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Abstract

Despite being a common activity, singing is a complex behavior. It involves processes
such as: maintaining mental imagery of desired tones, activating a motor plan to make
a vocal production, coordinating different parts of the vocal apparatus and respiratory
system, and monitoring the auditory and kinesthetic output for accuracy. While singing
can be achieved by a majority of people, some cannot do it accurately. In this dissertation,
I investigate one of the posited causes of poor pitch matching and experimentally test it.

The inverse-model deficit of poor pitch matching suggests that poor singing results
from the brain’s inability to instantiate a precise motor plan with one’s vocal apparatus
when one tries to vocally reproduce a pitch. This hypothesis is motivated by previous
work in sensorimotor control suggesting that in order to perform an action in an environ-
ment, one relies on two distinct internal models. These internal models are thought to be
instantiated by the cerebellum. In this dissertation, I embed this hypothesis within the
larger context of cerebellar cognition and the bayesian brain hypothesis.

First, I present multiple findings of the involvement of the cerebellum in cognitive
tasks, including in musical production. This will provide some support for the role
of the cerebellum in cognition, in addition to its role in motor control. This first part
will also allow for an understanding of some of the neural underpinnings involved in
implementing internal models.

Next, I present recent findings which could support the notion of internal models
within the Bayesian brain framework. This will provide an understanding of these
internal models at an algorithmic level (Marr, 1982).

Finally, I test one of the key predictions of the inverse-model deficit of poor pitch
matching i.e. perturbing the cerebellum during singing task would lead to poorer pitch
matching performance. Adult participants had to perform various singing assessment
tasks before and after brain stimulations on different brain regions. I did not observe a
decrease in pitch matching accuracy (relative to the individuals’ baseline) after stimu-
lation of the cerebellum. While these results were inconclusive, further research using
TMS to investigate pitch accuracy should be undertaken so as to better understand the
role of internal models in vocal production such as singing.

This dissertation, Sensorimotor Control of Human Singing, is submitted by Butovens
Médé in 2021 in partial fulfillment of the degree Doctor of Philosophy in Cognitive and
Information Sciences at the University of California, Merced, under the guidance of
dissertation committee chair Ramesh Balasubramaniam.
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Chapter 1

Introduction

1.1 Sensorimotor Prediction
A major theory of motor control in cognitive science posits that in order to enable the
body to move around and act in the environment, the brain uses internal models (i.e.,
neural representations) of the external world (Wolpert et al., 1995, 1998; Kawato, 1999).
Those models can be divided into two categories: Forward models and Inverse models.
A forward model allows for the predictions of the sensory consequences of an action.
In other words, when one takes an action or makes a movement, he or she anticipates
the bodily experience associated with that action (or movement). As the movement is
unfolding the brain compares the sensory anticipation (from the internal prediction) to
the actual sensory information received from the world. The sensory prediction error (i.e.,
the difference between the internal prediction and the real world sensory information)
can then be used to correct (or smoothen) the movement. As an example, imagine a
person climbing down the stairs of a familiar place from the 2nd floor to the 1st floor.
Because the person knows (and expects) each step of the stairs to be spaced equally, they
can climb them down without looking down at their feet. At each step climbed down,
the brain of that person anticipates and predicts the sensation that they should be feeling
from the ball of their feet touching each stair step at regular interval. If, for an unexpected
reason, one of those steps is higher than the other ones, the perceptual sensation the
person will receive from the ball of one of their feet will be delayed compared to the
prediction made by their internal (forward) model. Depending on how big the prediction
error is, the person could either quickly readjust the movement of their foot (as well
as their entire body position) and just stumble, or fail to correct that movement, which
would lead them to fall. Thus, a forward model in the brain solve motor control problems
that require the anticipation of the sensory consequences of an action in order to produce
smooth movements.

The second type of internal model is the inverse model. This model can be seen as
the inverse of a forward model (Ishikawa et al. 2016). It allows the planning of some
actions for a desired perceptual outcome. In other words, given a certain perceptual state
that one wants to achieve, what actions should be taken in order to reach that perceptual
state (or bodily sensations). Thus, unlike a forward model which tries to predict the
perceptual consequences of an action, here the final perceptual state is known and a plan
(of actions) needs to be implemented in order to achieve it. For example, as an analogy,
let’s take a professional basketball player trying to score at the free throw line after being
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fouled. It can be assumed that because that person has practiced free throws many times
in their athlete career, they have a solid knowledge (or internal representation) of how it
should feel like to unfold the series of movements that will enable them to score from
that position (i.e., they know the perceptual desired state). However, at this moment
in time they might be tired because of having run a lot during the game. This would
add some noise to their motor movements. In addition, the game might be during an
important championship final, which puts the person under more mental stress than usual.
This could also add more noise to their motor movements. Finally, their vision might be
blurry from the fatigue and lack of hydration before the game. From an inverse model
perspective, the question becomes, what motor actions should be implemented in other
for the player to achieve the desired perceptual state (i.e., bodily sensations leading them
to scoring at the free throw line ) despite the intrinsic and extrinsic noise affecting the
body? It is believed that an inverse model allows the brain/body to solve this type of
movement problems (among others) by instantiating a plan for those motor actions.

A body moving through an environment is facing these challenges on a constant basis.
In motor control theories, these two types of models are believed to work together in
order to enable precise and controlled movements. It is also believed that the cerebellum
plays an important role in the cognitive and neural processes of these models (Ito, 2006,
2008; Tanaka et al, 2020). In addition, while there is accumulating evidence supporting
the cerebellum to be the locus of the internal forward model formation (Ito, 2006, 2008;
Tanaka et al, 2019, 2020) there appears to be less consensus to whether the cerebellum is
also the locus of the internal inverse model formation (Yavari et al. 2016).

In the following section, we will see how one’s performance in singing can be
explained by a brain trying to optimize body movements using those models, and what
it can teach us about sensorimotor control in general and the reason of poor singing
performance in particular.

1.2 Singing
Singing is one of the most ubiquitous forms of musical activity (Hutchins et al., 2014).
Despite being so common some people are unable to vocally match target pitches within
a semitone while singing (Pfordresher, & Mantell, 2014). There have been a variety of
causes being posited for poor pitch matching e.g., perceptual deficit, motor production
deficit, memory deficit, sensorimotor integration (Pfordresher and Brown, 2007). While
each of these bring an element of response to the problem, the question remains. What are
the cognitive and neural processes underlying one’s inability to vocally match pitches?

One of the most prevalent hypotheses has been the perceptual deficit hypothesis (i.e.,
poor pitch perception results in poor vocal pitch matching ability). Researchers such as
Amir et al. (2003) and Nikjeh et al., (2009) have shown that pitch discrimination, or
pitch perception threshold and vocal pitch matching accuracy are significantly correlated.
However, the method used (i.e., different pitch ranges compared with sung tones that are
different from the pitches of the perceptual task) renders the comparison problematic.
Moreover, Hyde and Peretz (2004) demonstrated that most normal subjects have no
difficulty discriminating between two or several pitches of a quarter of a semitone apart.
Poor singing often being defined has being out of tune by half or a full semitone, it
makes the perceptual deficit hypothesis for poor singing more arguable.
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Adding to this body of work, Hutchins and Peretz (2012) have provided some
compelling evidence showing that poor vocal pitch matching ability is generally not
due to poor perception ability. They conducted a clever experiment that made use of
a device called a ‘slider’. The slider enabled participants to create a synthetic tone by
pressing a horizontal touch-sensitive strip at a specific position. The use of this non-vocal
alternative to pitch matching in their study has shown, for instance, that musicians and
non-musicians were better at matching synthesized pitches when using the slider as
opposed to using their own vocal apparatus. It has also demonstrated that even when
one controls for timbre (i.e., where the sound quality of the target pitches is identical to
that of the vocally produced ones), the slider “advantage” still remained. For instance,
musicians and non-musicians, who were in general better at using their vocal apparatus
to match pre-recorded pitches that they themselves produced for the experiment, were
still less accurate in doing as compared to when using the slider (Hutchins and Peretz,
2012). This also strengthens the hypothesis that perceptual deficit problems may not be
a main cause of poor singing ability. However, there seems to be more of a consensus
about the role played by perceptual deficit in poor singers for people suffering from
amusia (i.e., a congenital or acquired condition which makes people unable to recognize
or produce musical tones; Peretz & Vuvan, 2017).

Other accounts of poor pitch matching have focused on its mechanistic aspect.
Singing requires the coordination of core physical structures such as the lungs, the
vocal folds, the vocal tracts (Ghazanfar & Rendall, 2008), which are regulated by a
complex dedicated neural network (Brown et al., 2004; Zarate, 2013; Della Bella, 2016).
The quality of the vocal output and its perception, therefore, relies on the efficient
coordination of these respiratory, laryngeal and articulatory mechanisms (Sundberg,
1990; Sundberg 1994; Della Bella, 2016). These findings and similar ones have given
rise to the motor deficit account of poor pitch matching. This account states that poor
singers lack the vocal-motor control (e.g., vocal range, vocal stability, control of one’s
apparatus) necessary to reproduce pitches despite being able to accurately discriminate
or perceive them; Joyner (1969) and Cleall (1970) (as cited by Hutchins & Peretz, 2012).
Pfordresher and Brown (2007) also argued for a vocal motor control deficit but ruled
out this hypothesis after finding no difference between poor and good singers in vocal
ranges and sustainment of level tones.

