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There is accumulating evidence that macroevolutionary patterns of mammal

evolution during the Cenozoic follow similar trajectories on different conti-

nents. This would suggest that such patterns are strongly determined by

global abiotic factors, such as climate, or by basic eco-evolutionary processes

such as filling of niches by specialization. The similarity of pattern would be

expected to extend to the history of individual clades. Here, we investigate

the temporal distribution of maximum size observed within individual

orders globally and on separate continents. While the maximum size of indi-

vidual orders of large land mammals show differences and comprise several

families, the times at which orders reach their maximum size over time show

strong congruence, peaking in the Middle Eocene, the Oligocene and the

Plio-Pleistocene. The Eocene peak occurs when global temperature and

land mammal diversity are high and is best explained as a result of niche

expansion rather than abiotic forcing. Since the Eocene, there is a significant

correlation between maximum size frequency and global temperature proxy.

The Oligocene peak is not statistically significant and may in part be due

to sampling issues. The peak in the Plio-Pleistocene occurs when global

temperature and land mammal diversity are low, it is statistically the most

robust one and it is best explained by global cooling. We conclude that

the macroevolutionary patterns observed are a result of the interplay

between eco-evolutionary processes and abiotic forcing.
1. Introduction
The ecological opportunity provided by the end Cretaceous extinction, which

eliminated dinosaurs and other large-bodied taxa, led to a rapid increase in

mammal body size [1–4]. Within 30 Myr, mammals ranged in size from 2 g to

over 10 tons, filling a variety of ecological niches [2]. This pattern of rapid expo-

nential growth, followed by a plateau as physiological, ecological and life-history

factors imposed constraints on large-bodied mammals, is found on all continents

during the Cenozoic. This led to the suggestion that physical drivers such as
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temperature and land mass may have affected maximum

size fluctuations through time [2], even if eco-evolutionary

processes such as filling of niches by specialization and compe-

tition have most probably driven the early phase of rapid body

size increase [5]. There is currently little agreement as to which

is the dominant effect as opposite conclusions have been

reached by studies using different approaches [2,3,6–8].

Two main hypotheses encapsulate the major factors most

widely thought to underlie the evolution of mammal body

size, Cope’s rule and Bergmann’s rule. Cope’s rule refers to the

tendency of mammal clades to increase in size throughout their

evolutionary history, an observation widely attributed to Cope

[3,9–12]. Alroy [1] provided evidence supporting Cope’s rule

showing that, based on body mass estimates, North American

fossil mammal species are on average 9.1% larger than older

species in the same genera. Raia et al. [3] suggest that Cope’s

rule is explained by increasing clade-level niche expansion

during the Cenozoic because of ecological specialization of

species rather than active selection for larger size.

Bergmann’s rule refers to the tendency of the body size of

species within a taxonomic group to be larger in colder

environments, both across time and space. It is often con-

sidered to imply that evolution of larger size is driven by

factors associated with climate, based on the physiological

benefits of large body volume under cold conditions [13].

Not only cold, but also dry and seasonally harsh climatic con-

ditions can favour large body size through benefits in increased

fasting endurance, increased ability to migrate following

favourable conditions and decreased loss of water [13,14].

Other hypotheses of abiotic, environmental factors affecting

body size evolution have concentrated on the possible effects

of atmospheric oxygen percentage and land area on maximum

body size [6,7,15,16].

Janis [17] and later Smith et al. [2] already noted similar

evolutionary trends among mammals across the continents

and related them causally to global climatic and vegetation

changes as well as dispersal events during the Cenozoic.

