈u1, κ〉+ u2 +

∫
V×R+

(
e〈u1,v1〉+u2 − 1− 〈u1, v1〉 − u2v2

)
κ(dv1)δ1(dv2)

= eΛκ(u1)+u2 − 1

The integrand of our rate function 2.5.11 thus involves the following expression.

Λ∗
(
ˆ̇x, x̂
)

= sup
û∈V×R+

(
〈u1, ẋ1〉 − u2ẋ2 − eΛκ(u1)+u2 + 1

)
Setting the gradients to zero results in the system of equations.

0 = ẋ1 − eΛκ(u1)+u2∇Λκ(u1)

87



Large deviation rate functions Chapter 3

0 = ẋ2 − eΛκ(u1)+u2

Some immediate results come from this; firstly, the second equation gives us

that ẋ2 > 0 and the following.

(3.3.3) ẋ2 = eΛκ(u1)+u2 , ẋ2Λκ(u1) = ẋ2 log ẋ2 − u2ẋ2

Dividing the common expressions between the two equations results to the fol-

lowing.

∇Λκ(u1) =
ẋ1

ẋ2

Seeing as Λ is convex, this is the unique solution to its Fenchel-Legendre trans-

form.

Λ∗κ

( ẋ1

ẋ2

)
= 〈u1, ẋ1/ẋ2〉 − Λ(u1)

Scooting the expressions around, we get

〈u1, ẋ1〉 = ẋ2Λ∗κ

( ẋ1

ẋ2

)
+ ẋ2Λ(u1),

which when combined with (3.3.3), we get the following.

〈u1, ẋ1〉 − u2ẋ2 − eΛκ(u1)+u2 + 1 = ẋ2 log ẋ2 − ẋ2 + 1 + Λ∗κ

( ẋ1

ẋ2

)
Observe that this results in the same integral as (3.3.2).

Example 3.3.4 (Compound-Hawkes). We can also consider a family (εXε)ε>0

of compound-Hawkes processes with affine intensity λ(x) = l0 + l1x.

εXε
t = x+ r

(
µ− εXε

)
• `t + ε

Nε
t∑

k=1

Vk,

N ε intensity
1

ε
λ(εXε),
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(Vk)k∈N independent and commonly distributed by κ on B(R+)

A proof for a large deviation principle of (εXε, εN ε)ε>0 could use the steps of

Examples 3.2.4 and 3.3.1, summarized as below.

1. Use Example 3.3.1 to establish a large deviation principle for the fam-

ily (εKε, εN ε)ε>0 where N ε is a Poisson process with rate 1/ε and Kε =∑Nε

k=1 Vk is the accumulated jump process. The integral in the rate func-

tion will be as (3.3.2).

IpoisKN (γ, η) =

∫ ∞
0

(
η̇(t) log η̇(t)− η̇(t) + 1 + η̇(t)Λ∗κ

( γ̇(t)

η̇(t)

))
dt

2. We observe that defining the map F ,

Fγ(t) = µ+ (x− µ)e−rt +

∫ t

0

e−r(t−s)dγ(s),

will be such that εXε = F (εKε) gives us our path-properties as above.

To see this, fix an arbitrary finite-variation γ with γ(0) = 0 and define

ξ = F (γ). Observe that applying the fundamental theorem of calculus and
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Fubini’s theorem provides the following equality.

(3.3.5)

ξ(t) = µ+ (x− µ)e−rt +

∫ t

0

e−r(t−s)dγ(s)

= x+
(
(x− µ)e−rt − (x− µ)

)
+

∫ t

0

(
1 +

(
e−r(t−s) − e−r(s−s)

))
dγ(s)

= x− r(x− µ)e−r` • `t + γ(t)−
∫ t

0

∫ t

s

re−r(τ−s)dτdγ(s)

= x+ r
(
µ−

(
µ+ (x− µ)e−r`

))
• `t + γ(t)−

∫ t

0

∫ τ

0

re−r(τ−s)dγ(s)dτ

= x+

∫ t

0

r
(
µ−

(
µ+ (x− µ)e−rτ −

∫ τ

0

e−r(τ−s)dγ(s)
))

dτ + γ(t)

= x+

∫ t

0

r
(
µ− ξ(τ)

)
dτ + γ(t)

= x+ r(µ− ξ) • `t + γ(t)

Thus, if we use the contraction map (γ, η) 7→ (Fγ, η), we will get a large

deviation principle for (εXε, εN ε). Note that if an absolutely continuous

γ is such that Fγ = ξ, then (3.3.5) tells us

ξ̇(t) = r
(
µ− ξ(t)

)
+ γ̇(t),

and so the integral in our rate function now evaluates as follows.

IpoisXN (ξ, η) =

∫ ∞
0

(
η̇(t) log η̇(t)− η̇(t)+1+ η̇(t)Λ∗κ

( ξ̇(t)− r(µ− ξ(t))
η̇(t)

))
dt

3. At last, we apply our measure-change argument as in Example 3.2.4 to

change the intensity of N ε to 1
ε
λ(εXε). The work is the exact same, and so

our rate function associated with (εXε, εN ε)ε>0 will become the following.
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(3.3.6) IXN(ξ, η) =

∫ ∞
0

(
η̇(t) log

( η̇(t)

λ
(
ξ(t)

))− η̇(t) + λ
(
ξ(t)

))
dt

+

∫ ∞
0

η̇(t)Λ∗κ

( ξ̇(t)− r(µ− ξ(t))
η̇(t)

)
dt

Instead of working through the numerous details of the lengthy argument above,

we can again use Theorem 2.5.10 and its rate function (2.5.11). By work nearly

identical to the end of Example 3.3.1, we can see that the special differential

characteristics of X̂ε = (Xε, N ε) are as below.

β(x̂) =

r(κ− x1) + λ(x1)κ

λ(x1)

 , β(x̂) = 0, µ(x̂, v̂) = λ(x1)κ(dv1)δ1(dv2)

Our associated Lévy-Khintchine map is then the following Λ.

Λ(û, x̂) = u1

(
r(µ− x1) + κ

)
+ u2λ(x1)

+

∫
R2

+

(
eu1v1+u2 − 1− u1v1 − u2v2

)
κ(dv1)δ1(dv2)

= u1r(µ− x1) + eΛκ(u1)+u2 − 1

Almost identical calculus to Example 3.3.1 also provides us with the following

expression, which agrees with 3.3.6.

Λ∗(ˆ̇x, x̂) = ẋ2 log
( ẋ2

λ(x1)

)
− ẋ2 + λ(x1) + ẋ2Λ∗κ

( ẋ1 − r(µ− x1)

ẋ2

)

3.4 Semi-closed form of rate function

We have now gathered enough familiarity with rate functions that appear in

the large deviations literature and the various tools we may use to lift existing
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principles to new ones. This will allow us to more easily understand the nature

and derivation of our semi-closed form for (2.5.11) in Theorem 2.5.10. Let us

now elaborate on the family on which we derive our semi-closed form; it is

assumed that X is selected with our assumptions of Section 2.2 that we needed

for Theorem 2.5.10.

Firstly, in order for us to perform the tricks of coupling we explored in the

previous section, we need to couple our arrivals and/or accumulated jumps.

We will need these objects to be locally integrable, so we impose that our

base process X is locally countable in the sense of our definition in Appendix

A.3. In particular, suppose that our base process X has special differential

characteristics (β, α, µ), where µ has the finiteness condition below.

(3.4.1) µ(x,V) <∞, x ∈ X

Note that Proposition 1.4.3 thus provides us with a factoring

(3.4.2) µ(x, dv) = λ(x)κ(x, dv)

into an intensity function λ ∈ B(X)/B(R+) and conditional jump distribution

κ from (X,B(X)) to (V,B(V)). Denote to each µ(x, ·) the notation from

Sections 3.1 and 3.3.

κ(x, ·) :=

∫
V
vκ(x, dv), Λκ(x,·)(u) :=

∫
V
e〈u,v〉κ(x, dv)

Note that our finiteness assumption (3.4.1) and our light-tails assumption DΛ =

V (along with Lemma A.4.2) give us the following properties.

κ(x, ·) <∞, Λκ(x,·)(u) <∞, x ∈ X
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We also have local integrability of the following process by our finiteness as-

sumption (3.4.1).

(3.4.3) NX := 1 ∗ qX

Note that this is a stronger restriction than local integrability of the compen-

sated jumps

(3.4.4) Xd := idV ∗ q̃X ,

which we already have from the special property of X.

The remainder of this section will assume X̂ := (X,Xc, Xd, NX) is speci-

fied from an affine process X with the properties discussed above. We will also

factor our kernel (Px)x∈X even further to one (P̂x̂)x̂∈X̂ derived from the regu-

lar conditional Px-distribution of (Px,F ) time-homogeneous Markov process

(Xc, Xd, NX). We will see in the coming results that X̂ and its associated ker-

nel (P̂x̂)x̂∈X̂ and filtration F still satisfy the assumptions of Section 2.2 needed

to apply Theorem 2.5.10; furthermore, its coupling structure will allow us to

derive a semi-closed form for (2.5.11). This is a process on

X̂ := X× V× V× R+,

which is a subset of vector space

V̂ := V× V× V× R,

when equipped with componentwise operations. We henceforth denote ele-

ments v̂ ∈ V̂ with components,

v̂ := (v1, v2, v3, v4),
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and equip V̂ with the inner-product below.

〈
v̂, ŵ

〉
:= 〈v1, w1〉+ 〈v2, w2〉+ 〈v3, w3〉+ v4w4

We will also indifferently treat such tuples as column vectors, so that operators

on L(V̂) can be seen as 4 × 4 block-matrices of operators on L(V) and L(R)

(with the natural blocking). If we want to go a level deeper within coordinates,

we will use the following notation.

v̂ :=
(
v11, . . . , v1d, v21, . . . , v2d, v31, . . . , v3d, v41

)
Lemma 3.4.5. The space X̂ is a cone in V̂ with operations taken component-

wise.

Proof: This is obvious, as each of the factors X, V, R+ that appear in our

product is also a cone.

Proposition 3.4.6. For each x̂ ∈ X̂, the process X̂ is a (P̂x̂,F ) special jump-

diffusion with affine special differential characteristics (β̂, α̂, µ̂) as below.

