
UCSF
UC San Francisco Previously Published Works

Title
Development of a pulmonary imaging biomarker pipeline for phenotyping of chronic lung 
disease

Permalink
https://escholarship.org/uc/item/6xp5c9v1

Journal
Journal of Medical Imaging, 5(2)

ISSN
2329-4302

Authors
Guo, Fumin
Capaldi, Dante
Kirby, Miranda
et al.

Publication Date
2018-04-01

DOI
10.1117/1.jmi.5.2.026002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xp5c9v1
https://escholarship.org/uc/item/6xp5c9v1#author
https://escholarship.org
http://www.cdlib.org/


Development of a pulmonary imaging
biomarker pipeline for phenotyping of
chronic lung disease

Fumin Guo
Dante Capaldi
Miranda Kirby
Khadija Sheikh
Sarah Svenningsen
David G. McCormack
Aaron Fenster
Grace Parraga

Fumin Guo, Dante Capaldi, Miranda Kirby, Khadija Sheikh, Sarah Svenningsen, David G. McCormack,
Aaron Fenster, Grace Parraga, , “Development of a pulmonary imaging biomarker pipeline for phenotyping
of chronic lung disease,” J. Med. Imag. 5(2), 026002 (2018), doi: 10.1117/1.JMI.5.2.026002.



Development of a pulmonary imaging biomarker
pipeline for phenotyping of chronic lung disease

Fumin Guo,a,b,c Dante Capaldi,a,d Miranda Kirby,e Khadija Sheikh,a Sarah Svenningsen,a David G. McCormack,f
Aaron Fenster,a,b,d Grace Parraga,a,b,d,* and for the Canadian Respiratory Research Network
aUniversity of Western Ontario, Robarts Research Institute, London, Ontario, Canada
bUniversity of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada
cUniversity of Toronto, Sunnybrook Research Institute, Toronto, Canada
dUniversity of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
eUniversity of British Columbia, St. Paul’s Hospital, Centre for Heart Lung Innovation, Vancouver, Canada
fUniversity of Western Ontario, Division of Respirology, Department of Medicine, London, Ontario, Canada

Abstract. We designed and generated pulmonary imaging biomarker pipelines to facilitate high-throughput
research and point-of-care use in patients with chronic lung disease. Image processing modules and algorithm
pipelines were embedded within a graphical user interface (based on the .NET framework) for pulmonary mag-
netic resonance imaging (MRI) and x-ray computed-tomography (CT) datasets. The software pipelines were
generated using C++ and included: (1) inhaled 3He∕129XeMRI ventilation and apparent diffusion coefficients,
(2) CT-MRI coregistration for lobar and segmental ventilation and perfusion measurements, (3) ultrashort echo-
time 1HMRI proton density measurements, (4) free-breathing Fourier-decomposition 1HMRI ventilation/perfu-
sion and free-breathing 1HMRI specific ventilation, (5) multivolume CT and MRI parametric response maps, and
(6) MRI and CT texture analysis and radiomics. The image analysis framework was implemented on a desktop
workstation/tablet to generate biomarkers of regional lung structure and function related to ventilation, perfusion,
lung tissue texture, and integrity as well as multiparametric measures of gas trapping and airspace enlargement.
All biomarkers were generated within 10 min with measurement reproducibility consistent with clinical and
research requirements. The resultant pulmonary imaging biomarker pipeline provides real-time and automated
lung imaging measurements for point-of-care and high-throughput research.© 2018 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JMI.5.2.026002]
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1 Introduction
For chronic lung diseases such as asthma and chronic obstruc-
tive lung disease (COPD), x-ray computed tomography (CT) is
considered the gold standard imaging method.1 Quantitative
lung CT analyses have been used in large-scale studies, such
as NETT,2 SARP,3 MESA-lung,4 COPDGene,5 CanCOLD,6

ECLIPSE,7 and SPIROMICS,8 and these have enabled a deeper
understanding of lung disease pathophysiology. CT provides
unique imaging biomarkers of airway and parenchymal abnor-
malities,9 including lung volumes and density, parenchyma mor-
phology, airway dimensions, and regional air trapping. Notably,
CT image analysis tools have been developed and validated for
pulmonary biomarkers, including pulmonary WorkstationR and
ApolloR (VIDA Diagnostic Inc., Corallville, Iowa), thoracic
VCAR (General Electric Healthcare, Milwaukee), Pulmo3D
(Fraunhofer MEVIS, Bremen, Germany), pulmonary module
(Mimics Innovation Suite, Materialise, Leuven, Belgium),
chest imaging platform (Brigham and Women’s Hospital,
Boston, Massachusetts), FLUIDDA (FLUIDDA nv, Kontich,
Belgium), and pulmonary toolkit (available in a Github reposi-
tory: https://github.com/tomdoel/pulmonarytoolkit). Pulmonary
studies3,5–7,10,11 have used these tools, some of which have

gained regulatory approval (e.g., ApolloR and thoracic
VCAR) for research and clinical use.

