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SUMMARY

Detecting genetic variants in metagenomic data is a priority for understanding the evolution, 

ecology, and functional characteristics of microbial communities. Many tools that perform this 

metagenotyping rely on aligning reads of unknown origin to a database of sequences from many 

species before calling variants. In this Synthesis, we investigate how databases of increasingly 

diverse and closely related species have pushed the limits of current alignment algorithms, 

thereby degrading the performance of metagenotyping tools. We identify multi-mapping reads 

as a prevalent source of errors and illustrate a tradeoff between retaining correct alignments versus 

limiting incorrect alignments, many of which map reads to the wrong species. Then we evaluate 

several actionable mitigation strategies and review emerging methods with promise to further 

improve metagenotyping in response to the rapid growth in genome collections. Our results have 

implications beyond metagenotyping to the many tools in microbial genomics that depend upon 

accurate read mapping.
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Closely related species are now common in rapidly growing microbial genome databases, making 

it difficult to correctly align metagenomic sequencing reads. Zhao et al. quantitatively investigate 

these alignment errors and their effects on tools for genotyping microbial communities. They 

identify actionable mitigation strategies and areas where new methodology is needed.

INTRODUCTION

Most microbes harbor immense within-species genetic variation, with strains differing in 

terms of genome organization, gene content, gene copy number, and single nucleotides. 

Recognizing genetic differences between conspecific genomes is important for many 

reasons. First, genetic variation can have functional consequences, ranging from differential 

metabolism to acquisition of pathogenicity and antibiotic resistance1–4. Genotypes enable 

association studies that promise to reveal many such genotype-phenotype links5. Second, 

variants are useful markers for tracking strains and mobile genetic elements, allowing 

investigations into their ecological dynamics6,7. For human-associated microbes, this 

enables epidemiological studies of clinically important strains, including transmission and 

dispersal of different lineages8,9 as well as studies of engraftment after fecal transplants10 

and in early life11. Finally, genetic variants may be utilized to infer the evolutionary 

forces acting on microbial species, shedding light on the roles of drift, selection, and 

recombination across taxonomic groups and environments12–14. Thus, there is great interest 

in characterizing the genetic diversity of microbiomes beyond the species level.

While cultured isolates have been genotyped for decades, metagenotyping–genotyping 

species using shotgun metagenomic DNA sequences–is greatly expanding the field of 

microbial population genetics by enabling researchers to detect genetic variation at 

an unprecedented scale and in new settings1–14. Key benefits include being able to 

capture genetic variation across whole genomes, in uncultured species, in samples that 

are ecologically diverse, and for many species in parallel with a single experiment. 

Metagenotyping many species from a complex community sampled from its natural 

environment not only enables direct investigation into microbe-environment associations 

at a precise taxonomic resolution, but it also reveals co-occurring and co-excluding lineages. 

This may include interactions between strains of the same species as well as interspecies 

relationships, such as strain-specific phage resistance or bacteria-fungi associations15.

Many bioinformatics pipelines have been developed for strain-level analyses of 

metagenomes (reviewed in16). These methods have diverse goals, such as quantifying 

community structure with marker gene sequences17, k-mer based taxonomic profiling18, 

measuring genetic dissimilarity between pairs of samples19, and constructing strain 

genomes20. Here we focus on metagenotyping bacterial single-nucleotide variants (SNVs) in 

short reads of unknown origin, which is currently the most common data type and strategy 

for studying genetic variation in microbial communities. But the pitfalls we explore are not 

unique to metagenotyping. We have encountered them to varying degrees when performing 

other species- and strain-level analyses of microbiomes, which we revisit in Conclusions and 

Perspectives.
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Most metagenotyping methods are reference-based (Table S1), meaning they use alignment 

algorithms to map metagenomic reads to a database of genomes or gene sequences 

(possibly assembled from the metagenomes) and apply established genotyping workflows 

to call variants for each species. Commonly used aligners include Bowtie221, BWA22, and 

minimap223. Metagenotyping suffers from many problems previously documented in the 

context of genotyping individual strains, ranging from sequencing errors and alignment 

errors to reference bias16,24,25. However, these known errors are amplified by the massive 

diversity and high proportion of low-abundance species present in metagenomic data, 

coupled with using multi-species reference databases. These factors also present several 

unique challenges, including cross-mapping of reads to the wrong species26 and reduced 

alignment uniqueness27. The core issue is that metagenotyping tools utilize alignment 

algorithms in scenarios that are more complex than the contexts for which the aligners 

were developed (Table 1).

In this Synthesis, we highlight several challenges that arise in reference-based 

metagenotyping of bacterial communities, focusing on problems that are exacerbated by 

or unique to metagenotyping as compared to genotyping a single isolate. Through surveying 

current genome databases, we show that an increasing number of bacterial lineages contain 

sequences for multiple closely related species as well as a growing diversity of genomes 

per species. These changes have benefits, but they also have some unfortunate downsides. 

Through examples and simulations, we explore why metagenotyping errors tend to be 

worse in lineages with many closely related species and/or high intraspecific diversity. 

Next, we evaluate post-alignment filters and custom genome databases as potential solutions 

to combat metagenotyping errors. We then review ongoing and future work that could 

further improve the accuracy and utility of SNV metagenotypes, including alternatives to 

current alignment algorithms. Recognizing that this field is evolving quickly, we discuss 

metagenotyping for other variant types, taxonomic groups, and sequencing technologies 

(e.g., long reads). We conclude with a review of alternatives to standard alignment 

algorithms, such as graph-based methods, and broader implications of our findings for the 

use of alignment in microbiome research.

RESULTS

Sources of genetic variation in metagenomes

Each metagenomic sample contains reads from many species. Sequencing reads from 

orthologous regions of any one of these species may harbor nucleotide differences due 

to genetic diversity captured in the sample (Figure 1A) as well as sequencing errors. Genetic 

diversity has multiple sources13,14,16. One common source is the presence of two or more 

divergent lineages of the same species within a metagenome. Any lineage abundant enough 

to be sequenced will contribute to the presence and allele frequencies of within-sample 

SNVs. When the lineages are not closely related, many SNVs will be detected genome-wide. 

Another way to generate genetic variation is a new mutation arising within a clonal lineage. 

If the mutation becomes prevalent enough in the community to be captured and sequenced, 

it will be detected as a within-sample SNV. Horizontal gene transfer and homologous 
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recombination also introduce SNVs. Metagenotyping aims to detect all these sources of 

within-species genetic variation.

Metagenomic sequencing reads from an orthologous region of the same species typically 

harbor multiple nucleotide differences when we compare samples from the same community 

over time (Figure 1B) or from different communities (Figure 1C). Conserved nucleotides 

may represent recently acquired mobile elements, sites with strong negative selection, or 

closely related lineages (when genome-wide). Some metagenotyping tools merge alleles 

of SNVs detected within a set of samples to enable across-sample genetic analyses and 

to identify population SNVs detected in more than one sample19,27–29. In other cases, 

users need to write customized scripts for cross-sample metagenotype analysis30. The 

SNV merging step may only use the consensus allele for each sample (i.e., the nucleotide 

observed in the most reads) or it can preserve within-sample variation by including the read 

counts for each nucleotide or for the two most frequent ones. With the resulting population 

SNVs for each species in a set of metagenomic samples, researchers can perform a rich 

array of analyses, including strain deconvolution or haplotype inference, metagenome-wide 

association studies, and tests for positive selection across gene families, as reviewed in-depth 

elsewhere16. All of these downstream investigations depend upon accurate metagenotypes.

Steps involved in reference-based metagenotyping

To understand when metagenotyping breaks down, it is important to know how 

metagenotypes are generated (Figure 1D). All metagenotyping starts with a DNA 

sequencing library generated from a microbial community. Reads may be quality controlled, 

trimmed, or taxonomically filtered (e.g., to remove host reads or contaminants). Next, 

reference-based methods (1) employ alignment algorithms to map each read to the putative 

species and genome coordinates from which it was derived. This is done using a multi-

species database, typically consisting of one representative genome for each distinct species. 