(3.4.7)
β̂(x̂) =



β(x1)

0

0

λ(x1)


, α̂(x̂) =



α(x1) α(x1) 0 0

α(x1) α(x1) 0 0

0 0 0 0

0 0 0 0


,

µ̂(x̂, dv̂) = λ(x1)κ(x1, dv1)δ0,v1,1(dv2, dv3, dv4),

Moreover, denoting Λ̂ the associated Lévy-Khintchine map, we have DΛ̂ = V̂
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and the following.

Λ̂(û, x̂) = 〈u1, β(x1)〉+
1

2

〈
u1 + u2, α(x)(u1 + u2)

〉
+ λ(x1) exp

(
Λκ(x1,·)(u1 + u3) + u4

)
− λ(x1)

−
〈
u1 + u3, λ(x1)κ(x1, ·)

〉
Proof: The fact that X̂ is special simply comes from the following de-

composition.

X̂ =



X

Xc

Xd

NX


=



x1 + β(X) • `t +Xc + idV ∗ q̃Xt

x2 +Xc

x3 + idV ∗ q̃Xt

x4 + 1 ∗ qXt



=



x1 + β(X) • `t +Xc + idV ∗ q̃Xt

x2 +Xc

x3 + idV ∗ q̃Xt

x4 + 1 ∗ q̂Xt + 1 ∗ q̃Xt



= x̂+



β(X)

0

0

λ(X)


• `t +



Xc

Xc

0

0


+



idV

0

idV

1


∗ q̃Xt

Observe that the first term establishes the drift β̂ as in (3.4.7). The diffusion

α̂ in (3.4.7) is verified by the following identities.〈
X̂c,1i, X̂c,1j

〉
=
〈
Xc,i, Xc,j

〉
= αij(X) • `,

〈
X̂c,2i, X̂c,3j

〉
=
〈
Xc,i, 0

〉
= 0,〈

X̂c,1i, X̂c,2j
〉

=
〈
Xc,i, Xc,j

〉
= αij(X) • `,

〈
X̂c,1i, X̂c,4j

〉
=
〈
Xc,i, 0

〉
= 0,
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〈
X̂c,2i, X̂c,2j

〉
=
〈
Xc,i, Xc,j

〉
= αij(X) • `,

〈
X̂c,2i, X̂c,4j

〉
=
〈
Xc,i, 0

〉
= 0,〈

X̂c,1i, X̂c,3j
〉

=
〈
Xc,i, 0

〉
= 0,

〈
X̂c,3i, X̂c,4j

〉
=
〈

0, 0
〉

= 0,〈
X̂c,4i, X̂c,4j

〉
=
〈

0, 0
〉

= 0

Lastly, for any predictable H : Ω× R+ × V̂→ R+, we have the following.

EPx

(
H ∗ qX̂∞

)
= EPx

∫
R+×V

H(·, s, v1, 0, v1, 1)qX(ds, dv̂)

= EPx

∫ ∞
0

∫
V
H(·, s, v1, 0, v1, 1)µ(Xs, dv1)ds

= EPx

∫ ∞
0

∫
V
H(·, s, v1, 0, v1, 1)λ(Xs)κ(Xs, dv1)ds

= EPx

∫ ∞
0

∫
V̂
H(·, s, v̂)λ(Xs)κ(Xs, dv1)δ0,v1,1(dv2, dv3, dv3)ds

This concludes that, q̂X̂(ds, dv̂) = µ̂(X̂s, dv̂)ds, where µ̂ is as in (3.4.7). This

work shows that X̂ is a (P̂x̂∈X̂,F ) special jump-diffusion; its special differential

characteristics are also affine.

β̂(x̂) =



b0

0

0

l0


+

d∑
i=1

x1i



bi

0

0

li



α̂(x̂) =



a0 a0 0 0

a0 a0 0 0

0 0 0 0

0 0 0 0


+

d∑
i=1

x1i



a0 a0 0 0

a0 a0 0 0

0 0 0 0

0 0 0 0


µ̂(x̂, dv̂) = m0(dv1)δ0,v1,1(dv2, dv3, dv4) +

d∑
i=1

x1imi(dv1)δ0,v1,1(dv2, dv3, dv4)
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The associated Lévy-Khintchine map Λ̂ associated with it satisfies DΛ̂ = V̂. To

see this, observe the following inequality for any x̂ ∈ X̂ and û ∈ V̂.∫
|v̂|>1

e〈û,v̂〉µ̂(x̂, dv̂) =

∫
V
e〈u1+u3,v1〉+u41|v̂|>1(v1, 0, v1, 1)µ(x1, dv1)

= eu4

∫
V
e〈u1+u3,v〉µ(x1, dv)

Because we have µ(x1,V) < ∞ and DΛ = V, Lemma A.4.2 tells us (using

it twice) that the above expression is finite and that DΛ̂ = V̂. We may also

simplify Λ̂ to the desired expression.

Λ̂(û, x̂) =
〈
û, β̂(x̂)

〉
+

1

2

〈
û, α̂(x̂)û

〉
+

∫
V̂

(
e〈û,v̂〉 − 1−

〈
û, v̂
〉)
µ̂(x̂, dv̂)

= 〈u1, β(x1)〉+ u4λ(x1)

+
1

2

〈
u1, α(x1)u1

〉
+

1

2

〈
u1, α(x1)u2

〉
+

1

2

〈
u2, α(x1)u1

〉
+

1

2

〈
u2, α(x1)u2

〉
+

∫
V

(
e〈u1,v〉+〈u3,v〉+u4 − 1− 〈u1, v1〉 − 〈u3, v〉 − u4

)
λ(x1)κ(x1, dv)

= 〈u1, β(x1)〉+
1

2

〈
u1 + u2, α(x1)(u1 + u2)

〉
+ λ(x1)

(∫
V
e〈u1+u3,v〉κ(x1, dv)

)
eu4 − λ(x1)−

〈
u1 + u3, λ(x1)κ(x1, ·)

〉
= 〈u1, β(x1)〉+

1

2

〈
u1 + u2, α(x)(u1 + u2)

〉
+ λ(x1) exp

(
Λκ(x1,·)(u1 + u3) + u4

)
− λ(x1)−

〈
u1 + u3, λ(x1)κ(x1, ·)

〉
Unfortunately, despite X̂ having affine characteristics, this is not enough

to ensure it is an affine process. We technically need existence of a solution Ψ̂

to its associated system ∂tΨ̂(t, û, x̂) = Λ
(
ψ̂(t, û), x̂) as in Proposition 1.4.5. It

is partially solved by the state-independence of Λ in the coordinates x2, x3, x4,

but we cannot find a way to leverage the equation associated with Λ. Thus is

the following assumption.
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Assumption 3.4.8. Assume that X is such that the associated special dif-

ferential characteristics (β, α, µ) and the associated parts bi, ai,mi, li for i =

0, . . . , d induce a solution to the following equation, for each û ∈ UX̂.

i = 0, . . . , d

∂tψ̂i(t, û) =
〈
ψ̂(t, û), bi

〉
+

1

2

〈
ψ̂(t, û) + u2, ai

(
ψ̂(t, û) + u2

)〉
+

∫
V

(
e〈ψ̂(t,û)+u3,v〉+u4 − 1−

〈
ψ̂(t, û) + u3, v

〉)
mi(dv)

ψ0(t, u) = 0, ψi(t, u) = ui

Remark 3.4.9. 1. When we are dealing with the canonical space X = Rm
+×

Rn, then X̂ = Rm̂
+ × Rn̂, up to reordering the factors. In this scenario,

we have admissibility conditions on the special differential characteristics

which impose existence of the solution, for each û ∈ UX̂.

2. Note that we already have a solution to the following equation for each

u ∈ UX, by existence of X as an affine process and Theorem 1.1.4.

i = 0, . . . , d

ψ̇i(t, u) = 〈ψ(t, u), bi〉+
1

2
〈ψ(t, u), aiψ(t, u)〉

+

∫
V

(
e〈ψ(t,u),v〉 − 1− 〈ψ(t, u), v〉

)
mi(dv)

ψ0(t, u) = 0, ψi(t, u) = ui

Theorem 3.4.10. Let X be an affine process as introduced above with As-

sumption 3.4.8 satisfied. Then X̂ is a base affine process with which we may

parameterize ˆεXε with distribution as in Section 2.1. Fixing x̂ ∈ X̂◦ and de-

noting P̂
ε

x̂ the distribution associated with ˆεXε starting at x̂, we have a large

deviation principle for (P̂
ε

x̂)ε>0. The rate function Ix̂ simplifies to the following
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semi-closed form, where we denote the components of an arbitrary function ξ̂

by ξ̂ := (ξ, ω, γ, η).

Ix̂(ξ̂) =

∫ ∞
0

1

2

〈
ω̇(t), α

(
ξ(t)

)†
ω̇(t)

〉
dt

+

∫ ∞
0

(
η̇(t) log

( η̇(t)

λ
(
ξ(t)

))− η̇(t) + λ
(
ξ(t)

))
dt

+

∫ ∞
0

η̇(t)Λ∗κ(ξ(t),·)

(
γ̇(t) + λ

(
ξ(t)

)
κ(ξ(t), ·)

η̇(t)

)
dt

In the evaluation above, we are insisting 0 log 0 = 0, 0 ·Λκ(·,·)(·) = 0, and that ξ̂

satisfies the following properties below, where statements involving t are taken

Lebesgue-almost-everywhere; otherwise Ix̂(ξ̂) =∞.

• ξ̂(0) = x̂,

• ξ ∈ A([0,∞),X), ω ∈ A([0,∞),V), γ ∈ A([0,∞),V), and η ∈ A([0,∞),R+),

• ξ̇(t) = β
(
ξ(t)

)
+ ω̇(t) + γ̇(t),

• ω̇(t) ∈ image
(
α(ξ(t))

)
,

• λ
(
ξ(t)

)
> 0.

• η̇(t) ≥ 0,

Proof: Assumption 3.4.8 is another way of rewriting the system in Propo-

sition 1.4.5, as in Remark 1.1.6. This makes X̂ an affine process, so Lemma

3.4.5 and Proposition 3.4.6 tell us that X̂ satisfies the assumptions of Section

2.2. Thus, the parameterization ˆεXε is a family described by Theorem 2.5.10,

and so we have a large deviation principle for (P̂
ε

x̂)ε>0. Again using Proposition
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3.4.6, we see that the integrand evaluates the following function.