Magnetic resonance imaging (MRI) also provides lung func-
tional and microstructural biomarkers but it is much less com-
monly used. In particular, inhaled hyperpolarized noble gas
(3He∕129Xe) MRI visualizes inhaled gas distribution12 and pro-
vides measurements of parenchyma integrity.13,14 1H-MRI using
both conventional15 and oxygen-enhanced approaches16 also
reveals lung structural and functional abnormalities17 and
response to treatment.18 In a similar manner, ultrashort echo-
time (UTE) MRI provides improved visualization of lung
anatomy and microstructure,19,20 while Fourier decomposition
(FD) may be used to generate pulmonary ventilation and
perfusion maps.21,22 A number of studies have demonstrated
the potential for pulmonary MRI biomarkers, including
longitudinal23–25 and observational26,27 investigations and treat-
ment response or image-guided evaluations.28–32

Until now, lung MRI has not been used in multicenter
research studies or trials and clinical use remains very minimal.
This is primarily due to challenges,33,34 including the lack of
user-friendly, point-of-care image processing tools to rapidly
generate quantitative lung MRI measurements.33,34 Therefore,
our objective was to embed lung MRI and CT biomarker
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pipelines within a user-friendly graphical user interface (GUI)
that integrated software modules for validated and emerging
biomarkers of lung structure and function.

2 Materials and Methods

2.1 Overview of Algorithms and Pipelines

We developed a pulmonary imaging biomarker framework
using Microsoft Visual Studio 2013 (Microsoft Corporation,
Redmond, Washington) based on the .NET framework
(Microsoft Corporation, Redmond, Washington) using the fol-
lowing software development process: (1) requirement identifi-
cation, (2) design, (3) implementation, and (4) verification and
maintenance. First, we identified application-specific require-
ments with local collaborating clinicians who specifically
asked for this tool for use in clinic. Software design was pro-
posed based on the application requirements, timelines, famili-
arity with development tools, functionality provided by existing
tools, and agreement on coding style. The entire design step was
divided into multiple short stages reviewed by the developer
team and clinicians/end users, and each stage was broken
down into multiple subtasks that were entered into a task tracker.
Each developer worked on a subtask and submitted code to a
shared version control system. In addition, automated test mod-
ules were written for each subtask and shared within the devel-
oper team. Changes to previous implementations were reviewed
by other members and integrated into the main branch upon
agreement. Documentation was also created for the project
and updated at each step and stage. Products from each stage
were demonstrated to the developer team and clinicians/end
users, and feedback was collected and integrated into the
next stage. After software prototype release, users reported
issues or desired features to the developer team through issue
tracker and/or via email. The developer team assessed the issues
and requirements, added new tasks when necessary, and
released updated versions of the code/executables to users.

As shown in Fig. 1, this tool incorporates multiview three-
dimensional (3-D) volume rendering,35 surface rendering [using
Visualization Toolkit (VTK)36], image seeding, blending/over-
lapping, zooming in/out, fiducial placement, and dimension
measurements. The resulting tool provides biomarkers derived
from hyperpolarized 3He∕129Xe static ventilation, diffusion
weighted MRI, anatomical 1H, UTE, two-dimensional (2-D)/
3-D free-breathing MRI as well as integration and coregistration
of MRI with CT volumes. After scanning, the scanner automati-
cally stores image data on the picture archiving and communi-
cation system (PACS) server in DICOM format. A PACS client
(i.e., K-PACS) is installed on a desktop workstation or tablet that
is directly connected to ethernet or via USB-to-ethernet adapters
(not wireless transmissions). The PACS server and client iden-
tify each other by their network addresses, communication
ports, and application entry titles. The PACS client queries
and retrieves DICOM data from the server to the local hard
drive following DICOM protocols. The downloaded images
are entered into the software framework, and biomarker quan-
tification workflow starts on the desktop workstation or tablet.
DICOM images and analyze, nifty formats are commonly pro-
vided by other systems and are supported by our software frame-
work using VTK36 and GDCM (DICOM toolkit).37 All user
interface functionality is provided by the .NET framework and
the 3-D visualization system, which was developed in our lab for
3-D ultrasound imaging.38,39 No other libraries are used in our
application. As shown in schematic in Fig. 2, image processing
and analysis modules were integrated within the GUI that were
previously developed and validated across a wide range of pul-
monary abnormalities19,21,40–44 by our group using C++/CUDA
(CUDA v6.0, NVIDIA Crop., Santa Clara, California) and
implemented for Windows operating systems (Microsoft
Corporation, Redmond, Washington). The derived imaging
measurements are displayed with the GUI, presented to end
users, saved to hard drive (DICOM images and/or numerical
values in spreadsheet files), and sent back to the PACS server
for archiving.