Jernvall et al. [18] also showed highly congruent trends

between three continents in the Cenozoic history of mammal

diversity and disparity of dental morphology based on data

compiled by Savage & Russel [19]. The observation of congru-

ent evolutionary patterns on separate continents is thus well

established and deserves attention. To explore the patterns in

more detail, we therefore investigated the patterns of maxi-

mum size evolution in terrestrial mammal orders and

analysed them in relation to proxy data for global temperature,

atmospheric oxygen content and taxonomic diversity. In

addition to analysing the maximum size evolution for each

order, we analysed the frequency at which orders reached

their maximum size in successive time intervals at the sube-

poch level. This approach allowed us to separate between

the patterns of maximum size evolution of the orders and

the timing at which maximum size typically occurs in mam-

mals. Any congruence in the timing of maximum size can

then be evaluated against the hypotheses of how eco-evol-

utionary processes and abiotic forcing have affected mammal

body size evolution during the Cenozoic.
2. Material and methods
Our analyses used a database of the largest mammalian species

in each order for each subepoch of the Cenozoic on each different
continent (MAMMOTH v1.0) [2]. The mass estimates provided in

MAMMOTH were obtained in a variety of ways. For some

mammal species, estimates were directly available from the pri-

mary or the secondary literature or from online databases

(Paleobiology Database (PaleoBD), http://paleobiodb.org/cgi-

bin/bridge.pl); New and Old Worlds Database of Fossil

Mammals (NOW), University of Helsinki, Mikael Fortelius

(coordinator), http://www.helsinki.fi/science/now/). Primary

literature was preferentially used as the source. For other species,

body mass was estimated using either molar or limb measure-

ments obtained from the literature, unpublished compilations

provided by authorities, extracted from online databases or

measured directly from museum specimens. Molars, in particu-

lar, provide a robust basis for estimating mass for both fossil

and modern mammals [20]. Mass was estimated from skeletal

or dental measurements using ordinal or family specific allo-

metric regressions based on extant taxa. Fossil ages were

standardized using the midpoint for each Cenozoic subepoch

on the geological time scale [21].

We plotted maximum size for long-duration orders globally

and on continents separately, and analysed whether these patterns

are correlated with any abiotic variable (atmospheric oxygen

percentage [15], global land area [22], or d18O fraction in global

marine isotope record [23]). For the present purposes, the analysis

was restricted to terrestrial habitats and well sampled, terrestrial

placental mammal orders with long durations in the fossil

record. We used data for North America, Eurasia, Africa and

South America. Australia and Antarctica were excluded because

of lack of extensive Cenozoic mammal fossil records. The South

American record is incomplete and results are only shown for

the maximum size trends of the orders.

We analysed the frequency of the largest maximum body size

occurrence in terrestrial placental mammal orders on each

subepoch of the Cenozoic in order to examine whether they typi-

cally follow a specific pattern of maximum size occurrence or

whether there are times when multiple orders tend to reach

maximum size simultaneously. This was done by counting the

number of orders that reach their maximum size for a given sub-

epoch, both globally and on continents separately, and then

calculating the ratio of the number of orders reaching their maxi-

mum to the total number of orders present in a given subepoch.

Hereafter, we refer to this metric as maximum size frequency

(MxSF). We used a likelihood ratio (LR) test [3,24] to evaluate

whether there are statistically significant peaks in the MxSF

through time globally and on the major continents separately.

For the LR test, an average MxSF was calculated by dividing

the sum of the numbers of maximum size orders by the sum

of the numbers of orders present over the whole time series,

and this average MxSF value was used to calculate a predicted,

unbiased number of maximum size orders for each time bin

based on the number of orders present. Likelihood values for

observed and predicted numbers of maximum size orders of

the total numbers of orders present were then calculated for

each time bin. The LRs were then calculated comparing the like-

lihoods of the observed number of maximum size orders against

the likelihoods of the predicted number of maximum size orders

for each time bin.

We examined the effect of evolutionary time on MxSF by

plotting the number of orders that have their maximum size

against the time from origination to maximum size in those

orders both in absolute time (Myr ¼millions of years) and gen-

erations (Mgen ¼millions of generations; see [25] for the method

of estimating generation times).

