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ABSTRACT

We describe the current state of knowledge about Mercury’s interior structure. We review the available observational

constraints, including mass, size, density, gravity field, spin state, composition, and tidal response. These data enable

the construction of models that represent the distribution of mass inside Mercury. In particular, we infer radial profiles

of the pressure, density, and gravity in the core, mantle, and crust. We also examine Mercury’s rotational dynamics

and the influence of an inner core on the spin state and the determination of the moment of inertia. Finally, we discuss

the wide-ranging implications of Mercury’s internal structure on its thermal evolution, surface geology, capture in a

unique spin-orbit resonance, and magnetic field generation.
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1. INTRODUCTION

1.1. Importance of planetary interiors

We seek to understand the interior structures of plan-

etary bodies because the interiors affect planetary prop-

erties and processes in several fundamental ways. First,

a knowledge of the interior informs us about a planet’s

makeup and enables us to test hypotheses related to

planet formation. Second, interior properties dictate the

thermal evolution of planetary bodies and, consequently,

the history of volcanism and tectonics on these bodies.

Many geological features are the surface expression of

processes that take place below the surface. Third, the

structure of the interior and the nature of the interac-

tions among inner core, outer core, and mantle have a

profound influence on the evolution of the spin state and

the response of the planet to external forces and torques.

These processes dictate the planet’s tectonic and inso-

lation regimes and also affect its overall shape. Finally,

interior properties control the generation of planetary

magnetic fields, and, therefore, the development of mag-

netospheres.

Four of the six primary science objectives of the MES-

SENGER mission (Solomon et al. 2001) rely on an un-

derstanding of the planet’s interior structure. These

four mission objectives pertain to the high density of

Mercury, its geologic history, the nature of its magnetic

field, and the structure of its core.

1.2. Objectives

An ideal representation of a planetary interior would

include the description of physical and chemical quan-

tities at every location within the volume of the plane-

tary body at every point in time. Here, we focus on a

description of Mercury’s interior at the current epoch.

For a description of the evolution of the state of the

planet over geologic time, see Chapter 19. Because our

ability to specify properties throughout the planetary

volume is limited, we simplify the problem by assuming

axial or spherical symmetry. Specifically, we seek self-

consistent depth profiles of density, pressure, and tem-

perature, informed by observational constraints (radius,

mass, moment of inertia, composition). The solution

requires the use of equations of state and assumptions

about material properties, both guided by laboratory

data. We compute the bulk modulus and thermal ex-

pansion coefficient as part of the estimation process, and

we use the profiles to compute other rheological prop-

erties, such as viscosity and additional elastic moduli.

Finally, we use our models to numerically evaluate the

planet’s tidal response and compare it with observa-

tional data. Our models of the interior structure are

relevant to a wide range of problems, but Mercury’s un-

usual insolation and thermal patterns violate our sym-

metry assumptions. These assumptions must be lifted

for certain applications that require precise temperature

distributions.

Our primary objective is to provide a family of sim-

plified models of Mercury’s interior that satisfy the cur-

rently available observational constraints. A secondary

objective is to select, among these models, a recom-

mended model that matches all available constraints.

This model may be considered a Preliminary Reference

Mercury Model (PRMM), evoking a distant connection

with its venerable Earth analog (Dziewonski and Ander-

son 1981).

1.3. Available observational constraints

All of our knowledge about Mercury comes from

Earth-based observations, three Mariner 10 flybys, three

MESSENGER flybys, and the four-year orbital phase of

the MESSENGER mission. In the absence of seismo-

logical data, our information about the interior comes

primarily from geodesy, the study of the gravity field,

shape, and spin state of the planet, including solid-body

tides. We will also draw on constraints derived from the

surface expression of global contraction and observations

of surface composition, with the caveat that the compo-

sition at depth may be substantially different from that

inferred for surface material. The structure of the mag-

netic field and its dynamo origin can also be used to

inform interior models.

1.4. Outline

The primary observational constraints (Sections 2–4)

are used to develop two- and three-layer structural mod-

els (Section 5). We then add compositional constraints

(Section 6) and develop multi-layer models (Section 7).

We examine the tidal response of the planet (Section 8)

and the influence of an inner core (Section 9). We con-

clude with a discussion of a representative interior model

(Section 10) and implications (Section 11).

2. ROTATIONAL DYNAMICS

In his classic 1976 paper, Stanton J. Peale described

the effects of a molten core on the dynamics of Mercury’s

rotation and proposed an ingenious method for measur-

ing the size and state of the core (Peale 1976). Most of

our knowledge about Mercury’s interior structure can be

traced to Peale’s ideas and to the powerful connection

between dynamics and geophysics. We review aspects of

Mercury’s rotational dynamics that are relevant to de-

termining its interior structure. Peale (1988) provided

a more extensive review.

2.1. Spin-orbit resonance



Mercury’s Internal Structure 3

Radar observations by Pettengill and Dyce (1965) re-

vealed that the spin period of Mercury differs from its

orbital period. To explain the radar results, Colombo

(1965) correctly hypothesized that Mercury rotates on

its spin axis three times for every two revolutions around

the Sun. Mercury is the only known planetary body to

exhibit a 3:2 spin-orbit resonance (Colombo 1966; Gol-

dreich and Peale 1966).

2.2. Physical librations

Peale’s observational procedure allows the detection of

a molten core by measuring deviations from the mean

resonant spin rate of the planet. As Mercury follows

its eccentric orbit, it experiences periodically reversing

torques due to the gravitational influence of the Sun

on the asymmetric shape of the planet. The torques

affect the rotational angular momentum and cause small

deviations of the spin frequency from its resonant value

of 3/2 times the mean orbital frequency. The resulting

oscillations in longitude are called physical librations,

not to be confused with optical librations, which are the

torque-free oscillations of the long axis of a uniformly

spinning body about the line connecting it to a central

body. Because the forcing and rotational response occur

with a period P ∼88 days dictated by Mercury’s orbital

motion, these librations have been referred to as forced

librations. This terminology is not universally accepted

(e.g., Bois 1995) and loses meaning when the amount of

angular momentum exchanged between spin and orbit

is not negligible (e.g., Naidu and Margot 2015). We

will instead refer to these librations as 88-day librations,

in part to distinguish them from librations with longer

periods.

The amplitude φ0 of the 88-day librations for a solid

Mercury can be written as (Peale 1972, 1988)

φ0 =
3

2

(B −A)

C

(
1− 11e2 +

959

48
e4 + ...

)
, (1)

where A < B < C are principal moments of inertia and e

is the orbital eccentricity, currently ∼0.2056 (e.g., Stark

et al. 2015b). This equation encapsulates the fact that

the gravitational torques are proportional to the differ-

ence in equatorial moments of inertia (B−A). The polar

moment of inertia C appears in the denominator as it

represents a measure of the resistance to changes in rota-

tional motion. If the mantle is decoupled from a molten

core that does not participate in the 88-day librations,

then the moment of inertia in the denominator must be

replaced by Cm+cr, the value appropriate for the man-

tle and crust. Peale (1976) noted that Cm+cr/C ' 0.5,

suggesting that a measurement of the amplitude of the

88-day librations can be used to determine the state of

the core if (B − A) is known. This result holds over

a wide range of core-mantle coupling behaviors (Peale

et al. 2002; Rambaux et al. 2007).

2.3. Cassini state

Peale (1969, 1988) formulated general equations for

the motion of the rotational axis of a triaxial body under

the influence of gravitational torques. He wrote these

equations in the context of an orbit that precesses at a

fixed rate around a reference plane called the Laplace

plane, extending and refining earlier work by Colombo

(1966). These equations generalize Cassini’s laws and

describe the dynamics of the Moon, Mercury, Galilean

satellites, and other bodies. In the case of Mercury,

the gravitational torques are due to the Sun, and the

∼300 000-year precession of the orbit is due to the effect

of external perturbers, primarily Jupiter, Venus, Saturn,

and Earth.

On the basis of these theoretical calculations, Peale

(1969, 1988) predicted that tidal evolution would carry

Mercury to a Cassini state, in which the spin axis orien-

tation, orbit normal, and normal to the Laplace plane

remain coplanar (Figure 1). Specifically, he predicted

that Mercury would reach Cassini state 1, with an obliq-

uity near zero degrees. Numerical simulations (Bills

and Comstock 2005; Yseboodt and Margot 2006; Peale

2006; Bois and Rambaux 2007) and analytical calcula-

tions (D’Hoedt and Lemâıtre 2008) support these pre-

dictions.

In a Cassini state, the obliquity has evolved to a value

where the spin precession period matches the orbit pre-

cession period (Gladman et al. 1996). Because the spin

precession period and the gravitational torques depend

on moment of inertia differences, there is a powerful re-

lationship between the obliquity of a body in a Cassini

state and its moments of inertia. Peale (1976, 1988)

wrote

K1(θ)

(
C −A
C

)
+K2(θ)

(
B −A
C

)
= K3(θ), (2)

where K1,K2,K3 are functions of the obliquity θ that

involve the orbital eccentricity, inclination with respect

to the Laplace plane, mean motion, spin rate, and pre-

cession rate. In this equation, the appropriate moment

of inertia in the denominator is that of the entire planet,

even if the core is molten, because it is hypothesized that

the core follows the mantle on the ∼300 000-year time

scale of the orbital precession.

If we can confirm that Mercury is in a Cassini state, a

measurement of the obliquity becomes extremely valu-

able: it provides a direct constraint on moment of iner-

tia differences and, in combination with degree-2 grav-

ity information, on the polar moment of inertia. A
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Orbital plane

Spin axis

Laplace plane

ι
θ

Figure 1. Geometry of Cassini state 1: the three vectors
representing spin axis orientation (black), normal to the or-
bital plane (blue), and normal to the Laplace plane (red)
remain coplanar as the orbit precesses around the Laplace
plane with a ∼300 000-year period. The inclination of Mer-
cury’s orbit with respect to the Laplace plane is represented
by the angle ι, which is shown to scale. The tilt of Mercury’s
spin axis with respect to the orbit normal is the obliquity θ,
which is shown with an exaggeration factor of 100 for clarity.

free precession of the spin axis about the Cassini state

could, in principle, compromise the determination of the

obliquity. However, such free precession would require

a recent excitation because the corresponding damping

timescale is ∼105 y (Peale 2005).

2.4. Polar moment of inertia

Absent seismological data, the polar moment of in-

ertia is arguably the most important quantity needed

to quantify the interior structure of a planetary body.

Peale (1976, 1988) showed that it is possible to measure
the polar moment of inertia C by combining the obliq-

uity with two quantities related to the gravity field. The

gravity field of a body of mass M and radius R can be

described with spherical harmonics (e.g., Kaula 2000).

The second-degree coefficients C20 and C22 in the spher-

ical harmonic expansion are related to the moments of

inertia, as follows:

C20 = − (C − (A+B)/2)

MR2
, (3)

C22 =
(B −A)

4MR2
. (4)

Combining equations (2), (3), and (4), we find

C

MR2
= (−C20 + 2C22)

K1(θ)

K3(θ)
+ 4C22

K2(θ)

K3(θ)
, (5)

which provides a direct relationship between the obliq-

uity, gravity harmonics, and polar moment of inertia for

bodies in Cassini state 1.

To complete Peale’s argument, we determine the polar

moment of inertia of the core, which can be done if the

core is molten and does not participate in the 88-day

librations. To do so, we write the identity

Cm+cr

C
=

(
Cm+cr

B −A

)(
B −A
MR2

)(
MR2

C

)
, (6)

which yields the moment of inertia of the mantle and

crust Cm+cr and, therefore, the moment of inertia of

the core Cc = C − Cm+cr. Two spin state quantities

and two gravity quantities provide all the information

necessary to determine these values. A measurement of

the libration amplitude φ0 provides a direct estimate of

the first factor on the right-hand side of equation (6)

via equation (1). A measurement of the gravitational

harmonic C22 provides a direct estimate of the second

factor. Measurements of the obliquity, C20, and C22

yield an estimate of the third factor via equation (5).

The four quantities φ0, θ, C20, and C22 identified by

Peale (1976, 1988) thus provide a powerful probe of the

interior structure of the planet.

2.5. Orbital precession

Implementing Peale’s procedure requires precise

knowledge of Mercury’s orbital configuration. Whereas

the mean motion and orbital eccentricity have been

determined from centuries of observations, relatively

little attention had been paid to the orientation of the

Laplace plane and the orbital precession rate. Yseboodt

and Margot (2006) used a Hamiltonian approach and

numerical fits to ephemeris data to determine these an-

cillary quantities. They showed that the Laplace plane

orientation varies due to planetary perturbations on

∼10 ky timescales, and they defined an instantaneous

Laplace plane valid at the current epoch for the pur-

pose of identifying the position of the Cassini state and

interpreting spin-gravity data.

Yseboodt and Margot (2006) gave the coordinates of

the normal to the instantaneous Laplace plane in ecliptic

and equatorial coordinates at epoch J2000.0 as

λinst = 66.6◦, βinst = 86.725◦, (7)

RAinst = 273.72◦,DECinst = 69.53◦, (8)

where λ is ecliptic longitude, β is ecliptic latitude, RA

is right ascension, and DEC is declination. The uncer-

tainty in the determination is of order 1◦, but the ori-

entation of the narrow error ellipse is such that it can
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affect the interpretation of the spin state data only at a

level that is well below that due to measurement uncer-

tainties.

The inclination of Mercury’s orbit with respect to the

instantaneous Laplace plane and the orbit precession

rate about that plane at the current epoch are ι = 8.6◦

and Ω̇ = −0.110◦/century, respectively (Yseboodt and

Margot 2006). We will use both of these quantities to

estimate Mercury’s interior structure in Sections 5 and

7. Stark et al. (2015b) performed an independent anal-

ysis and confirmed the values of Yseboodt and Margot

(2006), including the orientation of the instantaneous

Laplace plane, the inclination ι, and the precession rate

Ω̇. D’Hoedt et al. (2009) used a Hamiltonian approach

and found an instantaneous Laplace plane orientation

that differs from our preferred value by 1.4◦.

3. GRAVITY CONSTRAINTS

3.1. Methods

We are interested in measuring the masses and sizes

of planetary bodies because bulk density is a fundamen-

tal indicator of composition. In multi-planet systems,

masses can be estimated by observing the effects of mu-

tual orbital perturbations, manifested as variations in

orbital elements or variations in transit times. Another

common mass measurement technique is to determine

the orbits of natural satellites.