Fig. 1 Pulmonary imaging biomarker graphical user interface.
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As shown in Fig. 3, this approach currently includes: (A)
whole lung and regional inhaled 3He∕129XeMRI structure–
function, (B) UTE MRI static and dynamic proton density,
(C) FD free-breathing 1HMRI ventilation/perfusion, (D) free-
breathing 1HMRI specific ventilation (SV), and (E) CT and
MRI parametric response maps (RPMs), and radiomic bio-
markers (not shown here). In particular, the CT airway tree in
(A) and segmented inspiration/expiration CT lung in (E) are
reproductions provided by Pulmonary Workstation 2.0 (VIDA
Diagnostic Inc., Corallville, Iowa). The linear regression in
(B) and sinusoidal curves and the SV calculation equation in

(D) are illustrations of the respective biomarker workflow.
All the other elements including lung CT/MRI registration, seg-
mentation contours, structure–function maps, and numerical
values of relevant biomarkers are provided by the software.
We note that these intermediate and final outputs may be helpful
to: (1) better understand the processing steps of each biomarker
module, (2) validate the calculation of biomarkers by referring
back to the information the calculations are based on, (3) provide
more insights into the spatial–temporal abnormalities of pulmo-
nary disease, and (4) discover and report issues or bugs of soft-
ware by developers and end users.

Fig. 2 Schematic for image processing and analysis modules provided by the pulmonary imaging bio-
marker approach.
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Fig. 3 Pulmonary imaging biomarker tools. (a) Whole lung, lobar, and segmental structure–function mea-
surements using CT and noble gas MRI. (b) Dynamic proton density measurements using multivolume
UTE MRI. (c) 2-D and (d) 3-D free-breathing lung structure–function measurements. (e) Inspiration–expi-
ration CT parametric response mapping.
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2.2 Whole Lung and Regional Structure and
Function Using Inhaled Gas MRI

Inhaled gas MRI using 19F45 and hyperpolarized 3He∕129Xe12
provides a way to visualize lung airway/airspace microstructure
as well as gas distribution/ventilation. The quantitative analysis
of inhaled gas MRI structural–functional information depends
on both thoracic cavity segmentation and structure–function
image coregistration.40 This framework provides both an inter-
active 1H-3HeMRI lung segmentation method40 and an auto-
mated 1H-3HeMRI joint segmentation approach that utilize
convex optimization techniques.41 Whole lung ventilation
abnormalities (3He∕129Xe) may be quantified using a hierarchi-
cal K-means clustering method40 to generate whole lung venti-
lation maps and ventilation defect percent (VDP),40 the volume
of ventilation abnormalities (from 3He∕129XeMRI) normalized
to the volume of the thoracic cavity (from 1HMRI). For regional
VDP measurements, CT-1H∕3HeMRI joint deformable
registration42 and CT lobe masks identified using other commer-
cial software including Pulmonary Workstation 2.0 (VIDA
Diagnostic Inc., Corallville, Iowa) may be easily integrated
within this GUI. Similar to whole lung measurements, lobar
and segmental 3He∕129XeMRI VDP may be generated by nor-
malizing 3He∕129Xe ventilation defect volumes to CT lung lobar
and segmental volumes.46