Each alignment is scored based on similarity of the read to the database sequence after 

taking into account base quality, and these scores are used to assess the uniqueness of 

the best alignment (e.g., MAPQ in Bowtie2, which compares the scores from the best 

and second-best alignment). In a post-processing step, potentially erroneous alignments are 

filtered out based on the alignment score and uniqueness. Then, the pileup of remaining 

reads is used to detect SNVs, producing a metagenotype vector for each species in each 

sample. Some software packages additionally quantify allele frequencies, while others use 

pileups to metagenotype structural variants of various sizes31,32. Although metagenotyping 

appears to be a straightforward extension of well-vetted genotyping methodologies, the 

complexity of the sequencing library and the multi-species database create some unique 

challenges for alignment algorithms and post-alignment filtering.

Alignment pitfalls & their effects on metagenotyping

Accurate alignment is critical for generating a correct metagenotype. In this study, we say 

the species from which a read was derived is the on-target species, and all others are 

off-target species. Let us consider all the possible outcomes when aligning a sequencing 

read to the on-target genome (Figure 1E–I), ignoring at first the huge diversity of species 

in a metagenotyping database. In the best-case scenario, the read has one high-scoring 
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alignment, so it is retained for pileup. We have high confidence in nucleotide differences 

from the reference genome, because we trust that the read is correctly aligned. As 

uniqueness decreases, the probability that the best alignment is correct decreases33. The 

read is aligned, but it may be incorrectly aligned or correctly aligned but filtered out 

post-alignment due to low uniqueness. If uniqueness gets too low, we say that the read 

is multi-mapping, as in other genomics applications34,35, and it will not be retained for 

the pileup. The read will not be aligned at all when the best alignment’s score is low. 

These filters help to prevent false positive SNV calls. On the other hand, an alignment 

score threshold will also remove correctly aligned reads from strains that are diverged from 

the reference genome. This phenomenon is known as reference bias36, and it contributes 

to false negative SNVs. Uniqueness filtering also results in false negative SNVs, and it 

can bias allele frequency estimates. Thus, metagenotyping methods face a tension between 

controlling erroneous SNV calls and ensuring that true SNVs are detected.

Read alignment is even more challenging in reality, because both the metagenomic sample 

and the database contain many species (Figure 1J–M). It is not known a priori which 

reads in the sequencing library come from which species. Furthermore, short reads may 

have high-scoring alignments to genomes from off-target species, a problem known as cross-

mapping26. It can occur between highly conserved and horizontally transferred sequences 

in distantly related species, but it affects many genomic loci when the database contains 

closely related species. The key issue is that homologous sequences from the representative 

genomes of on-target and off-target species in the database compete for reads. The read 

may be aligned to the off-target genome. If neither alignment is unique enough, the read 

is filtered out. This affects reads that carry nucleotide differences from the on-target 

representative genome and those that do not, contributing to errors in SNV detection and 

allele frequency estimates. Another source of error is when the off-target genome has the 

best alignment with sufficiently high uniqueness for the read to be retained. This affects 

the metagenotypes of both species, and it is more frequent with reads carrying nucleotide 

differences from the on-target genome.

Clearly, reference bias, multi-mapping, and cross-mapping have the potential to negatively 

impact metagenotype accuracy. We next look at how widespread these problems are 

across bacteria. Then we quantify their effects on metagenotypes and use these results 

to explore two ways to combat the problem: changing post-alignment filtering thresholds 

and customizing genomes in the database to be as similar as possible to the metagenomic 

sample.

Rapid growth in bacterial genome databases

Starting around 2015, the number of species with at least one genome sequence began to 

skyrocket (Figure 2A), with hundreds of thousands of prokaryotic species now represented 

in NCBI Assembly37, European Nucleotide Archive38, and other databases39. This explosion 

of genomes is driven in part by lower costs and higher throughput of DNA sequencing, 

coupled with algorithms for assembling isolate genomes from short reads. Meanwhile, 

culture collections have grown rapidly due to technological advances and concerted 

efforts to capture difficult to grow strains from diverse environments40–44. Another major 
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source of genomes has been assemblies generated directly from tens of thousands of 

metagenomic sequencing libraries sampled from diverse environments45,46 (Figure 2B). 

These metagenome assembled genomes (MAGs) comprise a large proportion of databases 

such as GEM (natural environments)47, UHGG (human gut)48, and HumGut (human gut; 

UHGG+RefSeq)49. MAGs have been particularly useful for capturing genomes from species 

that are difficult to isolate with traditional culturing techniques. Species that are medically 

important, laboratory models, and prevalent in environments that receive the most research 

attention are over represented in genome databases, though these biases are decreasing 

somewhat.

One major benefit of more species with genomes is that a greater diversity of species can 

be metagenotyped with reference-based methods. For example, UHGG provides reference 

genomes for nearly all prevalent prokaryotic species residing in the stool of individuals from 

North America or Europe48. Using samples from the PREDICT cohort50, we estimate that 

this translates to an alignment rate of ~80%, which is an improvement over older databases 

(e.g., ~65% alignment rate for NCBI in 2013). Database coverage is unfortunately lower but 

also improving for other human populations51,52 and other environments47. It is important 

to keep in mind that new genomes are only helpful to metagenotyping tools if their quality 

is high enough to generate accurate genotypes. When reference genomes are fragmented, 

incomplete or contaminated with sequences from off-target species, the number of reads that 

can be correctly mapped is reduced and fewer sites can be metagenotyped19,27,28,30.

In parallel with increasing the species diversity of genome databases, recent sequencing and 

assembly efforts have also greatly expanded the number of genomes per species. Genomes 

are typically grouped into species using algorithms based on sequence similarity. Genome-

wide average nucleotide identity (ANI) greater than 95% serves as an operational species 

definition, though this threshold is debated and not strictly followed49,53–56. A stricter 

ANI threshold (>97.5%), generates more species and increases the sensitivity of k-mer 

based taxonomic profiling49, but specificity has not yet been evaluated. We utilize ANI 

>95% here and discuss the implications of our results for other species definitions. At this 

threshold, there are now dozens of species with more than 1,000 genome sequences (Figure 

2C). For many species, the genomes are highly clonal. For example, Enterococcus faecalis 
has 1,577 genomes in GTDB (Table S2), and most pairs of genomes are >98% identical 

(Figure 2D). Other species show a greater range of sequence diversity, and some species 

display population genetic structure with multiple clusters of genomes. Pairs of Enterobacter 
hormaechei_A genomes in GTDB, for instance, tend to have either ~99% ANI or ~96% 

ANI, reflecting two divergent lineages (Figure 2E, Table S2).

With more species in genome databases and more genomes per species, boundaries between 

species are getting closer together, and in some cases blurred53–56. Thousands of bacteria 

now have a closely related species with >92% ANI (Figure 2F). Closely related species 

occur in specific lineages of most phyla, and they are most numerous in Proteobacteria 

and Actinobacteria. Coupling closely related species with divergent lineages of the same 

species (close to 95% ANI), it is possible that a strain of one species is more similar to 

a genome from a closely related species than one from its own species, or at least that 

some parts of its genome are. This does not mean that the species definition is violated, 
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but rather it highlights a limitation with using ANI to define a species boundary in lineages 

with closely related species. In these lineages, new genomes are basically filling the gaps 

in sequence similarity between species that were previously separated. Clearly, the growth 

in genome sequencing has consequences for accurate read alignment to reference genomes 

in metagenotyping tools as well as for other applications, such as taxonomic profiling and 

phylogenetics.