The most precise mass estimates are obtained by ra-

diometric tracking of a spacecraft while it is in close

proximity to the body of interest, typically by using the

onboard telecommunications system and a network of

ground-based radio telescopes. The geodetic observa-

tions are then used to obtain a spherical harmonic ex-

pansion of the gravity field and to reconstruct the space-

craft trajectory with high fidelity. In addition to provid-

ing high-precision mass estimates, this technique enables

the measurement of the spherical harmonic coefficients

C20 and C22, which provide important constraints on

interior structure (Section 2.4).

In the following sections, we describe gravity results

obtained from tracking the Mariner 10 spacecraft at a

frequency of 2.3 GHz (S-band) during three flybys in

1974–1975 and the MESSENGER spacecraft at frequen-

cies of 7.2 GHz uplink and 8.4 GHz downlink (X-band)

during the flybys and orbital phase of the mission.

3.2. Mass and density results

The mass, size, and density of Mercury were known

with remarkable precision prior to the exploration of

the planet by spacecraft. After adding radar measure-

ments to two centuries of optical observations, Ash et al.

(1971) fit planetary ephemerides and determined Mer-

cury’s mass to 0.25% fractional uncertainty. They found

a value of 6025000± 15000 in inverse solar masses, i.e.,

M = (3.300 ± 0.008) × 1023 kg, which is almost iden-

tical to the modern estimate. Using this measurement

and the radar estimate of the average equatorial radius

that was available at the time, R = (2 439 ± 1) km, it

was apparent that Mercury’s bulk density was anoma-

lously high, with ρ = (5 430± 15) kg m−3. On the basis

of their density calculation, Ash et al. (1971) concluded

that Mercury must be substantially richer in heavy el-

ements than Earth. The pre-Mariner 10 estimates of

mass, size, and density remain in excellent agreement

with the MESSENGER results, but spacecraft data have

enabled a reduction in uncertainties by a factor of ∼50.

Howard et al. (1974) analyzed the tracking data from

the first flyby of Mercury by Mariner 10 and obtained

a gravitational parameter GM = (2.2032 ± 0.0002) ×
1013m3s−2, where G is the gravitational constant. Anal-

ysis of data from all three Mariner 10 flybys yielded

GM = (2.203209 ± 0.000091) × 1013m3s−2(Anderson

et al. 1987). From more than three years of orbital track-

ing data of MESSENGER, Mazarico et al. (2014) ob-

tained GM = (2.203187080±0.000000086)×1013m3s−2,

estimated from a gravity field solution to degree and

order 50. An independent analysis to degree and or-

der 40 by Verma and Margot (2016) yielded GM =

(2.203187404±0.000000090)×1013m3s−2. When trans-

lating the MESSENGER values to a mass estimate, the

majority of the uncertainty comes from the 5 × 10−5

uncertainty in the gravitational constant. With G =

(6.67408 ± 0.00031) × 10−11m3kg−1s−2 (Mohr et al.

2016), the current best estimate of the mass of Mercury

is

M = (3.301110± 0.00015)× 1023 kg. (9)

From a combination of laser altimetry (Zuber et al.
2012) and radio occultation data, Perry et al. (2015)

determined Mercury’s average radius to be

R = (2 439.36± 0.02) km, (10)

although the stated radius uncertainty may be opti-

mistic given the sparse sampling of the southern hemi-

sphere. The corresponding bulk density is

ρ = (5 429.30± 0.28) kg m−3. (11)

Mercury’s bulk density is similar to that of Earth,

ρ⊕ = 5514 kg m−3, despite the different sizes of the two

bodies. The pressure P at the center of a homogeneous

sphere scales as P ∝ ρ2R2, so materials in Earth’s in-

terior are more compressed (i.e., denser) than those in

Mercury’s interior. If we assume that both planets are

made of a combination of a light component (i.e., sil-

icates) and a heavy component (i.e., metals), we can
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infer from their similar densities and differing sizes that

Mercury has a larger metallic component, as recognized

by Ash et al. (1971).

3.3. C20 and C22 results

The first measurements of the C20 and C22 gravity co-

efficients were obtained from Mariner 10 data recorded

during one equatorial flyby with ∼700 km minimum al-

titude and one polar flyby with ∼300 km minimum alti-

tude. Anderson et al. (1987) determined C20 = (−6.0±
2.0)× 10−5 and C22 = (1.0± 0.5)× 10−5. These values

have large fractional uncertainties because there were

only two favorable flybys, but the values are consistent

with the most recent MESSENGER results (Mazarico

et al. 2014; Verma and Margot 2016). With the nor-

malization that is commonly used in geodetic stud-

ies (Kaula 2000; p.7), the Mariner 10 values can also

be expressed as C̄20 = C20/
√

5 = (−2.68 ± 0.9) × 10−5

and C̄22 = C22/
√

5/12 = (1.55± 0.8)× 10−5, where the

overbar indicates normalized coefficients.

The next opportunity for measurements arose from

the three MESSENGER flybys of Mercury in 2008–2009.

However, the equatorial geometry of these flybys did not

provide adequate leverage to measure C20 accurately.

Because the Mariner 10 tracking data have been lost,

it was not possible to perform a joint solution includ-

ing both equatorial and polar flybys. For these rea-

sons, Smith et al. (2010) cautioned that their recovery

of C̄20 = (−0.86 ± 0.30) × 10−5 might not be reliable.

However, the equatorial geometry was suitable for an

accurate estimate of C̄22 = (1.26± 0.12)× 10−5.

Data acquired during the orbital phase of the MES-

SENGER mission provided significantly better sensitiv-

ity and lower uncertainties. Smith et al. (2012) analyzed

the first six months of data (>300 orbits) and found
C̄20 = (−2.25± 0.01)× 10−5 and C̄22 = (1.25± 0.01)×
10−5, where the error bars represent a calibrated un-

certainty that is about 10 times the formal uncertainty

of the fit. An independent analysis of the same data

by Genova et al. (2013) confirmed these results. More

recently, Mazarico et al. (2014) analyzed three years of

data (2275 orbits) and estimated a gravity field solution

to degree and order 50. This solution yielded an order-

of-magnitude improvement in the calibrated uncertain-

ties in C20 and C22: C̄20 = (−2.2505±0.001)×10−5 and

C̄22 = (1.2454±0.001)×10−5. An independent analysis

by Verma and Margot (2016) confirmed these values to

better than 0.4%.

The unnormalized quantities that we use in equa-

tions (3–6) are based on the Mazarico et al. (2014)

values: C20 = (−5.0323 ± 0.0022) × 10−5 and C22 =

(0.8039 ± 0.0006) × 10−5. The J2/C22 = −C20/C22

value of 6.26 is distinct from the equilibrium value of

7.86 for a body in a 3:2 spin-orbit resonance with the

current value of the orbital eccentricity (Matsuyama and

Nimmo 2009), indicating that Mercury is not in hydro-

static equilibrium.

3.4. k2 results

In addition to the static gravity field, Mazarico et al.

(2014) also solved for the time-variable degree-2 poten-

tial which captures the tidal forcing due to the Sun.

The tidal forcing is parameterized by the Love num-

ber k2 (Section 8.1). Mazarico et al. (2014) obtained

an estimate of k2 = 0.451 ± 0.014. However, because

of potential mismodeling and systematic effects in the

analysis, they could not rule out a wider range of val-

ues (0.43 − 0.50). The preferred value of Verma and

Margot (2016) is k2 = 0.464±0.023. They, too, encoun-

tered a wider range of best-fit values (0.420 − 0.465)

in various trials. The weighted mean of these two es-

timates is k2 = 0.455 ± 0.012. These estimates are

within the expected range from theoretical studies (Van

Hoolst and Jacobs 2003; Van Hoolst et al. 2007; Rivol-

dini et al. 2009) and from predictions of interior models

informed by MESSENGER data and Earth-based radar

data (Padovan et al. 2014).

4. SPIN-STATE CONSTRAINTS

Most of the quantities necessary to implement Peale’s

method of probing Mercury’s interior were known when

he wrote his paper in 1976. The mass, size, and den-

sity had been determined to < 1% precision prior to the

arrival of Mariner 10, the data from which confirmed

and improved the ground-based estimates (Section 3).

Values of the second-degree gravity coefficients C20 and

C22 had also been determined, albeit with substantial

uncertainties. In contrast, there were no satisfactory

measurements of the spin state. Librations had not been

detected, and the best spacecraft determination of the

orientation of the rotation axis had a 50% error ellipse

of ±2.6◦ by ±6.5◦ (Klaasen 1976), about three orders of

magnitude short of the required precision. Peale (1976)

speculated that measurement of the obliquity and libra-

tion angles (θ and φ0) would “almost certainly require

rather sophisticated instrumentation on the surface of

the planet.” Fortunately, the measurements were ob-

tained with Earth-based instruments as well as instru-

ments aboard the MESSENGER orbiter.

4.1. Methods

Three observational methods have been used to mea-

sure Mercury’s spin state: Earth-based radar observa-

tions, joint analysis of MESSENGER laser altimetry
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tracks and stereo-derived digital terrain models, and

MESSENGER radio tracking observations. All three

yielded estimates of Mercury’s obliquity, but only the

first two have yielded libration measurements so far.

Another important distinction between these methods

is that the first two measure the spin state of the rigid

outer part of the planet, i.e., the lithosphere, whereas

the gravity-based analyses are sensitive to the rotation

of the entire planet.

The spin state of Mercury can be characterized to high

precision with an Earth-based radar technique that re-

lies on the theoretical ideas of Holin (1988, 1992). He

showed that radar echoes from solid planets can dis-

play a high degree of correlation when observed by two

receiving stations with appropriate positions in four-

dimensional space-time. Normally each station observes

a specific time history of fluctuations in the echo power

(also known as speckles), and the signals recorded at

separate antennas do not correlate. But during certain

times on certain days of the year, the antennas become

suitably aligned with the speckle trajectory, which is tied

to the rotation of the observed planet (Figure 2). During

these brief (∼10–20 s) time intervals a cross-correlation

of the two echo time series yields a high score at a certain

value of the time lag (∼5–10 s). The epoch at which the

high correlation occurs provides a strong constraint on

the orientation of the spin axis. The time lag at which

the high correlation occurs provides a direct measure-

ment of the spin rate. Margot et al. (2007, 2012) illu-

minated Mercury with monochromatic radiation (8560

MHz, 450 kW) from the Deep Space Network (DSN)

70-m antenna in Goldstone, California (DSS-14), and

recorded the speckle patterns as they swept over two

receiving stations (DSS-14 and the 100-m antenna in

Green Bank, West Virginia). They obtained measure-

ments of the instantaneous spin state of Mercury at 35

epochs between 2002 and 2012, from which they inferred

both obliquity and libration angles.

Stark et al. (2015a) combined imaging (Hawkins et al.

2007) and laser altimetry (Cavanaugh et al. 2007) data

obtained by MESSENGER during orbital operations to

independently measure the spin state of Mercury. The

basic idea is to produce digital terrain models (DTMs)

from stereo analysis of the imaging data and to coreg-

ister the laser altimetry profiles to the DTMs (Stark

et al. 2015c). During the coregistration step, a rota-

tional model is adjusted in a way that minimizes the ra-

dial height differences between the two data sets. This

adjustment enables the recovery of the spin axis orien-

tation, which yields the value of the obliquity. It also

enables the recovery of the amplitude of the physical

librations because the laser profiles sample the topog-

raphy of the surface at different phases of the libration

cycle. In practice, Stark et al. (2015a) produced 165 in-

dividual gridded DTMs from thousands of images of the

surface. Their DTMs cover ∼50% of the northern hemi-

sphere of Mercury with a grid spacing of 222 m/pixel,

an effective horizontal resolution of 3.8 km, and an av-

erage height error of 60 m. For the coregistration step,

they used 2325 laser profiles from three years of Mer-

cury Laser Altimeter (MLA) observations. The laser

altimetry data have a spacing between footprints that

varied between 170 m and 440 m and a nominal ranging

accuracy of 1 m.

The third method for estimating the spin state of

Mercury is to adjust a rotational model of the planet

during analysis of the radio tracking data (Section 3).

Mazarico et al. (2014) and Verma and Margot (2016)

analyzed three years of radio science data and produced

estimates of the spin axis orientation. The detection

of the physical librations with this technique is possi-

ble, but measuring the libration amplitude accurately

remains challenging.

4.2. Obliquity results

Analysis of the Earth-based radar data yielded an

estimate of the obliquity θ = (2.042± 0.08) arcminutes,

where the adopted one-standard-deviation uncertainty

corresponds to 5 arcseconds (Margot et al. 2012). Re-

markably, the analysis of the spacecraft imaging and

laser altimetry data, a completely independent data

set, yielded an almost identical (0.6%) estimate of

(2.029 ± 0.085) arcminutes, with similar uncertain-

ties (Stark et al. 2015a). The weighted mean of these

two estimates is θ = (2.036± 0.058) arcminutes.

The best-fit spin axis orientation at epoch J2000.0

from analysis of the radar data is at equatorial co-

ordinates (281.0103◦, 61.4155◦) and ecliptic coordi-

nates (318.2352◦, 82.9631◦) in the corresponding J2000

frames (Margot et al. 2012). The MESSENGER DTM

and laser altimetry results are within 0.8 arcseconds,

at equatorial coordinates (281.0098◦, 61.4156◦) and

ecliptic coordinates (318.2343◦, 82.9633◦) (Stark et al.

2015a).

Radio science tracking data can be used to esti-

mate the orientation of the axis about which Mer-

cury’s gravity field rotates, which is not necessarily

aligned with the axis about which the lithosphere ro-

tates. Mazarico et al. (2014) and Verma and Margot

(2016) used this technique and reported obliquities of

(2.06± 0.16) and (1.88± 0.16) arcminutes, respectively.

These results are consistent with those obtained by Mar-

got et al. (2012) and Stark et al. (2015a), albeit with

uncertainties that are twice as large (Figure 3).
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Figure 2. Radar echoes from Mercury sweep over the surface of the Earth. Diagrams show the trajectory of the speckles
one hour before (left), during (center), and one hour after (right) the epoch of maximum correlation. Echoes from two receive
stations (red triangles) exhibit a strong correlation when the antennas are suitably aligned with the trajectory of the speckles
(green dots shown with a 1-s time interval). From Margot et al. (2012).
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Figure 3. Orientation of the spin axis of Mercury obtained
by three different techniques. The Earth-based radar results
and the MESSENGER DTM and laser altimetry results are
shown with contours representing the 1- and 2-standard de-
viation uncertainty regions. The gravity results are shown
with error bars representing the formal uncertainties of the
fit multiplied by 10. The oblique line shows the predicted lo-
cation of Cassini state 1 at epoch J2000.0 from the analysis
of Yseboodt and Margot (2006). Points to the left and right
of the line lead and lag the Cassini state, respectively.