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
û∈V̂

(
〈u1, ẋ1〉+ 〈u2, ẋ2〉+ 〈u3, ẋ3〉+ u4ẋ4 − 〈u1, β(x1)〉

− 1

2

〈
u1 + u2, α(x1)(u1 + u2)

〉
− λ(x1) exp

(
Λκ(x1,·)(u1 + u3) + u4

)
+ λ(x1) +

〈
u1 + u3, λ(x1)κ(x1, ·)

〉)

= sup
û∈V̂

(〈
u1, ẋ1 − β(x1)− ẋ2 − ẋ3

〉
+
〈
u1 + u2, ẋ2 −

1

2
α(x1)(u1 + u2)

〉
+
〈
u1 + u3, ẋ3 + λ(x1)κ(x1, ·)

〉
+ u4ẋ4

− λ(x1) exp
(

Λκ(x1,·)(u1 + u3) + u4

)
+ λ(x1)

)

(3.4.11)

We now evaluate the expression depending on different scenarios.

1. Suppose we had ẋ1 6= β(x1) + ẋ2 + ẋ3. Observe that the expression

in (3.4.11) can have all expressions but the first summand canceled, if

u1 = −u2 = −u3 and u4 = 0. This shows us the following.

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

≥ sup
û=(u,−u,−u,0)

u=ρ(ẋ1−β(x1)−ẋ2−ẋ3)
ρ∈R

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
ρ∈R

ρ
∣∣∣ẋ1 − β(x1)− ẋ2 − ẋ3

∣∣∣2
=∞

2. Now assume ẋ2 6∈ imageα(x1). Observe that the expression in (3.4.11)

can have all expressions other than the quadratic term canceled, if we
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set u1 = u3 = u4 = 0. Denote w2, w
⊥
2 ∈ V the projections of ẋ2 onto

image(α(x1)) and its orthogonal complement, respectively. Select w̃2 ∈ V

such that w2 = 1
2
α(x1)w̃2,

ẋ2 = w2 + w⊥2 =
1

2
α(x1)w̃2 + w⊥2 ,

and observe the following.

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

≥ sup
û=(0,u,0,0)

u=ρw⊥2
ρ∈R

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
ρ∈R

〈
ρw⊥2 , ẋ2 −

1

2
α(x1) · ρw⊥2

〉
= sup

ρ∈R

(
1

2

〈
ρw⊥2 , α(x1)(w̃2 − ρw⊥2 )

〉
+
〈
ρw⊥2 , w

⊥
2

〉)
= sup

ρ∈R
ρ
∣∣w⊥2 ∣∣2

=∞

3. Now suppose λ(x1) = 0. Then, (3.4.11) shows us that evaluating at

u1 = u2 = u4 = 0 will cancel all terms not involving ẋ3.

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))
≥ sup

û=(0,0,u,0)
u=ρẋ3
ρ∈R

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
ρ∈R

ρ
∣∣ẋ3

∣∣2
=∞

4. Now suppose λ(x1) < 0. It is clear that selecting u1 = u2 = u3 = 0 in

(3.4.11) cancels many of the terms unrelated to ẋ4, which lends us to the
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following argument.

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))
≥ sup

û=(0,0,0,ρ)
ρ∈R

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
ρ∈R

(
ρẋ4 + λ(x1)(1− eρ)

)
= lim

ρ→−∞

(
ρẋ4 + λ(x1)(1− eρ)

)
=∞

5. Now suppose λ(x1) > 0 and ẋ4 < 0. Again using the same selection as

the preceding part, we have another infinite value.

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))
≥ sup

û=(0,0,0,ρ)
ρ∈R

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
ρ∈R

(
ρẋ4 + λ(x1)(1− eρ)

)
= lim

ρ→∞

(
ρẋ4 + λ(x1)(1− eρ)

)
=∞

6. Now suppose ẋ1 = β(x1) + ẋ2 + ẋ3, ẋ2 ∈ image(α(x1)), λ(x1) > 0, and

ẋ4 > 0. Using Lemma A.4.4, we are able to take the gradients of the

expression in (3.4.11) to get the following system of equations.

0 = ẋ1 − β(x1)− α(x1)(u1 + u2)

− λ(x1) exp
(

Λκ(x1,·)(u1 + u3) + u4

)
∇Λκ(x1,·)(u1 + u3)

+ λ(x1)κ(x1, ·)

0 = ẋ2 − α(x1)(u1 + u2)
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0 = ẋ3 − λ(x1) exp
(

Λκ(x1,·)(u1 + u3) + u4

)
∇Λκ(x1,·)(u1 + u3)

+ λ(x1)κ(x1, ·)

0 = ẋ4 − λ(x1) exp
(

Λκ(x1,·)(u1 + u3) + u4

)
These equations yield the following via simple algebra.

(3.4.12)

u1 + u2 = α(x1)†ẋ2

ẋ4 = λ(x1) exp
(

Λκ(x1,·)(u1 + u3) + u4

)
ẋ4 log

( ẋ4

λ(x1)

)
= ẋ4Λκ(x1,·)(u1 + u3) + u4ẋ4

ẋ3 + λ(x1)κ(x1, ·)
ẋ4

= ∇Λκ(x1,·)(u1 + u3)

Seeing as Λκ(x1,·) is a convex function, the last equality of (3.4.12) corre-

sponds to the unique extreme point of the Fenchel-Legendre transform.〈
u1 + u3,

ẋ3 + λ(x1)κ(x1, ·)
ẋ4

〉
− Λκ(x1,·)(u1 + u3)

= Λ∗κ(x1,·)

( ẋ3 + λ(x1)κ(x1, ·)
ẋ4

)
Combining this equality with those of (3.4.12) now gives us the following

identity.〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
)

= 〈u1, ẋ1〉+ 〈u2, ẋ2〉+ 〈u3, ẋ3〉+ u4ẋ4 − 〈u1, β(x1)〉

− 1

2

〈
u1 + u2, α(x)(u1 + u2)

〉
− λ(x1) exp

(
Λκ(x1,·)(u1 + u3) + u4

)
+ λ(x1) +

〈
u1 + u3, λ(x1)κ(x1, ·)

〉
=

1

2

〈
ẋ2, α(x1)†ẋ2

〉
+ ẋ4 log

( ẋ4

λ(x1)

)
− ẋ4 + λ(x1)

+ Λ∗κ(x1,·)

( ẋ3 + λ(x1)κ(x1, ·)
ẋ4

)
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Observe that since Λ̂(·, x̂) convex, the critical point we have solved is a

global extremum, evaluating Λ̂∗(ˆ̇x, x̂).

7. The last case we must consider is when ẋ1 = β(x1) + ẋ2 + ẋ3, ẋ2 ∈

image(α(x1)), λ(x1) > 0, and ẋ4 = 0. For this, we start by greedily

optimizing in the u4 coordinate in (3.4.11).

Λ̂∗(ˆ̇x, x̂) = sup
û∈V̂

(〈
û, ˆ̇x
〉
− Λ̂

(
û, x̂
))

= sup
u1,u2,u3∈V

[〈
u1, ẋ1 − β(x1)− ẋ2 − ẋ3

〉
+
〈
u1 + u2, ẋ2 −

1

2
α(x1)(u1 + u2)

〉
+
〈
u1 + u3, ẋ3 + λ(x1)κ(x1, ·)

〉
+ λ(x1)

+ sup
u4∈R

(
− λ(x1) exp

(
Λκ(x1,·)(u1 + u3) + u4

))]
= sup

u1,u2,u3∈V

[〈
u1, ẋ1 − β(x1)− ẋ2 − ẋ3

〉
+
〈
u1 + u2, ẋ2 −

1

2
α(x1)(u1 + u2)

〉
+
〈
u1 + u3, ẋ3 + λ(x1)κ(x1, ·)

〉
+ λ(x1)

]
From here, we are left with yet another convex function we intend to opti-

mize; observe that the critical point now easily evaluates our expression.

0 = ẋ1 − β(x1)− α(x1)(u1 + u2) + λ(x1)κ(x1, ·)

0 = ẋ2 − α(x1)(u1 + u2)

0 = ẋ3 + λ(x1)κ(x1, ·)

=⇒ 〈û, ˆ̇x〉 − Λ̂(û, x̂) =
1

2

〈
ẋ2, α(x1)†ẋ2

〉
+ λ(x1)

Thus, this expression solves Λ∗(ˆ̇x, x̂). Note that this expression is iden-

tical to the previous case, when taking convention that 0 log 0 = 0 and
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0 · Λκ(·,·)(·) = 0

These cases simplify the nature of Λ∗ in (2.5.11), finishing the proof.

3.5 Interpretation

We finish our discussion by interpreting the last result. As discussed in the

introduction, this result gives us the following approximation,

P̂
ε

x̂

(
ˆεXε ∈ B(ξ̂, δ)

)
≈ exp

(
− 1

ε
Îx̂(ξ̂)

)
,

so Îx̂(ξ̂) gives us an exponential rate of decay of probabilities of the family ˆεXε

being near ξ̂. In terms of components ξ̂ = (ξ, ω, γ, η), the function Îx̂ thus

reads properties of ξ, ω, γ, η and communicates to us how unlikely they are to

be exhibited by εXε, εXε,c, εXε,d, and εN εXε
, respectively. Our semi-closed

form in Theorem 3.4.10 tells us a lot.

Let us first elaborate on the conditions of ξ̂ which allow Îx̂(ξ̂) to evaluate

as a (possibly infinite) integral. Should any of these properties not be satisfied,

we would have Îx̂(ξ̂) =∞, which means super-exponential decay of ˆεXε being

within a neighborhood of ξ̂. That said, we interpret these conditions as mini-

mum requirements on ξ̂ to even be considered possible. Throughout, notice we

establish an intuition with ξ̂ being a proxy for ˆεXε.

• ξ̂(0) = x̂.

Seeing as we P̂
ε

x̂-almost-surely have εX̂ε
0 = x̂, we insist ξ̂(0) = x̂.

• ξ̂ ∈ A([0,∞), X̂).
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This tells us that the paths of ˆεXε become smoother as ε → 0. This

should make sense when we look at Proposition 2.1.9, where εXε is a

dynamical system with perturbations on the scale of ε.

• ξ̇(t) = β
(
ξ(t)

)
+ ω̇(t) + γ̇(t).