Recently, a new hypothesis called the inverse model deficit hypothesis has started
to emerge. This hypothesis was inspired by the internal model theory of motor control
(Wolpert et al., 1995, 1998; Kawato, 1999). The inverse model deficit hypothesis states
that poor vocal imitation of pitch is the result of an inefficient auditory vocal system rep-
resentation (i.e., deficient internal model/inverse model). Within this view, the emphasis
for the activity of singing is on the instantiation a motor plan (e.g., correct vocal apparatus
movements) that will enable the desired perceptual outcome (e.g., correct proprioception
sensations from the vocal apparatus, correct auditory feedback). Also, within this view,
it can be assumed that well-trained singers have a very reliable internal representation
of their auditory vocal system (which leads them to produce the desired pitches most
of the time), and that non-musicians have a less reliable internal representation of their
auditory vocal system. Guided by these assumptions, Pfordresher and Mantell (2014)
have conducted an experiment that showed that there is a self-matching advantage when
imitating recordings of oneself singing sequences of pitches (as opposed to imitating
someone else’s recordings of the same task). This self-matching advantage was taken as
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evidence that one’s intimate familiarity with a desired perceptual outcome (e.g., sound
of own voice) helps in generating the actions (e.g., vocal productions) that lead to it. It
also has provided some evidence that the ability of poor singers to imitate sung pitches,
or a sung melody, is compromised when the pitches (or pitch pattern) is not one that they
have produced in the past.

Taken together, it can be argued that most cases of poor singing may reflect the
inability of poor singers to translate a novel perceptual stimulus representation into a
series of actions that would give rise to the same perceptual stimulus. This points toward
a deficit of the inverse model.

In this dissertation, I will first provide a foundational understanding of the cerebellum
(Chapter 2). I will present some of the prevalent theories (past and present) regarding
its function and show that it cannot be seen solely as a motor-control organ. I will
then demonstrate how the cerebellum contributes to cognition in specific domains (e.g.,
language, music). This will show why the cerebellum is thought to be the locus of
internal models, and it will provide an underlying framework to understand the role of
the cerebellum in singing. Next, I will briefly introduce Bayesian inference (Chapter
3). I will show how Bayesian inference allows the integration of information under
uncertainty and the use of prior knowledge. This will provide the tools necessary to
understand the Bayesian model of cognition. I will give examples of how well-known
psychological phenomena can be explained within this framework and, then I will present
found evidence of how state estimation in motor control can be implemented from the
point of view of an ideal Bayesian observer. This will provide an overall view of a
Bayesian model of cognition that will allow us to understand how an activity such as
singing can also be seen through the lens of Bayesian model of cognition. I will then
present my experiment (Chapter 4), which investigated the internal model hypothesis
in the context of singing. In this experiment, I used TMS to downregulate participants’
cerebellum (among other brain regions). This was a pre-post test experiment where
participants had to complete a singing task assessment before and after stimulations with
TMS. The hypothesis was: perturbing the cerebellum using TMS will lead participants
to do worse in their singing task assessment given the cerebellum’s involvement in the
instantiation of internal models. Finally, I will conclude (Chapter 5) with a general
discussion and future directions.
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Chapter 2

The Cerebellum

2.1 Introduction
Although a full understanding of the functional domain of the cerebellum has remained
elusive, the understanding of its role has been extended in recent decades far beyond
the realm of motor control. There has been an accumulation of evidence indicating that
the cerebellum has a more important role in non-motor functions than was previously
thought. The hypothesis that the cerebellum contributes to cognitive functions is largely
based on what is known about its homogenous neural micro-circuitry, its anatomical
connections, and its phylogenetic development (Dow, 1942; Diamond, 2000).

This chapter provides an overview of the theories about the role of the cerebellum
in cognition: the internal model hypothesis, the universal cerebellar transform (UCT)
theory, and the cerebellar cognitive affective syndrome (CCAS) theories. First, I will
give a description of the cerebellar structure to lay the foundations for understanding
how and why the particular microanatomy of the cerebellum has shaped and informed
the theories of cerebellar functions. Next, I will focus on the role of the cerebellum in
language and music.

2.2 Cerebellar Gross Anatomy
The cerebellum (“little brain”) is a structure located ventrally and toward the posterior of
the cerebral hemispheres. Despite accounting for only 10% of the brain mass, it contains
more than 80% of the neurons in the brain (Azevedo et al., 2009). With only six types
of cell, repeated throughout and arranged in an almost crystalline form, it is one of the
most organized structures in the central nervous system (Miall, 2013).

There are various ways one can view the organization of the cerebellum. It can be
divided by anatomical lobes, zones, or functions. Anatomical lobe division is along
crosswise lines, whereas zone division is lengthwise. Both division schemes are relevant
to functional division of the cerebellum. The anatomical lobes are the anterior lobe, the
posterior lobes, and the flocculonodular lobe. These three lobes are separated by deep
fissures going across the cerebellum from side to side: the primary fissure (or preclival
fissure) and the posterolateral fissure (or postclival fissure). The anterior, posterior, and
flocculonodular lobes can be divided into lobules (or folia) numbered from I to X (in
Roman numerals). Lobules I–V correspond to the anterior lobes, VI–VII and part of
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IX to the posterior lobes, and X and part of IX to the flocculonodular lobes (Apps &
Garwicz, 2005; Schmahmann, 2019; see Figure 2.1).

Another way to view the organization of the cerebellum is by zones. The more
central zone, in the midline of the cerebellum (from front to back and including all the
lobes), is the vermis. On either side of the vermis is the intermediate zone or paravermis.
The most lateral zones of the cerebellum, lateral to the paravermis, are the cerebellar
hemispheres. Similar to the three lobes, these three zones can be further divided into
parasagittal zones based on their anatomical connections.

Figure 2.1: Flattened representation of the cerebellum depicting: the three major lobes
and their lobules, the vermis and the cerebellar hemispheres. (Paravermis subdivision
not shown here). (From ”Cerebro-cerebellar circuits in autism spectrum disorder,” by
A. M. D’Mello, and C. J. Stoodley, 2015, Frontiers in neuroscience, (9), 408, p. 3. CC
BY-NC-ND.)

The third way to map the cerebellum is by functions. The three main functional
regions of the cerebellum (from the oldest to the newest) are the vestibulocerebellum
(the functional analog of the flocculonodular), the spinocerebellum, and the cerebrocere-
bellum. The vestibulocerebellum is involved in controlling balance, head movements,
and ocular reflexes such as the vestibulo-ocular reflex. It receives inputs mainly from the
vestibular nuclei, but also from the auditory and visual sensory input (Broussard, 2014;
Miall, 2013).

The spinocerebellum, which comprises the anterior vermis and the paravermis, is
involved in the integration of sensory input with motor commands to produce adaptive
motor coordination. It receives spinal proprioceptive information and auditory and
visual input and projects its output back to the spinal cord via the deep cerebellar nuclei,
cerebral cortex, and brain stem (Miall, 2013).

Lastly, the cerebrocerebellum, which is the largest functional subdivision of the
human cerebellum and comprises the caudal vermis, paravermis, and lateral hemispheres,
is involved in the planning and timing of movements and motor learning. It receives
information exclusively from the cerebral cortex, via the pontine nuclei, mainly from
regions such as the parietal lobe and the primary sensory lobe of the brain. Its output
returns to the cerebral cortex via the ventrolateral part of the thalamus. It is the func-
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tional region that is thought to be involved in the cognitive functions of the cerebellum
(Broussard, 2014). This functional region will be discussed further in this manuscript.

2.3 Cerebellar Cortical Structure and Microanatomy
The cerebellar cortex and the deep cerebellar nuclei (the unique output structures of
the cerebellum) constitute two major parts of the cerebellum. The cerebellar cortex,
which includes most of the cerebellar neurons, is composed of three layered sheets of
neurons ”folded like an accordion” (Broussard, 2014). The surface, middle, and deep
layers of the cerebellar cortex, called the molecular layer, the Purkinje layer, and the
granular layer, respectively, contain six major cell types. The principal type of cell is
the Purkinje cell. They extend through the entirety of the cerebellar cortex and compose
the Purkinje layer. They are some of the largest cells in the brain and are central to the
cerebellar circuitry. In the granule layer, below the Purkinje-cell layer, are the granule
cells (some of the smallest cells in the brain), Golgi cells, and the unipolar brush cells. In
the molecular layer, above the Purkinje layer, are the Basket cells and the outer Stellate
cells (Glickstein & Voogd, 2010; Broussard, 2014; see Figure 2.2).

Figure 2.2: Simplified cytoarchitecture of cerebellar cortex. The Mossy fibers and the
Climbing fibers are the main cerebellar inputs. The Mossy fibers are coming from the
brain stem nuclei and spinal cord. They project to the Granule cells (which branch into
parallel fibers) and Golgi cells. The Climbing fibers are coming from the inferior olive
and project to the Purkinje cells and Golgi cells as well. Both Mossy and Climbing
fibers have (+) projections. Granule cells (parallel fibers) make synaptic excitatory (+)
connections whereas the Golgi, Basket, Stellate, and P-cells make inhibitory (-) synaptic
connections. (From ”Anatomical and physiological foundations of cerebellar information
processing,” by R. Apps, and M. Garwicz, 2011, Nature Reviews Neuroscience, 6(4), p.
298. Copyright 2021 by Springer Nature. Reproduced with permission.)

The Purkinje cells are inhibitory (GABAergic) neurons whose axons terminate in
the deep cerebellar nuclei, in the cerebellar white matter, and in the vestibular nuclei.
They form the main output element of the cerebellar cortex and are the only neurons
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in the cerebellum whose axons project outside of it. It is estimated that several million
nerve fibers exit the cerebellum (Broussard, 2014). They can be excited by mossy fibers
through the granule cells and parallel fibers and by climbing fibers directly. They can
also emit action potentials “spontaneously” (i.e., in the absence of intrinsic synaptic
input).