Margot et al. (2007) provided observational evidence

that Mercury is in or very near Cassini state 1, an im-

portant condition for the success of Peale’s procedure.

The current best-fit values place the radar-based and

MESSENGER-based poles within 2.7 and 1.7 arcsec-

onds of the Cassini state, respectively (Figure 3), con-

firming that Mercury closely follows the Cassini state.

There are several possible interpretations for the im-

perfect agreement: (1) given the 5–6 arcsecond uncer-

tainty in spin axis orientation, Mercury may in fact be

in the exact Cassini state, (2) Mercury may also be in

the exact Cassini state if our knowledge of the location

of that state is incorrect, which is possible because it

is difficult to determine the exact Laplace pole orienta-

tion, (3) Mercury may lag the exact Cassini state by a

few arcseconds, (4) Mercury may lead the exact Cassini

state, although this seems less likely on the basis of the

evidence at hand. Measurements of the offset between

the spin axis orientation and the Cassini state location

have been used to place bounds on energy dissipation

due to solid-body tides and core-mantle interactions in

the Moon (Yoder 1981; Williams et al. 2001). However,

the interpretation of an offset from the Cassini state at

Mercury is complicated by the influence of various core-

mantle coupling mechanisms (Peale et al. 2014) and the

presence of an inner core (Peale et al. 2016).

4.3. Libration results

Analysis of Earth-based radar observations obtained

at 18 epochs between 2002 and 2006 yielded measure-

ments of Mercury’s instantaneous spin rate that re-

vealed an obvious libration signature with a period of

88 days (Margot et al. 2007). From these data and the

Mariner 10 estimate of C22 in equation (6), it was possi-

ble to show with 95% confidence that Cm+cr/C is smaller

than unity. These results provided direct observational

evidence that Mercury has a molten outer core (Margot

et al. 2007). Measurements of Mercury’s magnetic field

prior to the radar observations had provided inconclu-

sive suggestions about the nature of Mercury’s core. A

dynamo mechanism involving motion in an electrically
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conducting molten outer core was the preferred expla-

nation (Ness et al. 1975; Stevenson 1983), but alterna-

tive theories that did not require a liquid core, such as

remanent magnetism in the crust, could not be ruled

out (Stephenson 1976; Aharonson et al. 2004).

Earth-based radar observations continued during the

flyby and orbital phases of MESSENGER. By 2012,

measurements at 35 epochs had been obtained (Fig-

ure 4). One can fit a libration model (Margot 2009)

to these data and derive the value of (B − A)/Cm+cr.

Margot et al. (2012) found a value of (B −A)/Cm+cr =

(2.18 ± 0.09) × 10−4, which corresponds to a libration

amplitude φ0 of (38.5±1.6) arcseconds, or a longitudinal

displacement at the equator of 450 m.

Figure 4. Mercury 88-day librations revealed by 35 in-
stantaneous spin rate measurements obtained with Earth-
based radar between 2002 and 2012. The vertical axis rep-
resents deviations of the angular velocity from the exact res-
onant rate of 3/2 times the mean orbital motion n. The
measurements with their one-standard-deviation errors are
shown in black. OC and SC represent measurements in two
orthogonal polarizations (opposite-sense circular and same-
sense circular, respectively). A numerical integration of the
torque equation is shown in red. The flat top on the an-
gular velocity curve near pericenter is due to the momen-
tary retrograde motion of the Sun in the body-fixed frame
and corresponding changes in the torque. The amplitude
of the libration curve is determined by a one-parameter
least-squares fit to the observations, which yields a value of
(B −A)/Cm+cr = (2.18 ± 0.09) × 10−4. From Margot et al.
(2012).

Stark et al. (2015a) analyzed three years of MESSEN-

GER DTM and laser altimetry data and found a libra-

tion amplitude of (38.9 ± 1.3) arcseconds, which cor-

responds to (B − A)/Cm+cr = (2.206 ± 0.074) × 10−4.

This estimate is in excellent agreement (1%) with the

Earth-based radar value, giving confidence in the ro-

bustness of the results obtained by two independent

techniques. The weighted means of these estimates are

(B − A)/Cm+cr = 2.196 ± 0.057 and φ0 = (38.7 ± 1.0)

arcseconds.

4.4. Average spin rate

Questions remain about the precise spin behavior of

Mercury, both in terms of its average spin rate and the

presence of additional libration signatures. There are

reasons to believe that longitudinal librations with pe-

riods of 2–20 y exist, either because of planetary per-

turbations (Peale et al. 2007; Dufey et al. 2008; Peale

et al. 2009; Yseboodt et al. 2010) or because of in-

ternal couplings and forcings (Veasey and Dumberry

2011; Dumberry 2011; Van Hoolst et al. 2012; Yseboodt

et al. 2013; Koning and Dumberry 2013; Dumberry et al.

2013). However, the addition of long-term libration

components to the rotational model was not found to

improve fits to the 2002–2012 radar data (Margot et al.

2012; Yseboodt et al. 2013). The duration of the MES-

SENGER data sets is not sufficiently long to detect a

long-term libration signature, for which the primary pe-

riod is expected to be ∼12 y. Therefore, Mazarico et al.

(2014) and Stark et al. (2015a) did not attempt to fit for

long-term librations. Instead, they obtained estimates

of Mercury’s average spin rate over the time span of the

MESSENGER mission. Their estimates differ substan-

tially from one another and from the expected mean res-

onant spin rate (Fig. 5). One possible explanation for

the discrepancy between theoretical and observational

estimates is that the MESSENGER estimates are based

on a 3- or 4-year period that represents only a small

fraction of the long-term libration cycle.

5. TWO- AND THREE-LAYER STRUCTURAL

MODELS

5.1. Governing equations

The bulk density ρ = M/V of a planetary body of

mass M and volume V is an important indicator of com-

position, but it contains no information about the radial

distribution of the material in the interior. Because we

seek to calculate the radial density profile ρ(r), we write

expressions for the mass and bulk density of a spherically

symmetric body of radius R that highlight the mass con-

tributions from concentric spherical shells of width dr:
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Figure 5. Theoretical and observational estimates of Mer-
cury’s mean resonant spin rate. The Davies et al. (1980)
value was adopted in the latest report of the International
Astronomical Union Working Group on Cartographic Coor-
dinates and Rotational Elements (Archinal et al. 2011).

M = 4π

∫ R

0

ρ(r)r2dr, (12)

ρ =
3

R3

∫ R

0

ρ(r)r2dr. (13)

We write similar expressions for the polar moment of

inertia C and its normalized value C̃:

C =
8π

3

∫ R

0

ρ(r)r4dr, (14)

C̃ =
C

MR2
=

2

ρR5

∫ R

0

ρ(r)r4dr. (15)

We first consider a two-layer model where a mantle

with constant density ρm overlays a core with constant

density ρc and radius Rc. In a gravitationally stable

configuration, ρc > ρm. We use equations (13) and (15)

to derive the analytical expressions for bulk density and

normalized moment of inertia for this two-layer model:

ρ=ρcα
3 + ρm

(
1− α3

)
, (16)

C̃=
2

5

[
ρc
ρ
α5 +

ρm
ρ

(
1− α5

)]
, (17)

where we have have used α = Rc/R for ease of notation.

This system is underdetermined, because there are three

unknowns (ρc, ρm, and Rc) and only two observables (ρ

and C̃). Even in the case of an oversimplified two-layer

model, it is not possible to find a solution without mak-

ing an additional assumption or securing an additional

observable. For example, one could proceed by making

an educated guess about the density of the mantle from

measurements of the composition of the surface. A more

rigorous approach is to obtain an additional observable

that depends directly on the density of the mantle. We

rely on Peale’s procedure and the fact that Mercury is

in a Cassini state (Section 4.2) to provide such an ob-

servable, the polar moment of inertia of the mantle plus

crust as given by equation (6). For the two-layer model,

this expression reduces to

Cm+cr

C
=

ρm
(
1− α5

)
ρcα5 + ρm (1− α5)

. (18)

5.2. Moment of inertia results

Peale’s formalism (Section 2.4) enabled a determina-

tion of Mercury’s polar moment of inertia. Margot et al.

(2012) combined measurements of the obliquity and li-

brations with gravity data and found C̃ = 0.346±0.014.

Stark et al. (2015a) also measured θ and φ0, and found

C̃ = 0.346 ± 0.011. A uniform density sphere has

C̃ = 0.4, and a body with a density profile that increases

with depth has C̃ < 0.4. The Moon, with C̃ ' 0.393

(Williams et al. 1996), is nearly homogeneous, whereas

the Earth, with C̃ = 0.3307 (Williams 1994), has a sub-

stantial concentration of dense material near the center.

Likewise, Mercury’s C̃ value suggests the presence of a

dense metallic core.

The moment of inertia of Mercury’s mantle and crust

is also available from spin and gravity data (Equation 6).

Margot et al. (2012) found Cm+cr/C = 0.431±0.025 and

Stark et al. (2015a) found Cm+cr/C = 0.421± 0.021.

Weighted means of the Margot et al. (2012) and Stark

et al. (2015a) results provide the most reliable estimates

to date of the moments of inertia. We find

C̃ =
C

MR2
= 0.346± 0.009, (19)

Cm+cr

C
= 0.425± 0.016. (20)

An error budget similar to that computed by Peale

(1981, 1988) demonstrates that the dominant sources

of uncertainties in the moment of inertia values can be

attributed to spin quantities. Uncertainties arising from

gravitational harmonics, tides, and orbital elements are

at least an order of magnitude smaller (Noyelles and

Lhotka 2013; Baland et al. 2017). Further improvements

to our knowledge of Mercury’s moments of inertia there-

fore require better estimates of obliquity and libration

amplitude. Such improved estimates may also enable a

determination of the tidal quality factor Q (Baland et al.

2017).

5.3. Two-layer model results
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Using equations (16–18) and estimates of bulk density

(11), C̃ (19), and Cm+cr/C (20), we infer

Rc/R = 0.8209, i.e., Rc = 2 002 km, (21)

ρc/ρ = 1.3344, i.e., ρc = 7 245 kg m−3, (22)

ρm/ρ = 0.5861, i.e., ρm = 3 182 kg m−3. (23)

The results obtained with the two-layer model are within

one standard deviation of the results of more elaborate,

multi-layer models that take into account mineralogical,

geochemical, and rheological constraints on the composi-

tion and physical properties of the interior (Hauck et al.

2013; Rivoldini and Van Hoolst 2013; Section 7). Fig-

ure 6 illustrates the consistency of the two-layer solu-

tion (star) and of the multi-layer models of Hauck et al.

(2013) (error bars). The two-layer model results are also

consistent with results from multi-layer models that con-

sider the total contraction of the planet (Knibbe and van

Westrenen 2015).
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Figure 6. Mantle density versus core density showing the
consistency of the two-layer model results (star) with those
of more elaborate, multi-layer models (error bars). The po-

sition of the star corresponds to values of C̃ = 0.346 and
Cm+cr/C = 0.431 (Margot et al. 2012). Error bars corre-
spond to the one-standard-deviation intervals for ρc/ρ and
ρm/ρ obtained by Hauck et al. (2013). The background color
map indicates the value Rc/R in the two-layer model. Black
curves illustrate models with various values of the normal-
ized moment of inertia C̃. The blue curve traces the locus of
two-layer models with Cm+cr/C = 0.431.

All points shown on Figure 6 are consistent with Mer-

cury’s bulk density ρ. Knowledge of the normalized

moment of inertia C̃ restricts acceptable models to a

black, constant-C̃ curve. The resulting degeneracy cor-

responds to the underdetermined system of equations

(13) and (15). Knowledge of the moment of inertia of

the mantle further restricts acceptable models to the

blue curve. The intersection of the C̃ = 0.346 black

curve (not shown) and of the Cm+cr/C = 0.431 blue

curve yields the two-layer model solution.

Although three observables (ρ, C̃, and Cm+cr/C) can

be used to reliably estimate the parameters of a two-

layer model (core size, core density, and mantle density),

they provide no information about additional phenom-

ena related to the origin, evolution, and present physical

state of the planet (e.g., mineralogical composition of

the mantle, composition of the core, presence of a solid

inner core). Additional insight can be obtained with

more elaborate three-layer and multi-layer models.

5.4. Three-layer models

We now consider a three-layer model with core, man-

tle, and crust of density ρcr. We express the core

and mantle radii as fractions of the planetary radius,

α = Rc/R and β = Rm/R. With this notation, we

can write the bulk density, moment of inertia, and the

moment of inertia of the outer solid shell as follows:

ρ=ρcα
3 + ρm

(
β3 − α3

)
+ ρcr

(
1− β3

)
, (24)

C̃=
2

5

[
ρc
ρ
α5 +

ρm
ρ

(
β5 − α5

)
+
ρcr
ρ

(
1− β5

)]
,(25)

Cm+cr

C
=

ρm
(
β5 − α5

)
+ ρc

(
1− β5

)
ρcα5 + ρm (β5 − α5) + ρc (1− β5)

. (26)

This system of equations has 5 unknowns and 3 observ-

ables. If we assume a crustal thickness value hcr (i.e., β)

and a crustal density value ρcr, the system of equations

(24)-(26) can be solved. The thickness of the crust of

Mercury has been estimated from the combined analysis

of gravity and topography data (Mazarico et al. 2014;

Padovan et al. 2015; James et al. 2015). The density of

the crust ρcr can be estimated from the measured com-

position of the surface of Mercury (e.g., Padovan et al.

2015).

We use the results of Padovan et al. (2015) and con-

sider two end-member cases: a crust that is low-density

and thin (ρcr = 2 700 kg m−3, hcr = 17 km) and a

crust that is high-density and thick (ρcr = 3 100 kg m−3,

hcr = 53 km). Compared with the two-layer model, the

inferred radius of the core is almost unaffected by the

inclusion of the crust, and the densities of the mantle

and core change by less than 1%. This result can be

explained by the small volume of the crust and the fact

that its density is lower than that of the underlying lay-

ers. Consequently, the presence of the crust does not

change the values of ρ, C̃, and Cm+cr/C appreciably.

Another possible three-layer model includes a solid

inner core, a liquid outer core and a mantle. How-

ever, the composition of the core is not well constrained,
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and the system of equations (24)–(26) cannot be solved.