Note that this is the same thing as saying,

ξ(t) = x+ β(ξ) • `t + ω(t) + γ(t),

(when we include the initial condition above) which is the exact condition

each ˆεXε satisfies.

εXε
t = x+ β(εXε) • `t + εXε

t
,c + εXε

t
,d

• ω̇(t) ∈ image
(
α(ξ(t))

)
.

Seeing as εα(εXε) • ` is the predictable quadratic covariation process

associated with εXε,c, we see the following moments of an increment

εXε,c
t+τ − εX

ε,c
t .

EPx

(
εXε,c

t+∆t − εX
ε,c
t |F ε

t

)
= 0,

EPx

((
εXε,i,c

t+∆t − εX
ε,i,c
t

)(
εXε,j,c

t+∆t − εX
ε,j,c
t

)
|F ε

t

)
= EPεXεt

∫ t+∆t

t

εαij
(
εXε

s

)
ds

Thus, on an infinitesimal level, the increment ω̇(t) of our continuous noise

ω can be thought of as distributing Normal(0, α(ξ(t))), which begs the

question of ω̇(t) ∈ image
(
α(ξ(t))

)
.

• λ
(
ξ(t)

)
> 0.
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Note that we have the following identity,

N εXε

t −
∫ t

0

1

ε
λ(εXε

s)ds = 1 ∗ qεXε

t −
∫ t

0

∫
V

1

ε
µ(εXε

s, dv)ds

= 1 ∗ qεXε

t − 1 ∗ q̂εXε

t

= 1 ∗ q̃εXε

t ,

which tells us N εXε
has intensity 1

ε
λ(εXε). On the infinitesimal level,

the increment η̇(t) of our arrivals η should arrive Poisson
(
λ(ξ(t))

)
with

positive intensity λ(ξ(t)).

• η̇(t) ≥ 0.

Seeing as N εXε
is a counting process, its increments of εN εXε

are non-

negative, and so should those in the infinitesimal sense, η̇(t) ≥ 0.

Following this, for those ξ̂ that are possible, in the sense of satisfying the

preceding properties, we may interpret the integral form of Îx̂(ξ̂) intuitively.

We mentioned in the points above that

ξ̇(t) = β
(
ξ(t)

)
+ ω̇(t) + γ̇(t)

is a proxy for our dynamics associated with εXε, and that our derivatives can

be interpreted as increments.

ω̇(t) ↔ Normal
(

0, α
(
ξ(t)

))
, η̇(t) ↔ Poisson

(
λ
(
ξ(t)

))
Meanwhile, since γ̇ is a proxy for an increment of εXε,d, we recognize that the

following identity,

εXε
t
,d = idV ∗ q̃εX

ε

t
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= idV ∗ qεX
ε

t − idV ∗ q̂εX
ε

t

=

∫
[0,t]×V

vqεX
ε

(ds, dv)−
∫ t

0

∫
V
εv

1

ε
µ(εXε

s, dv)ds

=

∫ t

0

∆(εXε)s dN εXε

s −
∫ t

0

λ(εXε
s)κ(εXε

s, ·),

gives us a similar infinitesimal interpretation.

γ̇(t) + λ
(
ξ(t)

)
κ(ξ(t), ·)

η̇(t)
arrives at rate η̇(t) with distribution κ

(
ξ(t), ·

)
In total, we have the following categories of deviations.

ω̇(t) continuous deviations, Normal
(

0, α
(
ξ(t)

))
η̇(t) jump-arrival deviations, Poisson

(
λ
(
ξ(t)

))
γ̇(t) + λ

(
ξ(t)

)
κ(ξ(t), ·)

η̇(t)
jump-size deviations, κ

(
ξ(t), ·

)
ξ̇(t) combined deviations, β

(
ξ(t)

)
+ ω̇(t) + γ̇(t)

Each of these interpretations explains its respective integral term, as we

explain below.

• The continuous deviations ω̇ in our rate function take the integral,∫ ∞
0

1

2

〈
ω̇(t), α

(
ξ(t)

)†
ω̇(t)

〉
dt,

which takes larger values whenever ω̇(t) is a rare sample of Normal
(
0, α(ξ(t))

)
;

the likely path here is ω̇(t) = 0.

• The jump-arrival deviations η̇ in our rate function take the integral,∫ ∞
0

(
η̇(t) log

( η̇(t)

λ
(
ξ(t)

))− η̇(t) + λ
(
ξ(t)

))
dt,
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which takes larger values whenever η̇(t) is a rare sample of Poisson
(
λ(ξ(t))

)
;

the likely path here is η̇(t) = λ(ξ(t)).

• The jump-size deviations
(
γ̇(t)+λ(ξ(t))κ(ξ(t), ·)

)
/η̇(t) take the following

integral. ∫ ∞
0

η̇(t)Λ∗κ(ξ(t),·)

(
γ̇(t) + λ

(
ξ(t)

)
κ(ξ(t), ·)

η̇(t)

)
dt

This takes larger values when
(
γ̇(t)+λ(ξ(t))κ(ξ(t), ·)

)
/η̇(t) is a rare sam-

ple of κ(ξ(t), ·), and the prefactor η̇(t) serves to express the increased

rarity of unlikely jumps occurring with high-frequency.

We also would like to mention that Theorem 3.4.10 can take many equiv-

alent forms, depending on which quantities we couple with εXε and which

parameters α, µ are non-zero.. For instance, as demonstrated by the redun-

dancy,

ξ̇(t) = β
(
ξ(t)

)
+ ω̇(t) + γ̇(t),

we may have considered the smaller tuple (εXε, εXε,d, N εXε
) and the subsequent

rate function would have the following substitution in the first integral.

(3.5.1) ω̇(t) = ξ̇(t)− β
(
ξ(t)

)
− γ̇(t),

Note that in the case of µ = 0 (diffusions), each of εXε,d and N εXε
constantly

take zero-value, and so we need no coupling; the principle for εXε already has

a closed form. This is hinted at in (3.5.1), which suggests the ultimate rate

function.

ω̇(t) = ξ̇(t)−β(ξ(t))  
∫ ∞

0

1

2

〈
ξ̇(t)− β

(
ξ(t)

)
, α
(
ξ(t)

)†(
ξ̇(t)− β

(
ξ(t)

))〉
dt,
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Similarly, we may have considered another tuple (εXε, εXε,c, N εXε
) and the sub-

sequent rate function would have the following substitution in the last integral.

(3.5.2) γ̇(t) = ξ̇(t)− β
(
ξ(t)

)
− ω̇(t)

Note that in the case of α = 0 (pure-jump processes), εXε,c constantly takes

zero-value, and so we only need coupling (εXε, N εXε
), as hinted at in (3.5.2).

This covers the case of our compund-Poisson and Hawkes processes. Lastly, we

could have alternatively coupled (εXε, εXε,c, idV ∗ qεX
ε
, N εXε

) so that the final

integral term will clean up a bit,∫ ∞
0

η̇(t)Λ∗κ(ξ(t),·)

( ℘̇(t)

η̇(t)

)
dt

with our proxy ξ̂ = (ξ, ω, ℘, η) now satisfying the following.

ξ̇(t) = β
(
ξ(t)

)
+ ω̇(t) + ℘̂(t)− λ

(
ξ(t)

)
κ(ξ(t), ·)

All of these different perspectives can be proven directly or explained immedi-

ately with the contraction principle.
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Appendix A

Jump-diffusions

In order to discuss jump-diffusions on a finite-dimensional real vector space,
one must have a decent understanding of semimartingales. A great text for a
comprehensive study of this is [JS03], which we will refer to in our proofs. In
terms of notational differences, we choose our probability space (Ω,Σ,P) and
filtration F = (Ft)t≥0, where F∞ ⊆ Σ denotes the joined space. Furthermore,
we do not explicitly write processes to take values in Rd, but rather some vector
space V with dimension d := dimV and inner-product 〈·, ·〉. Surely—due to
our isometric isomorphism V ≡ Rd—any componentwise or linear notion, such
as integration or differentiation may be taken as equivalent. Furthermore, we
sometimes specify that a stochastic process X has a Borel state space X ⊆ V, as
this is the case when studying affine processes. We find it important to highlight
the following important notation of objects introduced in [JS03, Chapters I-II].

• Given (P,F ) locally square-integrable martingales M,N : Ω×R+ → R,
denote 〈M,N〉 the predictable quadratic covariation.

• Given H,X : Ω × R+ → R with H being F predictable and (P,F )
locally bounded and X a (P,F ) semimartingale, denote the stochastic
integral process as follows.

H •Xt =

∫ t

0

HsdXs

We may lift this concept componentwise and linearly. This allows us to
choose the codomains of H,X to various combinations of V and L(V,W)
when evaluating H •X, so long as such a combination allows for Ht ·Xt

to make sense.
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• Denote ` : R+ → R+ the identity map to allow a concise notation for
Lebesgue integration.

H • `t =

∫ t

0

Hsds

Throughout, we will often use the following fact without mention; any
càdlàg process H is such that Ht = Ht− at all but a countable amount of
times t ∈ R, and so

H− • `t =

∫ t

0

Hs−ds =

∫ t

0

Hsds = H • `t

• For a random measure q : Ω ×B(R+ × V) → [0,∞] and (suitably inte-
grable) process H : Ω × R+ × V → R, we denote the stochastic integral
as follows.

H ∗ qt =

∫
[0,t]×V

Hs(v)q(ds, dv)

Denote its (P,F ) predictable projection by q̂ and the compensated mea-
sure q̃ = q − q̂. We will frequently use, without mention, that q̂ is char-
acterized by the property that any F predictable H : Ω×R+×V→ R+

is such that
EP

(
H ∗ q∞

)
= EP

(
H ∗ q̂∞

)
Also denote H ∗ q̃ the compensated local martingale process for suitable
H ∈ Gloc(q), as constructed in [JS03, Definition II.1.27]. Lift these inte-
gration notions to vector-valued H componentwise. Instead of choosing
a canonical variable for integrating expressions in this form, we use the
identity maps idV or `.

f(`, idV) ∗ qt =

∫
[0,t]×V

f(s, v)q(ds, dv)

• Given a semimartingale X, denote Xc its continuous local martingale
component and qX its jump measure.

A.1 Formulation

As in [JS03, Definition III.2.18], a (P,F ) jump-diffusion X on state space
(X,B(X)) is a (P,F ) semimartingale in which the χ-characteristics (Bχ, A, q̂X)
have the following decompositions.