Measuring the effects of databases growth on metagenotyping

To quantify how closely related genome sequences affect metagenotypes, we performed 

a series of carefully controlled in silico experiments (Table S3) in which metagenomic 

sequencing reads were generated from genomes (Tables S4–S5) using the read simulator 

ART57 and aligned with Bowtie258 to databases in which we vary the following parameters 

using fastANI53: (1) inter-species ANI of the closest off-target genome and (2) intra-species 

ANI between the genome from which reads were simulated and the on-target representative 

genome. Since these were simulations, we could directly track alignment rates (% aligned, 

horizontal coverage, vertical coverage), cross-mapping rates (% aligned reads that are 

aligned to an off-target genome), and SNV accuracy (precision, recall) for reference versus 

alternative alleles. The reference allele is the nucleotide matching the database sequence, 

and all other nucleotides are alternative alleles. We first evaluated the full spectrum of errors 

with no post-alignment filters (alignment parameters: bowtie2 --no-unal -X 1000.0 --end-to-
end --very-sensitive), and then we examined the effects of applying various filters. We varied 

horizontal coverage in the simulations and observed a plateau in performance statistics 

starting around 10X (Figure S1). Trends in all measurements were qualitatively similar 

across coverage levels. We therefore used 20X in several of our analyses to demonstrate a 

specific problem or solution. We emphasize that the identified problems are expected to be 

even worse in complex microbial communities where many species are at lower horizontal 

coverage values, and we refer readers to Figure S1 for results across coverage levels. By 

repeating this workflow for hundreds of bacterial species with different population structure, 

diversity, and distance to closely related species, we captured a huge variety of scenarios. 

These analyses vividly illustrated the hypothetical alignment problems from Figure 1 using 

millions of reads, and they enabled us to evaluate potential solutions in a quantitative 

manner.

Intra-species diversity biases metagenotyping towards reference alleles

Reference bias is well known to affect genome comparisons25,36,59. As expected, our 

simulations showed that it is also at play in metagenotyping workflows. Using alignment 

of metagenomic reads simulated from 100 conspecific genomes of E. faecalis (Figure 2G) 

or E. hormaechei_A (Figure 2H) to a single representative genome of each species as 

examples, we observe a clear correlation between alignment rate and genome-wide ANI to 

the representative genome. Repeating this analysis with all high-quality UHGG genomes 

for 327 species that have intra-species ANI ranging between 95 and 100%, we observed a 

significant positive correlation between alignment rate and intra-species ANI (Figure 3A). 

As intra-species ANI approaches the species boundary, only ~75% of reads are aligned on 

average. Importantly for metagenotyping, the probability of a correct alignment is lower for 

reads with differences from the reference genome. Hence, both precision (Figure 3B) and 
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recall (Figure 3C) are lower for SNV metagenotypes of alternative versus reference alleles. 

Thus, when the representative genome in a metagenotyping database is diverged from the 

genome(s) in a metagenomic study, fewer SNVs can be metagenotyped and the accuracy of 

the allele frequencies at SNVs that are metagenotyped will be biased towards the reference 

allele.

Cross-mapping is prevalent in metagenotyping workflows

We next used our simulation framework to quantify cross-mapping of metagenomic reads to 

a genome from the wrong species. To do so, we repeated the analyses described above with 

the addition of a second, off-target genome in the database. For each species, we iterated 

through a set of off-target genomes ranging from closely related species (inter-species 

ANI ~95%) to more distantly related species (inter-species ANI <77%). In the absence of 

cross-mapping, no reads should align to the off-target genome.

This analysis showed that cross-mapping is prevalent and increases in frequency as the 

off-target genome approaches the species boundary (Figure 4A). It is also bi-directional, 

meaning that from the perspective of the on-target species, similar amounts of reads 

are lost to and stolen by closely related species when they are added to the simulated 

metagnome (Figure S2). On average, sites of the off-target genome have ~7X vertical 

coverage in simulations with 20X horizontal coverage and inter-species ANI ≥ 77% (Figure 

S3), indicating that erroneous alignments are not limited to a small number of reads from 

a genomic locus (e.g., those with a particular sequencing error). We initially thought that 

cross-mapped reads might therefore be piling up in specific extremely conserved loci. 

However, we found that closely related off-target species (ANI > 92%) have a median 

horizontal coverage of 23.5% (range 3.8%−71.3%), which drops down to ~5% for more 

distant off-target species (Figure 4B). This positive relationship between ANI and horizontal 

coverage is consistent with prior findings based on genomes56. These effects of closely 

related species and divergence between the sample and database are consistent with other 

aligners. Cross-mapping is slightly lower with BWA compared to bowtie (Figure S4) and 

with global versus local alignment parameters (Figure S5). Together, our results show that 

cross-mapping occurs broadly across the genomes of closely related species and may affect 

a substantial proportion of reads.

Within these trends, cross-mapping varies quite a bit by species and even within the same 

species. Both the cross-mapping rate (Figure 4A) and the horizontal coverage of the off-

target genome (Figure 4B) tend to be higher when reads are simulated from a species 

with greater intra-species diversity, after controlling for inter-species ANI. In the worst-case 

scenario when intra-species ANI is ~95% and there is a closely related off-target genome 

in the database (~94% inter-species ANI), as much as ~50% of reads can be aligned to the 

wrong genome, and the off-target genome may have up to ~70% horizontal coverage. But 

when intra-species diversity is lower and the off-target genome is less closely related, we 

observe less cross-mapping (median 3% for all off-target genomes having inter-species ANI 

≥ 92%) and lower off-target horizontal coverage (median 9.2%). Because these results were 

generated with actual pairs of genomes present in metagenotyping databases, we conclude 

that closely related species drive a great deal of cross-mapping, especially in lineages with 
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diverse species where species boundaries are blurred and when the representative genome 

for the on-target species is diverged from the strains in the metagenome. Since there is 

relatively little cross-mapping with more distantly related species, we focus in the following 

simulations on one closely related off-target species for each on-target species.

Low alignment uniqueness is a major driver of erroneous metagenotypes

We next used our Bowtie2 alignment results for simulated metagenomic reads from 

Collinsella sp003458415 against databases with different degrees of closely related species 

to examine the fate of reads without any post-alignment filters. We began by looking at 

the distribution of MAPID and MAPQ values across scenarios. MAPID is the alignment 

sequence identity, and it is used to evaluate the match between metagenomic read and 

reference genome. MAPQ measures alignment uniqueness, specifically how much better the 

highest-scoring alignment is compared to the second-best alignment. This statistic is used 

to decide how confident one is in the reported alignment, with MAPQ > 30 being a typical 

threshold.

When only the on-target C. sp003458415 genome is in the database, most alignments have 

high MAPQ (mean: ~40, 95th percentile: ~25; Figure 5A) and MAPID > 95% (Figure 5B). 

However, we observed high variability in both MAPID and MAPQ. The low MAPID values 

reflect alignments where the genome from which reads were simulated differs from the 

reference genome (reference bias). This is expected based on our prior results, because C. 
sp003458415 is a diverse species (intra-species ANI = 95.16%). The reads with low MAPQ 

show that multi-mapping occurs within this species. Thus, with a single genome of the 

correct species in the database, MAPID and MAPQ are performing as expected. They detect 

alignments where read mapping is uncertain due to divergence from the reference genome or 

paralogous sequences.

Adding another species to the database drastically changes the distribution of MAPQ scores. 

For reads correctly aligned to the on-target genome, MAPQ drops precipitously when a 

closely related species (94% ANI) is added. Median MAPQ slowly increases as the inter-

species ANI decreases, returning to a distribution similar to that with only the on-target 

genome when ANI < 80%. The distribution of MAPQ values for reads aligned to the 

off-target genome (cross-mapping) is lower than that of the on-target alignments across ANI 

values with the majority of alignments having MAPQ < 10 even at 94% ANI. In contrast, 

MAPID for reads correctly aligned to the on-target genome remains high with a closely 

related species in the database. While MAPID for cross-mapped reads tends to be lower than 

that of on-target reads, these distributions are highly overlapping.

Next, we repeated these analyses using a large, diverse reference database containing 

representative genomes for 3,956 species from the UHGG genome collection. With this 

many off-target species alignment uniqueness is even lower, with only 23.3% of the on-

target reads aligning and a distribution of MAPQ values similar to when using only the 

species with 94% ANI to the on-target species. Meanwhile, MAPID for both on-target and 

off-target alignments is higher than any other simulation scenario, because only reads that 

are perfect or near-perfect matches are aligned. Altogether, these results make it very clear 

that incorrect alignments may have high scores and that closely related species severely 
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reduce alignment uniqueness. Thus, while some form of post-alignment filtering is essential 

in the setting of metagenotyping in order to limit errors due to cross-mapping, a MAPQ 

threshold that works well in the absence of closely related species (e.g., MAPQ ≥ 30) will 

remove many correctly aligned reads.