2.3 Ultrashort Echo-Time 1HMRI: Static and
Dynamic Proton Density

UTE MRI provides enhanced visualization of the lung paren-
chyma and is ideally suited for the evaluation of pediatric
patients44 but lung segmentation is also required as a first
step. This framework provides a UTE MRI lung segmentation
approach using high-dimensional features combining hetero-
geneous image signal intensities and coordinate space
information.47 These features were distinguished using a kernel
K-means-based machine-learning approach.48 The derived high-
order feature clustering term was simplified through lineariza-
tion and was entered into a continuous max-flow/min-cut seg-
mentation formulation49 that regularized the segmentation
boundary smoothness. Fully automated lung segmentation
was performed by registering a single atlas image and trans-
forming the atlas lung mask to initialize the max-flow/min-
cut segmentation model with high-order features. The output
from the segmentation model was looped back and this step
was iterated until convergence and the final segmentation
was achieved. The segmented lung volumes can then be used
for static and dynamic signal intensity measurements.19,44

2.4 Free-Breathing 1HMRI Fourier-Decomposition:
Ventilation and Perfusion

FDMRI provides a way to generate ventilation and perfusion
maps using conventional 1HMRI without exogenous
contrast.22 We developed an FDMRI image analysis pipeline
by integrating free-breathing 1HMRI lung series segmentation,
registration, Fourier analysis as well as ventilation and perfusion
quantification.50 Free-breathing 1HMRI series were simultane-
ously segmented using a coupled Potts model49 by employing
the inherent similarity of lung segmentation between adjacent
slices. The segmented lung series were registered together
using a coarse-to-fine deformable registration framework42 that
employed a modality-independent-neighborhood descriptor51

and total variation of the displacement field for registration regu-
larization. Pairwise registrations were implemented in parallel
and the registered lung volumes were used for Fourier analysis;
Fourier spectrum magnitudes at the respiratory and cardiac
frequencies (determined using respiratory bellow data) were
used to generate ventilation and perfusion maps.21

2.5 Free-Breathing 1HMRI: Specific Ventilation

Conventional free-breathing 1HMRI also provides a way to
generate SV maps and values. Approximately 50 free-breathing
1HMRI images acquired during two to three breathing cycles
are sorted into 10 respiratory phase points (-π ∼ π) and stacked
into a single 3-D 1H-MRI volume for each respiratory phase
point.52 The tidal expiration and inspiration 3-D 1H-MRI vol-
umes are coregistered using an optical flow-based registration
approach,53 and SV is calculated for each voxel using the regis-
tered inspiration and expiration image signal intensities (SIinsp
and SIexp) as follows:

EQ-TARGET;temp:intralink-;e001;326;546SV ¼ SIexp − SIinsp

SIinsp
: (1)

2.6 Multimodality Parametric Response Maps

PRM of inspiration and expiration CT54 has been used to clas-
sify lung image voxels as normal, emphysematous, or gas trap-
ping due to small airways disease.55 This tool provides
automated PRM results using rigid and deformable registration
tools42 required for CT inspiration–expiration, MRI-to-CT, or
MRI-to-MRI PRM maps.

2.7 Radiomics

Radiomics tools are provided to generate image features includ-
ing mean, standard deviation, variance, gradient of image signal
intensities, uniformity and size of object of interest, entropy/cor-
relation, neighborhood connection, and other high-order
features.56,57 Optimal features can be classified using machine
learning techniques and combined with high-throughput algo-
rithms such as bound relaxation and convex optimization.41,42,48

These tools provide enormous promise to better understand
lung disease, build and improve clinical decision support
systems.58,59

3 Results
Figure 4 shows CT airway-3HeMRI registration, multivolume
UTE MRI dynamic proton density, 2-D FDMRI ventilation,
and 3-D free-breathing 1HMRI SV measurements of a represen-
tative asthma and COPD patient. This tool now provides a num-
ber of lung MRI and CT biomarkers, including: (1) whole lung,
lobar, and segmental noble gas MRI ventilation volume, venti-
lation defect volume (VDV), VDP, (2) whole lung, lobar, and
segmental noble gas apparent diffusion coefficient, (3) UTE
MRI static and dynamic proton density, (4) conventional and
free-breathing 1HMRI ventilation and perfusion, (5) CT and
MRI RPM measurements, and (6) radiomics biomarkers.