To make further progress, we build multi-layer models

(Section 7) that include additional, indirect constraints

from the observed composition of the surface (Section 6)

and from assumptions about interior properties guided

by laboratory experiments. We then incorporate con-

straints that arise from the measurement of planetary

tides (Section 8).

6. COMPOSITIONAL CONSTRAINTS

Measurements of the surface chemistry of Mercury

by the MESSENGER spacecraft have provided impor-

tant information on the composition of the interior (e.g.,

Chapter 2). Observations by the X-Ray Spectrome-

ter (XRS) and Gamma-Ray and Neutron Spectrometer

(GRNS) instruments have demonstrated that Mercury’s

surface has a low (<2.5 wt %) abundance of iron (Nittler

et al. 2011; Evans et al. 2012; Weider et al. 2014; Chapter

2). This surface abundance, if also reflective of the man-

tle concentration of Fe (Robinson and Taylor 2001), im-

plies that the bulk density of the mantle is only modestly

higher than those of the magnesium end-members of the

likely major minerals, e.g., orthopyroxene enstatite with

a density of 3 200 kg m−3 (Smyth and McCormick 1995).

From the application of a normative mineralogy to the

measured surface elemental abundances (Weider et al.

2015), Padovan et al. (2015) inferred grain densities for

the crust of Mercury between 3 000 and 3 100 kg m−3,

a result driven primarily by the low Fe abundance. In

addition to the low surface Fe abundance, Mercury has

relatively large concentrations of sulfur in surface ma-

terials (Nittler et al. 2011; Chapter 2). When taken

with the Fe observations, the measured S abundance

of ∼1.5–2.3 wt % in the crust implies strongly chemi-

cally reducing conditions (i.e., oxygen fugacities 2.6 to

7.3 log10 units below the iron-wüstite buffer) in Mer-

cury’s interior during the partial melting that yielded

these materials (Nittler et al. 2011; McCubbin et al.

2012; Zolotov et al. 2013). This inference is consistent

with some pre-MESSENGER expectations (e.g., Was-

son 1988; Burbine et al. 2002; Malavergne et al. 2010).

Two consequences of such reducing conditions are that,

during global differentiation, S is more soluble in silicate

melts that later crystallize as sulfides within the domi-

nantly silicate material, and Si is more soluble in metal-

lic Fe that segregates to the core. As a result, a wide

range of core compositions has been considered when in-

vestigating Mercury’s internal structure. The pressure,

temperature, and compositional conditions relevant to

Mercury’s core have been tabulated by Rivoldini et al.

(2009) and Hauck et al. (2013).

As Mercury’s large bulk density has long implied, the

planet has a large metallic core dominated by Fe that

is likely alloyed with one or more lighter elements. Pre-

vious investigations focused on S as the major alloy-

ing element for Mercury’s core (e.g., Stevenson et al.

1983; Schubert et al. 1988; Harder and Schubert 2001;

Van Hoolst and Jacobs 2003; Hauck et al. 2007; Riner

et al. 2008; Rivoldini et al. 2009; Dumberry and Rivol-

dini 2015) because of its cosmochemical abundance and

the greater availability of thermodynamic data. Sulfur

has a strong effect on the density of Fe alloys, much

greater than silicon or carbon for a given abundance.

Additionally, S can lower the melting point of Fe alloys

by hundreds of K, which is important for maintaining a

liquid outer core, and it is relatively insoluble in solid

Fe, the crystallizing phase in Fe-rich Fe–S systems. The

latter property is important because it leads to a nearly

pure Fe inner core and an outer core that is progressively

enriched in S as a function of inner core growth.

For the most chemically reduced end-members of Mer-

cury’s inferred interior compositions, it is likely that Si is

the primary, or sole, light alloying element in the metal-

lic core. Alloys of Fe and Si have a markedly different

behavior from Fe–S alloys in that they display a solid

solution with a narrow phase loop, i.e., a narrow re-

gion between solidus and liquidus curves at high pres-

sure (Kuwayama and Hirose 2004). As a consequence,

compositional differences between the potential solids

and liquids in the core are much more limited, and thus

density contrasts across the inner core boundary are

smaller than for Fe–S core compositions. Silicon also

has a smaller effect on the density and compressibility

of Fe–Si alloys than does S, with the consequence that

more Si than S is required to achieve the same density

reduction relative to pure Fe. Data on the equation of

state of solid Fe–Si alloys are more plentiful than for liq-

uid Fe–Si alloys, particularly at higher pressures, though

the data are sufficient to construct models of Mercury’s

internal structure (Hauck et al. 2013). Due to the nar-

row phase loop and more limited melting point depres-

sion induced by Si in Fe alloys (e.g., Kuwayama and

Hirose 2004), inner core growth could be more extensive

in Fe–Si systems than in S-bearing core alloys.

Over the range of inferred oxygen fugacities of 2.6 to

7.3 log10 units below the iron-wüstite buffer for Mer-

cury’s interior, an alloy of Fe with both S and Si is

likely in the core (Malavergne et al. 2010; Smith et al.

2012; Hauck et al. 2013; Namur et al. 2016b). Indeed,

metal-silicate partitioning experiments motivated by the

surface compositions measured by MESSENGER indi-

cate that S and Si are likely both present in materials

that make up Mercury’s core (Chabot et al. 2014; Na-
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mur et al. 2016b). Unfortunately, data for the thermo-

dynamic and thermoelastic properties of ternary alloys

at high pressure are more limited than for their binary

end-members. Experiments on the behavior of super-

liquidus Fe–S–Si alloys have demonstrated large fields

of two-liquid immiscibility (e.g., Sanloup and Fei 2004;

Morard and Katsura 2010) with separate S-rich and Si-

rich liquids at pressures relevant to Mercury’s outer-

most core. Such immiscibility, if present in Mercury’s

core, would lead to a separation of phases with more

S-rich liquids at the top of the core and Si-rich liquids

deeper. In this situation, it is possible to assume end-

member behavior in two separate compositional layers

within the core and calculate properties separately for

each layer (e.g., Smith et al. 2012; Hauck et al. 2013).

However, liquid immiscibility in this system at higher

pressures requires rather substantial amounts of both

Si and S, which may or may not be appropriate. Ex-

periments by Chabot et al. (2014) indicate a trade-off

between Si and S in Mercury’s metallic core that only

minimally overlaps with current understanding of the

Fe–S–Si liquid-liquid immiscibility phase field. Those

results suggest that a mixture of Fe, S, and Si may be

more likely. More recent work by Namur et al. (2016b),

however, suggests that Mercury’s core conditions may

belong to the immiscible liquid field. In this case, Mer-

cury’s core may contain enough S for an FeS layer that

is anywhere from negligibly thin to 90 km thick, de-

pending on bulk S content of the planet. Regardless,

the range of likely compositions for Mercury’s core lies

somewhere between an Fe-Si end-member and a (possi-

bly segregated) mix of Fe, Si, and S.

7. MULTI-LAYER STRUCTURAL MODELS

We now wish to construct internal structure models

with many layers in order to better match the gravity,

spin state, and compositional constraints. We extend

the approach of the two- and three-layer models (Sec-

tion 5) to N-layer models with the goal of reproducing

both discontinuous and continuous variations in density

with depth. Such variations are expected on the basis

of pressure-induced changes in the density of materials.

For each material, an equation of state (EOS) describes

the density as a function of pressure, temperature, and

composition. Pressure variations inside Mercury’s core

require an EOS, but the range of pressures expected

across Mercury’s thin silicate shell is relatively small.

As a result, some models do not include an EOS for the

silicate layer (Hauck et al. 2007, 2013; Smith et al. 2012;

Dumberry and Rivoldini 2015), although some models

do (Harder and Schubert 2001; Riner et al. 2008; Rivol-

dini et al. 2009; Rivoldini and Van Hoolst 2013; Knibbe

and van Westrenen 2015). Multi-layer models provide

an opportunity to reduce some of the non-uniqueness

of simpler models through application of knowledge of

the interior (e.g., potential core compositions) (Hauck

et al. 2013; Rivoldini and Van Hoolst 2013). They

also enable investigations related to the structure of the

core (Hauck et al. 2013; Dumberry and Rivoldini 2015;

Knibbe and van Westrenen 2015) and the implications

for the planet’s thermal evolution and magnetic field

generation.

7.1. Elements of the model

Like two- and three-layer models, N-layer models con-

sist of a series of layers defined by their composition and

physical state. In contrast to simpler models, most of

the geophysically defined layers in N-layer models are

further subdivided into hundreds or thousands of sub-

layers. The sublayers provide for a smoother variation

of density within the geophysically defined layers. Sub-

layer properties are functionally defined by the relevant

EOS (Hauck et al. 2013; Rivoldini and Van Hoolst 2013).

The basic internal organization of N-layer models is

illustrated in Figure 7. The metallic core is divided into

a solid inner core and a liquid outer core. Core densi-

ties vary according to the EOS. The solid outer portion

of the planet is divided into one or more solid outer

layers, most commonly with densities that are constant

throughout their depth extent. Several models employ

a traditional division of the solid outer shell into a crust

and a mantle (Hauck et al. 2013; Rivoldini and Van

Hoolst 2013; Dumberry and Rivoldini 2015; Knibbe and

van Westrenen 2015). Here, as did Hauck et al. (2013),

we define up to three layers within the solid outermost

portion of the planet: a basal layer at the bottom the

mantle, a mantle, and a silicate crust. The presence of a

basal layer was suggested as a way to reconcile the low

amounts of Fe observed at the planet’s surface with the

high bulk density of Mercury’s outer solid shell inferred

from spin and gravity data (Smith et al. 2012; Hauck

et al. 2013). Evidence for deep compensation of domi-

cal swells on Mercury (James et al. 2015) also suggests

that compositional variations deep within the solid outer

shell are present, at least regionally.

7.2. Governing equations

Any internal structure model for Mercury must be

consistent with three quantities: the bulk density of the

planet, the normalized moment of inertia C̃, and the

fraction of the moment of inertia attributed to the li-

brating, solid outer shell of the planet Cm+cr/C. This

fraction is defined by

Cm+cr

C
+
Cc

C
= 1, (27)
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Figure 7. Schematic representation of the internal layers of
Mercury in models with detailed sub-layering aimed at cap-
turing density variations due to changes in pressure, temper-
ature, and composition with depth. Specific radii mark the
transitions between layers, as follows: Ric between solid in-
ner core and liquid outer core, Roc between liquid outer core
and the solid outer shell of the planet, Rb between a com-
positionally distinct layer at the base of the mantle and the
overlying mantle, and Rm between mantle and crust. The
radius of the planet is R. The radially varying densities of
the inner core and outer core are ρic(r) and ρoc(r), respec-
tively. The constant densities of any basal layer, mantle, and
crust are ρb, ρm, and ρcr, respectively.

where Cc/C is the fraction of the moment of inertia

attributed to the core. The moment of inertia of the core

Cc is calculated from Equation (14) integrated from the

center of the planet to the core-mantle boundary (r =

Roc in Figure 7). The moment of inertia of the mantle

plus crust Cm+cr can be determined from integration of

Equation (14) from r = Roc to r = R.

The EOSs that describe density variations with depth

depend on the pressure and temperature of the materi-

als. The pressure is a function of the overburden:

P (r) =

∫ R

r

ρ(x)g(x)dx, (28)

and depends on the local gravity inside a sphere of radius

r:

g(r) =
G

r2
M(r) =

G

r2
4π

∫ r

0

ρ(x)x2dx. (29)

Equations (28) and (29) must be solved along with

Equations (12) and (14) for the mass and polar moment

of inertia of Mercury. Closing the set of four equations

(12, 14, 28, 29), optionally augmented by Equation (27),

requires determination of the density as of a function of

radius in the planet. Most models of Mercury’s inte-

rior are based on a third-order Birch-Murnaghan EOS

(Poirier 2000):

P (r) =
3K0

2

[(
ρ(r)

ρ0

) 7
3

−
(
ρ(r)

ρ0

) 5
3

]

×

[
1 +

3

4
(K ′0 − 4)

{(
ρ(r)

ρ0

) 2
3

− 1

}]
+α0K0(T (r)− T0), (30)

where T (r), T0, ρ0,K0,K
′
0, and α0 are the local and ref-

erence temperatures, the reference density, the isother-

mal bulk modulus and its pressure derivative, and the

reference volumetric coefficient of thermal expansion,

respectively. The density, bulk moduli, and thermal

expansivity are parameters for which ranges are deter-

mined from laboratory experiments and first-principles

calculations. Values were given by, e.g., Hauck et al.

(2013). The last term on the right relates to the in-

crease in volume with increasing temperature.

The temperature as a function of radius can be deter-

mined for a conductive or convective mode of heat trans-

fer. Most models for Mercury’s core are based on the

latter assumption. In the case of a thoroughly convec-

tive layer, the material is assumed to follow an adiabatic

temperature gradient,

∂T

∂P
=

α(T, P )T

ρ(T, P )CP
, (31)

where α is the volume thermal expansion coefficient and

CP is the specific heat at constant pressure.

7.3. Methods

Investigations of Mercury’s interior with N-layer mod-

els take the form of a basic parameter space study. The

most fundamental parameter decision is the choice of

core alloying elements because of their considerable in-

fluence on melting behavior (Section 6) and because the

core occupies such a large fraction of the planet. The

relative amounts of Fe and light elements are not known,

such that broad ranges of possible core compositions

tend to be considered. Indeed, Harder and Schubert

(2001) considered all S contents from 0 wt % S (pure

Fe) to 36.5 wt % S (pure FeS troilite). Most investi-

gations in the post-MESSENGER era have used more

limited compositional ranges. Other parameters consid-

ered include the thickness of the crust and the densities

or density profiles of the crust and mantle.

The treatment of any crystallized solid layers within

the metallic core represents another important mod-

eling decision. Several models compare thermal gra-

dients with an assumed, generally simplified, melting

curve gradient for the core alloy (e.g., Rivoldini and Van
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Hoolst 2013; Dumberry and Rivoldini 2015). The in-

tent is to develop a self-consistent prescription for the

density structure of the core that includes the appro-

priate EOS for the regions of the core that are solid,

liquid, or in the process of crystallizing from the top

down (e.g., Dumberry and Rivoldini 2015). This ap-

proach is most straightforward for Fe–S alloys because of

their well-studied thermodynamic properties. However,

these simplified phase diagrams tend to be based solely

on eutectic compositions and do not account for mixing

behavior that may be non-ideal (Chen et al. 2008). In

addition, the melting relationships for Fe–Si and Fe–S–

Si compositions are not well known. For these reasons,

other studies consider the full range of possible solid in-

ner core sizes (from zero to the entire core), irrespective

of specific melting curves (Smith et al. 2012; Hauck et al.