To demonstrate this tension, we tracked the fate of every C. sp003458415 read from the 

above analysis using the commonly employed post-alignment filter MAPQ ≥ 30 versus 

MAPQ ≥ 10. We chose MAPQ ≥ 10 as an alternative post-alignment filtering threshold, 

because off-target alignments in Figure 5A tend to have MAPQ below 10, including when 

using the database with 3,956 UHGG species, while many on-target alignments have MAPQ 

between 10 and 30. In both cases, we used MAPID ≥ 94% to remove some off-target 

alignments while not filtering out too many on-target ones (Figure 5B).

We classified each read based on whether it was unaligned, incorrectly aligned to the 

off-target species, or correctly aligned to the on-target species before filtering, plus whether 

it passed the MAPQ and MAPID filters or not. Across the series of databases where the 

off-target genome has varying similarity to the on-target genome (90–95% inter-species 

ANI), we observed that MAPQ ≥ 10 enables many more reads to be mapped to the 

on-target genome compared to using MAPQ ≥ 30 (Figure S6). Most of these reads pass 

post-alignment filtering when only the on-target genome is in the database. Meanwhile, 

cross-mapping is higher at MAPQ ≥ 10 versus 30, as expected, but this increase is relatively 

small. These results illustrate that a closely related genome in the database can have a bigger 

impact on alignment uniqueness than on cross-mapping and that retaining alignments with 

medium values of MAPQ could be advantageous.

Adjusting Post-alignment filters increases metagenotype recall without large numbers of 
false positives

Post-alignment filtering is used in metagenotyping tools to remove reads whose alignments 

are not unique or high scoring enough to be confident that the aligner has mapped the read to 

the correct species and genomic location. The goal is to do this without removing reads that 

are aligned correctly. Our results above indicate that balancing these two objectives can be 

difficult when there are closely related species in the database that compete for reads.

To explore this dilemma, we conducted simulations to quantify the effects of various 

post-alignment filters on metagenotypes across species. For these experiments, we used 86 

diverse bacterial species whose closest relatives in the genome database had a range of inter-

species ANI values (78–95%). First, we computed the recall and precision of SNVs without 

using any post-alignment filtering compared to different choices of MAPQ-based filtering 

(Figure 6A). This analysis showed that precision tends to be very high overall (Table 

S6) but lower for alternative alleles (median = 99.95% compared 99.99% for reference 

alleles). Precision is negatively correlated with inter-species ANI regardless of allele type 

(R = −0.49, p-value = 0.0000013), underscoring the importance of post-alignment filtering 

to avoid false positive SNVs. As expected from the rates of multi-mapping and reduced 

alignment uniqueness we quantified above, SNV recall is affected by post-alignment filters. 

Recall drops as the MAPQ threshold is increased, due to the presence of second-best 

alignments with scores that are not a lot worse than the best alignment. Overall, recall is 
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lower for alternative versus reference alleles, especially when the closest off-target genome 

has higher inter-species ANI. We therefore considered ways to further increase recall.

Paired-end filtering

We propose that paired-end reads can be leveraged to improve recall without degrading 

precision. Specifically, we recommend to use only properly-aligned read pairs for 

metagenotyping, meaning that both ends of the reads are properly oriented and mapped 

within a reasonable distance given the expected distance input to the alignment software, 

and to retain both reads whenever one read has a sufficiently high MAPQ and MAPID. 

With the Bowtie2 aligner, it is important to properly set -X (maximum fragment length) to 

guarantee read pairs from DNA fragments longer than 500 nucleotides will be aligned27. 

The rationale for this filter is twofold: (1) a read with low sequence similarity can be 

rescued if its pair has very high MAPID, and (2) a read with low alignment uniqueness 

(MAPQ) can be rescued if its pair has a unique alignment. Small insert sizes, which generate 

overlapping read pairs, will be less effective. Across all 86 species in the analysis described 

above, paired-end filtering with MAPQ ≥ 10 and MAPID ≥ 94% increases recall to values 

intermediate between no filter and filtering each read independently. It is particularly 

helpful for alternative alleles. Requiring proper pairs does filter out some improperly-aligned 

individual reads, so the total number of reads passing post-alignment filtering is similar 

for paired-end and single-end filtering. These specific thresholds may not be optimal for 

balancing sensitivity and specificity in other microbial communities, such as those with 

few closely related species or different levels of within species diversity. Simulations and 

pairwise genome similarity are tools researchers can use to tune post-alignment filters to 

their context. We conclude that choosing a MAPQ threshold appropriate to the community 

being studied and applying paired-end filtering together provide a good balance between 

false positive and false negative metagenotypes.

Database customization to sample

Next, we considered horizontal coverage as a way to avoid false positive species and vertical 

coverage as a way to identify local regions affected by cross-mapping. These coverage 

filters can be applied after post-alignment filtering and pileup, just before calling SNVs. Our 

simulations showed that both of these commonly accepted quality measures can be as high 

for closely related off-target genomes as they are for the on-target genome, making them 

poor choices for eliminating erroneous alignments and reducing metagenotype error. As 

an alternative strategy, we explored database customization. We reasoned that determining 

which species are in fact present and should be in the metagenotyping database could help 

to mitigate the effects of closely related species. Some strain-level analysis pipelines have 

incorporated a species detection or taxonomic prescreening step to customize the database to 

present species. For example, MIDAS227 uses the median vertical coverage of 15 universal 

single copy genes, while HUMAnN260 uses MetaPhlAn261 to rapidly identify community 

species.

To test if adding genomes not present in the sample to the database can reduce metagenotype 

accuracy, we conducted a simulation in which reads from 86 pairs of closely related species 

(inter-species ANI > 92%) were combined in a metagenomic sample and then alignment, 
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paired-end filtering, and SNV calling were performed with three database options: (i) a 

database that only includes the two species in the sample (customized), (ii) a database 

that includes all 162 species in a pair of closely related species (intermediate), and 

(iii) a database that includes 3,956 UHGG species (not customized). As expected, we 

noted that metagenotyping runtime increased with database size (Figure S7). Because we 

observed longer runtimes for metagenomes with higher read counts, we conclude that the 

runtime savings for customized databases will be even greater in metagenomes with more 

reads, with large payoffs in the context of metagenotyping hundreds of samples. Next, 

we looked at horizontal genome coverage and observed that it tends to decrease slightly 

for both species in the sample going from customized to intermediate to not customized 

databases (Figure 6B), and coverage is higher for metagenomes where the two species 

have low inter-species ANI (consistent with Figure 3A). In general, UHGG species not 

in the sample have horizontal coverage below 40%, although uncultured Adlercreutzia 
sp. (MGYG-HGUT-02712) is falsely detected at this threshold and would be genotyped 

incorrectly by most pipelines. For Lachnospira eligens (GCF_020735745.1, interspecies 

ANI: 94%, intra-species ANI: 95.6%), alignment uniqueness is so low that horizontal 

coverage is below a detection threshold of 40% with all three databases despite being 

in the metagenome, while Adlercreutzia equolifaciens (GCF_000478885.1, inter-species 

ANI: 80.8%, intra-species ANI 95.9%) is correctly detected at this threshold with the 

customized database only. While 40% horizontal coverage generates only one false positive 

and one false negative with the customized database strategy, any threshold in the range 

20–50% would perform fairly well in this simulation. The optimal threshold will depend on 

community diversity, sequencing depth, and the research objectives.

We found that customized databases notably improved our power to detect SNVs, increasing 

recall 7.5% for the alternative allele and 4.9% for the reference allele compared to the full 

not customized database (Figure 6C). The power increase is smaller comparing customized 

to intermediate databases. Overall, recall is higher for reference versus alternative alleles 

and for species pairs with low inter-species ANI (consistent with Figure 6). Finally, 

metagenotype precision is similar for all three databases. Together, our results offer support 

for the idea of trimming genomes from metagenotyping databases and leaving only those 

from species detected in the sample.