We did a multiple regression analysis in order to find out

whether any of the abiotic factors (atmospheric oxygen percen-

tage, global land area or d18O fraction in global marine isotope

record), absolute time in Myr or number of orders (ordinal diver-

sity) correlate with the temporal pattern of MxSF. The MxSF
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Figure 1. Maximum body size in major terrestrial mammal orders on continents throughout the Cenozoic. x-axis ¼ time in Myr, y-axis ¼ maximum body mass
(log-transformed).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132049

3



0

5

10

15

20

60 50 40 30 20 10 0

global
Eurasia
North America
Africa

–10

0

10

20

30

40

50

60

70
M

xS
F 

(%
)

60 50 40 30 20 10 0
time (Myr)

time (Myr)

time (Myr)

–10

0

10

20

30

40

50

60

70

M
xS

F 
(%

)

60 50 40 30 20 10 0

Africa
Eurasia
North America

(a) (b)

(c)

no
. o

rd
er

s

Figure 2. MxSF through time. (a) Global MxSF as percentage of terrestrial mammal orders. (b) Ordinal diversity as number of mammal orders included in this study.
(c) MxSF in Africa, Eurasia and North America.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132049

4

values were not log-transformed for this analysis. The multiple

correlation analysis of MxSF and the predicting variables were

done separately for the early phase of exponential maximum

body size evolution (from the beginning of the Cenozoic

65.5 Ma to the Late Eocene 33.9 Ma) and for the time since the

saturation of maximum size evolution (from Late Eocene

33.9 Ma to present), based on the results by Smith et al. [2]. By

doing this, we seek to answer the question of whether the

timing of maximum size occurrence in mammal orders is

driven by abiotic factors or only by basic eco-evolutionary pat-

terns. If there are significant temporal peaks of ordinal MxSF,

and if these peaks correlate with time, ordinal diversity or abiotic

factors (climate, land area or atmospheric oxygen), we can con-

clude that those factors have played a significant role in the

maximum size evolution of mammals.
3. Results
The major orders of large terrestrial mammals show mostly rela-

tivelysimilar patterns of maximum size evolution throughout the

Cenozoic across the major continents (figure 1), and their

maximum size is in most cases significantly correlated with

the global d18O data and land area estimates through the

Cenozoic (electronic supplementary material, table S1). This

result is consistent with the overall global pattern of maximum
sizeevolution inmammals [2].Within theorders, there istypically

no single clade which would dominate the maximum size range,

but instead there are multiple clades which present the maxi-

mum size at different times. Repeated replacements of clades

having maximum size within the orders throughout their Ceno-

zoic evolution are evident in Perissodactyla (Lophiodontidae—

Brontotheriidae—Hyracodontidae—Rhinocerotidae), in Probos-

cidea (Phosphatheriidae—Numidotheriidae—Barytheriidae—

Deinotheriidae—Elephantidae), in Artiodactyla (Diacodexi-

dae—Anthracotheriidae—Entelodontidae—Camelidae/Hippo-

potamidae), in Carnivora (Miacidae—Amphicyonidae—

Ursidae), in Creodonta (Oxyaenidae—Hyaenodontidae), in

Rodentia (Ischyromyidae—Castoridae—Dinomyidae) and in

Old World Primates (Notharctidae—Parapithecidae/

Propliopithecidae—Hominidae).

The MxSF shows three global peaks during the Cenozoic:

Middle Eocene, Late Oligocene and Late Pliocene–Pleistocene

(figure 2a; electronic supplementary material table S2). The

Middle Eocene and the Late Pliocene–Pleistocene peaks are

statistically significant based on the LR test (table 1), whereas

the Late Oligocene peak is not quite significant. The global

MxSF peaks are reflected on the Eurasian and North American

continents, but not in Africa, which lacks extensive Palaeogene

mammal record (figure 2). The Pleistocene peak is statistically

significant and very prominent in Eurasia and North America,



Table 1. Likelihood ratio values for MxSF through the Cenozoic. (LR ¼ Likelihood ratio. Significant LR values are given in bold.)