2013).

With the constraints on Mercury’s interior limited to

the planetary radius, mass, and the moment of iner-

tia parameters C/MR2 and Cm+cr/C, knowledge of the

planet’s interior is necessarily non-unique. However,

through a judicious set of assumptions regarding the

composition of the interior and an exploration of param-

eter space, it is possible to place important constraints

on Mercury’s internal structure. Hauck et al. (2013) and

Rivoldini and Van Hoolst (2013) employed Monte Carlo

and Bayesian inversion approaches, respectively, in or-

der to estimate the structure of Mercury’s interior and

to quantify the robustness of the most probable solu-

tion. One apparent difference in their approaches is that

Hauck et al. (2013) included estimated uncertainties in

the material parameters in the EOS of core material in

addition to uncertainties in bulk density and moments

of inertia, whereas Rivoldini and Van Hoolst (2013) in-

cluded only the latter but considered depth-dependent

density profiles for the mantle. Regardless of the de-

tails of the modeling and numerical approaches, several

studies have converged on a common set of fundamental

outcomes describing the internal structure of Mercury.

In assessing the agreement between interior models

and observational constraints, we use a metric based on

the fractional root mean square difference, defined as

RMS =

[
1

2

2∑
i=1

(
Oi − Ci

Oi

)2
]1/2

, (32)

where O and C are observed and computed values, re-

spectively, and the index i represents the two observ-

ables C/MR2 and Cm+cr/C.

7.4. Results

Knowledge of the moment of inertia of a planet pro-

vides an integral measure of the distribution of density

with radius. For Mercury, knowledge of the fraction of

the polar moment of inertia due to the solid outer por-

tion of the planet places further constraints on that den-

sity distribution. Still, taken together, the bulk density

of the planet, C/MR2, and Cm+cr/C represent a mod-

est set of constraints on a body within which properties

vary considerably with depth. As a result, N-layer mod-

els, which describe the internal density variation more

precisely than the two- and three-layer models, are gen-

erally limited to describing a rather modest set of lay-

ers well. The most robust determinations include the

bulk density of the solid, outermost planetary shell that

overlies the liquid portion of the core, the bulk density

of everything beneath that solid layer, and the location

of the boundary between these two layers (Hauck et al.

2007, 2013; Smith et al. 2012; Rivoldini and Van Hoolst

2013; Dumberry and Rivoldini 2015). Although mod-

els based on the moments of inertia generally do not

resolve the thickness of the crust or the density differ-

ence between the crust and mantle, studies of gravity

and topography at higher-order harmonics do provide

estimates of the crustal thickness and its regional vari-

ations (Smith et al. 2012; James et al. 2015; Padovan

et al. 2015; Chapter 3).

The parameter of perhaps greatest interest regarding

Mercury’s interior is the location of the boundary be-

tween the liquid outer core and the solid outer shell. A

similar answer is obtained with a wide variety of pos-

sible compositional models for Mercury’s core: models

with both more and less S than the Fe–S eutectic com-

position (Hauck et al. 2013; Rivoldini and Van Hoolst

2013; Knibbe and van Westrenen 2015), models that

include Fe–Si alloys (Hauck et al. 2013), and models

that include combinations of S, Si, and Fe (Hauck et al.

2013). Across all these models, the top of Mercury’s

liquid core has generally been estimated to be between

400 and 440 km beneath the surface with an estimated

one-standard-deviation uncertainty of less than 10% of

that value. Figure 8 illustrates a selection of results for

the internal structure of Mercury with the Fe–Si core

composition model results of Hauck et al. (2013). In-

terestingly, recent measurements of magnetic induction

within Mercury are consistent with the top of the core

being 400–440 km beneath the surface (Chapter 5).

The bulk densities of the material above and below

the transition between the liquid core and outermost

shell are also well established across a broad range of as-

sumed core compositions and modeling approaches (e.g.,

Hauck et al. 2013; Rivoldini and Van Hoolst 2013). The

bulk density of the core material has been found to be

distributed in the range 6 750–7 540 kg m−3, with cen-

tral values falling in the interval 6 900–7 300 kg m−3 and
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Figure 8. Two-dimensional histograms summarizing N-layer internal structure models of Mercury with Fe–Si core compositions
based on the approach of Hauck et al. (2013) and current best estimates of C/MR2 and Cm+cr/C (Section 5.2). The left column
(a, c, and e) represents models that include a three-layer silicate shell with a crust, mantle, and denser solid layer at the base
of the mantle. The right column (b, d, and f) represents models that include a two-layer silicate shell with a crust and mantle.
Shown are the recoveries of the radius of the top of the liquid outer core (a and b), bulk density of the metallic core (c and
d), and bulk density of the silicate, solid, outermost shell of the planet (e and f). The vertical axes show the goodness of fit
expressed as a fractional root mean square difference (Equation 32). Si contents of the metallic core in these models vary from
0 to 17 wt % (Hauck et al. 2013).
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one-standard-deviation uncertainties of less than 5% of

the central value (Hauck et al., 2013; Rivoldini and Van

Hoolst, 2013). The bulk density of the solid outermost

shell of Mercury is distributed in the range 3 020–3 580

kg m−3, with central values falling in the interval 3 200–

3 400 kg m−3 and one-standard-deviation uncertainties

of approximately 6% of the central value.

One of the more intriguing proposals for the structure

of Mercury’s interior is the idea that a solid FeS layer

could stably form at the core-mantle boundary. From

a chemical standpoint, this layer originates in the core

and resides at the top of the core. From a mechanical

standpoint, however, a solid layer resides at the bottom

of the mantle (Figure 7). The solid FeS layer hypothe-

sis resulted from two observations. First, the chemically

reducing conditions observed at the surface, if pertinent

to the bulk of the planet, imply that Si will increasingly

partition into the core with decreasing oxygen fugac-

ity. At the pressures of Mercury’s core-mantle bound-

ary, Fe–S–Si liquids separate into two liquid phases over

a broad range of compositions (Morard and Katsura

2010). Hauck et al. (2013) estimated from the FeS (IV)

EOS that the solid phase was less dense than the resid-

ual liquid and could float rather than sink. Second, the

best-fitting models (e.g., those with the lowest RMS val-

ues in Figure 8, but not necessarily with the highest his-

togram values) tend to have bulk densities for the solid

outermost shell of Mercury that are larger than ∼3 200

kg m−3, the approximate density expected for Fe-poor

to Fe-absent mantle minerals such as forsterite and en-

statite. For these reasons, Hauck et al. (2013) investi-

gated both the situation with and without an FeS layer.

However, the one-standard-deviation uncertainty in the

outer shell bulk density is ∼200 kg m−3 and permits a

wide array of possible density configurations, with and

without a solid FeS layer at the top of the core. Further-

more, recent calculations by Knibbe and van Westrenen

(2015) question whether solid FeS is capable of float-

ing at the top of the core, thus potentially preventing

a substantial FeS layer from forming at the core-mantle

boundary. Additional work on the EOS of solid FeS IV

at the appropriate conditions is warranted.

Recently, experiments investigating the partitioning of

S and Si between silicate and metallic melts for Mercury-

like compositions (Chabot et al. 2014) have provided

an opportunity to examine more closely the nature of

the core-mantle boundary region. Figure 9 illustrates a

comparison of the bulk core compositions of the inter-

nal structure models of Hauck et al. (2013) containing

a possible solid FeS layer at the top of the core with

the predicted ranges of core compositions compatible

with MESSENGER geochemical observations of the sur-

face (Chabot et al. 2014). Also shown are the limits on

compositions in the Fe–S–Si system that display liquid-

liquid immiscibility at the relevant pressures of 6 and

10 GPa. Compositions to the right of the immiscibility

limit curves display immiscibility and are prone to phase

separation at the given pressure. While the majority of

core compositions in the Fe–S–Si models of Hauck et al.

(2013) are consistent with the segregation of Fe–S-rich

liquids at the top of Mercury’s core, the general lack of

overlap of recent geochemical predictions of possible core

compositions with the immiscibility limits (Chabot et al.

2014) suggests that liquid-liquid phase separation may

not be preferred. The further consequence, of course, is

that the conditions for crystallization of an FeS phase

at the top of the core appear less likely than the im-

miscibility limits alone previously suggested. However,

as is apparent from Figure 9, the preferred core compo-

sitions of Chabot et al. (2014) and the most probable

models that match the density and moment of inertia

parameters do not generally overlap. There are several

possible explanations for the discrepancy. First, it may

be that the surface abundance of S cannot yield reli-

able insights about core composition, either because the

surface abundance is not representative of the planet’s

bulk silicate composition, or because chemical equilib-

rium was not satisfied during core formation. Second,

it is possible that a modeling approach not investigated

so far is required, e.g., a single, miscible Fe–S–Si liquid

phase, rather than two fully separated Fe–S and Fe–Si

phases. Third, it is possible that the partitioning behav-

ior observed at atmospheric pressure by Chabot et al.

(2014) is not representative of core conditions. Indeed, a

recent geochemical experimental study with differing sil-

icate compositions and at slightly higher pressures (Na-

mur et al. 2016b) suggests that the mantle may contain

more S than the surface rocks. In that case, the bulk

core S content may be larger and the core conditions

may belong to the immiscibility field. However, that

conclusion and the thickness of any possible FeS layer

depend strongly on Mercury’s bulk S content.

Understanding the existence and size of an inner core

on Mercury is a critical goal because an inner core influ-

ences several aspects of the planet’s evolution, including

magnetic field generation (Chapters 5 and 19), global

contraction (Chapters 10 and 19), and rotational state

(Section 9). However, the size of the inner core is dif-

ficult to quantify, for two reasons. First, the density

contrast across the inner-outer core boundary is modest

(e.g., Hauck et al. 2013; Rivoldini and Van Hoolst 2013).

Second, the inner core comprises only a small fraction

of the mass and density distribution of the planet. In-

deed, models with assumptions about the melting re-
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lationships of the core can typically place only upper

limits on the size of the inner core, and these upper lim-

its are large. In models with core concentrations of S

exceeding a few wt %, upper limits are ∼1 450 km, i.e.,

Ric/R . 0.6 (Rivoldini and Van Hoolst 2013; Dumberry

and Rivoldini 2015; Knibbe and van Westrenen 2015).

Upper limits as high as 1 700–1 800 km can be reached in

models with low core concentrations of S (Rivoldini and

Van Hoolst 2013; Dumberry and Rivoldini 2015; Knibbe

and van Westrenen 2015). Growth of an inner core to

that size over the past ∼4 billion years is likely incom-

patible with the inferred amount of global contraction

of the planet from measurements of tectonic structures

on the surface (Section 9, Chapter 19). Models without

an assumed core melting relationship constraint do not

place strong limits on the size of the solid inner core,

although there is a slight preference for models with an

inner core radius less than ∼60% of the core radius or

∼50% of the planetary radius (Hauck et al. 2013). Ad-

ditional constraints on the size of the inner core are dis-

cussed in Section 9.

8. TIDAL RESPONSE

Additional insights about Mercury’s interior structure

can be gained by measuring the deformation that the

planet experiences as a result of periodic tidal forces.

These measurements are informative because the re-

sponse of a planet to tides is a function of the den-

sity, rigidity (i.e., shear modulus), and viscosity of the

subsurface materials. Tidal measurements have been

used to support the hypothesis of a liquid core inside

Venus (Konopliv and Yoder 1996) and Mars (Yoder et al.

2003), and that of a global liquid ocean inside Titan (Iess

et al. 2012). In principle, high-precision measurements

of the tidal response can be used to rule out models that

are otherwise compatible with the density and moment

of inertia constraints (Section 7). When a global liquid

layer is present, the tidal response is largely controlled

by the strength and thickness of the outer solid shell

(e.g., Moore and Schubert 2000). Because Mercury has

a molten outer core (Section 4) and because the thick-

ness of the outer solid shell is known (Sections 5 and 7),

tidal measurements enable investigations of the strength

of the outer solid shell. This strength depends primarily

on the mineralogy and thermal structure of the shell.

8.1. Tidal potential Love number k2

The tidal perturbation generated by the Sun on Mer-

cury simultaneously modifies the shape of the planet

and the distribution of matter inside the planet. As a

result of the redistribution of mass, solar tides also mod-

ify Mercury’s gravitational field. From the standard ex-

pansion of the gravitational field in spherical harmonics

0

10

5

15

w
t 

%
 S

i 
in

 c
o

r
e

20

25

0

250

# in bin

6 GPa immiscibility bound

10 GPa immiscibility bound

0 105 15 20 25 30

wt % S in core

Figure 9. Representation of bulk core S and Si contents
in a subset of the internal structure models of Hauck et al.
(2013). All models shown have an Fe–S–Si core composition
and a solid FeS layer at the base of the mantle, and only
models that match the C/MR2 and Cm+cr/C constraints
(Section 5.2) are shown. The two-dimensional histogram in-
dicates the relative number of successful models at each bulk
core composition. Immiscibility limits in the Fe–S–Si sys-
tem at two different pressures are shown by the dotted and
dashed lines. Compositions to the right of these lines result
in immiscible Fe–S-rich and Fe–Si-rich liquids at the indi-
cated pressure. The gray region illustrates predicted bounds
on core composition from metal-silicate partitioning experi-
ments under the assumption that the S content at the surface
of Mercury yields reliable constraints on core composition
(Chabot et al. 2014). The lower and upper boundaries of
the gray region represent the expected core compositions for
Mercury-like compositions for representative surface S con-
tents of 1 wt % and 4 wt %, respectively.

(e.g., Kaula 2000), the largest component of the tidal

potential is a degree-2 component Φ2 proportional to

the mass of the Sun and with a long axis that is aligned

with the Sun-Mercury line. The additional potential φ2t
resulting from the deformation of the planet in response

to the tidal potential is parameterized by the tidal po-

tential Love number k2:

φ2t = k2 Φ2. (33)

The tidal component with the largest amplitude has

a period Pm = 87.9693 days (Van Hoolst and Jacobs

2003), corresponding to Mercury’s orbital period. The

Love number k2 is a function of ω, ρ(r), µ(r), and η(r),

where ω = 2π/Pm is the known forcing frequency and

ρ(r), µ(r), and η(r) are the density, rigidity, and vis-
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cosity profiles. With the appropriate profiles, the Love

number k2 at the frequency ω can be calculated by solv-

ing the equations of motion inside the planet. These

equations consist of three second-order equations that

can be transformed into a system of six first-order lin-

ear differential equations in radius through a spherical

harmonic decomposition in latitude and longitude (Al-

terman et al. 1959). We solve these equations with

a slightly modified version of the propagator matrix

method (e.g., Sabadini and Vermeersen 2004), as de-

scribed by Wolf (1994) and by Moore and Schubert

(2000, 2003).