We also evaluated the choice of representative genome for species that are present in 

the metagenomic sample. Our results and prior work19 suggest that when a species has 

multiple genome sequences, selecting a reference genome that is as similar as possible to the 

genome in the metagenomic sample will increase alignment uniqueness and reduce mapping 

errors (Figure 4A). How best to pick representative genomes is not a solved problem. 

For a single sample containing a single strain, recall of reference alleles is highest when 

using the representative genome closest to that strain. But recall of alternative alleles is 

not correlated with genome-wide nucleotide identity, most likely because the average for 

the genome is not predictive of what happens at the most divergent sites. Furthermore, 

metagenomes containing two or more divergent lineages of a species make the choice of 

representative genome harder, as does identifying a single best genome to use for a set of 

diverse samples. We examined one species, E. hormaechei_A, in detail and found that an 

acceptable compromise is using a centroid of all sequenced genomes for the species. This 
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improves alignment rate ~10% compared to using the most distantly related genome (Figure 

S8).

Another potential database customization strategy is to alter the species definition. A stricter 

ANI threshold has potential to increase recall further by generating a more diverse reference 

database with less reference bias (lower within-species ANI), as has been seen in the 

context of taxonomic classification of reads49. However, our results suggest that this would 

lead to more pairs of closely related species and hence more cross-mapping and lower 

alignment uniqueness. How this trade-off affects metagenotype accuracy in different parts 

of the phylogenetic tree merits further investigation. Based on the findings presented here, 

we conclude that reference database customization is underutilized in practice. In particular 

curating the database to the species detected in the metagenomic reads shows great promise 

for maximizing alignment rate and minimizing reference bias.

DISCUSSION

Not long ago, the major challenge for reference-based metagenotyping was a paucity 

of species with a high-quality genome assembly. Now in some environments and some 

taxonomic groups, we have in a sense too many genomes, or rather too many for the existing 

tools to work in the intended way. From the perspective of reference-based metagenotyping, 

database growth has pros and also cons. In this Synthesis, we quantified these drawbacks 

and the effects of potential bioinformatics solutions, highlighting how databases containing 

closely related species reduce alignment uniqueness and increase metagenotype errors.

Integrating across all our results, we identified low alignment uniqueness as one of the most 

important factors influencing metagenotype accuracy. One might think that diverse genome 

databases are a good thing, because adding the genome of a new species could prevent 

erroneous alignments of reads from that species to the genomes of related species. While 

this does happen, we found that a much more common outcome when a close species’ 

genome is added to a metagenotyping database is that reads are not unique enough to be 

aligned, especially when post-alignment filters are applied (e.g., MAPQ > 30). Another 

set of problems arise when reads align better to an off-target genome. We showed that 

cross-mapping can affect a large proportion of the genome and is worse when the on-target 

reference genome is diverged from the strain in the metagenomic sample. Low alignment 

uniqueness and cross-mapping are both worse for reads carrying alternative alleles compared 

to the reference genome.

These findings point to several actionable solutions. First, we recommend lowering the 

MAPQ threshold. In our analyses of hundreds of species with a variety of intra-species 

and inter-species ANI values, MAPQ > 10 emerged as a reasonable trade-off between false 

positive and false negative metagenotypes. Stricter thresholds do increase the accuracy of 

allele calls at sites that are metagenotyped, but at the cost of lower recall especially for 

SNVs with alternative alleles. Second, leveraging paired-end reads helps to increase SNV 

recall, which is especially important for alternative alleles and species with a close neighbor 

in the database. Finally, database customization can help in two ways. By using the genomes 

of species likely to be in the metagenomic sample only, many closely related genomes can 
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be eliminated from the database, thereby mitigating their negative effects on metagenotypes. 

For species that are present, additionally selecting a reference genome that is similar to the 

genome in the reads will reduce reference bias and decrease alignment competition with 

related species. Some of these options are already available in existing metagenotyping tools 

(Table S1). Since different short-read aligners showed similar problems, we emphasize the 

importance of post-alignment filtering and database curation over selection of a specific 

alignment algorithm. To enable users to tune each step of analysis to their application, we 

encourage further development of pipelines in which the metagenotyping methods are fully 

customizable, from reference database to post-alignment filtering and SNV calling.

Even if all of these recommendations are followed, metagenotypes may still have fairly 

high error rates in some situations. Looking ahead, we can envision several large changes 

that could further reduce these errors. Metagenotyping tools could start using recent 

innovations in alignment algorithms, such as graph-based aligners62, probabilistic alignment 

of multi-mapping reads35,63–66, and methods that utilize multiple reference genomes67. 

These strategies could reduce reference bias, though they increase compute time, storage, 

and memory use. More work, such as benchmarking these methods in the context of 

metagenotyping68, is needed to reveal if alignment uniqueness increases and/or cross-

mapping decreases, as well as the computational resources needed to achieve performance 

advantages. Another way to increase SNV accuracy, while also disentangling strains of the 

same species present within the a sample, may be to metagenotype multiple co-occurring 

SNVs together using some combination of long reads69–71, haplotype assembly16,72,73, and 

single-cell metagenomic sequencing74. The idea is to leverage information from genetically 

linked sites to increase confidence in metagenotypes. Similar to how paired-end reads 

increase recall of SNVs, we expect that these emerging techniques could rescue reads that 

would otherwise be filtered out, in particular closing the gap in recall we detected between 

reference and alternative alleles. Finally, we remind readers that performance decreases as 

a function of species abundance in simulations with different simulated horizontal coverage 

values (Figure S1), indicating more work is needed for applying the strategies in this study 

to low abundance bacteria. Matched amplicon sequencing (e.g., 16S) or metatranscriptomic 

data (RNA rather than DNA) may help with detection of low abundance species and is 

an interesting future direction for database customization. While all these approaches will 

require new or significantly re-engineered metagenotyping pipelines, their benefits may 

justify this effort.

This Synthesis focuses on reference-based metagenotyping, where alignment errors are the 

major source of inaccurate results. But alternatives to read alignment exist75. Inspired by 

forensic and taxonomic profiling tools that use exact matching of subsequences (e.g., 31-

mers)18,76–78, we developed a metagenotyping pipeline in which the database is comprised 

of k-mers covering each allele of known SNV sites, filtered to remove any k-mers that 

occur in any other sequenced genome30. This approach reduces both false positive and false 

negative SNV calls, and it is faster than alignment. However, very few SNVs are covered 

with unique k-mers when there are closely related species in the database, which limits 

the number of SNVs that can be metagenotyped per species. Also, this strategy is specific 

to SNVs identified by comparing reference genomes, for which k-mers can be designed, 

and the k-mers must not contain flanking insertions or deletions that interfere with exact 
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matching. Similarly, the developers of marker gene methods17 and k-mer based taxonomic 

profilers18 can optimize their databases to minimize cross-mapping and reference bias, 

though this can be hard for closely related species. An alternative strategy is completely 

reference-free metagenotyping in which reads are directly compared to each other to 

detect SNVs, insertions and deletions79–82. Further benchmarking this emerging approach 

on metagenomic data and developing parallel methods for larger structural variants are 

important future directions.

While our analyses focused on SNVs in bacterial genomes, most of the points raised 

here apply to other types of variants and to different taxonomic groups. Indeed, all of 

the metagenotyping challenges associated with diverse and closely related species will 

affect those lineages of archaea, viruses, and eukaryotes where genomes are being densely 

sampled and assembled43,47,83–86. Beyond SNVs, alignment is used in several tools that 

metagenotype gene copy number variants and other structural variants27,31,32. Since these 

variants are called based on vertical coverage in pileups, their detection and quantification 

will be biased by reads that are not aligned, fail post-alignment filtering, or are incorrectly 

aligned. Therefore, competition for reads across species, within-species multi-mapping, and 

cross-mapping will affect structural variant metagenotypes in ways qualitatively similar to 

the effects we demonstrated for SNVs. More broadly, our findings are also very relevant 

to metagenomic analyses that do not involve genotyping, such as species detection and 

abundance estimation, where probabilistic mapping has been recently proposed as a solution 

for perfectly multi-mapping reads65. Phylogenetics is another impacted application. Thus, 

many aspects of computational biology require careful consideration of how alignment 

algorithms perform on a tree of life in which many lineages are now densely sequenced.