Using a Windows desktop (Windows 8.1, 32G RAM, Inter
(R) i7-3770 CPU, and NVIDIA GTX TITAN BLACK GPU),
the interactive segmentation method40 required 15 min for
each patient. For a diverse patient group (n ¼ 15) with asthma,
COPD, and cystic fibrosis, this method achieved DSC of 91%
for ventilation regions, 44% for ventilation defect regions, and
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strong correlations between algorithm and manual ventilation/
ventilation defects volumes (all Pearson r > 0.84, p < 0.001).
For repeated segmentation of ventilation defect volumes,
intra- and interobserver coefficient of variation was 5% and
7%, respectively, and a smallest detectable difference of 0.11
L was achieved.40 The automated 1H-3HeMRI cosegmentation
approach41 yielded a DSC of 91%, surface distance error of
4.3 mm, and percentage volume error of 5.4% in 0.5 min
with high intra- and interobserver reproducibility on a clinical
dataset of 25 COPD patients at various disease stages. This
approach41 was later applied to 12 healthy and COPD patients
and achieved a coefficient of variation of 4% for VDP measure-
ments that were not significantly different (p ¼ 0.14)60 from a
reference segmentation method. The fully automated whole
lung, lobar, and segmental CT-3He∕129XeMRI structure–func-
tion measurement method42 provided a CT-3HeMRI target
registration error of 4.4 mm on a dataset of 35 asthma and
COPD patients at different stages. This approach42 required
10 min for each subject and the derived whole lung VDP mea-
surements were not significantly different from a semiautomated
method (p ¼ 0.37). The semiautomated segmentation method47

for statistic and dynamic UTE proton density measurements

yielded a DSC of 93%, surface distance of 3 mm with a coef-
ficient of variation <2% on 10 asthma patients. This interactive
segmentation47 method required 2 min to segment each 3-D
image, and a fully automated UTE segmentation and quantifi-
cation pipeline is under development. Anatomic 1HMRI lung
segmentation was required for FD and multivolume SV mea-
surements. The 2-D free-breathing 1HMRI segmentation-regis-
tration pipeline50 achieved DSC of 96% and 97% for lung series
segmentation and registration, respectively, and 4% coefficient
of variation for FD-VDP measurements. This module50 required
10 min for each subject and generated FD-VDP measurements
that were strongly correlated with 3He-VDP in 10 COPD
patients. The 3-D 1HMRI lung segmentation approach43 yielded
a DSC of 91%, surface distance of 4.0 mm, and absolute percent
volume error of 6% in 0.2 min in a group of 20 asthma patients.
This segmentation approach43 was applied to 23 asthma and
seven healthy subjects,52 and yielded multivolume 1HMRI

SV measurements that were significantly correlated with
3He-VDP (r ¼ 0.67, p < 0.0001). CT was segmented with
Pulmonary Workstation (VIDA Diagnostic Inc., Corallville,
Iowa) and the segmented inspiration–expiration lung registra-
tion was performed using an affine and deformable registration
approach that demonstrated landmark registration error of
0.75 mm.61 For a group of 58 exsmokers,55 inspiration–expira-
tion CT PRM gas trapping (r ¼ 0.58, p < 0.001) and emphy-
sema (r ¼ 0.68, p < 0.001) were generated in 2 min and were
significantly correlated with reference 3He-VDP measurements.

These individual algorithms were implemented by users at
different experience levels and were comprehensively evaluated
and tested on diverse patient dataset across a wide range of dis-
ease states. Therefore, we think these functional modules are
robust and have the potential for broad research and clinical
applications. In addition, the computational efficiency of the
biomarker platform can be further improved with higher-end
hardware and algorithm automation. As currently implemented,
the interactive 1H-3HeMRI structure–function measurement
module40 required manual identification of three to seven
pairs of corresponding landmarks in center 1H and 3HeMRI sli-
ces. Errors in 1HMRI lung cavity segmentation and 3HeMRI

ventilation clustering were manually corrected by adding or
removing regions in respective images based on visual inspec-
tion. The automated 1H-3HeMRI cosegmentation method41

required user sampling of each lung and the background on a
single coronal plane. The coronal slices were chosen when
the segmentation was deemed challenging, e.g., protruding
structures, weak separation between lung and the mediasti-
num/chest wall. The same seeding procedures were used for
3-D UTE,47 2-D free-breathing,50 and 3-D single or multivolume
1HMRI segmentation.43 These are the biomarker modules that
required user interaction while the others42,46,50,55 are fully
automated.

4 Discussion
The current and growing burden of chronic lung disease on
patients and healthcare systems requires new tools and bio-
markers to help develop new treatments, deeply phenotype
patients, and optimize treatments and outcomes. To address
this need, we developed a pulmonary MRI and CT biomarker
pipeline as a first step toward our larger efforts to enable high-
throughput pulmonary MRI and CT biomarkers for lung disease
patient care.