(A.1.1) Bχ
t =

∫ t

0

βχ(Xs)ds, At =

∫ t

0

α(Xs)ds, q̂X(ds, dv) = µ(Xs, dv)ds,
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where the functions have the following properties.

• βχ : X→ V is Borel measurable, βχ ∈ B(X)/B(V).

• α : X → L(V) is Borel measurable, α ∈ B(X)/B(L(V)), and α(x) is
self-adjoint and non-negative for each x ∈ X.

• µ : X×B(V)→ [0,∞] is a transition kernel from X to V, and it satisfies
the following properties for each x ∈ X.

(A.1.2) µ
(
x, {0}

)
= 0,

∫
V

(
1 ∧ |v|2

)
µ(x, dv) <∞

In other words, our jump-diffusion X has the following canonical semimartin-
gale representation (see [JS03, Theorem II.2.34] for definition).

(A.1.3)

X = X0 + βχ(X) • `+Xc + χ ∗ q̃X + (idV − χ) ∗ qX

〈Xc,i, Xc,j〉 = αij(X) • `

q̂X(ds, dv) = µ(Xs, dv)ds

Remark A.1.4. (a) Note that we differ slightly from the definition we ref-
erence by imposing a time-homogeneity formulation. There is no loss of
generality in doing so, because we may always extend the state to R+×X
via X̂t = (t,Xt).

(b) Note that (A.1.1) can be written concisely by using the identity ` on R+.

Bχ
t = βχ(X) • `t, At = α(X) • `t, q̂X([0, t], dv) = µ(X, dv) • `t

(c) If we have a jump-diffusion with χ-characteristics in (A.1.1), we call
(βχ, α, µ) the differential χ-characteristics. We see from (A.1.3) that βχ

and βχ̂ relate between different truncation functions χ, χ̂ with the simple
identity.

(A.1.5) βχ̂(x) = βχ(x) +

∫
V

(
χ̂(v)− χ(v)

)
µ(x, dv)

(d) The conditions on α(x) and µ(x, dv) are immediate consequences of (A.1.1).
For the most general setting, see the corresponding result for any semi-
martingale, in [JS03, Proposition II.2.9].
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Example A.1.6. Fix a probability space (Ω,Σ,P) and filtration F = (F )t≥0.
Just as with (Rd,B(V)), we say that W is a standard (P,F ) Brownian

motion on (V,B(V)) if it is a continuous (P,F ) martingale with predictable
quadratic covariation as follows.

〈W i,W j〉t =

{
t i = j
0 otherwise

It is clear that W is a (P,F ) jump-diffusion with differential χ-characteristics
(0, α, 0), where α(x) = idV for all x ∈ X.

Similarly, we say that p is a standard (P,F ) Poisson random measure
on B(R+ × V) if its (P,F ) predictable projection is the Lebesgue measure
p̂(ds, dv) = ds ⊗ dv (identifying measures on B(Rd) as those on B(V)). By
[JS03, Theorem II.4.8], this p is the same as a Poisson point process with
Lebesgue intensity, which has infinitely many jumps on any nonempty interval
of time. The accumulated jumps idV ∗ p form a (P,F ) jump-diffusion with
parameters as follows.

βχ(x) =

∫
V
χ(v)dv, α(x) = 0, µ(x, dv) = dv,

because we have the following decomposition.

idV ∗ p = χ ∗ p+ (idV − χ) ∗ p
= χ ∗ p̂+ χ ∗ p̃+ (idV − χ) ∗ p
= βχ • `+ χ ∗ p̃+ (idV − χ) ∗ p

Note that the infinite activity of p means that the last term cannot be compen-
sated.

We will see at the end of this section that these two objects W and p are
the fundamental building blocks of all jump-diffusions.

The following Lemma will be repeatedly used as a shortcut of Itô’s formula
and various identities that always apply with jump-diffusions.

Lemma A.1.7. Let X be a jump-diffusion with differential χ-characteristics
(βχ, α, µ) and f ∈ C2(V,R). The composition f(X) has the following semi-
martingale representation.

f(Xt) = f(X0) +
(

Df(X) · βχ(X)
)
• `t +

1

2
tr
(

D2f(X) ◦ α(X)
)
• `t

+ Df(X−) •Xc +
(

Df(X−) · χ
)
∗ q̃Xt

+
(
f(X− + idV)− f(X−)−Df(X−) · χ

)
∗ qXt
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Proof: Apply Itô’s formula [JS03, Theorem I.4.57] and use the predictable
covariation identity in (A.1.3) to get the following.

f(Xt) = f(X0) +
d∑
i=1

Dif(X−) •X i
t +

1

2

d∑
i,j=1

Dijf(X−) • 〈Xc,i, Xc,j〉t

+
∑

0<s≤t

(
f(Xs)− f(Xs−)−

d∑
i=1

Dfi(Xs−)∆Xs

)
= f(X0) + Df(X−) •Xt +

1

2

d∑
i,j=1

Dijf(X−) •
(
αij(X) • `

)
t

+
(
f(X− + idV)− f(X−)−Df(X−) · idV

)
∗ qXt

Using the iterated stochastic integral formula [JS03, Remark I.4.37], we may
simplify the above equation to the following.

f(Xt) = f(X0) + Df(X−) •Xt +
1

2
tr
(

Dijf(X−) ◦ α(X)
)
• `t

+
(
f(X− + idV)− f(X−)−Df(X−) · idV

)
∗ qXt

Now substitute our representation of (A.1.3) and repeat the iterated stochastic
integral to get the following.

f(Xt) = f(X0) + Df(X−) •
(
X0 + βχ(X) • `+Xc + χ ∗ q̃X + (idV − χ) ∗ qX

)
t

+
1

2
tr
(

D2f(X−) ◦ α(X)
)
• `t

+
(
f(X− + idV)− f(X−)−Df(X−) · idV

)
∗ qXt

= f(X0) +
(

Df(X−) · βχ(X)
)
• `t +

1

2
tr
(

D2f(X−) ◦ α(X)
)
• `t

+ Df(X−) •Xc

+ Df(X−) •
(
χ ∗ q̃X

)
t
+
(
f(X− + idV)− f(X−)−Df(X−) · χ

)
∗ qXt

Furthermore, since X− = X on all but a countable amount of jumps, we may
rewrite the Lebesgue integrals.

(A.1.8) f(Xt) = f(X0) +
(

Df(X) · βχ(X)
)
• `t +

1

2
tr
(

D2f(X) ◦ α(X)
)
• `t

+ Df(X−) •Xc + Df(X−) •
(
χ ∗ q̃X

)
t

+
(
f(X− + idV)− f(X−)−Df(X−) · χ

)
∗ qXt
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For the remaining equality, we construct localizing sequence (Tn)n∈N of F
stopping times,

(A.1.9) Tn(ω) := inf
{
t > 0 : Xt(ω) > n

}
∧ n, ω ∈ Ω, n ∈ N,

to see that Df(X−) is (P,F ) locally bounded.∣∣Df(XTn
s−)
∣∣ ≤ sup

|x|≤n

∣∣Df(x)
∣∣

Thus, by [JS03, Proposition II.1.30], we may rewrite the following.

Df(X−) •
(
χ ∗ q̃X

)
t

=
(
Df(X−) · χ

)
∗ q̃Xt ,

which when substituted into (A.1.8) gives us our desired identity.
In the above lemma, the final term in the semimartingale decomposition of

f(X) is typically not able to be compensated into a local martingale. If we did
have local integrability of the following quantity,∣∣∣f(X− + idV)− f(X−) + Df(X−) · χ

∣∣∣ ∗ q̂X ,
then by [JS03, Proposition II.1.28] we could rewrite f(X) into a canonical
special semimartingale decomposition.
(A.1.10)
f(Xt) = f(X0) + Lf(X) • `t + Df(X−) •Xc +

(
f(X− + idV)− f(X−)

)
∗ q̃Xt

Lf(x) := Df(x) · βχ(x) +
1

2
tr
(

D2f(x) ◦ α(x)
)

+

∫
V

(
f(x+ v)− f(x)−Df(x) · χ(v)

)
µ(x, dv)

So long as f is bounded, we can guarantee this special semimartingale property.

Proposition A.1.11. Let X and f as in Lemma A.1.7, and further impose
f is bounded. Then the composition f(X) is a special semimartingale with the
decomposition as in (A.1.10).

Proof: Seeing as f is bounded, [JS03, Lemma I.4.24] tells us that f(X)
is a special semimartingale. By [JS03, Proposition I.4.23], it is then the case
that the following term is locally integrable.(

f(X− + idV)− f(X−)−Df(X−) · χ
)
∗ qXt

By our discussion above, this suffices to conclude (A.1.10).
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This operator L in (A.1.10) gives a nice closed from for suitable f(X), and
so we reserve it the term of generator associated with X. Note that we do
not mark dependence on χ, as any other truncation function χ̂ will produce
the same operator; see Remark A.1.4(c) and note that the displacement from
βχ and βχ̂ would be the same as that in the integral term. One particular
setting in which this result is useful is establishing a Lévy-Khintchine formula
for jump-diffusions.

Proposition A.1.12. Fix a jump-diffusion X with differential χ-characteristics
(βχ, α, µ). Then, for each u ∈ iV, the process exp

(
〈u,X〉 − Λ(u,X) • `

)
is a

complex-valued (P,F ) local martingale, where Λ : iV×X→ R is the associated
Lévy-Khintchine map.

Λ(u, x) =
〈
u, βχ(x)

〉
+

1

2

〈
u, α(x)

〉
+

∫
V

(
e〈u,v〉 − 1− 〈u, χ(v)〉

)
µ(x, dv),

Proof: For a fixed u ∈ iV, note that the map fu, defined by fu(v) =
exp 〈u, v〉 is bounded. Thus, by Proposition A.1.11, we have

fu(Xt) = fu(X0) + Lfu(X) • `t +Mt,

where M is a (P,F ) local martingale. Observe that the partial derivatives of
f are as follows,

(A.1.13) Difu(x) = fu(x)ui, Dijfu(x) = fu(x)uiuj,

so we have the following equation.