Despite the prevalence of closely related species in genome databases today, it is important 

to remember that the vast majority of species, including most bacteria, still have limited or 

no genome sequences. We emphasize that genome sequencing aimed at expanding reference 

genome collections should focus on capturing these under-represented lineages. However, 

this Synthesis shows that alignment and other bioinformatics tools must continue to evolve 

in order to remain accurate in the face of closely related genomes.

STAR * METHODS

REAGENT or RESOURCE

Resource availability

Lead contact: Further requests for resources or information should be directed to the lead 

contact, Katherine S. Pollard (katherine.pollard@gladstone.ucsf.edu).

Materials availability: This study did not generate new unique reagents.

Data and code availability: This paper analyzes existing, publicly available data. The 

accession numbers for publicly available genomes used in our analyses are listed in Tables 

S2, S3, and S4. The databases from which these genomes were extracted are listed in the 

Key Resources Table. All code has been deposited in a GitHub repository and archived 

at Zenodo. The DOI for this archive is listed in the key resources table. Any additional 
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information required to reanalyze the data reported in this paper is available from the lead 

contact upon request.

Method details

Survey of prokaryotic genome collections: We counted the number of prokaryotic species 

with a genome in the NCBI Assembly database from 1999 to 2022. NCBI Assembly was 

used for this analysis because (1) it is the largest genome database, (2) it is updated daily, 

and (3) it unambiguously identifies and tracks changes. To ensure maximum inclusiveness 

as well as low redundancy, we counted unique species of bacteria and archaea with 

any of four levels of genome assemblies: complete genome assemblies, assemblies that 

include chromosomes or linkage groups, scaffolds and contigs, assemblies that include 

scaffolds and contigs, and assemblies that include only contigs. We also surveyed the 

number of species and the number of genomes per species in the current versions of 

three other databases: GTDB, GEM, and UHGG. These large genome collections have 

distinct features. GTDB contains mainly assemblies from isolate whole-genome shotgun 

sequencing projects, and it uses genomes solely from the NCBI Assembly database. GEM 

is a collection of genomes from diverse environments. UHGG is a collection of genomes 

from the human gut microbiome. Both GEM and UHGG contain a high proportion of 

metagenome-assembled genomes (MAGs). Using pairs of high-quality GTDB genomes 

for B. mallei and E. hormaechei_A, we computed intra-species ANI. We aligned the 

metagenomic reads of 5 random US samples (ERR4330028, ERR4330046, ERR4334225, 

ERR4335281 and ERR4341723) and 5 random UK samples (ERR4334072, ERR4334226, 

ERR4335245, ERR4335298 and ERR4341720) from the PREDICT cohort50 to UHGG 

(4,643 gut genomes) and NCBI (2013; 6,549 genomes) using Bowtie2 and computed the 

median alignment rates. These samples have very high sequencing depth (~55 million reads 

per sample on average), and none of them contributed genomes to UHGG or the 2013 

release of NCBI.

Survey of genomic similarity between species in GTDB: We downloaded a total of 65,703 

genomes from GTDB and selected one high-quality representative genome for each of 

the 19,754 species. For each representative genome, we used Mash to generate a 21-mer 

sketch profile (mash sketch -k 21 -s 5000) and calculated pairwise genomic distance to all 

other representative genomes (mash dist). Mash distance estimates genome-wide average 

nucleotide identity (ANI) and is computationally feasible with 19,754 genomes. We denoted 

a species as having a closely related species (CRS) if the smallest Mash distance to any 

other species was below 0.08 (≥ 92% ANI). The heat_tree function in Metacoder was 

used to visualize the number of species with CRS on the GTDB phylogeny, rendered as a 

cladogram.

Quantification of intra-species and inter-species genomic similarity: To assess genomic 

diversity within species, we used intra-species ANI. For each species, we used fastANI to 

compute the sequence similarity between conspecific genome assemblies. This calculation 

was applied to all high-quality genomes of selected species from UHGG (1,969 species 

with 2–6,645 genomes per species) and to all high-quality genomes of selected species from 

GTDB (9 species with 1,000–2,000 genomes per species). We also used intra-species ANI 
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to compare individual high-quality genomes from NCBI Assembly to conspecific genomes 

from UHGG. The resulting intra-species ANI values were used to assess how diverse the 

genomes from different species are and to select genomes for simulation experiments.

To assess genomic distance between species, we used inter-species ANI. For each pair of 

species, we used fastANI to compute the similarity between a representative genome of 

each species. This calculation was applied to high-quality representative genomes of species 

pairs from UHGG. The resulting inter-species ANI values were used to select genomes for 

simulation experiments.

Metagenomic simulations: To evaluate alignment and metagenotyping errors across a 

broad range of scenarios, we simulated metagenomic sequencing reads from UHGG, NCBI 

Assembly, and GTDB genomes selected based on intra-species and inter-species ANI 

(Table S3). We used two GTDB species with >1,000 genomes (Burkholderia mallei and 

Enterobacter hormaechei_A) to evaluate reference bias (Table S2). We used 327 UHGG 

species with at least two high-quality genomes and at least one CRS (inter-species ANI ≥ 

92%) to further explore reference bias and to evaluate cross-mapping, alignment uniqueness, 

and alignment sequence identity (Table S4). We used 86 NCBI genomes from species 

commonly found in the human gut87 and represented in UHGG with at least one related 

species (inter-species ANI ≥ 80%) to evaluate performance differences between reference 

and alternative alleles, as well as the effects of post-alignment filtering and database 

customization (Table S5). All genomes used as simulation templates were high quality 

(Completeness ≥ 90, Contamination ≤ 5), and only species with at least two high-quality 

genomes were used.

For each genome used as a simulation template, 150-basepair, paired-end Illumina 

sequencing reads were computationally generated using ART (GTDB and UHGG genomes: 

art_illumina -ss HS25 -l 150 - m 1000 -s 100 -sp, NCBI genomes: art_illumina -ss HS25 -l 
125 - m 600 -s 60 -sp) at a range of genome horizontal coverage levels (1X - 50X) and with 

insert sizes so that the two reads do not overlap. In an initial set of experiments, only one 

species was included in the metagenomic reads. Template genomes were selected to have 

a range of values for intra-species ANI to the representative genome of that species in the 

metagenotyping database (see below). Next, we evaluated the effects of adding reads from 

additional species with varying inter-species ANI to the first species (based on representative 

genomes). Since the majority of errors that we detected were due to the most closely 

related species in the metagenomic reads, we simplified further experiments by simulating 

reads from only two species, one designated as the on-target species and the second as the 

off-target species.

Metagenotyping databases and read alignment: For each iteration of the simulation 

experiments, metagenomic reads generated from the template genome(s) were aligned 

to a particular database using Bowtie2 (bowtie2 --no-unal -X 1000.0 --end-to-end --very-
sensitive). In order to tune ANI between the reads and the reference database, we selected 

representative genomes based on intra-species and inter-species ANI (Table S3). To evaluate 

reference bias, reads simulated from GTDB and UHGG non-representative genomes were 

aligned to the default representative genome for their species. GTDB reads were also aligned 
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to the centroid of all GTDB genomes (lowest average pairwise ANI) and a boundary 

genome (highest average pairwise ANI). Reads simulated from NCBI genomes were aligned 

to a UHGG genome with ANI 95.5% – 99.5% to the NCBI genome (either the default 

representative genome or another genome if the default one is outside this ANI range). For 

all other analyses, we used databases with (i) only the UHGG representative genome of 

the on-target species, (ii) the UHGG representative genomes of the on-target and off-target 

species, or (iii) all UHGG representative genomes.

Defining ground truth variants with whole-genome alignment: To determine the correct 

genotypes for simulated metagenomic reads, we compared the template genome to the 

representative genome in the metagenotyping database. Whole-genome alignments of pairs 

of conspecific genomes were aligned using nucmer in the MUMmer package (--mum: only 

use anchor matches that are unique in both the reference and query). Poorly aligned blocks 

with average sequence identity < 95% were identified, and nucleotides in these blocks 

were excluded from metagenotype performance assessments. For retained blocks, single 

nucleotide variants (SNVs) were called and used as ground truth variant sites for simulation 

experiments. All matching sites in these blocks were used as ground truth non-variant sites.