8.2. Rheological models

The rheological response of solid materials is elastic,

viscoelastic, or viscous, depending primarily on pres-

sure, temperature, grain size, and timescale of the pro-

cess under consideration. Other dependencies include

melt fraction and water content. Earth’s mantle has a

quasi-elastic response on the short timescales associated

with seismic waves and a fluid-like response on the long

timescales of mantle convection.

The Maxwell rheological model is the simplest

model that captures behavior on both short and long

timescales. It is completely defined by two parame-

ters, the unrelaxed (i.e., corresponding to an impulsive

or infinite-frequency perturbation) rigidity µU and the

dynamic viscosity η. The Maxwell time, defined as

τM =
η

µU
, (34)

is a timescale that separates the elastic regime (forc-

ing period � τM) from the fluid regime (forcing period

� τM). This simple rheological model is sufficiently ac-

curate to describe the crust of Mercury. The crust is cold

and responds elastically (τM,crust = 105 y). We treat the

liquid outer core as an inviscid fluid. We also use the

Maxwell model to represent the rheology of the inner

core, which, if present, has a negligible effect on the tidal

response (Padovan et al. 2014). However, the Maxwell

model fails to capture the response of the mantle at tidal

frequencies (e.g., Efroimsky and Lainey 2007; Nimmo

et al. 2012), because it does not provide a good fit to

laboratory and field data in the low-frequency seismo-

logical range.

We adopt the Andrade pseudo-period rheological

model to estimate the response of Mercury’s mantle

to tidal forcing (Jackson et al. 2010; Padovan et al.

2014). In this model, the ratio of strain to stress, or

inverse rigidity, is represented by a complex compliance.

The expressions for the real (R) and imaginary (I) parts

of the dynamic compliance in the Andrade model are

(Jackson et al. 2010):

JR =JU

{
1 + β∗Γ (1 + n)ω−na cos

(nπ
2

)}
, (35)

JI =JU

{
β∗Γ (1 + n)ω−na sin

(nπ
2

)
+

1

ωvτM

}
.(36)

JU is the unrelaxed compliance, Γ is the gamma func-

tion, and n, β∗ = β/JU, and τM = ηJU are related

to parameters appearing in the Andrade creep func-

tion J(t) = JU + βtn + t/η. The pressure (P ), tem-

perature (T ), and grain size (d) dependencies are in-

troduced through the pseudo-period master variable

XB = 2π/ωa,v:

XB =T0

(
d

dRef

)−ma,v

× exp

[(
−E
R

)(
1

T
− 1

TRef

)]
× exp

[(
−V
R

)(
P

T
− PRef

TRef

)]
, (37)

where T0 is the period of the applied forcing (in this

case the period of the primary tidal component), ma

(mv) is the grain size exponent for anelastic (viscous)

processes, and R is the gas constant. PRef , TRef , and

dRef indicate reference values (Table 1). The unrelaxed

shear modulus µU = 1/JU is itself dependent on pres-

sure and temperature, which we characterize by a simple

Taylor expansion truncated at linear terms: µU (P, T ) =

µRef
U + (∂µ/∂P )(P − PRef) + (∂µ/∂T )(T − TRef). The

frequency-dependent shear modulus µ(ω), quality fac-

tor Q(ω), and viscosity η(ω) are all obtained from the

dynamic compliance, as follows (Jackson et al. 2010;

Padovan et al. 2014):

µ (ω) =
[
J2
R (ω) + J2

I (ω)
]−1/2

, (38)

Q (ω) =
JR (ω)

JI (ω)
, (39)

η (ω) =
1

ω0JI (ω)
, (40)

where ω0 = 2π/T0. Our choice of model parameters is

described in Table 1 and Section 8.3.

Our choices of Andrade model parameter values (Ta-

ble 1) are based on data obtained at periods smaller

than 103 s (Jackson et al. 2010), whereas the main tide

of Mercury has a period > 106 s. The extrapolation

to long time scales can be validated to some extent by

two considerations. First, we verified that equation (40)

yields viscosity values at long timescales (> 10 My) that

fall within the interval for convective viscosities com-

monly assumed in terrestrial mantle convection simu-

lations (1020 − 1023 Pa s). Second, we verified that,
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Table 1. Rheological models for the interior of Mercury.

Layer Model Parameter Definition Value

Crust Maxwell

µU Unrelaxed rigidity 55 GPa

η Dynamic viscosity 1023 Pa s

Mantle Andradea

µRef
U Unrelaxed rigidityb 59 − 71 GPa

Tb Mantle basal temperaturec 1 600 − 1 850 K

n Andrade creep coefficient 0.3

β∗ Andrade creep parameter 0.02

PRef Reference pressure 0.2 GPa

TRef Reference temperature 1 173 K

dRef Reference grain-size 3.1 µm

d Grain size 1 mm − 1 cm

ma, mv Grain size exponents 1.31, 3

V Activation volume 10−5 m3mol−1

EB Activation energy 303 × 103 kJ mol−1

FeS Andraded

Outer core Inviscid fluid

µU Unrelaxed rigidity 0 Gpa

η Dynamic viscosity 0 Pa s

Inner core Maxwell

µU Unrelaxed rigidity 100 GPa

η Dynamic viscosity 1020 Pa s

Note—
aThe fixed parameters of the Andrade model are based on the results of Jackson et al. (2010).

bThe nominal value depends on the adopted mineralogy (Table 2).

cWe report Tb because the relevant temperature in equation (37) is controlled by Tb.

dThe FeS layer is assumed to have the same rheology as that of the base of the mantle.

at timescales appropriate for glacial rebound on Earth

(∼104 y), the predicted viscosity values (1020−1021 Pa s)

compare favorably with those inferred from geodynam-

ical data (e.g., Kaufmann and Lambeck 2000).

The choice of Andrade model parameter values (Ta-

ble 1) is also based on laboratory data for olivine (Jack-

son et al. 2010), whereas we apply the model to a variety

of mineralogies (Table 2). This extrapolation to other

mineralogies is not strictly correct, especially for man-

tle models in which olivine is not the dominant phase.

However, the Andrade model has been successfully ap-

plied to the description of dissipation in rocks, ices, and

metals (e.g., Efroimsky 2012; and references therein).

The broad applicability of the model over a wide range

of physical and chemical properties suggests that the

model can provide an adequate description of the rheol-

ogy of silicate minerals.

Recent results of laboratory experiments and thermo-

dynamic simulations based on Mercury surface composi-

tions (Vander Kaaden and McCubbin 2016; Namur et al.

2016a) suggest an olivine-rich source for both the north-

ern smooth plains and the high-Mg region of the inter-

crater plains and heavily cratered terrain. These results

are in accord with an olivine-dominated mineralogy for

the mantle of Mercury and further support our model

parameter choices.

8.3. Methods
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We restrict our analysis to interior models that are

compatible with the observed bulk density ρ, moment

of inertia C, and moment of inertia of the solid outer

shell Cm+cr. By design, the subset of interior models

has distributions of ρ, C, and Cm+cr that are approx-

imately Gaussian with means and standard deviations

that match the nominal values of the observables and

their one-standard-deviation errors. The mean density

ρ has a Gaussian distribution with mean and standard

deviation equal to 5430 kg m−3 and 10 kg m−3, respec-

tively. For C and Cm+cr, we choose Gaussian distribu-

tions with means and standard deviations defined by the

observed values and errors (Section 5.2).

We treat the interior of Mercury as a series of spheri-

cally symmetric, incompressible layers characterized by

density, thickness, rigidity, and viscosity. We start with

the density profiles calculated by Hauck et al. (2013),

but we replace the ∼1000 layers that characterize the

core in these models with two homogeneous layers rep-

resenting the solid inner core and the liquid outer core.

This simplification is warranted because the tidal re-

sponse is dominated by the presence of a liquid outer

core and is largely independent of the detailed den-

sity structure of the core. It reduces the computational

cost by about three orders of magnitude and introduces

only a small (<2%) error in the estimated value of k2.

This error is smaller than the variations induced by the

unknown mineralogy and thermal state of the mantle

(Padovan et al. 2014).

For the core of Mercury, we focus on the Si-bearing

subset of models analyzed by Hauck et al. (2013), be-

cause this subset is most consistent with the chemically

reducing conditions inferred from surface materials (Sec-

tion 6). We also consider the subset of models with a

solid FeS V layer included at the base of the mantle

(Hauck et al. (2013) and Section 7). For the silicate

mantle of Mercury, we consider six mineralogical mod-

els based on the works of Rivoldini et al. (2009) and

Malavergne et al. (2010) (Table 2).

Our use of the Andrade model (Section 8.2) for the

rheological properties of the mantle requires knowledge

of the radial profiles of unrelaxed rigidity µU, tempera-

ture T, and pressure P in the outer solid shell. For each

of the six mineralogical models, we compute a composite

rigidity µRef
U (Table 2) with Hill’s expression (Watt et al.

1976) at T = TRef and P = PRef . The pressure profile in

the outer solid shell is obtained by evaluating the over-

burden pressure as a function of depth. The tempera-

ture in the mantle is computed by solving the static heat

conduction equation with heat sources in spherical coor-

dinates (e.g., Turcotte and Schubert 2002) in the mantle

and crust. For the crust, we adopted the surface value

of the heat production rate H0 = 2.2 × 10−11 W kg−1

(Peplowski et al. 2012). For the mantle, we used a value

of H0/2.5, which is compatible with the enrichment fac-

tor derived by Tosi et al. (2013). Temperature profiles

are fairly insensitive to the value of the thermal con-

ductivity: we used a value km = 3.3 Wm−1K−1 but

confirmed that a value of km = 5 Wm−1K−1 yields es-

sentially the same results. We establish two boundary

conditions: the temperature at the surface of Mercury

TS and the temperature at the base of the mantle Tb.

The latter provides the primary control on the temper-

ature profile. TS is set to 440 K, a value obtained with

an equilibrium temperature calculation. Both Rivoldini

and Van Hoolst (2013) and Tosi et al. (2013) indicate Tb
values in the range 1 600–1 900 K. We define two end-

member profiles: a cold-mantle profile with Tb = 1 600

K and a hot-mantle profile with Tb = 1 850 K. A larger

value of Tb (e.g., 1 900 K) would result in partial melt-

ing at the base of the mantle according to the peridotite

solidus computed by Hirschmann (2000). We did not

consider the presence of partial melting.

There is a scarcity of laboratory data for FeS V, which

is the phase relevant at the pressure and temperature

conditions at the bottom of the mantle of Mercury (Fei

et al. 1995). We consider the effects of the FeS layer

only in the cold-mantle case (Tb = 1 600 K), because

at higher temperatures the FeS would be liquid (see the

phase diagram given by Fei et al. 1995). We model the

rheological response of this layer by assuming that it has

the same rheological properties as those at the base of

the mantle. This assumption results in a lower bound

on the k2 estimates because we expect the viscosity of

this layer to be lower than that of the silicate layer. The

viscosity scales as the exponential of the inverse of the

homologous temperature (i.e., the ratio of the temper-

ature of the material to the solidus temperature) (e.g.,

Borch and Green 1987). At T = 1 600 K, the homolo-

gous temperature of the FeS V is larger than that of the

silicates. In addition, the unrelaxed rigidity of FeS V

is likely to be smaller than that for mantle material be-

cause the rigidity of troilite (or FeS I, the phase at stan-

dard pressure and temperature) is 31.5 GPa (Hofmeister

and Mao 2003).

We apply our calculations to five different models

(nominal, cold and stiff, hot and weak, FeS-layer, and

1-mm grain size). Given the 1 600–1 850 K range for the

basal mantle temperature and 59–71 GPa range for the

unrelaxed rigidity of the mantle, we define a nominal

model with Tb = 1 725 K and µU = 65 GPa. Changes

in basal mantle temperature and unrelaxed rigidity have

similar but opposite effects on the tidal response. Ac-

cordingly, we define two end-member models: a cold and
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Table 2. Mineralogical models for the mantle of Mercury.

Model Grt Opx Cpx Qtz Spl Pl Mw Ol µRef
U (GPa)

CB – 66 4 22 4 4 – – 59

EH – 78 2 8 – 12 – – 65

MA 23 32 15 – – – – 30 69

TS 25 – – – 8 – 2 65 71

MC 15 50 9 – – – – 26 68

EC 1 75 7 17 – – – – 60

Note—The adopted model mineralogies resemble those of enstatite chondrites (EC and EH), Bencubbin-like chondrites (CB),
metal-rich chondrites (MC), a refractory-volatile model (TS), and a model based on fractionation processes in the solar nebula
(MA). For details, see Malavergne et al. (2010; CB and EH), Morgan and Anders (1980; MA), Taylor and Scott (2003; TS
and MC), and Wasson (1988; EC). The central part of the table gives the mineralogical content in terms of the vol.% of its
components, from Malavergne et al. (2010; CB, EH) and Rivoldini et al. (2009; MA, TS, MC, EC). Mineral abbreviations follow
Siivola and Schmid (2007): Garnet (Grt), Orthopyroxene (Opx), Clinopyroxene (Cpx), Quartz (Qtz), Spinel (Spl), Plagioclase
(Pl), Merwinite (Mw), Olivine (Ol). The composite rigidity µRef

U is obtained with Hill’s expression (Watt et al. 1976) at T = TRef

and P = PRef .

Table 3. Characteristics of five mantle models for the esti-
mation of Mercury’s tidal response.

Model µU, GPa Tb, K d, mm FeS?

Nominal 65 1 725 10 no

Cold and stiff 71 1 600 10 no

Hot and weak 59 1 850 10 no

FeS layer 65 1 600 10 yes

1-mm grain size 65 1 725 1 no

Note—Model names correspond to those in Figure 10.

stiff mantle model with Tb = 1 600 K and µU = 71 GPa

and a hot and weak mantle model with Tb = 1 850 K and

µU = 59 GPa. Our fourth model is a cold mantle model
(Tb = 1 600 K) with nominal rigidity (µU = 65 GPa)

and an FeS layer at the bottom of the mantle. In all of

these four models, we use a nominal grain size d = 1 cm,

a value compatible with the estimated grain size in the

mantles of the Moon and Mars (Nimmo et al. 2012;

Nimmo and Faul 2013). Our fifth and last model is

a variation of the nominal model in which we consider a

grain size of d = 1 mm. Model parameters are summa-

rized in Table 3.