The granule cells, which are excitatory, glutamatergic neurons, are innervated by
excitatory mossy fiber inputs, and they also receive inhibitory inputs from Golgi cells.
Their projections, which do not leave the cerebellum, extend from the granular layer
through the P-cell layer and into the molecular layer, where they make a “T” junction to
terminate on the P-cell dendrites. Granule cell axons are called parallel fibers. The P-cell
dendritic arbors and the parallel fibers form a rectangular lattice that has been thought
to be an efficient device for processing and/or storing information (Apps & Garwicz,
2005).

The Golgi cells are inhibitory interneurons located at the top of the granular layer
and whose projections terminate on granule cell dendrites. They form an inhibitory
feedback loop with the granule cells. In the molecular layer are the Basket and outer
Stellate cells, which are inhibitory GABAergic interneurons. The Basket cells’ terminals
surround the soma and axon hillocks of the P-cells, which allows them to strongly inhibit
and modulate the P-cells firing patterns. The Stellate cells synapse with the P-cells’
dendrites, which also allows for some inhibition of the P-cells (albeit to a lesser degree
than the Basket cells). The Basket and Stellate cells form a link between the P-cells and
the granular cells, and they also receive inputs from the climbing fibers (Glickstein &
Voogd, 2010; Broussard, 2014; see Figure 2.2).

Lastly, the mossy and climbing fibers form the two major inputs of the cerebellum.
The mossy fibers arise from various extra-cerebellar sites such as the pontine nuclei,
the vestibular nuclei, and the spinal cord. They make excitatory contact with the deep
cerebellar nuclei (directly and via a granule cells–parallel fiber–Purkinje cells cortical
loop) and with the granule cells (Miall, 2013; see Figure 2.2, right panel). The climbing
fibers, which originate solely from the inferior olivary nucleus within the brain stem,
receive input from various areas such as the vestibular system, spinal cord, and from
much of the cranial and cortical descending information (Miall, 2013). They send
collaterals to the deep cerebellar nuclei before entering the cerebellar cortex and the
climbing fibers terminals reach the primary Purkinje cells’ dendrites and form excitatory
synapses with proximal Basket, Stellate, and Golgi cells (Miall, 2013).

2.4 Theories of the Role of the Cerebellum: Motor and
Non-Motor Functions

Most functional analyses of the cerebellum have revolved around its role in the co-
ordination and the control of movements. Over the past 30 years, however, clinical,
neurophysiological, neuroanatomical and neuroimaging studies have provided substan-
tial evidence for the involvement of the cerebellum in higher-level processing due to its
unique structure. As mentioned previously, the cytoarchitecture (i.e., the distribution of
cells in cortical layers and sublayers) of the cerebellum is very stereotyped and uniform
across all of its subdivisions. However, this quasi-uniformity in the composition of the
cortical layers is contrasted with the functional diversity and specificity of cerebellar
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connections to the cerebrum (Schmahmann, 2004; Broussard, 2014; Sokolov, Miall, &
Ivry, 2017). This has led researchers and theorists to seek to identify the nature of a
transform (or computational mechanism) that could originate from that homogenous
synaptic organization and yet support that functional heterogeneity (Sokolov, Miall, &
Ivry, 2017; Schmahmann, 2019).

One early theory about the role of the cerebellum is the theory of motor learning
proposed by Marr (1969) and developed by Albus (1971). This theory has substantially
contributed to the creation of the discipline of computational neuroscience (Strata,
2009). According to this theory, the cerebellar cortex has the task of learning motor
skills for movements and posture. It does so through the interaction of mossy fibers,
climbing fibers, and Purkinje cells. This theory assumes that each action has a specific
representation, in terms of elemental movements, that is expressed as a sequence of
firing patterns in the inferior olive (Marr, 1969). The olivary cells, which have a
one-to-one connection with Purkinje cells via climbing fibers, respond to cerebral
instruction for an elemental movement. When those olivary cells fire, they send signals
to the corresponding Purkinje cells. The Purkinje cells also receive signals from mossy
fibers, via the granule cells and their parallel fibers axons, that are thought to provide
information about the context in which the olivary cells fired (Marr, 1969). When there
are simultaneous activations of the climbing fibers and parallel fibers at the Purkinje
cell level, the parallel fibers and Purkinje cell synapses are reinforced through long-term
potentiation (Marr, 1969). It is believed that, during action rehearsal, the Purkinje cells
learn to recognize the contexts in which the olivary cells’ firing patterns occurred. This
recognition leads those Purkinje cells to be able to fire and cause the next elemental
movement with only the occurrence of the context after the action has been learned

Extending Marr’s theory and modifying it slightly, Albus (1971) proposed that, in
order for the learning process to be stable and to generate appropriate motor command
signals, pattern recognition of olivary cell bursts (or climbing fiber bursts) and pattern
storage must be accomplished principally by weakening parallel fibers and Purkinje
cell synapses through long-term depression. While Marr’s (1969) theory assumes that
no other synapse type is modifiable, Albus (1971) states that not only parallel fiber
synapses are adjustable on Purkinje cell dendrites, but also on both Stellate and Basket
cell dendrites. The plasticity assumption in the Marr–Albus model is also supported by
Ito and Kano (1982).

The motor learning theory as proposed by Marr (1969) and Albus (1971) builds upon
Eccles et al.’s “cellular beam hypothesis” (as cited in Ito, 2006; D’Angelo et al., 2011;
Bower, 2010), which saw the cerebellum as a collection of individual beams (referring
to the parallel fibers of the granule cells connecting to Purkinje cells) that propagate
excitatory signals to sequentially activate the Purkinje cells. The excitatory parallel
activity along the beams sharpened by lateral inhibition adjacent to those beams was
thought to be an important computational mechanism in the cerebellar cortical circuitry
(Bower, 2010; Broussard, 2014). The “cellular beam hypothesis” tried to provide support
for the role of inhibition in the cerebellum, which was believed to modulate excitatory
effects on neuronal outputs by “sculpting,” blocking, or cancelling them (Bower, 2010;
Braitenberg, 1997, 2002).

Braitenberg (as cited in Braitenberg, 1997) originally saw parallel fibers as generators
of time delays regulating the timing sequence of the activation of different muscles
involved in one movement. Assuming a fixed point of origin, the excitatory signals
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along those parallel fibers could represent precise timing solely based on distance, and it
was believed that a system would learn skilled movements by using the precise timing
information from task-relevant parallel fiber-Purkinje cell synapses to generate precise
temporal patterns.

However, it was shown that, given the length of parallel fibers (a few millimeters)
and the relatively constant rate at which signals propagate along them (about 0.5 m/s),
the delays generated would be an order of magnitude lower than the known time for
movement completion (about 200 ms to 300 ms; Braitenberg, 1997). This led to
the abandonment of the original timing hypothesis. Nonetheless, the original timing
hypothesis, as posited by Braitenberg (1997) in 1967, set the ground for subsequent
theories about how the cerebellum microphysiology may be well suited for temporal
representation (Ivry & Spencer, 2004; Spencer & Ivry, 2013) in sensory motor timing
(Flament & Hore, 1996; Manto, 2009), perceptual timing (Rao et al., 1997; de Zeeuw et
al., 1998; Xu et al., 2006), and in sensorimotor learning tasks (Yeo & Hesslow, 1998;
Brach et al., 2009).

Central to the idea of cerebellar-dependent motor learning developed by Marr and
Albus is the use of error signals to “instruct” or supervise the motor-learning scheme. A
more complete version of the Marr–Albus hypothesis is the Marr–Albus–Ito hypothesis
(Ito, 2006), which posits that motor error feedback activates the climbing fiber inputs
from the inferior olive. That activation induces changes at parallel fiber-Purkinje cell
synapses through long-term depression that alter Purkinje cells’ firing pattern responses
to mossy fiber inputs. The learned Purkinje cell firing patterns are then reflected in
behavioral modifications (Popa et al., 2012, 2016).

Closely related to the error-driven learning mechanism hypothesis is the comparator
hypothesis of olivary function originally proposed by Oscarsson (as cited in de Zeeuw
et al., 1998). This theory states that the olivocerebellar system compares intended
movements with performed movements to provide error detection (de Zeeuw et al., 1998).
Due to its afferent connections with the sensory system in the body, the cerebellum can
use that error detection mechanism to make appropriate adjustment during movements
(Tesche & Karhu, 2000).

Some hypotheses that have built upon the cerebellum-as-a-comparator theory include
the internal models for motor control and trajectory planning (Kawato, 1999; Wolpert et
al., 1995, 1998; Ebner, 2008) and Ito’s (2006, 2008) internal models for motor control
and mental representations in the cerebral cortex. According to this concept of internal
model (i.e., a neural representation of the external world), the cerebellum forms (through
a learning process) two different types of internal model: a forward model, which
predicts the sensory consequences of motor commands; and an inverse model, which
plans motor commands to achieve or maintain a desired goal (Kawato, 1999). The
forward model needs a copy of the motor commands, termed an efference copy, and
sensory feedback from afferent signals. These afferent signals give information about
the motor apparatus’ current state (Shadmehr & Krakaeur, 2008; Ishikawa et al., 2016).
It is assumed that when a movement is initiated, the neural activities of efference copy
inputs arise shortly after those of the primary motor cortex neurons (Ishikawa et al.,
2016). Forward and inverse models can be seen as inversion of each other in terms of
information flow (Ishikawa et al., 2016).

Taking into consideration past theories about the cerebellum’s function and the
growing body of evidence about its involvement in cognition, Sokolov, Miall, and
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Ivry (2017) have proposed a model that tries to explain how the cerebellum uses its
most prominent motor-control computational features (i.e., prediction- and error-based
learning) to instantiate or facilitate cognitive behaviors (see Figure 2.3). This model
applies the forward model of motor commands that predicts the consequences of an
action to a forward model that predicts the changes in perceptual or mental states. Both
are error-based learning-driven models.