Lfu(x) = Dfu(x) · βχ(x) +
1

2
tr
(

D2fu(x) ◦ α(x)
)

+

∫
V

(
fu(x+ v)− fu(x)−Df(x) · χ(v)

)
µ(x, dv)

= fu(x)
〈
u, βχ(x)

〉
+

1

2
fu(x)

〈
u, α(x)u

〉
+ fu(x)

∫
V

(
fu(v)− 1−

〈
u, χ(v)

〉)
µ(x, dv)

= fu(x) · Λ(u, x)

Denoting A = fu(X) = exp 〈u,X〉 and B = exp
(
− Λ(u,X) • `

)
, we now use

the fact that B is F predictable and of finite-variation, so [JS03, Proposition
I.4.49(b)] gives us the following.

exp
(
〈u,X〉 − Λ(u,X) • `

)
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= AtBt

= A0B0 + A− •Bt +B • At

= exp 〈u,X0〉+ A− •

((
−B · Λ(u,X)

)
• `
)
t
+B •

(
fu(X0) + Lfu(X) • `+M

)
t

= exp 〈u,X0〉 −
(
A ·B · Λ(u,X)

)
• `t +

(
B · fu(X) · Λ(u,X)

)
• `t +B •Mt

= exp 〈u,X0〉+B •Mt

This identity and [JS03, Remark I.4.34(b)] concludes the proof.
It turns out that each of the preceding results is sufficient in characterizing

a semimartingale X as a jump-diffusion.

Theorem A.1.14. The following statements are equivalent for a stochastic
process X on state space (X,B(X)).

(a) X is a (P,F ) jump-diffusion with differential χ-characteristics (βχ, α, µ).

(b) For each bounded f ∈ C2(V,R), the process f(Xt)−Lf(Xt)•`t is a (P,F )
local martingale, where

Lf(x) := Df(x) · βχ(x) +
1

2
tr
(

D2f(x) ◦ α(x)
)

+

∫
V

(
f(x+ v)− f(x)−Df(x) · χ(v)

)
µ(x, dv)

(c) For each u ∈ iV, the process exp
(
〈u,X〉 − Λ(u,X) • `

)
is a (P,F ) local

martingale, where Λ is our Lévy-Khintchine map.

Λ(u, x) =
〈
u, βχ(x)

〉
+

1

2

〈
u, α(x)

〉
+

∫
V

(
e〈u,v〉 − 1− 〈u, χ(v)〉

)
µ(x, dv),

(d) Denoting (Px)x∈X the P-conditional distributions of X factored through
the initial state X0 and selecting Borel functions σ, c to satisfy,

(A.1.15)

σ : X→ L(V) σσ∗(x) = α(x)

c : X× V→ V µ(x,Γ) =

∫
V

1Γ

(
c(x, v)

)
dv

each Px is a solution to the equation associated with a standard Brownian
motion W and Poisson random measure p, where χ′ = idV − χ.

Xt = x+βχ(X)•`t+σ(X−)•Wt+
(
χ◦c(X−, idV)

)
∗p̃t+

(
χ′◦c(X−, idV)

)
∗pt
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Proof: This is simply restating [JS03, Theorems II.2.42, II.2.49, and
III.2.26] in terms of our identities from the previous propositions and lemmas.
The choice of standard intensity dt ⊗ dv for the Poisson random measure is
such that the jump factor dv satisfies the atom-free and infinite properties in
[JS03, Remark III.2.28(3)].

Remark A.1.16. In the final part above, the push-forward map c may put
mass on 0, ∫

V
1{0}

(
c(x, v)

)
dv > 0,

to thin or delete jumps coming from p (of which there are infinitely many).
However, this contradicts the condition (A.1.2) that µ(x, {0}) = 0 for all x ∈ X.
Explicitly, the push-forward in (A.1.15) happens on the space V0 := V− {0},

µ(x,Γ) =

∫
V

1Γ

(
c(x, v)

)
dv, Γ ∈ B(V0)

to allow for such thinning.

A.2 Special jump-diffusions

We now turn our focus to (P,F ) jump-diffusions which are additionally
special in the sense of them having a semimartingale decomposition in which
the finite-variation term is predictable. When looking at the canonical repre-
sentation of a jump-diffusion X with χ-characteristics (βχ, α, µ), it is clear how
to make this predictable.

(A.2.1)

Xt = X0 + βχ(X) • `t +Xc
t + χ ∗ q̃X + (idV − χ) ∗ qX

= X0 + βχ(X) • `t + (idV − χ) ∗ q̂X +Xc
t + idV ∗ q̃X

= X0 +

(
βχ(X) +

∫
V

(
v − χ(v)

)
µ(X, dv)

)
• `t +Xc

t + idV ∗ q̃X

In such a case, it is nice to define the function β : X→ V,

(A.2.2) β(x) := βχ(x) +

∫
V

(
v − χ(v)

)
µ(x, dv),

so that (A.2.1) may be simplified to a concise special semimartingale decom-
position.

Xt = X0 + β(X) • `+Xc + idV ∗ q̃Xt
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We call the triplet (β, α, µ) that results from (A.2.2) the special differential
characteristics and its components β, α, µ the drift, diffusion, and jump kernel,
respectively.

The calculus of (A.2.1) begs the question that (idV − χ) ∗ qX can be com-
pensated which is not generally the case—otherwise, the term special would be
a misnomer! The next result specifies conditions on which we may perform the
above calculus.

Lemma A.2.3. Let X be a (P,F ) jump-diffusion with differential χ-characteristics
(βχ, α, µ), such that µ satisfies the following condition.

x 7→
∫
V

∣∣v − χ(v)
∣∣µ(x, dv) is bounded on compact subsets

Then, X is special with drift β as in (A.2.2).

Proof: By choosing a F localizing sequence (Tn)n∈N as in (A.1.9), our
hypothesis gives us the following integrability.

EP

∣∣idV − χ
∣∣ ∗ q̂XTn = EP

∫ Tn

0

∫
V

∣∣v − χ(v)
∣∣µ(Xt, dv)dt

≤ n · sup
|x|≤n

∫
V

∣∣v − χ(v)
∣∣µ(x, dv)

<∞

Now, [JS03, Proposition II.1.28] allows us to compensate as we did in (A.2.1)

Seeing as (idV−χ)∗ qX may be compensated for special jump-diffusions X,
all the characterizing objects of Theorem A.1.14 may be rewritten in terms of
our drift β—effectively, χ becomes the identity.

Lf(x) = Df(x) · β(x) +
1

2
tr
(

D2f(x) ◦ α(x)
)

+

∫
V

(
f(x+ v)− f(x)−Df(x) · v

)
µ(x, dv),

Λ(u, x) =
〈
u, β(x)

〉
+

1

2

〈
u, α(x)

〉
+

∫
V

(
e〈u,v〉 − 1− 〈u, v〉

)
µ(x, dv),

Xt = x+ β(X) • `t + σ(X−) •Wt + c(X−, idV) ∗ p̃t
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A.3 Locally countable jump-diffusions

We see that a (P,F ) jump-diffusion X is special if the accumulated large
jumps (idV − χ) ∗ qX may be compensated. To this end, being special is a
condition on the jumps away from the origin. We now turn our focus to jump-
diffusions X in which the jumps near the origin behave nicely. For any jump-
diffusion X, we may count the jumps with the jump process NX .

(A.3.1) NX
t :=

∑
0<s≤t

1∆Xs 6=0 = 1 ∗ qXt

For many jump diffusions, it may be the case that we P-almost-surely have
NX
t =∞ for all t > 0. We way that X has (P,F ) locally countable, so long as

NX is (P,F ) locally integrable. Below, we state how to verify this using the
differential characteristics.

Lemma A.3.2. Fix a (P,F ) jump-diffusion X with differential χ-characteristics
(βχ, α, µ) satisfying

x 7→ µ
(
x,V

)
is bounded on compact sets,

then X is locally countable. Moreover, we may define λ : X → R+ and proba-
bility kernel κ : X×B(V)→ [0, 1] by the following factoring.

λ(x) := µ(x,V), µ(x, dv) =: λ(x)κ(x, dv)

Also, N has (P,F ) intensity λ(X).

Proof: Select the sequence (Tn)n∈N as in (A.1.9). Note now that, since
the constant function 1 is predictable,

EPN
X
Tn = EP1 ∗ qXTn = EP1 ∗ q̂XTn = EP

∫ Tn

0

µ(Xt,V)dt ≤ n · sup
|x|≤n

µ(x,V) <∞

This means that NX is locally integrable, making X locally countable. More-
over, by [JS03, Theorem II.1.8],

NX −
∫ t

0

λ(Xs)ds = 1 ∗ qX −
∫ t

0

∫
V
µ(Xs, dv)ds = 1 ∗ qX − 1 ∗ q̂X

is a (P,F ) local martingale, which finishes the proof.
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Remark A.3.3. (a) Such objects λ, κ always exist with our assumption of
the Lemma. Seeing as µ is a transition kernel from (X,B(X)) to (V,B(V)),
we have our desired measurability.

λ := µ(·,V) ∈ B(X)/B(R+)

Constructing κ should be obvious algebra, so long as we have no zero
measures; otherwise, we may define

κ(x,Γ) := δe1(Γ) · 1λ−1{0}(x) +
µ(x,Γ)

λ(x)
1X−λ−1{0}(x),

where δe1 is the degenerate measure at e1 ∈ V. This ensures that any
κ(·,Γ) ∈ B(X)/B([0, 1]) and any κ(x, ·) a probability measure on B(V).
Also, when µ(x, ·) is the zero measure,

µ(x, dv) = 0 = λ(x) · δe1(dv) = λ(x)κ(x, dv),

and otherwise,

µ(x, dv) = µ(x,V)
µ(x, dv)

µ(x,V)
= λ(x)κ(x, dv).

(b) We call λ the intensity map and κ the (conditional) jump distribution

(c) As far as we know, there is no widely accepted source which explores
jump-diffusions to the extent of declaring a notion like locally countable,
as we have. This means that there is likely some clash of terminology,
should such a concept already exist.

A.4 Real moments of jump-diffusions

We now turn our focus to the real moments of (P,F ) jump-diffusions and
the extension of our Lévy-Khintchine map Λ,

Λ(u, x) =
〈
u, βχ(x)

〉
+

1

2

〈
u, α(x)

〉
+

∫
V

(
e〈u,v〉 − 1− 〈u, χ(v)〉

)
µ(x, dv),

to evaluate real moments u ∈ V. The above expression may be infinite, as
the final term includes an unbounded integral over a possibly infinite measure.
That said, we find it imperative to denote the following sets of finiteness.