Metagenotype analysis: We used MIDAS2 to metagenotype each simulated metagenome 

with each choice of database. Single-sample metagenotyping was performed using the 

SNV module of MIDAS2 (midas2 run_snps). For each sample, MIDAS2 reports summary 

statistics of the read alignment and pileup. SNVs were called in the pileup of metagenomic 

reads, and the persample per-species major allele per-site was compared to ground truth 

variant and non-variant sites from whole-genome alignments (see above). MIDAS2 is 

flexible enough that we could explore horizontal and vertical coverage thresholds, post-

alignment filters, and database customization across a range of settings that cover most of 

the defaults in other metagenotyping tools (Figure S1). Performance differences between 

MIDAS2, metaSNV2, and inStrain have been investigated elsewhere19,27.

Post-alignment filtering: In an initial set of experiments, we assessed alignment and 

metagenotyping errors without using any post-alignment filters. Then these performance 

results were compared to results with post-alignment filtering. Three different post-

alignment filters were implemented by customizing the MIDAS2 command line: no 

filter (--analysis_ready), single-end based filter (default option), and paired-end filter (--

paired_only).

Performance assessments: We evaluated performance using definitions that adhere to best 

practices for microbial genomics88. Alignment rate was calculated as the number of aligned 

reads (after any filter was applied) divided by the total number of reads. MIDAS2 computes 

horizontal coverage as the proportion of genomic sites aligned with at least two post-filtered 

reads, and vertical coverage as the average read depth of genomic sites covered with at least 

two reads. SNV precision was computed as the number of correctly called sites (variant 

or non-variant) over the number of called sites (variant or non-variant). SNV recall was 

computed as the number of correctly called sites (variant or non-variant) over the total 
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number of sites in the whole-genome alignments. Both Precision provides insight into 

accuracy of the metagenotyping results, while recall measures statistical power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1: Glossary

Conspecific
Of the same species

Single nucleotide variant (SNV)
Nucleotide that differs between orthologous sites in conspecific genomes

Allele
One of the observed sequences at a genomic locus, e.g., one of the nucleotides A, T, C, G at 

an SNV. Allele frequency is the proportional representation of one allele compared to others 

within a population

Genotyping
Detecting genetic variants, identifying present allele(s), and quantifying allele frequencies, 

commonly performed through DNA sequencing

Metagenomics
Shotgun sequencing of DNA extracted from an ecosystem, such as a microbial community

Metagenotyping
Genotyping with metagenomic data

Closely related genomes
Genomes with genome-wide similarity above a threshold (e.g., 92% average nucleotide 

identity)

Closely related species
Species that share at least one pair of closely related genomes, may be estimated with one 

representative genome per species for computational efficiency

Orthologous
Inherited through descent from a common ancestor

Reference bias
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Reduced alignment accuracy between divergent genomes of the same species. In the context 

of metagenotyping, genetic differences between genomes in the sample versus database 

affect the rate and accuracy with which reads can be aligned

Uniquely-mapping
Sequencing read with one reported alignment or a best alignment that scores much higher 

than the second-best alignment

Multi-mapping
Sequencing read with two or more different alignments reported

Cross-mapping
Sequencing read from one species aligned to another species. Also known as an off-target 

alignment

On-target alignment
Sequencing read aligned to the correct species

Post-alignment filter
Rule used to discard alignments, for example, based on sequence similarity or uniqueness

MAPID
Sequence identity between a read and the database sequence to which it is aligned

MAPQ
A measure of alignment uniqueness based on the ratio of alignment score of the best versus 

second best alignment

Vertical coverage
Number of reads aligned at a nucleotide or other genomic element

Horizontal coverage
Proportion of nucleotides in a genome that are covered by alignments (e.g., at least two 

aligned reads)

Paired-end
Sequencing strategy in which both ends of a molecule are sequenced. In the context of 

metagenomics, both reads in a pair should be aligned nearby and to the same species

K-mer
A nucleotide sequence of length k, where k is an integer
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HIGHLIGHTS

• Genetic variants can be detected in metagenomics data by aligning reads to 

genomes

• Closely related species are now prevalent in microbial genome databases

• Closely related species reduce alignment uniqueness and increase alignment 

errors

• Post-alignment filters using read pairs and database customization mitigate 

errors

Zhao et al. Page 26

Cell Syst. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Common pitfalls of detecting SNVs in microbiome samples.
Within-species genetic variation, such as single nucleotide variants (SNVs), can be detected 

within and between communities using metagenotyping. (A) A single community may 

harbor multiple strains of the same species at the same time. A biallelic SNV is shown. The 

C allele is present in 70% of genomes, while the other 30% have the G allele. This genetic 

variant may be detected by metagenotyping a single sample. (B-C) Across-sample analysis 

of metagenotypes may reveal population SNVs. (B) Over time, conspecific genomes 

in a community develop genetic differences through strain replacement, recombination, 

horizontal gene transfer, and de novo mutation. (C) Two communities may harbor 

divergent strains with many SNVs. (D) Reference-based metagenotyping involves mapping 

metagenoic reads to a reference database of representative genome sequences (or marker 

genes) using alignment or an alternative method, such as k-mer exact matching. Typically, 

alignments are filtered before detecting SNVs in the pileup of aligned reads. The detected 
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SNV alleles and their read counts are output to a file. Across-sample analysis involves 

merging this data for a set of samples. (E-M) Possible outcomes of aligning one read from 

a metagenomic sequencing library to a metagenotyping database. Below each example, 

we show alignment similarity, alignment uniqueness, and the probability that the read is 

correctly aligned after applying post-alignment filtering. Post-alignment filtering: The best 

alignment is retained if sequence similarity between the read and the genome is high enough 

and if the alignment is unique enough compared to the second best alignment. Solid arrow: 

The best alignment passes post-alignment filtering; Dashed arrow: The read aligns but is 

not the best alignment and/or fails post-alignment filtering. Arrow with cross: The read does 

not align, because the best alignment is below the aligner’s minimum score. Alignment 

similarity is indicated on all arrows. For aligned reads, SNVs between the read and the 

genome are shown with red dots. (E-I) The database contains only an on-target genome, 

which is a different strain of the same species as the read (purple). (E) Uniquely aligned 

read: the read is aligned one place with high similarity and uniqueness, so it passes post-

alignment filtering. It is likely a correct alignment. (F) Aligned read with low uniqueness: 

the read is aligned two places and the best alignment may fail post-alignment filtering, 

depending on the uniqueness threshold. (G) Multi-mapping read: the read is aligned two 

places and the best alignment has only slightly higher similarity, so it will probably fail post-

alignment filtering. (H) Perfectly multi-mapping read: the read is aligned two places with 

identical similarity, so it will fail post-alignment filtering. (I) Unaligned read: no alignments 

are reported. (J-M) The database contains the on-target genome plus an off-target genome of 

another species (maroon). (J) Aligned read with low uniqueness: the second best alignment 

is to the off-target species but has fairly high similarity. The uniqueness threshold will 

determine if it passes post-alignment filtering. (K-L) Multi-species multi-mapping reads. 

(M) Cross-mapping read: the best alignment is off-target. It may pass post-alignment 

filtering, depending on the uniqueness threshold. A higher uniqueness threshold would 

reduce cross-mapping and false positive SNVs in the off-target species, but this would also 

eliminate correct alignments, as in F and J. Filtered out and unaligned reads can bias SNV 

metagenotypes in the on-target species.
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Figure 2. Rapid growth in prokaryotic genome sequences uncovers diverse and closely related 
species.
(A) Growth of the NCBI Assembly database by year from 1999 to 2022 (as of May 

2022). The number of prokaryotic species with at least one genome assembly has 

grown rapidly in recent years. (B) Many large genome collections are available today. 

