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Rationale & Obijective: Studies using a single measurement of fibroblast growth factor 23
(FGF-23) suggest that elevated FGF-23 levels are associated with increased risk for requirement
for kidney replacement therapy (KRT) in patients with chronic kidney disease. However, the data
do not account for changes in FGF-23 levels as chronic kidney disease progresses.

Study Design: Case-cohort study.

Setting & Participants: To evaluate the association between serial FGF-23 levels and risk for
requiring KRT, our primary analysis included 1,597 individuals in the Chronic Renal Insufficiency
Cohort Study who had up to 5 annual measurements of carboxy-terminal FGF-23. There were
1,135 randomly selected individuals, of whom 266 initiated KRT, and 462 individuals who
initiated KRT outside the random subcohort.

Exposure: Serial FGF-23 measurements and FGF-23 trajectory group membership.
Outcomes: Incident KRT.

Analytical Approach: To handle time-dependent confounding, our primary analysis of time-
updated FGF-23 levels used time-varying inverse probability weighting in a discrete time failure
model. To compare our results with prior data, we used baseline and time-updated FGF-23 values
in weighted Cox regression models. To examine the association of FGF-23 trajectory subgroups
with risk for incident KRT, we used weighted Cox models with FGF-23 trajectory groups derived
from group-based trajectory modeling as the exposure.

Results: In our primary analysis, the HR for the KRT outcome per 1 SD in the mean of natural
log-transformed (In)FGF-23 in the past was 1.94 (95% Cl, 1.51-2.49). In weighted Cox models
using baseline and time-updated values, elevated FGF-23 level was associated with increased risk
for incident KRT (HRs per 1 SD InFGF-23 of 1.18 [95% ClI, 1.02-1.37] for baseline and 1.66
[95% CI, 1.49-1.86] for time-updated). Membership in the slowly and rapidly increasing FGF-23
trajectory groups was associated with ~3- and ~21-fold higher risk for incident KRT compared to
membership in the stable FGF-23 trajectory group.

Limitations: Residual confounding and lack of intact FGF-23 values.

Conclusions: Increasing FGF-23 levels are independently associated with increased risk for
incident KRT.

Progressive loss of kidney function in patients with chronic kidney disease (CKD)
culminates in kidney failure. Reduced estimated glomerular filtration (eGFR) and elevated
urinary albumin-creatinine ratio are strong and well-established predictors of kidney failure
requiring kidney replacement therapy (KRT).1-> Mechanisms that contribute to CKD
progression include hypertension, activation of the renin-angiotensin-aldosterone system,
inflammation, and interstitial injury.® Numerous investigations are focused on identifying
additional modifiable mechanisms for accelerated decline in kidney function.

Fibroblast growth factor 23 (FGF-23), an osteocyte-derived hormone, regulates phosphate
homeostasis by stimulating urinary phosphate excretion and lowering 1,25-
dihydroxyvitamin D levels.” Plasma FGF-23 level increases early in CKD and may be
thousands-fold higher than baseline by the time individuals approach the need for KRT.8
Although definitive evidence linking elevated FGF-23 level to kidney function decline is
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lacking, several proposed mechanisms that require further testing have emerged. By
promoting phosphaturia and increasing intratubular phosphate concentrations, elevated
FGF-23 levels may induce renal tubular damage and tubulointerstitial fibrosis.?-10 Elevated
FGF-23 levels may also promote CKD progression by directly stimulating renal fibrosis and
indirectly by sup-pressing 1,25-dihydroxyvitamin D levels and stimulating production of
proinflammatory cytokines.11-13 Observational studies that measured FGF-23 at a single
time point reported independent associations between elevated FGF-23 levels and increased
risk for requirement for KRT in some but not in all studies.14-16 Data for the association of
serial FGF-23 levels with risk for CKD progression are limited.1”18 Using up to 5 annual
serial FGF-23 measurements, we conducted a prospective observational case-cohort study
within the Chronic Renal Insufficiency Cohort (CRIC) Study to test the hypothesis that
serial plasma FGF-23 levels are independently associated with increased risk for
requirement for KRT in patients with mild to moderate CKD.