Figure 2.3: Schematic of hypothesized cerebellar mechanisms for predictions of motor
movements and cognitive processes. (A) Motor cortex sends motor commands down the
corticospinal track. Efferent copies of those motor commands are sent down the cortico-
ponto-cerebellar track to predict the sensory consequences of the motor commands.
The sensory differences between the actual motor commands and the expected sensory
outcomes from the motor commands are the sensory prediction errors. These predictions
are believed to reach the cerebellum via the climbing fibers of the inferior olive (IO). (B)
The cognitive cerebellum is thought to rely on similar mechanisms and thought to predict
changes in perceptual or mental states. Note: Th = thalamus. (From ”The cerebellum:
adaptive prediction for movement and cognition,” by A. A. Sokolov, R. C. Miall, and R.
B. Ivry, 2017, Trends in cognitive sciences, 21(5), p. 319. Copyright 2021 by Elsevier.
Reproduced with permission.)

In parallel, Schmahmann (1991, 2019) has proposed a set of theories to unify
most of the other theories into a general framework: the universal cerebellar transform
(UCT) and the dysmetria of thought (DoT) theories. The UCT theory posits that
the homogenous cytoarchitecture of the cerebellar cortex provides the anatomical and
physiological substrate for consistent cerebellar computations across sensorimotor and
associative processes (Schmahmann, 1991). According to this theory, the cerebellum
automatically maintains behavior around a homeostatic baseline, without conscious
awareness, by integrating multiple internal representations with external stimuli and
appropriate responses. This transform or computation is informed by implicit learning
and acts as an oscillation dampener that seeks to optimize performance according to
context (Schmahmann, 1991, 2019).

The DoT theory, which is based on the UCT, posits that, depending on the location of
a cerebellar lesion, the resulting behaviors will either lead to gait ataxia, limb dysmetria,
or dysarthric speech if the lesion occurs in a cerebellar motor region, or lead to what is
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known as the cerebellar cognitive affective syndrome (CCAS) if the lesion occurs in a
cognitive limbic region of the cerebellum (Schmahmann, 1991, 2004, 2019; Schmah-
mann & Sherman, 1998). The CCAS comprises a cluster of cognitive and affective
symptoms that can be categorized into four deficit types: executive function impairments,
such as in the case of planning, set-shifting, abstract reasoning, and working memory;
spatial cognition deficits, such as in the case of visuospatial organization and memory;
behavioral-affective changes, such as blunting of affect or disinhibited and inappropriate
behavior; and language impairments, such as agrammatism, dysprosodia, and anomia
(Schmahmann & Sherman, 1998; Marien & Manto, 2017; Hoche et al., 2018). Thus,
according to the DoT theory, the symptoms of cerebellar dysfunctions seen in motor
behaviors (because of a compromised cerebellar motor region) have analogs in cognitive
behaviors (if a cerebellar cognitive limbic region is compromised) due to the “universal”
nature of the cerebellar computation (see Figure 2.4).

Figure 2.4: Schematic of the dysmetria of thought theory. (From ”Metalinguistic deficits
in patients with cerebellar dysfunction: empirical support for the dysmetria of thought
theory,” by X. Guell, F. Hoche, and J. D. Schmahmann, 2015, The Cerebellum, 14(1), p.
51. Copyright 2021 by Springer Nature. Reproduced with permission.)

2.5 The Cerebellum and Language
In the course of the brain’s phylogenetic evolution, its enlargement was accompanied by a
concomitant enlargement of the newest parts of the cerebellum (e.g., the neocerebellum)
and the association areas in the cerebral cortex (Leiner et al, 1991). This led to new
neural connections that descend (via enlarged structures in the brainstem) from the
cerebral cortex to the new areas of the lateral cerebellum (Leiner et al., 1991). Given that
the cerebellum also projects to the neocortex via the thalamus, it has been shown that the
connections between the cerebellum and the cerebral cortex are arranged in closed loops
(Kelly & Strick, 2003; Sokolov, Miall, & Ivry, 2017; see Figure 2.5).

12



Figure 2.5: Cerebellar indirect modulation of cognitive cortical networks. The cerebel-
lum has closed-loop afferent and efferent connections (black arrows) to specific cortical
areas involved in the cognitive networks. Complex cognitive processes involves commu-
nication between regions in cerebral cortex (colored dashed arrows). By acting uniquely
on these single cortical brain areas of the cognitive network which also interact with
each other, the cerebellum is believed to also have an indirect influence on the cognitive
network. (From ”The cerebellum: adaptive prediction for movement and cognition,” by
A. A. Sokolov, R. C. Miall, and R. B. Ivry, 2017, Trends in cognitive sciences, 21(5), p.
315. Copyright 2021 by Elsevier. Reproduced with permission.)
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Some of those closed loops have motor functions, such as the loops connecting
regions of the vermis and areas of the cerebellar hemispheres (i.e., lobules IV, V, VI, VII,
and VIII) with the primary motor cortex. Others do not, such as the indirect cerebellar
projections that connect parts of the cerebellum with the posterior parietal cortex (a
cortical region known to be active during nearly all cognitive tasks; Broussard, 2014;
Kelly & Strick, 2003). The cerebrocerebellar loops linking the dentate nucleus (in the
deep cerebellar nuclei) with Walker’s area 46 in monkeys (the monkey analog to the
human dorsolateral prefrontal cortex) are also closed loops that do not have a motor
function (Broussard, 2014; Kelly & Strick, 2003).

The dorsolateral prefrontal cortex is a region known for its importance in higher
cognitive functions. It is believed that the closed loops between the neocerebellum
and the frontal lobe are not limited to frontal motor areas, but include other areas of
the frontal cortex such as Broca’s area (Leiner et al., 1991; Murdoch, 2010). Taken
together, these anatomical findings suggest not only that the cerebellum has the necessary
anatomical connections to be involved in cognitive functions, but also that these series
of distinct neural loops formed by reciprocal connectivity may enable the cerebellum to
facilitate cognitive and linguistic function in the same way it enhances motor functions
(Leiner et al., 1991; Murdoch, 2010).

While there is a great deal of evidence showing that by having to coordinate the
muscles of the larynx, throat, tongue, and lips, the cerebellum contributes to the motor
processes that produce fluent speech in humans, its involvement in the cognitive processes
of “thinking of the word to be expressed” is not yet as established. Nonetheless, recent
advancements in neuroimaging techniques and imaging, lesion, clinical, and behavioral
studies have increased the amount of converging evidence and the understanding of the
role of the cerebellum in non-motor linguistic processing (Marien & Manto, 2018).

For instance, a neuroimaging meta-analysis by Stoodley, Valera, and Schmahmann
(2011) showed that verb generation engaged the right cerebellar lobules VI–Crus I and
a second cluster in lobules VIIB–VIIIA (see Figure 2.1 for anatomy of cerebellum).
The verb generation task required participants to internally (or covertly) generate a verb
from a given noun (e.g., “beer” − > “drink”). Another neuroimaging meta-analysis
by Keren-Happuch et al. (2014) revealed that cerebellar peak activation coordinates
were found bilaterally in lobules VI, midline lobule VIII, left Crus 1, and right Crus 2 in
expressive and receptive language tasks. They concluded that their results added to the
increasing body of research describing lateralized activation in the posterior regions of
the cerebellum for language tasks.

It is worth noting that these regions are often active during higher order functions
(Price, 2012). In a study on verbal working memory using fMRI-guided TMS, Desmond
et al. (2005) tested whether disruption of the right superior cerebellum (hemispheric
lobule VI/Crus I) impaired verbal working memory. They administered a single-pulse
TMS to participants immediately after the simultaneous presentation of six letters
during the encoding phase of some of the trials. The encoding phase was followed
by a maintenance period and then by a retrieval period in which four probe letters
were presented, only one of which had already appeared during the encoding phase.
Participants were asked to press one of four buttons (oriented in a single row) to indicate
which probe letter had appeared in the initial encoding period. The authors found
that TMS on the right superior cerebellum did not increase accuracy; however, it did
significantly improve reaction time for the trials that were accurate. They concluded that

14



the observed effects indicated cerebellar involvement in verbal working memory.
Like Moberget and Ivry (2016), one might ask, then, to what extent these findings

can be explained by a generalization of the internal model hypothesis to cognition. It
is possible that in the context of the cognitive aspect of language, cerebellar internal
models contribute to the timing of language processing, the adaptability of linguistic
representation (e.g., semantic, syntactic, lexical), and the predictive capabilities during
language processing (e.g., inferring the next linguistic states; Moberget & Ivry, 2016).

Several studies seem to show support for these themes. For instance, it has been
shown that patients with cerebellar disorder are impaired in speech perception tasks
when they need to use temporal cues as opposed to spectral ones (Ackermann et al.,
1997, 2004). In an fMRI study, Guediche et al. (2015) used distorted speech in a
word-recognition task to investigate whether adaption in speech perception also involves
the cerebellum. They found co-activation of the right Crus I of the cerebellum and other
cerebral cortical regions during the adaptive changes in speech perception. The results
were consistent with known cerebellar contributions to sensorimotor adaptation (some
of which will be discussed in a later section).

Using a visual world paradigm and repetitive TMS, Lesage et al. (2012) demonstrated
that demonstrated that stimulating participants’ right cerebellum (a region implicated
in language) disrupted the their predictive language processing, but only when the task
involved making a prediction. Participants’ performance in the task remained unaffected,
despite the stimulations, when no prediction was involved. This provided some evidence
that the computational operations used by the cerebellum for making predictions during
motor control might also be in use during language processing.