continent subepoch time (Myr)
no. orders
present

no. orders
with max. size MxSF (%) LRT

global Early Palaeocene 63.3 8 1 13 0.498

Middle Palaeocene 60.2 9 1 11 0.379

Late Palaeocene 57.25 14 0 0 0.022

Early Eocene 52.5 17 2 12 0.189

Middle Eocene 42.9 20 6 30 32.779

Late Eocene 35.55 17 2 12 0.189

Early Oligocene 31.15 14 2 14 0.43

Late Oligocene 25.715 15 4 27 6.489

Early Miocene 19.5 13 1 8 0.127

Middle Miocene 13.79 13 1 8 0.127

Late Miocene 8.47 12 1 8 0.167

Early Pliocene 4.465 11 2 18 0.977

Late Pliocene 2.703 10 5 50 113.74

Pleistocene 0.9035 10 6 60 506.954

Holocene 0.005 8 1 13 0.498

summary 191 35 18.3

Eurasia Early Palaeocene 63.3 5 0 0 0.255

Middle Palaeocene 60.2 6 0 0 0.194

Late Palaeocene 57.25 9 3 33 7.916

Early Eocene 52.5 11 2 18 1.013

Middle Eocene 42.9 12 1 8 0.170

Late Eocene 35.55 8 3 38 10.403

Early Oligocene 31.15 7 2 29 3.022

Late Oligocene 25.715 7 1 14 0.668

Early Miocene 19.5 7 0 0 0.148

Middle Miocene 13.79 8 0 0 0.112

Late Miocene 8.47 8 1 13 0.508

Early Pliocene 4.465 7 1 14 0.668

Late Pliocene 2.703 7 2 29 3.022

Pleistocene 0.9035 7 4 57 61.849

Holocene 0.005 7 1 14 0.668

summary 116 21 18.1

North America Early Palaeocene 63.3 5 1 20 0.953

Middle Palaeocene 60.2 8 0 0 0.108

Late Palaeocene 57.25 11 3 27 2.630

Early Eocene 52.5 15 5 33 12.662

Middle Eocene 42.9 14 5 36 16.721

Late Eocene 35.55 9 2 22 1.199

Early Oligocene 31.15 7 0 0 0.143

Late Oligocene 25.715 5 0 0 0.249

Early Miocene 19.5 4 0 0 0.329

Middle Miocene 13.79 5 0 0 0.249

Late Miocene 8.47 5 0 0 0.249

Early Pliocene 4.465 5 1 20 0.953

Late Pliocene 2.703 6 1 17 0.722

(Continued.)
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Table 1. (Continued.)

continent subepoch time (Myr)
no. orders
present

no. orders
with max. size MxSF (%) LRT

Pleistocene 0.9035 6 4 67 40.412

Holocene 0.005 6 1 17 0.722

summary 111 23 20.7

Africa Early Palaeocene 63.3 0 0 0 1.000

Middle Palaeocene 60.2 0 0 0 1.000

Late Palaeocene 57.25 3 0 0 0.218

Early Eocene 52.5 3 0 0 0.218

Middle Eocene 42.9 3 0 0 0.218

Late Eocene 35.55 6 1 17 0.232

Early Oligocene 31.15 6 2 33 1.132

Late Oligocene 25.715 6 0 0 0.048

Early Miocene 19.5 8 1 13 0.084

Middle Miocene 13.79 8 0 0 0.017

Late Miocene 8.47 7 1 14 0.140

Early Pliocene 4.465 7 2 29 0.681

Late Pliocene 2.703 7 3 43 3.321

Pleistocene 0.9035 7 3 43 3.321

Holocene 0.005 7 3 43 3.321

summary 78 16 20.5

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132049

6

whereas the significant Eocene peak appears somewhat earlier

in North America (in the Early–Middle Eocene) than in Eura-

sia (in the Late Eocene) (table 1). LR values of greater than or

equal to 8 indicate significant peaks [24].