Study Population

The CRIC Study is a longitudinal prospective cohort study of 3,939 individuals aged 21 to
74 years with CKD stages 2 to 4.1920 participants were recruited between June 2003 and
September 2008 from 7 clinical centers across the United States.19:20 The study design and
methods have previously been published.19:20 The institutional review board at each site
approved the study protocol, and all participants provided written informed consent.

Study Design

We performed a case-cohort study.?1-26 We measured FGF-23 at 2 to 5 annual time points in
1,135 individuals who were included in the randomly selected CRIC Study longitudinal
mineral metabolism subcohort.2” All 1,135 individuals had FGF-23 measured at enrollment
and at least at 1 additional annual visit. We then sampled outside the subcohort an additional
462 individuals who initiated KRT within 5 years of the baseline visit. All included
individuals had FGF-23 levels measured at 2 to 5 annual time points, including baseline
FGF-23.

We examined the relationship between serial FGF-23 measurements and risk for KRT
requirement using multiple integrative approaches. As our primary approach, we used time-
varying inverse probability weighting (IPW) in a discrete time failure model, which allowed
us to investigate longitudinal risk relationships with appropriate adjustment for time-
dependent confounders.28 To bench-mark our results against prior findings on the
relationship between baseline FGF-23 level and risk for KRT requirement, we also
performed weighted Cox proportional hazards models using baseline and time-updated
FGF-23 levels. The total analytic population for models using baseline and time-updated
FGF-23 levels and the time-varying IPW discrete time failure models included 1,597
individuals, of whom 728 initiated KRT, with 266 cases within the subcohort and 462 cases
outside the subcohort (Fig 1). To examine the association of distinct FGF-23 trajectory
subgroups with risk for KRT requirement, we used weighted Cox models with FGF-23
trajectory groups derived from group-based trajectory modeling as the exposure.2” For our
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trajectory-based analyses, individuals needed to have a baseline FGF-23 measurement and at
least 1 other FGF-23 measurement available and have survived beyond their fifth annual
study visit without initiating KRT. Our total analytic population for our trajectory-based
analyses included 1,163 individuals.

Primary Exposure

The primary exposures were baseline and time-updated FGF-23 levels and FGF-23
trajectory group membership. The CRIC Central Laboratory measured FGF-23 after a single
thaw of frozen plasma samples from the baseline study visit and from up to 5 annual visits.16
On average, participants had 4.0 £+ 1.2 annual FGF-23 measurements. FGF-23 was measured
in duplicate using a second-generation carboxy-terminal assay (Quidel). The mean intra-
assay coefficient of variation for paired assays was <6.5% and the lower limit of detection
was 3 RU/mL.16

Primary Outcomes

Covariates

The primary outcome was requirement of KRT, defined as initiation of maintenance dialysis
or receipt of a kidney transplant. Participants were followed up until KRT initiation, death,
withdrawal from the study, loss to follow-up, or mid-2013, when the database was locked for
analysis. Given that individuals needed to survive to initiate KRT, we also incorporated a
secondary composite outcome of KRT or death.

We used demographic and laboratory data collected at baseline and at up to 5 annual time
points. Serum creatinine was measured using standard assays in real time at the annual study
visits. eGFR was calculated using the CKD Epidemiology Collaboration (CKD-EPI)
equation.29 Data for other measured covariates and assays are provided in Item S1.

Statistical Analysis

Time-Varying IPW Discrete Time Failure Models—For our primary analyses, we
performed time-varying IPW discrete time failure models using time-updated covariates
(Item S1).28:30.31 We ysed the time-varying IPW method to appropriately adjust for the
effects of eGFR as a time-dependent confounder, which occurs when a covariate affects both
the exposure and outcome but also affects prior exposure. In the risk relationship between
FGF-23 level and KRT, FGF-23 level may affect eGFR but eGFR can affect prior FGF-23
levels. eGFR is a both a confounder affecting FGF-23 levels and KRT risk and a mediator on
the causal pathway between FGF-23 and KRT risk. Standard methods that adjust for eGFR
would adjust for both the confounding and mediator effects and may underestimate the true
association between FGF-23 level and KRT. The time-varying IPW method allows for
adjustment of confounding by time-dependent eGFR without incorrectly adjusting for its
mediator effects.32

The IPW method is a 2-step approach that uses as the first step the calculation of the FGF-23
exposure weights and as the second step the fitting of a discrete time failure model for the
outcomes (KRT and KRT or death) by applying the final weight derived in the first step.