In proposing an alternative to the internal model hypothesis, Guell et al. (2015) and
Schmahmann (2019) argued for an account of cerebellar cognitive and linguistic function
through the lenses of the DoT theory. In a study of linguistic capabilities in patients with
cerebellar damage (Guell et al., 2015), patients were given the Oral Sentence Production
Test to assess their basic semantic and syntactical abilities. No difference in scores was
found between the patients and healthy control participants. The patients were also given
the Test of Language Competence (Expanded Edition) to assess their metalinguistic
abilities. In all its subtests, the patients with cerebellar damage scored significantly lower
than healthy control participants.

From these results, Guell et al. 2015 concluded that patients with cerebellar damage
exhibited metalinguistic deficits that are more specifically linked to social communication
(e.g., metaphor, ambiguity, inference), despite retaining most of their grammar and
semantic abilities. They postulated that these types of cognitive deficits were in line
with the DoT, as they were akin to motor deficits. Their explanation was that, in the
case of movement, cerebellar injury causes dysmetria but not weakness (i.e., disruption
of modulation of movement but not disruption of generation of movement); and in the
case of language, it causes metalinguistic deficits but not aphasia (i.e., disruption of
modulation of language but not disruption of generation of language; Guell et al., 2015;
Schmahmann, 2019). It is important to emphasize that the DoT theory does not go
against the internal model hypothesis, but integrates it within its framework.
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2.6 The Cerebellum and Music
As with language, making music (e.g composing, performing) is a complex cognitive
function. The process of creating music using one’s voice or an instrument requires
many cognitive skills, such as executive function, attention, working memory, sequence
learning, auditory discrimination, auditory memory, mental imagery, perception of
speed, and knowledge of temporal order. It also involves motor skill learning, eye–hand
coordination, and, for musical performance, the ability to synchronize. Thus, it is very
likely that the process of making music also involves parts of the cerebellum.

Hutchinson et al., (2003) have found that the volume of the cerebellum is positively
correlated with lifelong intensity of music practice and that musicians have larger
cerebellar volumes than non-musicians. In addition, Abdul-Kareem et al. (2011) found
that musicians had greater volumes of right cerebellar white matter and right superior
and middle cerebellar peduncles (the nerve tracts permitting communication between
the cerebellum and the other parts of the central nervous system) than non-musicians.
Interestingly, Baer et al. (2015) showed that cerebellar regional volumes in early-
trained musicians were smaller than those in late-trained musicians, and no difference
in cerebellar regional volumes was found between late-trained musicians and non-
musicians. They acknowledged that their findings might go against the more typical
view, which associates expertise with greater volumes of brain regions, but they also
noted that in other fields, expertise has been associated with reduced cerebellar volumes
(see Nigmatullina et al., 2015). Even though correlation does not imply causation, it is
worth noting these changes.

Using positron emission tomography (PET), Brown et al. (2004) found that part
of the posterior cerebellum (the quadrangular lobule VI) played a role in singing repe-
titions of novel melodies, singing harmonization with novel melodies, and vocalizing
monotonically.

Moreover, in a series of four neuroimaging and neurological studies involving
professional musicians and non-musicians, Parsons (2001) provided support for a non-
motor role of the cerebellum in a variety of sensory and cognitive musical tasks. The first
study had pianists play music from memory and then play scales while in a PET scanner
in order to localize brain areas specifically supporting music. Different regions of the
cerebellum were activated when playing music compared to when playing scales. The
second study found bilateral activation of the cerebellum (primarily lateral hemispheres)
when musicians sight-read a score while listening for specific melodic, harmonic, or
rhythmic errors in its performance. These results parallel that of another study in the
language domain showing implication of the cerebellum in error detection (Fiez et al.,
1992).

The third study involved musicians and non-musicians discriminating pairs of
rhythms with respect to pattern, tempo, meter, or duration. There were significant
differences between the two groups in terms of the strength of activations and locations,
but all participants exhibited cerebellar activations. It was noted that these activations
were probably unrelated to motor activity, as there was no overt motor activity and,
little, to no activity in neocortical motor areas. In the last study, patients suffering from
cerebellar degeneration exhibited impaired pitch discrimination (Parsons, 2001). These
last results echo other studies demonstrating impaired musical ability in patients with
cerebellar disorders (Tölgyesi & Evers, 2014) or impaired pitch discrimination ability
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after downregulating cerebellar TMS (Lega et al., 2016). Similar to the language studies
discussed above, these findings not only add to a growing body of literature providing
supporting evidence for the role of the cerebellum in cognitive functions, but they also
add to the music cognition literature.

It may also be asked to what extent a generalization of the internal model hypothesis
can explain aspects of music processing in the brain. To answer that question, it may
be useful to recapitulate what was discussed in the case of language processing. The
previous section presented evidence supporting the involvement of the cerebellum in
some cognitive aspects of language processing. It was also shown that these could
potentially be explained by an internal model hypothesis account. In addition, a meta-
analysis by Keren-Happuch et al. (2014), which looked at PET and fMRI studies
of cerebellar contribution to higher cognition, revealed that some cerebellar cortical
regions used during language processing overlap with some of those used during music
processing (including the right cerebellar hemisphere; see Figure 2.6). Lastly, there is a
large body of evidence supporting the use of internal models in motor behaviors such
as speech production (Houde & Nagarajan, 2011; Hickok, 2012; Parrell et al., 2019a;
Parrell et al., 2019b).

Figure 2.6: Segment of activation likelihood estimation maps for language, music, and
timing at four different slices (y = -80, -70, -60, -50) mapped onto coronal sections of the
Colin27 brain. (Original figure also showed activation for emotion, executive function,
and working memory.) (From ”A meta-analysis of cerebellar contributions to higher
cognition from PET and fMRI studies,” by E. Keren-Happuch, S. H. A. Chen, M. H. R.
Ho, and J. E. Desmond, 2014, Human brain mapping, 35(2), p. 598. Copyright 2021 by
John Wiley and Sons. Reproduced with permission.)

Singing is a musical activity that has similar motor implementations to and shares
multiple cognitive aspects with speech production. It involves precise control of the
vocal apparatus, an accurate control of the fundamental frequency of the voice (Jones &
Keough, 2008), coordination between cognitive planning and motor execution (Pruitt
& Pfordresher, 2015), and processing of the auditory feedback that helps the precise
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control of the fundamental frequency (Pruitt & Pfordresher, 2015). Thus, it is reasonable
to hypothesize that some aspects of music processing may also be explained by a
generalization of the internal model hypothesis.

One place to start investigating this hypothesis could be in the domain of senso-
rimotor adaptation. In a frequency-altered feedback study comparing trained singers
and non-singers, in which participants sang the syllable “ta” while hearing a frequency-
altered version of their singing (shifted down by 100 cents), Jones and Keough (2008)
showed that trained singers compensated for the difference in pitch to a lesser degree
than non-singers. However, prolonged exposure to the frequency-altered feedback led
the trained singers to compensate as much as the non-singers. In addition, they demon-
strated that when participants subsequently received their unaltered feedback, the singers’
fundamental frequency remained higher than their pre-test baseline fundamental fre-
quency. The authors concluded that trained singers might rely more on internal models
to maintain accurate vocal control as opposed to using a real-time auditory feedback.

Studies using a similar frequency-altered feedback paradigm have indicated that
trained singers can voluntarily ignore altered feedback to produce a pitch that remains
identical to their fundamental frequency (by presumably using an internal model) or use
it to produce the target pitch as instructed (Keough & Jones, 2009; Zarate & Zatorre,
2005, 2008). These results were followed by another similar study that showed that
singers’ internal models seem to be more sensitive to subtle discrepancies in auditory
feedback compared to those of non-singers (Keough & Jones, 2009). While these studies
provide supporting evidence for the use of internal models in a musical activity, it is
still unclear whether these internal models participate in a cognitive aspect of music
processing (as opposed to motor control) that makes use of the cerebellum.

Other researchers have examined singing and the use of internal models in sen-
sorimotor prediction. One hypothesis about poor singing, or more specifically poor
pitch matching (defined as the inability to match a target pitch within one semitone), is
the inverse model deficit hypothesis (Pfordresher & Mantell, 2014). According to this
hypothesis, poor vocal imitation of pitch is the result of an inefficient auditory–vocal
system representation that leads to difficulties instantiating a motor plan to reach a
perceptual goal (Pfordresher & Brown, 2007; Pfordresher & Mantell, 2014).

Testing a similar hypothesis (i.e poor pitch matching being the result of poor motor
control), as well as others hypotheses, Hutchins and Peretz (2012) devised a series of
studies using a specifically designed device called a slider. The slider creates a vocal
tone that mimics the human voice on a continuous spectrum. When pressed at a specific
position on its touch-sensitive strip, the slider plays a tone that increases or decreases in
pitch as the finger is slid up or down the strip. This allowed the participants (musicians
and non-musicians) to use a different motor mechanism to reproduce a pitch. In addition,
they had an experimental condition that made use of a synthesized voice. The main
findings from this series of studies were that the singers and non-singers were better at
matching pitches when using the slider as opposed to their own vocal apparatus; and
when using their vocal apparatus, the non-singers were better at matching recordings of
their own voices as opposed to recordings of a synthesized one at the same pitch.

Taking these findings together, the authors concluded that these patterns of results
suggested that poor singing can mostly be attributed to poor motor control and timbral-
translation error (Hutchins & Peretz, 2012). While the first cause does not provide any
new element that would enable researchers to determine if the cerebellum is involved in
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music processing beyond motor control, the second one leaves open the possibility of a
generalization of the internal model hypothesis for music processing. This possibility,
however, would need to be empirically tested.