Our procedure for evaluating the Love number k2 and

corresponding uncertainties is as follows. For each of the

five cases described in Table 3, we use approximately

6 × 104 density profiles from the previously identified

subsets of models from Hauck et al. (2013). For each

profile, we construct an interior model and calculate the

value of k2. We then fit a Gaussian distribution to the

∼6×104 calculated k2 values, as was done by Padovan

et al. (2014). We report the Love number and associ-

ated error as the mean and standard deviation of the

Gaussian fit. Our values differ somewhat from those of

Padovan et al. (2014) because we incorporated the most

recent estimates of the moments of inertia in this work

(Equations 19 and 20).

8.4. Results

Our Love number calculations for models with a

molten outer core yield values k2 ' 0.5. However, for

models with a completely solid core, we found k2 values

that are approximately an order of magnitude smaller.

Measurements of Mercury’s tidal response (Section 3.4)

therefore confirm the presence of a molten outer core.

Our results also show that the tidal response is en-

hanced by higher mantle basal temperatures and by

lower mantle rigidities (Figure 10).

The comparison of our calculated values with the k2
value measured by Mazarico et al. (2014) indicates that

the observed tidal signal is more compatible with cold,

rigid mantle models (Figure 10). The k2 value measured

by Verma and Margot (2016) admits a wider range of

models but still favors models with a cold and stiff man-

tle or a subset of the FeS-layer models. It is likely that

models with an FeS layer at the bottom of the mantle

and high mantle rigidity (µU = 71 GPa) would also be

compatible with k2 measurements, but there are ques-

tions about the plausibility of such a layer (Knibbe and

van Westrenen 2015; Section 7.4).

The conclusion drawn from the modeling of the tidal

Love number seems robust with respect to details of the

thermal model. For instance, consideration of a sur-

ficial regolith layer with low thermal conductivity in-
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creases the temperature in the interior, which results in

larger k2 model values and further favors a cold and stiff

mantle. Consideration of a higher solidus temperature

and Tb > 1 850 K would also strengthen the conclusion

that Mercury’s mantle is likely cold and stiff. Unfortu-

nately, the robustness of the conclusion is undermined

because of the large standard deviations associated with

the modeled k2 values and because the actual k2 value

may extend beyond the range given by the one-standard-

deviation uncertainties. The overlap in simulated k2
values for the five mantle models implies that even a

more precise k2 measurement would not be sufficient to

identify a unique model at this time. However, a reduc-

tion in uncertainties of both the measured Love number

and moments of inertia will narrow the range of mantle

models that are compatible with observations.

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
k2

Nominal

Cold and stiff

Hot and weak

FeS−layer

1−mm grain size

Figure 10. Calculated values of the tidal Love number
k2 for five models constructed under different assumptions
about the rheological properties and physical structure of the
outer solid shell of Mercury (Table 3). The vertical lines and
hatch patterns represent two independent determinations of
k2 and associated one-standard-deviation uncertainties mea-
sured by radio tracking of the MESSENGER spacecraft. Dot
symbols correspond to the results of Mazarico et al. (2014),
and plus symbols correspond to the results Verma and Mar-
got (2016).

9. INFLUENCE OF SOLID INNER CORE

Torques between layers in Mercury’s interior can in-

fluence the spin state. Peale et al. (2014) derived the

behavior of Mercury’s spin axis orientation under the

influence of a variety of core-mantle torques, includ-

ing gravitational, tidal, magnetic, topographic, viscous,

and pressure torques. They showed that tidal torques

are small in comparison to magnetic and topographic

torques, which are themselves small compared with vis-

cous torques. These dissipative torques would drive the

mantle spin away from the Cassini state if it were not

for the action of a pressure torque between the outer

core and the mantle. The pressure torque is due to

fluid pressure at the core-mantle boundary, which is

not spherically symmetric because of its hydrostatic, ap-

proximately ellipsoidal shape. In the absence of an inner

core, the pressure torque dominates the spin axis evo-

lution and drives the mantle spin close to the Cassini

state position.

Peale et al. (2016) considered the additional torques

due to an inner core. Their theoretical formalism is gen-

eral and applicable to other planets, including Earth.

The shape of the inner core is distorted by the non-

radial gravitational field, and a gravitational torque be-

tween inner core and mantle develops. The relationship

between the observed obliquity and the moment of iner-

tia (Equation 5), which is based on solar torques, must

be modified to account for this additional torque. If

the inner core is small (Ric/R < 0.35), the mantle spin

follows the Cassini state orientation sufficiently closely

that the moment of inertia determination is not compro-

mised. However, if the inner core size exceeds 35% of the

planetary radius, the additional torque would drag the

mantle spin away from the Cassini state by an amount

that exceeds the current observational uncertainty of 5

arcseconds, and the polar moment of inertia would have

to be re-evaluated. In the presence of an inner core,

the obliquity of the mantle spin axis corresponds to a

smaller polar moment of inertia than that inferred from

the situation with no inner core. This change in the

value of the moment of inertia can be evaluated for a

variety of interior models by tracking the evolution of

the spin under the action of all relevant torques and

enforcing the requirement that the mantle spin axis ori-

entation remains within the uncertainty region of the

radar observations. Peale et al. (2016) performed this

calculation for a variety of inner core sizes and inner core

densities. They found that the required adjustment to

the value of the moment of inertia increases with both
inner core density and inner core size. For an inner

core density of 9 300 kg m−3, they found corrected val-

ues of C/MR2 = 0.346, 0.343, 0.330, 0.327, and0.323 for

inner core sizes of Ric/R = 0.0, 0.3, 0.4, 0.5, and0.6, re-

spectively (Peale et al. 2016). Because 85% of the best-

fit interior models (Section 10) have inner core densities

below 9 300 kg m−3, the corrections identified by Peale

et al. (2016) likely represent upper bounds on any nec-

essary adjustment to the moment of inertia due to the

presence of an inner core.

Because of the possible impact of an inner core on the

determination of Mercury’s moment of inertia (Dumb-

erry et al. 2013; Peale et al. 2016), it is important to

place bounds on the size of the inner core. We review

six lines of evidence. (1) Peale et al. (2016) found that

in models with inner cores larger than Ric/R = 0.3,
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the inferred mantle densities were only ∼3 000 kg m−3.

Such low mantle densities are difficult to explain be-

cause they are lower than those of materials that likely

dominate Mercury’s Fe-poor interior, such as Mg-rich

olivine and Mg-rich orthopyroxene, which have densities

of 3 200 − 3 300 kg m−3. If the density information is a

reliable indicator, the calculations of Peale et al. (2016)

suggest an inner core size Ric/R ≤ 0.3. (2) A similar

conclusion can be reached by examining the distribu-

tion of internal structure models. We find that 65% of

models that provide the best fit to existing observations

(Section 10) have a small inner core (Ric/R < 0.35). (3)

Independent constraints on inner core size arise from

the fact that planetary contraction is due in part to

inner core solidification. The observed planetary con-

traction of 7 km (Byrne et al. 2014; Chapter 10) sug-

gests that the inner core size does not exceed 800–1 000

km, i.e., Ric/R . 0.4, (Grott et al. 2011; Dumberry

and Rivoldini 2015). Knibbe and van Westrenen (2015)

found upper bounds as large as Ric/R . 0.7 for certain

values of model parameters, but they did not consider

the effects of mantle contraction, which may amount

for about half of the planetary contraction (Tosi et al.

2013). (4) Simulations of Mercury’s magnetic field pro-

vide another indicator about the size of the inner core.

Dynamo models that can reproduce the observed fea-

tures of Mercury’s magnetic field (Cao et al. 2014) favor

small inner cores (Ric/Roc < 0.5, i.e., Ric/R < 0.4). (5)

Dumberry and Rivoldini (2015) further argued that, in

some situations, the dynamics of snow formation in the

fluid core would place an upper limit on the inner core

radius of 650 km (Ric/R < 0.27). (6) Finally, several au-

thors have noted that a large inner core (Ric/R > 0.4)

would produce detectable signatures in the librations of

the planet (Veasey and Dumberry 2011; Dumberry 2011;

Van Hoolst et al. 2012), but such signatures have not

been detected to date. There is considerable interest in

improving measurements of the longitudinal librations

in an attempt to place bounds on the size of Mercury’s

inner core (Veasey and Dumberry 2011; Dumberry 2011;

Van Hoolst et al. 2012), although it is not clear that the

precision of the current measurement techniques would

enable a detection of the inner core signature.

To summarize, there is some circumstantial evidence

that Mercury’s inner core is small (Ric/R . 0.35) and

that the existing estimate of C/MR2 = 0.346 ± 0.009

remains valid. However, no direct measurements of the

inner core size exist, which reduces our confidence in the

knowledge of Mercury’s moment of inertia. Improved

measurements of the librations or direct measurements

of the inner core size will be required to eliminate the un-

certainty. One approach would be to deploy seismome-

ters on the surface and measure seismic signals triggered

by tides, internal activity, explosive charges, or impacts.

10. REPRESENTATIVE MODEL

The observational evidence from spin, tidal, and com-

positional observations, summarized in Table 4, favors

a Mercury interior model with a core composition dom-

inated by Fe-Si and with a small or no solid FeS layer.

Therefore, models in which the core is treated as an

Fe-Si end-member are likely representative of Mercury’s

interior.

Our preferred models include bounds on crustal thick-

ness and density. Analyses of gravity-to-topography ra-

tios suggest an average crustal thickness of 35 ± 18 km

(Padovan et al. 2015) and > 38 km (James et al. 2015).

We combine these bounds into a preferred crustal thick-

ness in the range 35–53 km (Table 4). The grain density

of crustal material can be determined from a norma-

tive mineralogy, which itself is guided by observations of

elemental abundances at the surface of Mercury (Wei-

der et al. 2014). With this approach, Padovan et al.

(2015) obtained grain densities of 3 014 kg m−3 and 3 082

kg m−3 for the northern smooth plains and for heav-

ily cratered terrain and intercrater plains, respectively.

If we take into account porosity values of up to 12%

as observed on the Moon (Wieczorek et al. 2013), our

preferred crustal densities are in the range 2 700–3 100

kg m−3 (Table 4).

We updated the analysis of Hauck et al. (2013) to

conform to the radius and density values listed in Ta-

ble 4. In addition, we specified an initial crustal thick-

ness in the range 0–70 km, a crustal density in the

range 2 700–3 100 kg m−3, and a core Si content in the

range 0–17 wt %. This analysis yielded 1 016 236 Fe-Si

interior models with considerable scatter in structural

properties. From these models, one can extract a ran-

dom sample of models for which the distributions of

C/MR2 and Cm+cr/C values match the observed values

and corresponding one-standard-deviation uncertainties

(Table 4). We further restricted the set of preferred

models to those that provide the closest agreement to

the observed values of C/MR2 and Cm+cr/C. All 1 479

models in this subset have RMS< 0.005, where the RMS

metric is described by equation (32). These 1 479 best-

fit models constitute a family of representative models

that can be used to illustrate the remaining scatter in

the values of Mercury’s internal structure parameters

(Table 5). Among the subset of models that provide

the closest match to observational data, the radius of

Mercury’s core, Roc = 2024± 9 km, is determined with

<0.5% precision and represents 83% of the radius of the

planet.
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Table 4. Summary of observational constraints used for the calculation of internal structure models.

Parameter Symbol Value Uncertainty Unit

Mass M 3.301110 0.00015 1023 kg

Radius R 2 439.36 0.02 km

Density ρ 5 429.30 0.28 kg m−3

Gravity spherical harmonic C20 -5.0323 0.0022 10−5

Gravity spherical harmonic C22 0.8039 0.0006 10−5

Tidal Love number k2 0.455 0.012

Obliquity θ 2.036 0.058 arcminutes

Amplitude of longitude librations φ0 38.7 1.0 arcseconds

Moment of inertia factor C/MR2 0.346 0.009

Moment of inertia of mantle and crust Cm+cr/C 0.425 0.016

Crustal thickness hcr 35–53 km

Crustal density ρcr 2 700–3 100 kg m−3

Note—The first eight values are direct measurements. The remaining four values are derived quantities that rely on a variety
of assumptions. These assumptions, described below, are justified considering the data obtained to date and our knowledge of
terrestrial planets. However, additional data are required to fully verify the validity of some of these assumptions. Moment
of inertia assumptions: (1) Mercury is in Cassini state 1, (2) core does not follow mantle on the 88-day timescale of longitude
librations, (3) core does follow mantle on the 300 000-year timescale of orbital precession, (4) Ric/R < 0.35. Crustal thickness
assumptions: (1) filtering of gravity and topography data is effective in isolating the crustal signal, (2) compensation of to-
pography is well approximated by Airy isostasy. Crustal density assumptions: (1) elemental abundances derived from X-ray
fluorescence measurements sampling the uppermost 100 µm of the surface are applicable to the entire crust, (2) normative
mineralogy derived from elemental abundances correctly captures crustal minerals, (3) porosity of the crust does not exceed
12%.

We describe an example among the 1 479 models in

some detail (Table 5 and Fig. 11). This model is rep-

resentative in the sense that its structural properties

match Mercury’s mass, radius, and moments of inertia,

as well as our preferred bounds on crustal thickness and

density. However, we emphasize that Mercury’s inner

core properties are unknown. The inner core proper-

ties of the chosen model are therefore illustrative and

not representative. We also emphasize that our cho-

sen model is no better than any other model that fits

the observational data. The model does have desirable

structural properties, and, as such, it may be useful for

a variety of modeling tasks. We refer to this model as

the Preliminary Reference Mercury Model (PRMM).

In PRMM, Mercury’s mass is divided among inner

core (0.5%), outer core (73.4%), mantle (23.5%), and

crust (2.5%). The central pressure is 35.77 GPa, and

the pressure at the core-mantle boundary is 5.29 GPa.

Table 6 lists the parameters that we used to construct

PRMM.

PRMM was constructed with the benefit of Earth-

based and MESSENGER observations that were not

available in earlier modeling efforts. Salient differences

between PRMM and pre-MESSENGER models include

narrower ranges of admissible structural parameter val-

ues compared with the ranges considered by Harder and

Schubert (2001), Van Hoolst and Jacobs (2003), and

Riner et al. (2008) and a core size that is substan-

tially larger than the core sizes assumed by Siegfried

and Solomon (1974; 1 660–1 900 km), Stevenson et al.