The Eocene peak of MxSF parallels the particularly high ordi-

nal diversity during this period, even if MxSF is in general not

significantly correlated with diversity, and is most prominent

in North America, which has a good Palaeogene mammal

record. This peak comprises archaic orders which originated

early and became extinct after the Eocene (‘Condylarthra’,

Dinocerata, Mesonychia, Plesiadapiformes, Taeniodonta and

Tillodontia). The Oligocene peak is barely significant and it

does not coincide with any peak in diversity but follows climatic

deterioration after the Eocene. The statistically most robust peak

in the MxSF in mammals is that of the Late Pliocene–Pleistocene,

where 50% of the orders have their maximum size. It comprises

some of the most diverse extant large terrestrial mammal orders

(Carnivora, Primates and Artiodactyla), but also some endemic

South American orders (Xenarthra, Litopterna and Notoungu-

lata). Also Proboscidea, Perissodactyla and Rodentia include

notably large sized species in the Late Pliocene and especially

Pleistocene, but their maximum size peaks occur earlier. The

Late Pliocene–Pleistocene peak does not correspond with high

ordinal diversity (figure 2b).

The number of orders with their time of maximum size

evolution is shown in both absolute time (Myr) and generations

(Mgen) in figure 3 (see the electronic supplementary material

table S3 for the data). The strong peak in the orders which

evolved their maximum size relatively fast in 0–10 Mgen com-

prises mostly the orders which have their maximum size in the

Eocene. However, the orders which have their maximum size in

the Plio-Pleistocene include ones which evolved their
maximum size in 5–10 Mgen, 10–20 Mgen and 20–30 Mgen

(figure 3). This suggests that although the 0–10 Mgen peak in

the evolutionary time in generations parallels the Middle

Eocene peak in MxSF, evolutionary time in generations fails

to explain the Plio-Pleistocene peak in MxSF conclusively.

The variable that explains most of the variation in MxSF

in the period after the saturation point of the maximum

size evolution [2] (33.9 Ma–present) is the global d18O frac-

tions from the ocean isotope record (table 2). No other

variable shows significant correlation with the MxSF. In the

early phase (65.5–33.9 Myr ago), none of the variables

(time, ordinal diversity or the abiotic variables) show signifi-

cant correlation with the MxSF. The timing of the MxSF peaks

clearly shows that the Middle Eocene peak corresponds with

rapid diversification of mammal orders (Cope’s rule),

whereas the Oligocene and the Pliocene–Pleistocene peaks

occur at times of low diversity and correspond instead with

harsh climatic conditions (Bergmann’s rule).
4. Discussion
Maximum body size in major terrestrial land mammal orders

shows coarsely similar global and regional trajectories with

strong increase in maximum size especially in the early

phase and peaking of maximum size in the Pleistocene. Peris-

sodactyla, Proboscidea and Rodentia are different in that

their global maximum size peak occurs much earlier than

the Plio-Pleistocene (for Perissodactyla in Oligocene, for Pro-

boscidea in Late Miocene and for Rodentia in Pliocene).

Primates have an almost continuously increasing maximum

size trend until the Pleistocene except in North America.
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Maximum size occurs in several clades within an order rather

than in a single clade during the evolution of the orders. This

is evident in Perissodactyla, Proboscidea, Artiodactyla, Car-

nivora and in Old World Primates. This finding suggests

that maximum size evolution is not clade-specific, and would

further indicate that there are universal driving forces

behind the maximum size evolution of mammals which have

affected maximum size evolution similarly within the orders

despite taxonomic diversity. These driving forces are either

eco-evolutionary processes (filling of niches by specialization

and competition) or abiotic changes (climatic forcing).

The peaks in MxSF reflect patterns of body size evolution at

high taxonomic levels. Globally, there are two statistically

significant MxSF peaks, in the Middle Eocene and in the Late

Pliocene–Pleistocene. The Middle Eocene peak is caused by

archaic mammal orders (‘Condylarthra’, Mesonychia, Panto-

donta, Plesiadapiformes, Tillodonta, Taeniodonta and

Dinocerata). The Middle Eocene peak is most prominent in

North America, possibly because of more complete and better

sampled fossil record, especially compared to the mostly lack-

ing record in Africa. This sampling bias may also explain why

there is no peak in MxSF (or in diversity of mammal orders)
in the Eocene of Africa. A significant Eocene peak in MxSF