The paucity of data about cerebellar disorder studies that involve pitch production in
the context of music makes it difficult to assess the plausibility of the DoT theory within
the context discussed in this section.
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2.7 Conclusion
The main aims of this chapter were to provide a foundational understanding of the cere-
bellum structure, a foundational understanding of its well-established known functions,
and to present more recent theories regarding its contribution to non-motor domains.
The chapter has provided evidence that the cerebellum cannot be seen solely as a motor-
control ”machine”, and a more holistic and realistic view of its role (which includes
some aspects of cognition) should be taken into consideration to fully understand the
extent of its functional domains. In addition, we particularly addressed the role of the
cerebellum in vocalizations such as in speech and in music. The work of Lega et al.,
(2016) underlined the involvement of the cerebellum in pitch discrimination, which has
some impact on the accuracy of pitch production (Pruitt & Pfordresher, 2015). The
work of Brown et al.(2004) provided evidence of the involvement of the cerebellum in
vocalizing singing tones. Jones and Keough (2008) have provided some evidence that
expert singers might rely on internal models in order to keep the accuracy of their vocal
productions when receiving inaccurate feedback of their own voice. Our hypothesis was
that if the cerebellum is involved in the instantiation of internal models during singing,
perturbing it using TMS, would lead healthy participants to do worse at the singing task
because of the resulting compromised internal model. So far we have seen evidence that
motor and cognitive aspects of singing involve the cerebellum, and that some aspect of
singing may rely on internal models. In the following chapter we will see how those
internal models can be seen through the framework of Bayesian cognitive models.
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Chapter 3

The Bayesian Brain

3.1 Introduction
The human brain does not have direct access to the external environment. As a result, it
relies on senses to rebuild the world internally. However, the sensory inputs received and
the causes eliciting them do not have a one-to-one relation. A sensory input can have
many external causes, and different sensory inputs can have the same external cause.
Given this challenge, how can the brain reliably determine the sources of its sensory
input? One theory was that the brain constructs percepts from the bottom up (Gibson &
Carmichael, 1966; Marr, 1982). According to this theory, the brain’s representation of the
environment starts from a two-dimensional array (i.e., the retina), from which features of
a scene are extracted (e.g., edges, shapes, texture), resulting in a model in which a scene
is visualized in a continuous 3D map. Opposing that theory was the top-down theory
of perception (Gregory, 1980), which posits that higher cognitive information acquired
from experience or prior knowledge shapes how the brain perceives.

In recent years, however, an accumulation of compelling evidence in theoretical
neuroscience has led to a paradigm shift. The brain is no longer seen as a passive
sensory-information recipient, but as an active processor of sensory information that tries
to make reliable causal inferences about the origins of its sensations. Two approaches
that are used to investigate the problem of perception in terms of causal inference are
Bayesian inference and predictive coding (Friston, 2010; Howhy, 2013; Clark, 2013).

This chapter will introduce core concepts in Bayesian inference. It will then consider
the supporting evidence for the so-called “Bayesian brain” i.e. the Bayesian model
of cognition. Finally, it will examine how predictive coding compares to Bayesian
inference.

3.2 Beliefs as Probability Distributions
In contrast to frequentist statistics, which focuses on obtaining point estimates (e.g.,
mean, standard deviation or variance) of the observed data, Bayesian statistics assigns
probabilities to the possible causes of the observed data, and thus so does Bayesian
inference. Despite there being only a unique value for the true state of the environment
(or one true cause of an individual’s observations), the Bayesian observer’s model
represents the causes as probability density functions.
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Figure 3.1: (a) An apple that has fallen from a tree but whose whereabout is unknown,
(c) beliefs about the location of the apple represented as a probability distribution with
the distribution’s central tendency representing the most likely location (From ”Bayesian
Models in Cognitive Neuroscience: A Tutorial,” by J. O’Reilly and R. Mars, 2015, An
introduction to model-based cognitive neuroscience, p. 182. Copyright 2021 by Springer
Nature. Reproduced with permission.)

Consider the example used in O’Reilly et al. (2012) in which an observer tries to
estimate the width of a pen by looking at it. The observer could estimate the width either
by using a single number (e.g., “This pen is 6 mm wide”) or by using a distribution of
possible values with their degree of belief about each value (e.g., “There is a 95% chance
that this pen is between 4.5 mm and 7 mm wide”). This probability density function
(PDF) represents the observer’s uncertainty about a quantity for which there is a single
true value that is unknown (the true width of the pen).

This point can be further illustrated with the scenario used in O’Reilly and Mars
(2015): ”Isaac Newton is foraging for apples in his garden when he sees an apple fall
from a tree into long grass”. Similarly to the previous example, Newton could estimate
the location of the fallen apple using a single set of location coordinates, or he could
represent its location with a PDF of the possible coordinates with his degree of belief (or
uncertainty) for each location (see Figure 3.1).

In both examples, the representation of the uncertainty in the PDF is in direct relation
to the level of noise in the estimation process. The noise may be intrinsic to the observer,
as in the case of stochasticity in neural activity (Knill & Pouget, 2004; Ma et al., 2006;
Ma et al., 2008) or the central nervous system (Faisal et al., 2008); or it may be extrinsic
to the system, as when an observer tries to visually estimate the width of a pen while
someone is writing with it or the location of a fallen apple at dusk. Less uncertainty (i.e.,
less noise) is represented by a narrower PDF, and more uncertainty (i.e., more noise) is
represented by a wider PDF.
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In more general statistical terms, all unknown estimated parameters can incorporate
(un)certainty that can be defined by a probability distribution, and each parameter is
believed to have its own probability distribution that captures the (un)certainty about its
value (Van de Schoot & Depaoli, 2014). Thus, one of the key features of a Bayesian
system is the ability to take a quantity that has an unknown true value and represent it as
a probabilistic distribution (O’Reilly et al., 2012).

3.3 Integration of Information Using Uncertainty
Another key feature of the Bayesian approach resides in how a Bayesian system uses the
level of uncertainty from its different sources of information. In a PDF that represents a
belief about the state of the world (e.g. width of a pen, location of an apple), the variance
of the PDF (i.e., its width) represents the degree of confidence about the state of the
world (i.e. the wider the variance, the less certain one is about that world’s state, and
vice versa). Bayesian systems use this degree of confidence (or uncertainty) to weight
different sources of information relative to their level of precision (Berniker & Kording,
2011; O’Reilly & Mars, 2015).

Continuing with the apple example from O’Reilly and Mars (2015), imagine that
Newton not only saw the apple falling from the tree but also heard it. He now has two
sources of information that can be represented as PDFs and which reflect his degree of
belief about the location of the apple. To obtain the best estimate of where the apple
fell in the long grass, Newton (as a Bayesian system) could choose either to rely on (or
favor) one of his two senses or to combine the location estimates from both senses and
use their levels of precision as weights (precision weighting). The Bayesian approach
would favor the latter (i.e., considering both measurements at once weighted by their
relative precisions). The measurement (or observations) with the lowest variance would
be given more weight. For instance, if Newton’s vision was not clear because of the
time of day (e.g., dusk) or because of the weather (e.g., fog) and yielded an unreliable
estimate of the apple’s location, then the auditory evidence should be given more weight;
inversely, if Newton’s hearing was impaired or was not as sensitive because of some
loud ambient noise, then vision should be given more weight.

Thus, in this example, a Bayesian system would optimally combine both sources of
information by considering their levels of precision and estimating a (posterior) PDF
that represents the location of the apple given vision and hearing measurements or PDFs
(see Figure 3.2). The highest point of the PDF would be where the two distributions
overlap, and its mode would be closer to the mode of the distribution with the highest
level of precision (i.e., lowest variance).

3.4 Bayes’ Theorem
The previous example demonstrated that a Bayesian approach can combine independent
and parallel sources of information (e.g., vision, hearing). Prior beliefs (also known
as priors in the Bayesian framework) can also be represented by PDFs and therefore
they possess same mathematical properties as if they were other sensory modalities. A
prior provides information that can be weighted and combined with current observations
(or sensory evidence), depending on how reliable it is relative to the current sensory
evidence.

23



Figure 3.2: Multisensory integration. The red probability distribution represent beliefs
about the fallen apple location based on visual information. The blue probability dis-
tribution represents beliefs about the fallen apple location based on auditory location.
The purple distribution represents the beliefs about the fallen apple location based on
the combination of both visual and auditory information. (From ”Bayesian Models in
Cognitive Neuroscience: A Tutorial,” by J. O’Reilly and R. Mars, 2015, An introduction
to model-based cognitive neuroscience, p. 183. Copyright 2021 by Springer Nature.
Reproduced with permission.)

The result of this combination will be a posterior distribution that takes current
observations and the prior into account. This combination is embodied in a theorem
called Bayes’ theorem. In its general form, Bayes’ theorem can be expressed as follows:

P(h|d) = P(d|h)P(h)
P(d)

(3.1)

where: P(h|d) is the probability of the hypothesis given the data, P(d|h) is probability
of the data given the hypothesis, P(h) is the prior probability of the hypothesis and
P(d) is the probability of the data. In Bayesian terminology P(h|d) is the posterior
probability (and represents the posterior distribution or PDF); P(d|h) is the likelihood
(and represents the likelihood distribution or PDF); and P(d) is the marginal probability,
which can be obtained by summing over the hypotheses (marginalization process). The
marginal probability can also be rewritten:

P(h|d) = ∑
h′∈H

P(d|h′)P(h′) (3.2)

where H is the hypothesis space (i.e. the set of all hypotheses considered). The summa-
tion of all the elements in the denominator ensures that the resulting probabilities are
normalized to sum to one (Griffiths & Yuille, 2006).

Bayes’ rule can also be written:

P(h|d) ∝ P(d|h)P(h)P(d) (3.3)

This formulation, which is derived from Equation (3.1) makes it clear that the
posterior is directly proportional to the product of the prior and the likelihood.