Am J Kidney Dis. Author manuscript; available in PMC 2021 June 01.
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In the first step of performing the IPW method, we calculated the FGF-23 exposure IPW-
stabilized weights. Because FGF-23 levels were not normally distributed, we modeled
FGF-23 level at each visit in quartiles, as was done in a prior CRIC Study analysis using
time-varying IPW models.28:30:31.33 To compute conditional probabilities, we performed
multinomial logistic regression on FGF-23 quartiles with adjustment for time-varying
covariates including eGFR with the exception of C-reactive protein and interleukin 6, which
were only measured at baseline. The unstabilized weight for a specific study visit was
calculated as one over the cumulative probabilities of the observed FGF-23 level history up
to that visit (the denominator of stabilized weights). To allow for valid inference, we next
stabilized the weights by multiplying the unstabilized weight by the unconditional
probability of observed FGF-23 level history adjusting for baseline-only predictors without
conditioning on time-varying covariates (the numerator of stabilized weights).34:3% Given the
small number of loss to follow-up, we did not calculate the censoring weight.36 The final
stabilized IPW weight is the ratio of the unconditional probability (the numerator) to the
conditional probability (denominator). In the second step of performing the IPW method,
inverse probability weighted structural models were fit using a discrete time failure model
for the KRT outcome by applying the final stabilized weight calculated in the first step to the
study visit level data, as previously done (Item S1).28:34.35 FGF-23 level history was
modeled in the final model as the mean FGF-23 level in the past.

Assuming that the assumptions of positivity, exchangeability, and correct specification of the
weight models are met37 (Item S1), the hazard ratio (HR) estimated from the time-varying
IPW discrete time failure model can be interpreted as the HR estimate per 1-standard
deviation (SD) increase in mean In(FGF-23) in the past under conditions of proper
adjustment for time-dependent confounding.

Baseline and Time-Updated Analyses—We used the Barlow weighting method for the
case-cohort design in the weighted Cox proportional hazards models?4 for our baseline and
time-updated analyses. We analyzed time to KRT initiation according to baseline FGF-23
level expressed as a continuous variable with HRs calculated per 1-SD increase in
In(FGF-23). Next, we analyzed time to KRT initiation according to time-updated
In(FGF-23) per the same 1-SD increments used for baseline In(FGF-23). For baseline and
time-updated analyses, follow-up time began at the baseline CRIC Study visit. We
hierarchically adjusted for possible confounders, including demographics (age, sex, race,
and ethnicity), CKD-specific risk factors (eGFR, urinary protein-creatinine ratio, serum
albumin, hemoglobin, C-reactive protein, and interleukin 6 values), cardiovascular risk
factors (diabetes, smoking, systolic blood pressure, body mass index, history of coronary
artery disease, heart failure, stroke, peripheral vascular disease, number of blood pressure
medications, use of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker),
and markers of mineral metabolism (calcium, phosphate, and parathyroid hormone [PTH]
levels). All adjusted models included a stratification term by study site. For analyses that
examined baseline FGF-23 levels, we adjusted for baseline covariates. For analyses that
examined time-updated FGF-23 levels, we adjusted for time-updated covariates when
appropriate, except for C-reactive protein and interleukin 6, which were only available at
baseline. We calculated Schoenfeld residuals in the fully adjusted model for both the KRT

Am J Kidney Dis. Author manuscript; available in PMC 2021 June 01.
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and the composite outcome to confirm that the proportionality assumption for In(FGF-23)
was not violated. We also performed correlation tests for our primary KRT outcome between
Schoenfeld residuals and event time, rank order of the event times, and Kaplan-Meier
estimates to test for the proportionality assumption for In(FGF-23).38

Trajectory-Based Analyses—We performed group-based trajectory modeling to identify
subpopulations with distinct patterns of FGF-23 exposure.2”:3% Our total analytic population
for the trajectory-based analyses included 1,163 individuals. Similar to prior analyses, we
identified 3 FGF-23 trajectory categories: stable, slowing increasing, and rapidly increasing
(Item S1).27 We derived eGFR trajectories using analogous methods.