occurs in Eurasia as well but is somewhat later than the one

in North America (Late Eocene). The peaking of the MxSF in

the Middle Eocene is consistent with the other recent findings

[2,4], which indicate a rapid initial burst in body size evolution

in mammals after the Late Cretaceous mass extinction through

ecological specialization before reaching a ‘cut-off point’ in the

Middle Eocene. The peak in MxSF in the Late Oligocene is not

statistically significant and it is driven by Eurasian and African

data. It is probably caused by the decrease in ordinal diversity

after the Eocene maximum and the appearance of some very

large forms in a few mammal orders. Perissodactyla is perhaps

the most notable case because their ultimate maximum size

peak is clearly in the Oligocene with the giant indricotheres.

The Oligocene peak in MxSF may be a sampling artefact, but

it may also be connected to the climatic cooling from the Late

Eocene to Oligocene [26,27].

The Late Pliocene–Pleistocene peak in MxSF is very promi-

nent and statistically robust based on the LR test, and it

involves large land mammal orders representing all the trophic

groups. This peak is too strong to be explained merely by filling

of larger body size niches in the orders which have survived



Table 2. Multiple regressions analysis of MxSF with time, number of orders and the abiotic variables (d18O, global land area and atmospheric oxygen %) in
the early phase of exponential growth (65.5 – 33.9 Myr ago) and after the global maximum size saturation (33.9 Ma to present). (Note that for Africa there are
data only for the period from 33.9 Ma to present. AIC ¼ Akaike information criterion. Significant positive correlations are given in bold.)

continent time period parameter p-value R2 AIC

Eurasia 33.9 Myr to present time (Myr) 0.39 0.12 79.42

no. orders present 0.28 0.19 78.81

d18O 0.02 0.62 72.71

land area 0.56 0.06 80

atmospheric oxygen % 0.57 0.06 80

65.5 – 33.9 Myr ago time (Myr) 0.23 0.33 65.07

no. orders present 0.53 0.1 66.81

d18O 0.46 0.14 66.54

land area 0.19 0.38 64.6

atmospheric oxygen % 0.44 0.16 66.46

North America 33.9 Myr to present time (Myr) 0.08 0.42 79.61

no. orders present 0.47 0.09 83.23

maximum body size (kg) 0.05 0.39 92.96

d18O 0.006 0.75 72.95

land area 0.14 0.33 80.8

atmospheric oxygen % 0.2 0.26 81.58

65.5 – 33.9 Myr ago time (Myr) 0.39 0.19 63.33

no. orders present 0.13 0.48 60.63

d18O 0.9 0.004 64.55

land area 0.9 0.005 64.54

atmospheric oxygen % 0.47 0.14 63.69

Africa 33.9 Myr to present time (Myr) 0.24 0.19 83.85

no. orders present 0.69 0.02 85.53

d18O 0.02 0.57 78.2

land area 0.41 0.1 84.81

atmospheric oxygen % 0.27 0.17 84.09

global 33.9 Myr to present time (Myr) 0.18 0.28 79.16

no. orders present 0.1 0.39 77.86

d18O 0.01 0.66 73.11

land area 0.25 0.22 79.85

atmospheric oxygen % 0.41 0.12 80.8

65.5 – 33.9 Myr ago time (Myr) 0.39 0.19 59.88

no. orders present 0.35 0.22 59.67

d18O 0.67 0.05 60.81

land area 0.89 0.006 61.09

atmospheric oxygen % 0.23 0.34 58.67
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until Neogene and Quaternary times, especially because it does

not coincide with any peak in diversity. Moreover, evolution-

ary time in generations does not conclusively explain the

Plio-Pleistocene MxSF peak because it comprises orders

which evolved their maximum size in 0–10 Mgen but also

orders with much longer term maximum size evolution of

20–30 or 20–30 Mgen. Because evolutionary time alone does

not explain the peaks in MxSF, it is more likely that abiotic

(climatic) forcing rather than constant evolutionary increase

in maximum size through time causes the pattern in MxSF.
Maximum body size of long-duration orders over the

Cenozoic and the MxSF since the Eocene are significantly

positively correlated with d18O, and d18O alone explains

most of the variation in the MxSF data since the saturation

point of maximum body size evolution (33.9 Ma to present).