Shown are Genomes of Earth’s Microbiomes (GEM; June 1, 2022), Genome Taxonomy 

Database (GTDB; version R207), and Unified Human Gastrointestinal Genome collection 

(UHGG; v1.0). (C) It is now common for a prokaryotic species to have multiple genome 

sequences. (D-E) Species differ in the amount of intra-specific genetic diversity in genome 

databases. Genome-wide average nucleotide identity (ANI) between the representative 

genome and conspecific genomes is shown for two example species chosen from GTDB 

to represent different population structures at the extremes of intra-species ANI. (D) 

Enterococcus faecalis (RS_GCF_000392875.1) is not very diverse. (E) Enterobacter 
hormaechei_A (RS_GCF_001729745.1) is diverse and has population structure. (F) A 

heat-tree (cladogram) showing the prevalence of bacterial taxa with a closely related 

species (CRS), defined as 92%−95% identity (1 - Mash distance, a fast approximation 

of ANI). Species with CRS are most common in Proteobacteria and specific lineages 

of Actinobacteria. This phylogenetic distribution in part reflects the large amount of 

sequencing and assembly effort focused on pathogens, model organisms, and the human 

microbiome. (G) We simulated metagenomic reads from 100 E. faecalis genomes at 30X 

horizontal coverage and aligned them to the GTDB E. faecalis representative genome. 

Alignment rate is highest when reads come from a genome that has higher ANI with 

the representative genome. (H) E. hormaechei_A shows the same relationship between 

alignment rate and ANI but with a lower rate overall, which is expected given its intra-

species diversity.
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Figure 3. Reference bias reduces the number and accuracy of metagenotyped SNVs for divergent 
lineages.
(A) We quantified reference bias for 327 species selected from the UHGG database to 

represent a range of different levels of intra-species diversity. Simulated metagenomic reads 

from all genomes of each species were aligned to a single high-quality representative 

genome, one species at a time with no other genomes in the Bowtie2 database. Across 

species, alignment rate is positively correlated with ANI (Pearson’s R = 0.75, p<2.0×10−16) 

and ranges from 52% to 100%. Species with low alignment rate given their intra-species 

ANI tend to have rearranged genomes with more repetitive sequences. Alignment rate 

is computed as the fraction of aligned reads over total simulated read counts. (B-C) 

We metagenotyped SNVs in alignments from (A) for reads simulated from 86 high-

quality NCBI genomes, without any post-alignment filtering. SNV recall and precision are 

correlated with intra-species ANI (i.e., similarity of the NCBI genome in the metagenomes 

to the UHGG genome in the database) for reference (REF) alleles. (B) As expected, 

unaligned reads tend to carry more alternative (ALT) alleles, and hence recall is notably 

higher for REF alleles. (C) Precision is very high for REF alleles and somewhat lower for 

ALT alleles.
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Figure 4. Cross-mapping is prevalent.
Using UHGG, reads were simulated at 20X coverage from one genome and aligned to 

a database containing two representative genomes: the on-target species (color: ANI to 

the simulation template) and an off-target species (horizontal axis: inter-species ANI). All 

aligned reads were retained (no post-alignment filtering). (A) We observe increased cross-

mapping as the template genome gets more diverged from the representative genome and 

as the two species become more closely related. Cross-mapping rate is the proportion of 

all aligned reads incorrectly mapped to the off-target genome. (B) Cross-mapped reads can 

cover a high proportion of the off-target genome, with similar trends as the cross-mapping 

rate. Horizontal coverage is the proportion of nucleotides in the off-target genome covered 

by at least two reads.
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Figure 5. Closely related species greatly reduce alignment uniqueness.
Simulated reads from Collinsella sp003458415 were aligned to databases containing only 

the representative genome of the on-target species (Rep), two representative genomes: 

one on-target and from an one off-target species (horizontal axis: inter-species ANI), or 

representative genomes for 3,956 species (UHGG). No post-alignment filtering was applied. 

(A) A wide distribution of MAPQ values (vertical axis) with the Rep database shows that 

within-species multi-mapping reduces alignment uniqueness. Adding one closely related 

species to the database greatly reduces alignment uniqueness for reads aligned correctly 

to the on-target genome (red). This effect is correlated with inter-species ANI but remains 

fairly high out to 90% inter-species ANI. Using MAPQ > 30 for post-alignment filtering 

would remove the majority of on-target alignments. Including all 3,956 species in the 

database does not lead to a further decrease in MAPQ compared to including a closely 

related species with 94% inter-species ANI, emphasizing that low alignment uniqueness is 

mostly driven by highly related genomes in the database. Cross-mapped reads aligned to 

off-target genomes (blue) tend to have even lower MAPQ than on-target alignments. (B) As 

expected, reads aligned to the on-target genome tend to have high sequence identity (vertical 

axis: MAPID). This is especially true when there is a closely related species in the database 

(UHGG and 94% inter-species ANI), because many reads that would have lower MAPID are 

not correctly not aligned. Reads aligned to the off-target genome have slightly lower MAPID 

than on-target alignments, and their MAPID decreases with inter-species ANI.
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Figure 6. Post-alignment filtering and database customization improve SNV recall.
To explore potential solutions to metagenotyping errors caused by closely related species 

in the database, we simulated reads (20x horizontal coverage) from 86 species and aligned 

them to a database containing representative genomes for the on-target species and one off-

target species with varying inter-species ANI (shade of purple). (A) SNV recall is reduced 

with closely related species (darker purple), especially for alternative (ALT versus REF) 

alleles. Recall falls further when individual reads are subjected to post-alignment filtering 

(Single: MAPQ at least 10, MAPID at least 94), but increases when paired-end filtering is 

used (MAPQ at least 10 for at least one read in a proper pair), with 8% more SNVs correctly 

genotyped at ALT sites. (B) Adding reads from the off-target species to the simulated 

metagenomes, we found that a horizontal coverage threshold of 20–50% (dashed line=40%) 

accurately distinguishes most species in the reads (on-target, off-target) from species not 

present (Others), with one false positive and two false negative species when the database is 

not customized (3,956 UHGG genomes). Customizing the database to include only the two 

species in the reads (Customized) or 9 closely related species plus 153 more distantly related 

species (Intermediate) increases horizontal genome coverage somewhat, eliminating one 

false negative and the false positive species. (C) The customized database increases SNV 

recall at both ALT (7.5%) and REF (4.9%) sites, and recall for the Intermediate database is 

almost as high.
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Table 1.

Complexity of sample and database across genotyping contexts.

Example
Species in 
Sample

Intra-species Variation per 
Species in Sample

Species in 
Database

Isolate genotyping Clonal isolate culture One None - Low One

Defined community 
genotyping

In vitro evolution experiment starting 
with one or a few clonal strain(s)

One or Few Low - Medium Same as Sample

Metagenotyping Shotgun sequencing of a stool sample Many Low - High Many
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Genome accession numbers and plotting data this paper https://doi.org/10.5281/zenodo.7402300

Software and algorithms

fastANI (version 1.33) Jain et al., 2018 https://github.com/ParBLiSS/FastANI

Mash (version 2.2) Ondov et al., 2016 https://github.com/marbl/Mash

ART (version 2.5.8) Huang et al., 2012 https://github.com/scchess/Art

Bowtie2 (version 2.3.5.1) Langmead and Salzberg, 2012 https://github.com/BenLangmead/bowtie2

MUMmer4 (version 4.0) Marcais et al., 2018 https://mummer4.github.io/

MIDAS2 (version 0.5) Zhao et al., 2022 https://github.com/czbiohub/MIDAS2

R (version 4.2.0) (packages: ggplot, ggbeeswarm, 
ggsci)

N/A https://www.r-project.org, 2022

metacoder (version 0.3.5) Foster et al., 2017 https://github.com/grunwaldlab/metacoder

Other

NCBI Assembly Kitts et al., 2015 https://www.ncbi.nlm.nih.gov/assembly

Genome Taxonomy Database Parks et al., 2021 https://gtdb.ecogenomic.org/

Genomes of Earth’s Microbiomes Nayfach et al., 2021 https://genome.jgi.doe.gov/portal/GEMs/
GEMs.home.html

Unified Human Gastrointestinal Genome 
collection (UHGG; v1.0)

Almeida et al., 2021b http://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/human-gut/v1.0/
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