(1983; 1 840–1 900 km), Spohn et al. (2001; 1 860 ± 80

km), and Breuer et al. (2007; 1 900 km).

11. IMPLICATIONS

11.1. Thermal evolution

An accurate understanding of Mercury’s thermal evo-

lution requires knowledge of the internal structure,

because interior properties dictate the processes and

boundary conditions that have governed the evolution.

The ∼400 km thickness of the silicate mantle and crust

has wide-ranging implications. The thickness of this

layer is a fundamental control on both the vigor and ul-

timately the longevity of mantle convection (e.g., Michel

et al. 2013; Tosi et al. 2013; Chapter 19). The vigor of

the convection is described by the Rayleigh number,

which is the ratio of buoyancy forces to viscous forces

in a fluid and scales as the cube of the thickness the

layer (e.g., Schubert et al. 2001). Pre-MESSENGER
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Table 5. Statistical properties of interior structure model parameters and corresponding PRMM values.

Parameter minimum 1st quartile median 3rd quartile maximum mean std. dev. PRMM

C/MR2 0.34430 0.34523 0.34596 0.34670 0.34771 0.34597 0.00089 0.34573

Cm+cr/C 0.42294 0.42418 0.42496 0.42578 0.42712 0.42497 0.00102 0.42482

Ric 0.01877 310.780 623.280 1003.60 1790.82 666.577 420 369.433

Roc 2009.31 2016.69 2021.30 2029.62 2062.56 2023.66 9.09 2015.48

Rm 2369.37 2385.60 2401.37 2419.32 2439.35 2402.61 19.9 2401.20

ρic 7368.25 8295.31 8659.58 8991.33 10214.90 8652.52 488 8215.62

ρoc 5937.29 6775.76 7010.49 7087.14 7187.97 6909.98 237 7109.73

ρm 3206.19 3288.90 3333.75 3388.10 3593.18 3343.35 71.8 3278.98

ρcr 2700.28 2807.00 2898.57 3006.28 3099.78 2903.03 116 2979.19

ρic+oc 6671.42 6976.74 7053.32 7102.67 7190.40 7034.32 88.3 7116.54

ρm+cr 3198.01 3255.43 3286.49 3327.32 3531.21 3295.84 53.0 3247.21

ρ 5428.34 5429.11 5429.30 5429.52 5430.53 5429.32 0.31 5429.66

Mic 2.588×1008 1.101×1021 8.962×1021 3.582×1022 1.773×1023 2.288×1022 2.95×1022 1.735×1021

Moc 6.728×1022 2.084×1023 2.351×1023 2.428×1023 2.446×1023 2.213×1023 2.93×1022 2.423×1023

Mm 6.964×1022 7.464×1022 7.789×1022 8.152×1022 8.631×1022 7.813×1022 4.15×1021 7.771×1022

Mcr 1.998×1018 4.319×1021 8.020×1021 1.147×1022 1.567×1022 7.822×1021 4.21×1021 8.368×1021

Mic+oc 2.432×1023 2.439×1023 2.441×1023 2.444×1023 2.454×1023 2.442×1023 3.95×1020 2.441×1023

Mm+cr 8.484×1022 8.583×1022 8.611×1022 8.639×1022 8.702×1022 8.609×1022 3.92×1020 8.622×1022

M 3.301×1023 3.301×1023 3.301×1023 3.301×1023 3.302×1023 3.301×1023 1.93×1019 3.301×1023

Note—Statistical properties of structural parameters of 1 479 best-fit models (see text) extracted from about a million models of
Mercury’s interior generated with the method of Hauck et al. (2013). All of these models incorporate an Fe-Si core composition
and no solid FeS layer. Masses, radii, and densities are expressed in kg, km, and kg m−3, respectively. Symbols are defined in
Fig. 7. The last column describes a representative model, PRMM, with desirable structural properties. Values for the inner
core in PRMM are illustrative only.

Table 6. Parameters used to construct PRMM.

Parameter Symbol Value Units

Mass fraction of Si (below Roc) χSi 12.83 wt %

Liquid Fe reference density ρ0,Fe,1 6471.29 kg m−3

Liquid Fe coefficient of thermal expansion α0,Fe,1 9.2 × 10−5 K−1

Liquid Fe bulk modulus K0,Fe,1 115.47 GPa

Liquid Fe pressure derivative of bulk modulus K′0,Fe,1 4.93

Solid γ Fe reference density ρ0,Fe,s 7381.34 kg m−3

Solid γ Fe coefficient of thermal expansion α0,Fe,s 6.4 × 10−5 K−1

Solid γ Fe bulk modulus K0,Fe,s 190.73 GPa

Solid γ Fe pressure derivative of bulk modulus K′0,Fe,s 5.62

Note—Temperature-dependent parameters are calculated for the value of the temperature at the core-mantle boundary Tcmb =
1945 K.
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Figure 11. Illustration of the density, gravitational accel-
eration, and pressure corresponding to a model of Mercury’s
interior that closely matches the mass, radius, and moments
of inertia of Mercury (PRMM). This model also matches our
preferred bounds on crustal thickness and density (Table 4).
This model incorporates an Fe-Si core composition and no
solid FeS layer. Inner core properties are merely illustrative
and not representative. Vertical dotted lines indicate tran-
sitions with increasing radius between inner and outer core,
core and mantle, and mantle and crust.

models typically invoked a mantle thickness of ∼600 km

and therefore over-estimated the vigor of the convection

by a factor of a few. The MESSENGER-derived value

enables more accurate calculations. In particular, the

thin mantle implies that convection in Mercury’s mantle

has been less vigorous than previously thought and may

have completely ceased if the Rayleigh number fell be-

low the critical value for convection. A detailed analysis

of Mercury’s thermal evolution is given in Chapter 19.

11.2. Surface geology

Volcanism is intimately tied to mantle convection be-

cause decompression melting is the primary source of

magma in terrestrial planets. Mercury’s crust, which

is the product of perhaps the most efficient crustal ex-

traction among the inner planets (James et al. 2015;

Padovan et al. 2015), was dominantly generated early

in the planet’s history when radiogenic heat production

was higher (Chapter 19). Mercury’s thin mantle lim-

its the amount of heat transfer because of the reduced

vigor of convection and a possible transition to conduc-

tion (Section 11.1). The reduced heat transfer lowers

the amount of volcanism, cooling, and ensuing global

contraction, all of which affect the geological evolution

of the surface. In particular, the reduced heat transfer

hypothesis is consistent with observations of limited vol-

canism in the past ∼3.5 billion years and an amount of

radial contraction accommodated by thrust faulting of

no more than 7 km (Byrne et al. 2014; Chapters 10 and

19). Tectonic patterns observed at the surface may be

due to the interplay of tidal despinning and global con-

traction (Chapter 10). Surface composition is also af-

fected by mantle thickness, because the horizontal scale

of convection cells is similar to the thickness of the con-

vecting layer. Investigations of the source regions of

surface volcanic material indicate at least two separate

sources (Charlier et al. 2013), consistent with limited

mixing of the mantle due to the small horizontal scales

and limited vigor of convection (Chapter 19).

11.3. Capture in 3:2 resonance

Mercury’s distinctive 3:2 spin-orbit resonance was es-

tablished at least in part because of Mercury’s internal

structure. The structure of the interior and the nature

of the interactions among inner core, outer core, and

mantle have a profound influence on the evolution of

the spin state and the response of the planet to external

forces and torques. These processes dictate the overall

tectonic and insolation regimes that, in turn, have wide-

ranging implications for a variety of questions related to

Mercury’s shape, surface geology, thermal regime, and

even the presence of polar ice deposits.

The history of Mercury’s spin-orbit configurations has

been markedly affected by the presence of a liquid core.

It has been suggested that increased energy dissipation

at a core-mantle interface would have led to near-certain
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capture in specific spin-orbit resonances (Goldreich and

Peale 1967; Counselman and Shapiro 1970; Peale 1988),

although some models indicate 100% capture probabil-

ity in the 2:1 resonance (Peale and Boss 1977), which

would prevent evolution to the current configuration.

A solution to this problem was found by Correia and

Laskar (2004), who showed that chaotic variations in or-

bital eccentricity destabilize most spin-orbit resonances

and ultimately lead to a 55% capture probability in the

3:2 resonance. After spin state observations revealed

Mercury’s liquid core, Correia and Laskar (2009) added

core-mantle friction to their model. They found capture

probabilities of 32% (2:1), 26% (3:2), and 22% (5:2).

While capture in the 3:2 spin-orbit configuration is not

the most probable, the specific outcome depends on

the particular realization of orbital eccentricity evolu-

tion that Mercury experienced. The capture probability

can be increased either if Mercury’s eccentricity reached

very low values (Correia and Laskar 2009) or if Mercury

started in a retrograde spin configuration and became

locked in a synchronous state that was later destabilized

by large impacts (Wieczorek et al. 2012). Core-mantle

friction also affects Mercury’s obliquity evolution, which

itself can affect resonance capture probabilities (Correia

and Laskar 2010).

The capture probability results depend on the choice

of the tidal torque formulation, which often relies on as-

sumptions of constant time lag or constant phase lag.

Models that incorporate a different formulation based

on a Darwin-Kaula expansion of the tidal torque yield

different capture probabilities (Makarov 2012; Noyelles

et al. 2014) from models that rely on a formulation with

constant time lag or constant phase lag. The model

of Makarov (2012) predicts 100% capture probability in

the 3:2 resonance but does not include orbital eccen-

tricity variations. The model of Noyelles et al. (2014)

predicts capture in a 2:1 or higher resonance unless Mer-

cury was captured in the 3:2 resonance early in its evolu-

tion, i.e., before differentiation was complete. However,

Correia and Laskar (2012) argued that large collisions

destabilized all spin-orbit resonances experienced early

in Mercury’s history and that orbital eccentricity evo-

lution dictated the final outcome. According to Correia

and Laskar (2012), the most probable outcome (∼50%)

is capture in the 3:2 resonance, regardless of the details

of the tidal formulation, core-mantle friction formula-

tion, or collisional history.

Estimates for the timing of capture in the 3:2 reso-

nance range from very early (i.e., before differentiation

was complete, Noyelles et al. 2014) to very late (i.e., 109

y after formation, Tosi et al. 2015).

11.4. Magnetic field generation

Knowledge of Mercury’s internal structure played a

key role in solving a long-standing puzzle related to the

origin of the magnetic field. The field that was detected

by Mariner 10 (Ness et al. 1974) appeared to have an

orientation similar to that of the spin axis. For many

years, a dynamo mechanism involving motion in an elec-

trically conducting molten outer core was the preferred

explanation for the origin of the field (Ness et al. 1975;

Stevenson 1983), but alternative theories that do not

require a currently liquid core, such as remanent mag-

netism in the crust, could not be ruled out (Stephenson

1976; Aharonson et al. 2004). Because an active dy-

namo was not the only possible mechanism for produc-

ing the observed field, the detection of the magnetic field

left the nature of Mercury’s core uncertain. The unam-

biguous dynamical evidence provided by libration mea-

surements (Section 4.3) indicated that Mercury’s outer

librating shell is decoupled from the deep interior and

that Mercury’s outer core must be molten. Because a

liquid core is a necessary condition for dynamo action,

the case for a currently active dynamo was strengthened

by the spin state observations. Magnetic field observa-

tions from MESSENGER’s first two flybys could not be

unambiguously attributed to a dynamo mechanism (An-

derson et al. 2008, 2010). After orbital insertion, how-

ever, the case for a deep dynamo gradually became in-

controvertible (Anderson et al. 2012; Chapter 5).

Stevenson (1983, 2010) has shown that the existence

of convection in a partially molten core, rather than the

vigor of that convection, is the primary determinant of

dynamo action. He estimated that a fluid layer thickness

of order 100 km or more is required for sustaining con-

vection by compositional buoyancy in Mercury. Given

the ∼2000 km radius of the fluid outer core determined
by Mercury’s moments of inertia, a convecting layer of

sufficient depth can be easily accommodated. If it were

not, the signature of an enormous inner core would be

detectable (Section 9). The lack of information about

the size of Mercury’s inner core prevents a thorough in-

vestigation of the working of the dynamo responsible

for Mercury’s magnetic field. Measurement of the inner

core size is therefore an important goal for future inves-

tigations. Detailed discussions of Mercury’s magnetic

field and models for the generation of that field over the

history of the planet are given in Chapters 5 and 19.

12. CONCLUSIONS

We have reviewed Mercury’s rotational dynamics

(Section 2) and showed how gravity (Section 3) and spin

(Section 4) observations can provide powerful bounds on

Mercury’s internal structure. We discussed the results
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of two- and three-layer structural models (Sections 5),

which provide a good approximation to the results of

more complex models.

Additional constraints derived from compositional

studies (Section 6) enable the development of multi-

layer models, which admit a wide range of solutions

(Section 7). To further constrain the range of possible

models, we calculated the tidal response of the planet

and compared it with observations of the k2 Love num-

ber (Section 8). We have examined the influence of an

inner core on the spin state and the determination of the

moment of inertia (Section 9), and we have presented

circumstantial evidence for a small inner core.

We have described the statistical properties of 1 479

interior models that provide the best fit to the moment

of inertia data. We also described a Preliminary Refer-

ence Mercury Model that incorporates all existing con-

straints, including constraints on crustal density and

thickness (Section 10). The description of radial pro-

files of density, gravitational acceleration, and pressure

will prove useful for a variety of modeling tasks.

We have discussed the wide-ranging implications of

Mercury’s internal structure on its thermal evolution,

surface geology, capture in its distinctive spin-orbit res-

onance, and magnetic field generation (Section 11).

Peale (1976)’s ingenious procedure to determine the

size and state of Mercury’s core permeates this work.

His insight allowed us to quantify the properties of Mer-

cury’s core such that, at the time of this writing, we

know more about the core of Mercury than that of any

planet other than Earth.

Additional observations are necessary to place bounds

on the size of Mercury’s inner core, either by improved

measurements of longitudinal librations or seismological

observations. The BepiColombo mission (Novara 2002;

Balogh and Giampieri 2002; Jehn et al. 2004; Balogh

et al. 2007; Benkhoff et al. 2010; Pfyffer et al. 2011;

Cicalò and Milani 2012; Chapter 20) or a lander mis-

sion (Wu et al. 1995) are expected to improve our knowl-

edge of Mercury’s internal structure substantially.
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