These findings support the hypothesis that global climate

has had an effect on maximum body size evolution of mam-

mals through the Cenozoic, although the patterns of

maximum size and MxSF are not parallel to each other.

Global land area is significantly correlated with the
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maximum size trajectories of long-duration mammal orders

over the whole Cenozoic, but MxSF does not show any sig-

nificant correlation with the land area. Atmospheric oxygen

percentages do not show statistically significant correlations

with MxSF, further supporting the conclusion of Smith et al.
[2] that oxygen does not explain significantly the variation

in global maximum mammalian body size.

We suggest that the strong seasonality and the dramatic

glacial–interglacial shifts in the global temperatures [25]

caused environmental conditions that favoured the evolution

of particularly large body size in several modern orders of

mammals in the Late Pliocene to Pleistocene. Note that the

‘Late Pliocene’ sensu [21] is partly considered to belong to

the Early Pleistocene in the chronostratigraphic correlation

table [28], and thus the Late Pliocene to Pleistocene maximum

size peak could also be considered the ‘Pleistocene peak’ or the

‘Ice Age peak’ in a broader sense. The orders attaining their

globally largest body size in the Late Pliocene or Pleistocene

are Carnivora, Primates, Artiodactyla, Xenarthra, Litopterna

and Notoungulata. In addition, the maximum body size of

Proboscidea continues from the Late Miocene to Late Pliocene,

and the Pleistocene forms were not much smaller. In fact, the

proboscideans occupied maximum size niches in most conti-

nents (Africa, Eurasia and North America) for most of the

Neogene, with some fluctuation in the maximum size. If

the gigantic Oligocene indricotheriid perissodactyls, which

can be seen as a very specialized clade among the Perissodac-

tyla, are excluded, the rest of Perissodactyla had their largest

body size in the Late Pliocene and Pleistocene in the form of

the elasmotherine rhinoceroses of the genus Elasmotherium.

The obvious dominance of this ‘Ice Age peak’ in the occurrence

of the largest sized species in several terrestrial mammal orders

contemporaneously indicates that the cold, dry and dramati-

cally variable climatic conditions of the Pleistocene Ice Age

have favoured large size.

After the Middle Eocene peak, the MxSF does not follow

a continuously increasing trend. Instead, it shows a pattern of

peaks consistent with the hypothesis of the effect of climatic
cooling on gigantism in terrestrial mammal orders predicted

by Bergmann’s rule. Salient features of the pattern include the

low values from the Early Miocene to the Late Pliocene,

especially in times of relatively warm climate like the Early

and Middle Miocene, the particularly strong peak of MxSF

in the Late Pliocene to Pleistocene, and the significant corre-

lation of relative maximum size occurrence with climatic

proxy data.

The finding that climatic factors have had a prominent

effect on maximum size after the evolutionary burst of

mammal evolution is consistent with the results of Raia et al.
[3], which show that the effects of Cope’s rule and Bergmann’s

rule can be separated and shown to be independent factors

contributing to mammal body size evolution. We reached the

same conclusion by analysing the MxSF pattern. Moreover,

Raia et al. [4] show that both taxonomic and phenotypic (i.e.

body size) evolution were drastic and highly correlated in the

Palaeogene but not in the Neogene. This is in concert with

our interpretation that the adaptive radiation of the Palaeogene

led to the high occurrence of the largest sized members in sev-

eral orders in the Eocene, but that there was no such radiation

behind the Pliocene–Pleistocene MxSF peak. Taken together,

this study and [2] show that global changes in land area and

temperature during the Cenozoic seem to have profoundly

affected patterns of body size evolution both within and

across higher taxa of mammals. It remains to be seen whether

these factors were of similar importance in driving body size

evolution in other endothermic and ectothermic clades.
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