This is a model of how prior beliefs should be updated when taking new evidence
into consideration.In Bayesian inference models of cognition, the prior, the evidence
and the posterior (or hypothesis) form, respectively, one’s current knowledge, one’s
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new pieces of information and one’s conclusion based on the combination of first two
elements (Griffiths et al. 2008).

3.5 Bayesian Optimality
The optimization problem in Bayes’ rule involves maximizing the posterior PDF P(h/d)
through maximum likelihood estimation and determining the maximum a posteriori
probability estimate. Maximum likelihood estimation maximizes the probability of
collecting this type of data given the parameters to be estimated (e.g., the state of the
world). In the absence of prior knowledge, maximizing the likelihood PDF is equivalent
to maximizing the posterior PDF. However, given an informative prior PDF (i.e., some
knowledge about the parameters or the state of the word), then Bayes’ rule should be
applied to estimate the posterior. The most probable estimate is found at the peak of the
posterior distribution (i.e., the maximum a posteriori; Wolpert, 2007).

Newton’s apple example can now be formalized. The optimal integration of two
Gaussian priors with some degree of uncertainty due to measurement noise (i.e., the
variance) is given by the weighted average:

Ŝ = Ŝ1
r1

r1 + r2
+ Ŝ2

r2

r1 + r2
(3.4)

where ri is the reciprocal of the variance, and S1 and S2 are the means of the Gaussians.
Thus, the posterior mean is the sum of the priors’ means, each weighted by their additive
relative precision (Penny, 2015).

This relation can be seen in Figure 3.2a and Figure 3.2b. In the first scenario, the
mean of the posterior distribution (magenta dotted line) is closer to the mean of the red
distribution, because the visual information was more precise. In the second scenario, the
mean of the posterior distribution is closer to the mean of the blue distribution, because
the auditory information was more precise. In both scenarios, the posterior distribution
has a lower variance than both the distributions from which it derived. This is one of the
direct consequences of Bayesian inference: As one increases the amount of information,
one decreases the amount of uncertainty. Equation (3.4) shows how two independent
sources of information are optimally combined using uncertainty.

While Bayes’ formula helps to make optimal inferences about the state of the world
in the face of uncertainty, it can also help to choose an action based on these inferences.
Bayesian decision theory is one way to accomplish this feat, as its essence is to minimize
expected loss (or maximize expected utility; Wolpert, 2007).

In this context, a loss function that quantifies the value of taking each possible action
for each possible state θ of the world, L(action,θ), is added to specify the cost of
estimating incorrectly:

∑
θ

L(action,θ)P(θ |S) (3.5)

where σ denotes a summation over all possible states. The action can then be chosen
that has the smallest expected loss (Wolpert, 2007).

Having reviewed the statistical underpinning of the Bayesian approach, this chapter
now examines some of the evidence supporting the account that human observers behave
as optimal Bayesian observers.
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3.6 Behavioral Model

3.6.1 Multisensory Integration
Ernst and Banks (2002) conducted one of the seminal studies showing that humans might
behave in a Bayes-optimal way. In their experiment, Ernst and Banks were interested
in the problem of integrating two sources of information from different modalities:
tactile (haptic) and visual. Participants were asked to judge which of two sequentially
presented ridges was the tallest. The ridges were presented through a dot stereogram.
To determine which ridge was the tallest, participants used vision alone, touch alone, or
the two simultaneously. In addition, the researchers could vary the level of noise in the
visual modality (i.e., the variance in the visual information) by manipulating the levels
of noise in the dot stereogram. They observed stronger reliance on vision to make the
estimations of the ridges‘ heights when the levels of visual noise were low, and stronger
reliance on touch to make those same estimations when the levels of visual noise were
high. Thus, the results of this experiment closely matched Bayesian behavior.

Other studies have shown the role of Bayesian inference in multisensory integration.
Alais and Burr (2004) reported near-optimal combination of visual and auditory space
cues in the context of object localization. They showed not only that, in this context,
visual and auditory information are combined and weighted by their precisions, but also
that this combination led to an improvement in bimodal spatial location over unimodal
spatial location. The authors also mentioned that the visual stimuli in the experiment had
to be severely blurred (making visual localization very poor) for audition to outweigh
vision in perceptual localization. This might suggest that there is substantial sensory
dominance of vision over audition in multisensory integration during spatial localization
of audio-visual stimuli. However, they also noted that the location of the auditory
stimuli was defined using only a single cue (i.e., interaural time difference). Thus, the
sensory dominance of vision in their study might have been stronger than it would be in
ecologically valid contexts.

Battaglia et al. (2003) found comparable results in a similarly designed spatial local-
ization study. However, their study showed that vision tended to dominate much more
than what one might expect from an optimal multimodal combination of information. It
is worth noting, too, that the dominance of vision over audition in spatial localization is
the underlying basis of the ventriloquist effect.

Precision-based sensorimotor integration has also been shown to occur between
vision and proprioception in visuo-proprioceptive estimation tasks (van Beers et al.,
1996; van Beers et al., 1999). Moreover, while proprioceptive information is given
greater weight than one would expect, Sexton (2019) showed that, if a force field is
applied to the hand doing the reaching during these tasks, the “system” interprets it as
somatosensory unreliability and increases the weight given to vision in the estimation.

So far this chapter has presented cases where a Bayesian system integrates multiple
sources of information to reach the most optimal estimation. It has yet to provide
evidence of how, in this framework, new observations are incorporated into existing ones
using prior beliefs to constrain the estimates given by each new observation. This is the
topic of the next section.
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3.6.2 Perception and Ambiguity: Use of Priors
Expectations play an important role in shaping the way people perceive the world. This
idea has its origins in the work of Helmholtz, who viewed perception as “unconscious
inference” (as cited in Howhy, 2013), and can be traced back to Kant (1908), who
believed that “a priori” knowledge may contribute to one’s “sensibility” (i.e., the faculty
that provides sensory representations). One of the earliest demonstrations of how
perception might be influenced by prior knowledge, and thus be inferential in this
regard, can be seen in the case of binocular rivalry. In (conventional) binocular rivalry,
incompatible images presented to the two eyes result in a perceptual alternation between
the images, rather than in their combination (Denison et al., 2011). This suggests that
perception is not solely driven by sensory stimuli, but also includes some assumptions or
expectations.

In 1928, Diaz-Caneja showed that the perception of alternating coherent percepts,
in binocular rivalry, could also occur even when the images presented to each eye were
incompatible halves (Diaz-Caneja, 1928, translated by Alais et al., 2000). This again
underlines the role of expectations in perception. These assumptions or expectations can
be conceptualized as Bayesian priors (Kok et al., 2013). More recently, work on visual
object perception using a Bayesian approach has shown that much of the ambiguity,
weakness, or noise in the sensory inputs in visual processing can be resolved with prior
knowledge (de Lange et al., 2018; Kersten, 2004).

Perceptual illusions are testimonies to the use of priors in perception. In the Müller-
Lyer illusion (Figure 3.3a), two vertical lines of the same length, one with outward-
pointing fins on the ends and the other with inward-pointing fins, are perceived to be of
different lengths (the line with inward-pointing fins appears to be shorter). It has been
suggested that this illusion is due to strong priors learned from depth perception and a
lifelong exposure to Western architectural features (Gregory, 1997, 2005). The line with
outward-pointing fins cues the visual system to perceive it as closer to the viewer, as if
they were looking at the outside corner of a house, for instance; whereas the vertical line
with inward-pointing fins cues the visual system to perceive it as farther away, as if the
viewer were looking at the inside corner of a room (Gregory, 1997).

Another type of illusion driven by acquired priors is the Ames room illusion (Figure
3.3c). In this illusion, the viewer’s powerful assumptions about parallel floors and
ceilings, as well as orthogonal walls, make a trapezoidal room look cubic, and the people
standing in it appear to be of different sizes when seen monovisually through a peephole.
It is thought that these types of priors come from implicitly learning and exploiting
statistical regularities in sensory inputs.

Moreover, it has been proposed that these priors can broadly be divided into two
categories depending on the extent to which their effects on perception can be generalized
across different environments: structural and contextual priors (Series & Seitz, 2013).
Structural priors are those that reflect the lifelong learning of statistical regularities in
the natural environment or those that are thought to be innate. They seem to apply to a
broad range of sensory inputs. The Müller-Lyer illusion can be seen as the consequence
of structural priors. Another type of illusion resulting from structural priors is the light-
from-above illusion (Figure 3.3b), which makes the viewer assume the presence of an
overhead light (Ramachandran, 1988; Morgenstern, 2011) and see objects as having
concave or convex features depending on where the “shadow” appears in relation to
these objects.
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Figure 3.3: (a) Müller-Lyer illusion with potential causes for this illusion underneath;
from Gregory (2005). (b) Light-from-above illusion: The bottom footprint seems to be
convex, whereas the top one seems to be concave; these are identical footprints, with
the bottom one turned upside-down. (c) Ames room illusion. (d) Rabbit–duck bistable
figure. ((a) & (d) From ”The Medawar Lecture 2001: Knowledge for Vision: Vision
for Knowledge. Philosophical Transactions,” by R. Gregory, 2015, Biological Sciences,
360(1458), p1239, p1244. Copyright 2021 by The Royal Society (U.K.). Reproduced
with permission.)

Contextual priors, on the other hand, affect perception only in specific spatial or
temporal circumstances (Series & Seitz, 2013). They can be implicitly or explicitly
manipulated and rapidly induced through different means, ranging from sensory cues
(Stein & Peelen, 2015; Pinto et al., 2015) to context exposure (Bar, 2004; Oliva &
Torralba, 2007) and even instructions (Sterzer et al., 2008). For instance, using the
inherently ambiguous duck–rabbit bistable figure (Figure 3.3d), Brugger and Brugger
(1993) showed that people were more likely to recognize the figure as a rabbit on Easter
Day, whereas on a random October day, the figure was more likely to be recognized as a
bird.