We estimated the risk for KRT for each FGF-23 trajectory group compared to the referent
FGF-23 trajectory group.?* The participants’ fifth annual visit was classified as time 0 (onset
of longitudinal follow-up) for our survival analyses. We hierarchically adjusted for
confounding by demographics, CKD-specific risk factors, cardiovascular disease risk
factors, and markers of mineral metabolism. The multivariable adjustment was completed
based on covariate values at time O (fifth annual study visit) and we also adjusted for
baseline eGFR and eGFR trajectory group. In secondary analyses, we derived the FGF-23
trajectory groups using only 3 annual time points, including only those who survived
without reaching the KRT outcome by their third annual study visit. We graphed individual
observed FGF-23 values according to predicted FGF-23 trajectory group memberships using
spaghetti plots.40

Additional Analyses—Given experimental evidence linking total-body phosphate load
with increases in FGF-23 levels,28 in additional analyses we separately adjusted our model
using baseline FGF-23 level as the exposure for baseline 24-hour urinary phosphate and
fractional excretion of phosphate. FGF-23 inhibits production of 1,25-dihydroxyvitamin D,’
and low calcitriol levels are associated with CKD progression.*! In our model using time-
updated FGF-23 levels, we additionally adjusted for time-updated 1,25-dihydroxyvitamin D
levels. Serum bicarbonate levels are also associated with CKD progression.#2 In our model
using time-updated FGF-23 levels, we additionally adjusted for time-updated serum
bicarbonate levels.

All analyses were performed using SAS, version 9.4. Two-sided P < 0.05 was considered
statistically significant.

Baseline characteristics were similar in cases within the subcohort and cases outside the
subcohort (Table 1). Participants who went on to require KRT had higher systolic blood
pressures, were more likely be black and Hispanic and have diabetes, heart failure,
peripheral vascular disease, and coronary artery disease; and had lower baseline eGFR and
higher urinary protein-creatinine ratio, PTH, and FGF-23 values than individuals who did
not reach the KRT outcome (Table 1). Baseline characteristics of individuals from the entire
CRIC Study cohort, individuals within the random subcohort, and those outside the random

Am J Kidney Dis. Author manuscript; available in PMC 2021 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Mehta et al. Page 7

subcohort are presented in Table S1. Table S2 demonstrates baseline characteristics of the
case cohort and trajectory analyses population compared with the entire CRIC population.

Baseline and Time-Updated FGF-23 and Risk for KRT Requirement

Within the case-cohort analytic sample (n = 1,597), 728 participants reached the KRT
outcome and 859 experienced the composite outcome of KRT or death (131 death events,
196 KRT events before death, and 532 KRT events without death) during a median follow-
up of 6.3 years.

In our time-varying IPW discrete time failure model, every 1-SD increase in the mean of
In(FGF-23) in the past was significantly associated with a 1.94-fold higher adjusted risk foe
the KRT outcome (adjusted HR, 1.94; 95% confidence interval [CI], 1.51-2.49; Table 2).
Results from our baseline and time-updated FGF-23 models demonstrated similar results.
Every 1-SD increase in baseline In(FGF-23) was significantly associated with 1.18-fold
higher adjusted risk for the KRT outcome (95% CI, 1.02-1.37; Table 2). Time-updated
FGF-23 level was associated with stronger adjusted risk for the KRT outcome (HR per 1-SD
increase in In[FGF-23], 1.66; 95% ClI, 1.49-1.86; Table 2). Baseline, time-updated, and
time-varying IPW discrete time failure models all demonstrated that plasma FGF-23 level
was independently associated with the composite outcome of KRT or death (Table 2).

FGF-23 Trajectories and Risk for KRT Requirement

Group-based trajectory modeling among 1,163 individuals who survived beyond their fifth
annual study visit without reaching the KRT outcome identified 3 distinct trajectory groups
of FGF-23 change over time: stable (n = 643; mean group slope of 0.03 In[FGF-23] per
year), slowly increasing (n = 409; mean group slope of 0.14 In[FGF-23] per year), and
rapidly increasing (n = 111; mean group slope of 0.40 In[FGF-23] per year; Fig 2). Through
algebraic transformation ((exp(mean group slope) — 1) x 100), these mean group slopes can
also be expressed as the following percent changes in mean FGF-23 level per year: +3%,
+15%, and +49.2%.