(A.4.1) DΛ(x) :=
{
u ∈ V : Λ(u, x) <∞

}
, DΛ :=

⋂
x∈X

DΛ(x)
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The following results will explore the nature of the maps Λ(·, x) : DΛ(x)→ R for
fixed differentiable χ-characteristics (βχ, α, µ), where our truncation function χ
is defined by χ(v) = v1|v|≤1. Note that there is no loss of generality in selecting
this truncation function, since they all evaluate Λ identically.

Lemma A.4.2. For any x ∈ X, we have the following equivalence.

u ∈ DΛ(x) ⇔
∫
|v|>1

e〈u,v〉µ(x, dv) <∞

Proof: To each u, v ∈ V, Taylor’s theorem gives us γu,v ∈ [0, 1] such that

e〈u,v〉 = 1 + 〈u, v〉+
1

2
eγu,v〈u,v〉〈u, v〉2.

This allows us to see that, for each x ∈ X, Λ(u, x) and
∫
|v|>1

e〈u,v〉µ(x, dv) differ

by finite expressions.∣∣∣∣Λ(u, x)−
∫
|v|>1

e〈u,v〉µ(x, dv)

∣∣∣∣
=

∣∣∣∣〈u, βχ(x)〉+
1

2
〈u, α(x)u〉+

∫
|v|≤1

(
e〈u,v〉 − 1− 〈u, v〉

)
µ(x, dv)−

∫
|v|>1

µ(x, dv)

∣∣∣∣
≤
∣∣∣∣〈u, βχ(x)〉+

1

2
〈u, α(x)u〉

∣∣∣∣+

∣∣∣∣∫
|v|≤1

1

2
eγu,v〈u,v〉〈u, v〉2µ(x, dv)

∣∣∣∣+

∫
|v|>1

µ(x, dv)

≤
∣∣∣∣〈u, βχ(x)〉+

1

2
〈u, α(x)u〉

∣∣∣∣+

(
1

2
e|u| + 1

)∫
V

(
1 ∧ |v|2

)
µ(x, dv)

Thus, one can be defined as a finite displacement of the other.

Lemma A.4.3. For each x ∈ X, DΛ(x) is convex.

Proof: We use our characterization of DΛ(x) from Lemma A.4.2. Let
u, u′ ∈ DΛ(x), γ ∈ (0, 1), and use Hölder’s inequality to see the following.∫

|v|>1

e〈u
′+γ(u−u′),v〉µ(x, dv)

=

∫
|v|>1

∣∣(e〈u,v〉)γ · (e〈u′,v〉)1−γ∣∣µ(x, dv)

≤
(∫
|v|>1

∣∣(e〈u,v〉)γ∣∣ 1
γµ(x, dv)

)γ (∫
|v|>1

∣∣(e〈u′,v〉)1−γ∣∣ 1
1−γµ(x, dv)

)1−γ

123



=

(∫
|v|>1

e〈u,v〉µ(x, dv)

)γ (∫
|v|>1

e〈u
′,v〉µ(x, dv)

)1−γ

<∞

An arbitrary convex combination now satisfies γu+ (1− γ)u′ ∈ DΛ(x).

Lemma A.4.4. For each x ∈ X, the map Λ(·, x) is continuously differentiable
on DΛ(x)◦, with derivative DΛ(·, x) : DΛ(x)◦ → L(V,R) as follows.
(A.4.5)

DΛ(u, x)w =
〈
βχ(x) + α(x)u+

∫
V

(
e〈u,v〉v − χ(v)

)
µ(x, dv), w

〉
, u ∈ DΛ(x)◦

Proof: Fix x ∈ X, u ∈ DΛ(x)◦. Let ε > 0 such that B(u, ε) ⊆ DΛ(x). For
all 0 < δ < ε and i = 1, . . . , d, we now have the following identity
(A.4.6)

Λ(u+ δei, x)− Λ(u, x)

δ
= 〈ei, βχ(x)〉+ 〈ei, α(x)u〉+

1

2
〈δei, α(x)u〉

+

∫
|v|≤1

1

δ

(
e〈u+δei,v〉 − e〈u,v〉 − 〈δei, v〉

)
µ(x, dv)

+

∫
|v|>1

1

δ

(
e〈u+δei,v〉 − e〈u,v〉

)
µ(x, dv)

Evaluating the limit of (A.4.6) as δ → 0 is now a matter of exchanging the limit
with integration; we will do this by using the dominated convergence theorem.

For the first integral, Taylor’s theorem provides us γ0, γ1 ∈ [0, 1] such that
the following hold.

e〈u+δei,v〉 = 1 + 〈u+ δei, v〉+
1

2
〈u+ δei, v〉2eγ0〈u+δei,v〉

e〈u,v〉 = 1 + 〈u, v〉+
1

2
〈u, v〉2eγ1〈u,v〉

This shows us that, for all 0 < δ < ε and |v| ≤ 1,∣∣∣1
δ

(
e〈u+δei,v〉 − e〈u,v〉 − 〈δei, v〉

)∣∣∣ =
∣∣∣1
2
〈u+ δei, v〉2eγ0〈u+δei,v〉 +

1

2
〈u, v〉2eγ1〈u,v〉

∣∣∣
≤
((
|u|+ ε

)2
e|u|+ε

)
|v|2.

This dominating function is integrable,∫
|v|≤1

((
|u|+ε

)2
e|u|+ε

)
|v|2µ(x, dv) ≤

((
|u|+ε

)2
e|u|+ε

)∫
V
(1∧|v|2)µ(x, dv) <∞,
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so we may apply the dominated convergence theorem.

lim
δ→0

∫
|v|≤1

1

δ

(
e〈u+δei,v〉 − e〈u,v〉 − 〈δei, v〉

)
µ(x, dv)

=

∫
|v|≤1

lim
δ→0

1

δ

(
e〈u+δei,v〉 − e〈u,v〉 − 〈δei, v〉

)
µ(x, dv)

=

∫
|v|≤1

(
e〈u,v〉vi − vi

)
µ(x, dv)(A.4.7)

For the second integral, we again use Taylor’s theorem to establish for each
0 < δ < ε/2, some γδ ∈ [0, δ] such that

e〈u+δei,v〉 = e〈u,v〉 + 〈δei, v〉e〈u+γδei,v〉

This way, we have the following dominating function.∣∣∣1
δ

(
e〈u+δei,v〉 − e〈u,v〉

)∣∣∣ ≤ ∣∣∣〈ei, v〉e〈u+γδei,v〉
∣∣∣ ≤ |vi|e〈u,v〉+ε|vi|/2

The claim is that this dominating function is integrable. To see this, first note
that because we have the following limit,

lim
|v|→∞

|vi|e〈u,v〉+ε|vi|/2

e〈u,v〉+2ε|vi|/3
= lim
|v|→∞

|vi|
eε|vi|/6

= 0

There exists M > 0 such that for all |v| > M ,

|vi|e〈u,v〉+ε|vi|/2 < e〈u,v〉+2ε|vi|/3.

We now see that∫
|v|>1

|vi|e〈u,v〉+ε|vi|/2µ(x, dv)

=

∫
1<|v|≤M

|vi|e〈u,v〉+ε|vi|/2µ(x, dv) +

∫
|v|>M

|vi|e〈u,v〉+ε|vi|/2µ(x, dv)

≤
∫

1<|v|≤M
Me(|u|+ε/2)Mµ(x, dv) +

∫
|v|>M

e〈u,v〉+2ε|vi|/3µ(x, dv)

≤Me(|u|+ε/2)M

∫
V
(1 ∧ |v|2)µ(x, dv) +

1∑
`=0

∫
|v|>1

e〈u+2εei/3,v〉µ(x, dv)

<∞.
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We again use the dominated convergence theorem to deduce the following.

lim
δ→0

∫
|v|>1

1

δ

(
e〈u+δei,v〉 − e〈u,v〉

)
µ(x, dv)

=

∫
|v|>1

lim
δ→0

1

δ

(
e〈u+δei,v〉 − e〈u,v〉

)
µ(x, dv)

=

∫
|v|>1

e〈u,v〉viµ(x, dv)(A.4.8)

Combining equations (A.4.6), (A.4.7), and (A.4.8) now yields our desired iden-
tity.

DiΛ(u, x) =
〈
ei, β

χ(x) + α(x)u+

∫
V

(
e〈u,v〉v − χ(v)

)
µ(x, dv)

〉
Continuity of DiΛ(u, x) for u ∈ DΛ(x)◦ involves very similar dominated conver-
gence theorem arguments as above. From here, it is clear that Λ is continuously
differentiable with the form in (A.4.5).

As we have seen in Lemmas A.2.3 and A.3.2, if we have local boundedness
of certain integrals of a jump kernel µ, we can leverage these to (P,F ) local
conditions of the associated jump-diffusion X. Throughout the remainder of
this section, we impose the following uniform-boundedness principle for the
kernel µ.

(A.4.9)

f ∈ B(V)/B(R),

∫
V
|f(v)|µ(x, dv) <∞ for all x ∈ X

=⇒ x 7→
∫
V
|f(v)|µ(x, dv) bounded on compact sets

With this assumption, we get some nice results on finite exponential moments
of X.

Proposition A.4.10. Fix a (P,F ) jump-diffusion X with associated differ-
ential χ-characteristics (βχ, α, µ). Suppose we have the regularity condition
(A.4.9) above. If 0 ∈ D◦Λ, then X is special.

Proof: If 0 ∈ D◦Λ, then there exists some δ > 0 such that B(0, δ) ⊆ DΛ.
Observe the following implication of this fact, for each x ∈ X.∫

V

∣∣v − χ(v)
∣∣µ(x, dv) =

∫
|v|>1

|v|µ(x, dv)
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≤
∫
|v|>1

√
d

δ
exp

(δ|v|√
d

)
µ(x, dv)

≤
√
d

δ

∫
|v|>1

exp
(

d
max
i=1

1
max
`=0

〈
(−1)`δei, v

〉)
µ(x, dv)

≤
√
d

δ

d∑
i=1

1∑
`=0

∫
|v|>1

exp
〈
(−1)`δei, v

〉
µ(x, dv)

<∞

Our regularity condition (A.4.9) now allows us to apply Lemma A.2.3 to con-
clude X is special.