Fig. 4 Pulmonary MRI and CT biomarker outputs for representative
asthma and COPD patient. (a) CT-3HeMRI registration (lung lobes
and segments not shown). (b) UTE dynamic proton density maps.
(c) FDMRI ventilation measurements. (d) 3-D free-breathing MRI-spe-
cific ventilation measurements.
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While pulmonary MRI and CT biomarkers are being increas-
ingly used, gaps remain in the translation of imaging research to
clinical research workflows, due in part, to a lack of practical
and point-of-care tools to generate imaging biomarkers. Our
biomarker framework provides a GUI-based, user friendly
way to rapidly generate lung MRI and CT biomarkers automati-
cally or via minimal user interactions that do not require special
expertise. These GUI-based push-button biomarker pipelines
facilitate user interaction and visualization, require minimal
workload, and provide high flexibility and reproducibility, sug-
gesting the translational potential for high-throughput clinical
workflows. We have installed the prototype software on a num-
ber of Windows tablets and have provided these to Centre for
Heart Lung Innovation, St. Paul’s Hospital (University of
British Columbia, Vancouver, British Columbia, one site) last
year. We also have units ready for testing at London Health
Sciences Centre (London, Ontario, two sites) and St. Joseph’s
Health Care (McMaster University, Hamilton, Ontario, one site).
Other ways of implementing this approach include integrating
our algorithms as plug-ins into pre-existing frameworks (e.g., 3-
D Slicer62 and MITK63), which are well-tested and provide
robust implementation of commonly used functionalities.
While we certainly can (and will, in the near future) add our
utilities as plug-ins to existing frameworks, we believe that
this will not help advance the use of quantitative imaging
among pulmonologists at the bedside, nor in clinic when and
where physicians make treatment decisions. In other words,
our overarching goal is to provide a tablet platform for generat-
ing straightforward measurements while the patient is still in
clinic. Moreover, we want to emphasize that our GUI-based bio-
marker implementation was targeted for pulmonary applications
and has application-specific requirements, e.g., multiview 3-D
volume rendering as shown in Fig. 1, which were identified
as critical by our local and remote clinicians and end users.
Although some of the required functionality is provided by
existing frameworks, these application-specific features were
not supported nor are these frameworks used in respirology
or radiology clinical workflows, which we believe has limited
translation. Therefore, here we collaborated with Dr. Aaron
Fenster’s software development team with more than 15
years’ experience and developed this point-of-care framework
by integrating these application-specific functionality and
image-processing algorithms. We also note that these individual
algorithms integrated in the GUI were developed from scratch
using C++ and/or CUDA, and only standard and basic libraries
were used. Therefore, we think these algorithms are flexible and
independent from the GUI, suggesting that data processing can
happen offline with the capability of cross-platform, cross-appli-
cations. We note that currently these algorithms provide high
computational performance, flexibility, and they are platform-
independent. While these algorithms are currently embedded
in a GUI-oriented software framework on a dedicated
Windows desktop/tablet that facilitates user interaction and
visualization, we also previously implemented these via efficient
command lines that are aimed to enable the analysis of large
datasets.

It is our vision was to develop a free, open-source, and multi-
platform pulmonary imaging biomarker framework and bring
this tool to the clinic, for point-of-care use, based on the require-
ments of our clinical collaborators. We think that a tablet GUI
will help accelerate the translation of imaging biomarkers to
clinical use more efficiently than cloud-based or workstation-

based algorithms, because clinicians use measurements in
real-time while seeing the patient. For this reason, we optimized
the compatibility of our software framework within Windows-
based PC tablets typically used in the clinic environment.
However, in recognition of the complex clinical environment,
our biomarker framework must be optimized and this will be
ensured in future by a commitment to continuous development,
testing, and lifecycle maintenance. The development of the soft-
ware application originates from our group and contributions in
all aspects are welcome to improve the tool. For example, the
developer team will perform system design/lifecycle mainte-
nance and functional testing, provide source code and test
data, tutorial, documentation, and training to end users; potential
developers and those who are interested in this tool can apply
and approved applicants can participate in the development; end
users can report bugs and provide requirements and feedback of
using the tool to the developer team. We also note that pulmo-
nary imaging biomarkers are emerging rapidly, and the tool we
developed represents a flexible biomarker tool that is expand-
able. New biomarkers, once validated within the pulmonary im-
aging community, may be easily integrated within this tool and
distributed to end users. For this purpose, we reserved interfaces
with specifications so users can add other functionality into the
framework.