The rapidly increasing FGF-23 trajectory group had a higher percentage of blacks and
Hispanics, higher percentage of women, higher systolic blood pressures, more comorbid
conditions, lower eGFRs, and higher phosphate, PTH, and baseline and final FGF-23 values
compared with the slowly increasing and stable FGF-23 trajectory groups (Table 3).

Among the 1,163 individuals, 354 participants reached the KRT outcome during a median
follow-up time of 3.2 years. In all unadjusted and multivariable-adjusted analyses,
membership to the rapidly increasing FGF-23 trajectory group was associated with
significantly increased risk for requirement for KRT (Table 4). Despite adjustments for
eGFR at baseline and time 0 and the eGFR trajectory groups, membership in the rapidly
increasing FGF-23 trajectory group conferred an ~21-fold higher risk for the KRT outcome
compared with membership in the stable FGF-23 trajectory group (HR, 21.41; 95% CI,
10.66-43.11). Individuals in the slowly increasing FGF-23 trajectory group were also at
increased risk for the KRT outcome compared with those in the stable trajectory group (HR,
3.60; 95% ClI, 2.35-5.53).

Am J Kidney Dis. Author manuscript; available in PMC 2021 June 01.
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When we repeated our FGF-23 trajectory-based analyses using only 3 time points, our
results were qualitatively similar (Table S3). In all analyses using FGF-23 trajectories
defined by 3 time points, membership in the rapidly increasing FGF-23 group was
associated with significantly increased risk for the KRT outcome (Table S3).

Additional Analyses

Our findings did not qualitatively change when we adjusted our model using baseline
FGF-23 level as the exposure for 24-hour urine phosphate (HR per 1-SD greater In[FGF-23],
1.17; 95% ClI, 1.01-1.36) or fractional excretion of phosphate (HR per 1-SD greater In
[FGF-23], 1.21; 95%Cl, 1.04-1.40). Our results also remained significant when we adjusted
our model using time-updated FGF-23 level as the exposure for time-updated 1,25-
dihydroxyvitamin D (HR per 1-SD increase in In[FGF-23], 1.69; 95% ClI, 1.52-1.88) and
for time-updated bicarbonate level (HR per 1-SD increase in In [FGF-23], 1.67; 95% ClI,
1.49-1.86).

Discussion

In this large case-cohort study of individuals with moderate to severe CKD, we evaluated the
relationship between serial FGF-23 levels and risk for requirement of KRT. For our primary
analysis, we used the time-varying IPW method to account for time-updated covariates such
as eGFR, which could affect our outcome of interest and which could be affected by
preceding FGF-23 values as the exposure variable. Our primary results demonstrated
independent associations between FGF-23 history and risk for the KRT outcome. Models
that used baseline and time-updated FGF-23 levels as the exposure demonstrated similar
results. In analyses based on group-based trajectory modeling, we found that individuals
who belong to an increasing FGF-23 trajectory group are at substantially higher risk for
progression to the KRT outcome than individuals who belong to the stable FGF-23
trajectory group. Taken together, our results demonstrate that increasing levels of FGF-23
are associated with increased risk for requiring KRT.

Prior work in nondiabetic CKD,14 advanced CKD,1® the pediatric population,3 and kidney
transplant recipients®* suggests that FGF-23 level predicts progression of CKD. However,
not all previous studies reported significant associations.16:45:46 Although inconsistent
results from evaluations of single time-point FGF-23 measurements and risk for requiring
KRT may be due to differences across studies in study design, sample size, participant case-
mix, and differential ascertainment of covariates and duration of follow-up, identification of
biomarkers for progression of CKD to kidney failure is also challenged by the excellent
predictive performance of eGFR and albuminuria.?

Despite the potency of eGFR as a predictor, we were able to detect a significant risk for
increasing FGF-23 levels associated with KRT initiation. Several characteristics of the
models we deployed could help explain our findings. Assessment of exposure with increased
precision afforded by our time-updated and trajectory-based analyses allowed for enhanced
estimation of the relationship of serial FGF-23 levels with risk for the KRT outcome. The
shortened interval between exposure ascertainment and the event of interest in our time-
updated analyses also contributed to our ability to detect greater magnitude of risk compared
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with models that assessed baseline FGF-23 levels. By capturing the effects of baseline and
time-updated FGF-23 exposure, time-varying IPW discrete time failure models more fully
evaluated the total FGF-23 effect and demonstrated higher risk estimates than did baseline or
time-updated models.3” Taken together, as we improved the ability to define FGF-23
exposure and take into account time-dependent confounders with our modeling approaches,
we were able to reveal significant risk associations with growing magnitudes of effect.