Proposition A.4.11. Fix a (P,F ) special jump-diffusion X with special dif-
ferential characteristics (β, α, µ). Suppose we have the regularity condition
(A.4.9) above. If u ∈ DΛ, then exp 〈u,X〉 is special, and

exp
(
〈u,X〉 − Λ(u,X) • `

)
is a (P,F ) local martingale.

Proof: Using Lemma A.1.7 for the function fu(v) = exp 〈u, v〉 and its
derivative identities as in (A.1.13), we get the following.
(A.4.12)

exp 〈u,Xt〉 = exp 〈u,X0〉+ exp 〈u,Xt〉
(
〈u, β(X)〉+

1

2
〈u, α(X)u〉

)
• `t

+ Dfu(X−) •Xc +
(

exp 〈u,X−〉〈u, idV〉
)
∗ q̃Xt

+ exp 〈u,X−〉 ·
(

exp 〈u, idV〉 − 1− 〈u, idV〉
)
∗ qX

Note that localizing our final term on the sequence (Tn)n∈N of stopping times
in (A.1.9), we get the following.

EP

∣∣∣ exp 〈u,X−〉
(

exp 〈u, idV〉 − 1− 〈u, idV〉
)∣∣∣ ∗ q̂XTn

= EP

∫ Tn

0

∫
V

∣∣∣ exp 〈u,Xs〉
(

exp 〈u, v〉 − 1− 〈u, v〉
)∣∣∣µ(Xs, dv)ds

≤ n · sup
|x|≤n

(
e〈u,x〉

∫
V

∣∣e〈u,v〉 − 1− 〈u, v〉
∣∣µ(x, dv)

)
Seeing as u ∈ DΛ, the integral in the above quantity is finite, and so (A.4.9)
gives us finiteness of the supremum. Using [JS03, Proposition II.1.28] now
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allows us to compensate the jump term in (A.4.12).

exp 〈u,Xt〉 = exp 〈u,X0〉+
(

exp 〈u,X〉 · Λ(u,X)
)
• `t + Dfu(X−) •Xc

+
(

exp 〈u,X−〉〈u, idV〉
)
∗ q̃Xt

This is a representation of exp 〈u,X〉 as an initial term, predictable term of
finite variation, and a local martingale. Thus, it is a special semimartingale.
From here, we may perform the product rule on exp

(
〈u,X〉 − Λ(u,X) • `

)
as

we did in Proposition A.1.12 to show that the process is a local martingale.

Theorem A.4.13. Fix a (P,F ) special jump-diffusion X with special differ-
ential characteristics (β, α, µ). Suppose we have the regularity condition (A.4.9)
above. For each (P,F ) predictable H of finite-variation with image contained
in D◦Λ, the process exp(H •X) is special and

exp
(
H •X − Λ(H,X) • `

)
is a (P,F ) local martingale.

Proof: Perform Itô’s formula [JS03, Theoerem I.4.57] in addition to its
jump-diffusion variant in Lemma A.1.7 and various stochastic integral identities
[JS03, Remarks I.4.36, I.4.37, Theorem I.4.40(d), Proposition II.1.30(b)].

exp
(
H •Xt

)
= exp

(
H •X−

)
•
(
H •X

)
t
+

1

2
exp

(
H •X−

)
•
〈
(H •X)c, (H •X)c

〉
t

+
∑

0<s≤t

(
exp

(
H •Xs− + ∆

(
H •X

)
s

)
− exp

(
H •Xs−

)
− exp

(
H •Xs−

)
∆
(
H •X

)
s

)
=
(

exp
(
H •X−

)
·H
)
•Xt +

1

2
exp

(
H •X

)〈
H,α(X)H

〉
• `t

+ exp
(
H •X−

)(
e〈H,idV〉 − 1− 〈H, idV〉

)
∗ qXt

=
(

exp
(
H •X

)
· 〈H, β〉+

1

2
exp

(
H •X

)〈
H,α(X)H

〉)
• `t

+
(

exp
(
H •X−

)
·H
)
•Xc

t + exp
(
H •X−

)
〈H, idV〉 ∗ q̃Xt

+ exp
(
H •X−

)(
e〈H,idV〉 − 1− 〈H, idV〉

)
∗ qXt

(A.4.14)
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Now, choosing our (P,F ) localizing sequence (Tn)n∈N as in A.1.9, we have the
following bound.

EP

∣∣∣ exp
(
H •X−

)(
e〈H,idV〉 − 1− 〈H, idV〉

)
∗ q̂XTn

∣∣∣
= EP

∫ Tn

0

∫
V

∣∣∣ exp
(
H •Xs

)(
e〈H(s),v〉 − 1− 〈H(s), v〉

)∣∣∣µ(Xs, dv)ds

≤ n · sup
|x|≤n

sup
s∈[0,n]

e|x|·|H(s)|
∫
V

∣∣e〈H(s),v〉 − 1− 〈H(s), v〉
∣∣µ(x, dv)

Seeing as Λ(·, x) is continuously differentiable, it is uniformly bounded on D◦Λ.
This, along with the fact that H is bounded (it has finite variation) and as-
sumption (A.4.9) allow us to conclude that the preceding expression is finite.
Thus, we may compensate the final jump integral in (A.4.14).
(A.4.15)

exp
(
H •Xt

)
=
(

exp
(
H •X

)
· Λ(H,X)

)
• `t +

(
exp

(
H •X−

)
·H
)
•Xc

t

+ exp
(
H •X−

)(
e〈H,idV〉 − 1

)
∗ q̃Xt

The decomposition of exp(H •X) into a predictable finite-variation process and
a local martingale implies that it is special. Now, we write M as the local
martingale term above, A = exp(H •X), and B = exp(−Λ(H,X) • `). We now
recognize that B is predictable and finite-variation and use [JS03, Proposition
I.4.49(b)] to conclude our proof.

exp
(
H •Xt − Λ(H,X) • `t

)
= AtBt

= A− •Bt +B • At

=
(
A ·B · −Λ(H,X)

)
• `t

+B •

((
exp(H •X) · Λ(H,X)

)
• `+M

)
t

=
(
A ·B · −Λ(H,X)

)
• `t +

(
B · A · Λ(H,X)

)
• `t +B •Mt

= B •Mt

In the case that the local martingale in the preceding theorem satisfies suf-
ficient integrability, we are able to introduce a measure change with which the
dynamics of X are still understood. Note that the following theorem states
this, with careful language delineating the fact that special differential charac-
teristics depend on the underlying measure.

129



Theorem A.4.16. Fix a (P,F ) special jump-diffusion X with (P,F ) special
differential characteristics (β, α, µ). Fix h : [0,∞)×X→ V such that h(`,X−)
is of finite variation. Define

Zh := exp
(
h(`,X−) •X − Λ

(
h(`,X), X

)
• `
)
,

and assume (Zh
t )t∈[0,τ ] is uniformly integrable for each τ > 0. Then, to each

τ > 0, we may define Qh on (Ω,Fτ ), via

Qh
τ (dω) := Zh

τ (ω) · P(dω),

such that X is a (Qh
τ , (Ft)t∈[0,τ ]) special jump-diffusion with (Qh

τ , (Ft)t∈[0,τ ])
special differential characteristics (βh, α, µh).

βh(s, x) = β(x) + α(x)h(s, x) +

∫
V
v
(
e〈h(s,x),v〉 − 1

)
µ(x, dv),

µh(s, x, dv) = e〈h(s,x),v〉µ(x, dv)ds

Proof: Note that Theorem A.4.13 gives us the (P,F ) local martin-
gale property, so our P uniform-integrability assumption serves to give us
a (P,F ) uniformly-integrable martingale Zh on [0, τ ]. Now, evaluating the
(Qh

τ , (Ft)t∈[0,τ ]) dynamics of X amount to applying Girsanov’s theorem for
semimartingales. Specifically we use [JS03, Theorem III.3.24] and verify that
our proposed differential characteristics align with the identities of [JS03, III.3.28].
For any F predictable H : Ω×R+×V→ R+, we apply [JS03, Remark I.4.36]
to see that the following identities hold.

EP

(
(ZhH) ∗ qX

)
= EP

∫
R+×V

Zh
sH(·, s, v)qX(ds, dv)

= EP

∫
R+×V

exp
(
h(`,X−) •Xs − Λ

(
h(`,X), X

)
• `s

)
H(·, s, v)qX(ds, dv)

= EP

∫
R+×V

exp
(
h(`,X−) •Xs− + ∆

(
h(`,X−) •X

)
s
− Λ

(
h(`,X), X

)
• `s

)
·H(·, s, v)qX(ds, dv)

= EP

∫
R+×V

Zh
s−e
〈h(s,Xs−),v〉H(·, s, v)qX(ds, dv)

= EP

∫
R+×V

Zh
s−e
〈h(s,Xs−),v〉H(·, s, v)q̂X(ds, dv)
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= EP

∫
R+×V

Zh
s−e
〈h(s,Xs−),v〉H(·, s, v)µ(Xs, dv)ds

= EP

∫
R+×V

Zh
s e
〈h(s,Xs),v〉H(·, s, v)µ(Xs, dv)ds

This first part indicates that our µh is as described. Now, let us establish
the drift by looking at the continuous predictable projections. First, we re-
call (A.4.15) and the calculations below it to note that Zh has the following
continuous local martingale component.

Zh,c
t = exp

(
− Λ

(
h(`,X), X

)
• `
)
•

(
exp

(
h(`,X−) •X−

)
h(`,X−) •Xc

t

)
= Zh

−h(`,X−) •Xc
t

Note that we applied our usual calculus operation [JS03, Remark I.4.37] above.
Using this calculus operation once more, in addition to that in [JS03, Theorem
I.4.40], we get our desired predictable quadratic covariation.〈

Zh,c, Xc,j
〉

=
〈
Zh
−h(`,X−) •Xc, Xc,j

〉
=
〈 d∑

i=1

Zh
−hi(`,X−) •Xc,i, Xc,j

〉
=

d∑
i=1

Zh
−hi(`,X−) •

〈
Xc,i, Xc,j

〉
=

d∑
i=1

Zh
−hi(`,X−) •

(
αij(X) • `

)
=

d∑
i=1

Zh
−hi(`,X)αij(X) • `

= Zhα(X)h(`,X) • `
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