Our current efforts are focused on development and validation
of new data analysis algorithms and biomarker modules as well as
robust software integration. We also note that end-user feedback
is a main driver for the development of the biomarker framework
and through continuous interaction with our clinical collabora-
tors, we have together determined a number of components
that are urgently needed. These components include: (1) 3-D
visualization of the spatial relationship between MRI ventilation
defects and airway tree, and navigation of surgical tools, (2) dis-
ease phenotyping through feature engineering of clinical, histo-
logical, biological, and imaging measurements using deep
learning, and (3) portable tablet implementation of the biomarker
tools for point-of-care clinical applications. These critical require-
ments need substantial efforts for the completion of the biomarker
framework development and represent our ongoing work with
high priorities. It is also well recognized that advancing lung
MRI and CT toward broader clinical applications requires global
collaboration and validation of clinically relevant biomarkers in
multicenter research and clinical trials.33 In this regard, standardi-
zation of image analysis tools is critically required to increase the
power of cross-center comparison and to facilitate a deeper under-
standing of lung MRI and CT biomarkers.33 Motivated by pre-
vious studies64 that provided a lung CT database to the
pulmonary imaging community, we set up our long-term work
plan to provide a potentially standardized and universally avail-
able biomarker tool to facilitate high-throughput research and
point-of-care clinical applications of pulmonary MRI and CT.
In line with our long-term work plan, we are making every effort
to share the source code, dependent libraries, and compiled binary
executables on public repositories. Release of a stable version of
the software is crucial for the pulmonary imaging research com-
munity, and it is well recognized that software development proc-
ess requires intensive and extensive efforts from all aspects. We
now have published the main components in our biomarker
framework on our lab website (http://www.imaging.robarts.ca/
parraga/technology_codes.html) as well as on Github (available
in Github repository: https://github.com/fumguo/Pulmonary-
MRI-and-CT-biomarker-framework). These components include
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the software GUI and dependent libraries, a number of image seg-
mentation and registration algorithms, and biomarker quantifica-
tion methods. We also provided test demos (mainly MATLAB
scripts for simplicity) for readers who are interested in specific
biomarker modules. We note that this is not a complete version
of the source code because: (1) the licensing regulations of the 3-
D visualizer (contact us for licensing), (2) confidentiality of
unpublished work, and (3) the ongoing work on the prioritized
components recently identified by our clinical collaborators. In
this regard, we are working in collaboration with a software
development team (more than 15 years experience) and an
image processing and biomarker quantification group (more
than 10 years experience) to expedite the development of the bio-
marker tool. We aim to finish the unpublished work as soon as
possible and release a complete version of the source code for the
biomarker framework in 1 year.

Our approach also integrates high-performance computa-
tional modeling and optimization algorithms as well as machine
learning techniques to extract hidden lung disease information
from high-dimensional pulmonary MRI and CT. For example,
the integrated computational optimization algorithms may be
readily employed to develop high-performance image denois-
ing, MRI-MRI and MRI-CT image fusion, lung registration
for atlas construction, fast and high-resolution image acquisition
with compressed sensing and parallel imaging. We also realized
that using imaging data exclusively may not warrant a deep
understanding of lung disease, and the combination of informa-
tion from multiple sources may provide added value. In the era
of “big data,” the invaluable complementary physiological, his-
tological, biological, and genetic information may be combined
with imaging findings to generate a clearer picture of chronic
lung disease through data mining and perhaps facilitate the
development of “precision medicine.” The utilization of com-
plex information from multiple sources involves dimension
reduction, advanced computation, and optimization methods
as well as machine learning techniques. It is in this context
that we think a lung imaging biomarker tool may provide
added value to advance not only lung disease but also other dis-
ease studies.

5 Conclusions
We developed a user-friendly pulmonary imaging biomarker
analysis tool that provides validated and emerging pulmonary
MRI and CT biomarkers, including lung ventilation, perfusion,
parenchyma morphology, texture, and gas trapping. Our bio-
marker tool and framework integrates a series of validated
high-performance image processing and analysis algorithms,
and automatically generates these biomarker measurements
with minimal user interactions, high-computational efficiency,
and reproducibility. We think that this approach provides the
translational potential for high-throughput research and clinical
studies and point-of-care decision making.
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