Potential mechanisms by which FGF-23 excess may result in progression of CKD are not
completely understood. Whether elevated FGF-23 level initiates kidney injury or propagates
kidney injury in the setting of CKD is also unknown. Prior work suggests that FGF-23 may
have profibrotic properties, which may contribute to cardiac fibrosis in individuals with
CKD.#” Similar studies investigating FGF-23 and its impact on renal fibroblasts demonstrate
that FGF-23 excess also may increase fibroblast activation during kidney injury and result in
profibrotic signaling.12 FGF-23 may also indirectly result in CKD progression. By
stimulating phosphaturia and promoting nephrocalcinosis, FGF-23 may induce renal tubular
damage and tubulointersitital fibrosis.®10 Other indirect effects of FGF-23 on the kidney
could be mediated by 1,25-dihydroxyvitamin D deficiency, which has been implicated in
CKD progression through multiple potential mechanisms, including failure to adequately
suppress anti-inflammatory pathways, to downregulate the renin-angiotensin system, and to
inhibit myofibroblast activation.13 Although we did not find independent associations
between baseline 24-hour urine phosphate or fractional excretion of phosphate and risk for
the KRT outcome, FGF-23 level may also be a surrogate of overall phosphate balance.
Finally, FGF-23 level elevation may identify a subpopulation at highest risk for CKD
progression. This possibility is supported by the distribution of clinical characteristics
among individuals within the rapidly increasing FGF-23 trajectory group, who had more
comorbid conditions, higher blood pressures, lower baseline eGFRs, and more abnormalities
in markers of mineral metabolism than the slowly increasing and stable FGF-23 trajectory
groups.

Although we tested our hypotheses using several complimentary strategies in a well-
established and large CKD cohort with time-updated covariates, we acknowledge certain
limitations. First, observational studies cannot prove causation or provide information on
mechanistic links between increasing FGF-23 levels and the requirement for KRT. Second,
although we adjusted for eGFR and urinary protein-creatinine ratio in numerous ways and
through numerous approaches, residual confounding by reduced kidney function remains a
possible explanation of our findings. We also do not have the cause of kidney disease,
measurements of intact FGF-23, or repeated measurements of inflammatory markers or
urinary phosphate excretion. Finally, findings of our case-cohort study will require
confirmation in other prospective CKD cohorts.

We demonstrate that increasing FGF-23 levels are associated with increased risk for
requiring KRT. However, before incorporating measurements of FGF-23 into clinical
practice, additional clinical studies are needed to confirm our findings and further preclinical
studies are needed to demonstrate whether elevated FGF-23 level has any mechanistic or
causal role in the development of kidney failure.
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Figure 1.

Flow chart for study population in the case-cohort study design. Fibroblast growth factor 23
(FGF-23) was measured at 2 to 5 annual time points in 1,135 individuals who were included
in the randomly selected Chronic Renal Insifficiency Cohort (CRIC) Study longitudinal
mineral metabolism subcohort. We then sampled outside the subcohort an additional 462
individuals who reached the kidney replacement therapt (KRT) outcome in whom we also
measured FGF-23 at 2 to 5 annual time points. The total analytic population for all analyses,
except for FGF-23 trajectory analyses, included 1,597 individuals, of whom 728 reached the
KRT outcome, with 266 cases within the subcohort and 462 cases outside the subcohort.
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Figure 2.

Fibroblast growth factor 23 (FGF-23) trajectories across 5 time points in 1,163 individuals at
risk for end-stage kidney disease. (Top panel) Individual FGF-23 measurements across 5
time points (spaghetti-pots) and mean FGF-23 values (red triangle, means connected in
purple line) within the predicted FGF-23 trajectory group. (Bottom panel) Mean and
standard error of the observed FGF-23 trajectories (solid lines) and predicted trajectories
(dashed lines) with 95% confidence intervals (shaded areas).
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