While most of the examples above relate to vision, it is important to note that the use
of priors to disambiguate or inform sensory stimuli is not restricted to vision. Aspects
of speech recognition seem to depend on one’s expectations about the probabilities that
words will appear based on their frequency of occurrence in the language (Norris et al.,
2016). Given that the ability to recognize words relies in part on the individual having
learned about their regularities of occurrence, achieving this feat is an example of the use
of structural priors in spoken language (Series & Seitz, 2013). An example of the use of
contextual priors in spoken language is when an individual is in a noisy environment
and is trying to work out the unheard spoken words of an interlocutor by considering the
topic of the conversation (Series & Seitz, 2013).

In addition to disambiguation, the use of priors can even be seen, albeit more subtly,
when the sensory inputs are unambiguous, clear, and strong. In this context, priors
have been shown to have some role in the efficiency of perception (de Lange, 2018;
Pinto et al., 2015). For instance, Stein and Peelen (2015) demonstrated that giving valid
information about the category of an object led to improved performance of the visual

28



localization of that object, relative to having no information at all or being misinformed.
Wyart et al. (2012) found that cueing participants about the source locations of sensory
inputs increased their detection by suppressing internal noise, and giving participants
information about the apparition probability of sensory inputs influenced the participants’
baseline level of detection.

3.6.3 Sensorimotor Integration
So far, this study has discussed the integration of priors in the Bayesian framework for
the estimation of perceptual inputs that were assumed to have static properties. However,
the world is not static. It is dynamic and continually changing. Thus, its properties are
also dynamic. Those changes in the state of the world (and of one’s perception of it)
are often brought about by the actions of people, which are themselves dynamic. These
actions necessitate the estimation of parameters that evolve over time. For instance, the
control of one’s body requires an estimation of its current state (i.e., its configuration),
which continuously changes as it moves, and must be updated as accurately as possible
to continue generating appropriate motor commands (Wolpert, 2007; Franklin, 2011).

Despite having the ability to perform skillful actions, the body, and more precisely
the sensorimotor control system, faces multiple challenges during this estimation task.
For instance, given the large number of degrees of freedom in the body, there is an
infinite number of ways to achieve the same task. How does the sensorimotor control
system select the specific muscles and joints to coordinate, as well as select a path and
force to achieve the goal? This is known as the redundancy problem (Franklin, 2011).
There is intrinsic noise limiting one’s ability to act precisely and adding variability
to one’s movements (Harris & Wolpert, 1998; van Beers et al., 2004). In addition,
delays in the reception of afferent sensory information and the transmission of efferent
commands (Merton & Morton, 1980) not only oblige the system to find a way to cope
with out-of-date sensory information, but also make its control of the body difficult.

Moreover, combined noise and delays within the system as well as the ambiguity
in sensory inputs from the world (Yuille & Kersten, 2006) can give rise to uncertainty
about the current state of the body and make parameter estimation difficult. There
are also changes in the body as it ages that modify properties of the motor system on
multiple timescales (i.e., non-stationarity of the sensorimotor system problem; Lindle et
al., 1997; Cantone et al., 2019). Lastly, the motor system initiates motor commands that
undergo nonlinear transformation when converted into forces, trajectories, or movements
(Franklin, 2011).

To compensate for sensorimotor delays and reduce the uncertainty in the system’s
time- varying state estimation due to these challenges, the system needs a model of the
body that anticipates these dynamics. It has been proposed that the sensorimotor system
uses inferential probabilistic models that combine an internal forward (predictive) model
with the sensory feedback of a motor command to make an optimal estimate of the
current state of the body (Wolpert, 2007; Wolpert & Flanagan, 2001, 2016).

In motor control theory, it is common practice to model optimal state estimation
which relies on a forward predictive model and sensory feedback using a Kalman
filter (Kalman, 1960; Todorov, 2004; Wolpert, 2007). This technique is considered
an equivalent to the application of Bayesian integration for the state estimation of a
time-varying system (Wolpert, 2007; Berniker & Kording, 2011).
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Figure 3.4: (a) World’s state estimation process during a motor command according to
modern control theory principles. Predictions about the current world’s state (posterior
in blue) are obtained by combining observations of the world’s state (likelihood in red)
with expectation of the world’s state (prior in green) which is based on a model of the
world and a motor command. Bayesian belief updating about the current state of the
world (posterior in blue) is done with a Kalman filter. (b) Bayesian belief updating.
Distributions representing the expected state of the world (prior in green), the observation
of the world (likelihood in red) and the prediction about the current state of the world
(posterior in blue). The Bayesian belief updating which combines the prior and likelihood
to get the posterior is reimplemented at each time step with the posterior at one time
step becoming the prior in the following time step. (c) Motor movements and adaptation
framed as Bayesian belief updating. Individual’s prior knowledge about their muscle
properties (e.g. strength) is combined with their observed movement errors to reassess
and create updated beliefs about their muscle properties. (From ”Bayesian approaches
to sensory integration for motor control,” by M. Berniker, and K. Kording, 2011, Wiley
interdisciplinary reviews. Cognitive science, 2(4), p. 423. Copyright 2021 by John Wiley
and Sons. Reproduced with permission.)

Here, the predictive model, which reflects the distribution over the previous state esti-
mates (given the best estimate of the current distribution), acts as a prior; and the sensory
evidence, which reflects the most likely sensory feedback to be received given the body’s
state, acts as the likelihood. When combined, they form a posterior that represents the
updated prediction of the body’s current state in the world. That newly computed state
estimate is then used in the model to define the future prior (Berniker & Kording, 2011;
see Figure 3.4).

Several empirical studies support this model. For instance, McIntyre et al. (2001)
showed that the brain uses its prior knowledge of gravity combined with sensory infor-
mation when making motor predictions. Wolpert et al. (1995) developed a computational
model that uses a Kalman filter to integrate a forward model and proprioceptive feedback
to determine a hand’s position. They demonstrated that it closely modeled the bias and
variance in the data of participants, who were tasked with estimating one of their hands’
location at the end of a movement in the dark and under external forces. The results of
this state estimation study showed that proprioceptive information and forward model
are likely to be integrated in a Bayes-optimal way. Other studies examining posture
(Kuo, 1995) and head rotation (Merfeld et al., 1999) also support that model.

Having made the case that the way one perceives and interacts with the world is not
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solely determined by one’s sensory inputs, but that it is strongly influenced by one’s
expectations of them, this chapter now turns to the potential neural implementation of
Bayesian inference.

3.7 From Bayesian Inference to Bayesian Predictive Cod-
ing

While Bayesian inference prescribes the optimal prediction a system can make given
the data, it does not specify the underlying neural representation; it only describes the
end-results of computations (i.e., behaviors). Predictive coding, on the other hand, aims
to provide an account of the actual neural responses or computations (Aitchison &
Lengyel, 2017). In its simplest form, predictive coding represents the prediction error
rather than the raw inputs. That prediction error can either be the difference or the ratio
between sensory inputs and predictions (Spratling, 2017):

Predictionerror = input–prediction (3.6)

Efficiency is assumed to be a computational advantage of such representation, as
messages are relayed only when there is a discrepancy between the incoming signal and
its prediction (Mead, 1990). More advanced versions of predictive coding suggest that
the brain creates a generative model, the goal of which is to extract and encode patterns
or statistical regularities from the world that are believed to be possible causes of sensory
inputs (Mumford, 1992; Friston, 2005). Once encoded, these statistical regularities are
used as parameters of the generative model to make more accurate causal inferences
(or hypotheses) about the origin of new sensory inputs (Rao & Ballard, 1999; Friston,
2005).

The process is often thought of as a processing hierarchy in which the hypotheses
at the upper level constrain the generation of new hypotheses at the next level down,
and so on until the lowest level is reached. At each level, the difference is calculated
between the predictive top-down signals and the bottom-up sensory inputs from the
lower level (i.e., the prediction error). The prediction error is then propagated back
to the level above, where it is used to revise the initial hypothesis. If the prediction
error cannot be minimized at the level at which it is being processed, it is relayed to
the next level above. The higher in the system the prediction error is relayed to, the
more substantial the revision of the hypothesis. This routine is repeated simultaneously
throughout the hierarchy, and the content of perception arises as successive prediction
error minimizations take place and a winning hypothesis is selected.

This model requires that at least two functionally distinct classes of neurons (or units)
be present at each level: one that represents the hypothesis (or the prediction) and tries
to best explain away the inputs received, and one that represents the prediction error
and encodes for the difference between the hypothesis and the inputs (Kok & de Lange,
2015; Keller, 2018). When the hypothesis signal matches the information carried by
the input signal (i.e., prediction error), the prediction error response decreases. These
sensory input suppressions have the effect of reducing the firing rate. One advantage of
such a coding scheme is that potentially relevant but unexpected stimuli are made more
salient (Spratling, 2012). Another advantage of the prediction-error suppression is the
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simultaneous enhancement of the hypothesis, which will lead to a potentially accurate
expectation and representation of the next sensory input (Kok et al., 2012).

There are different proposals for the neural architecture underlying this predictive
coding scheme (Spratling, 2017), such as Rao and Ballard’s algorithm (Rao & Ballard,
1999), the predictive coding/bias competition divisive input modulation (PC/BC-DIM)
model (Spratling, 2008), and the free energy principle (Friston, 2005). They differ
primarily in how the error is computed (subtraction or division) and how the different
classes of neurons are connected (Spratling, 2017; Aitchison & Lengyel, 2017).

In the classical predictive coding schemes (Mumford, 1992; Rao & Ballard, 1999;
Friston, 2005), the “hypothesis” neurons have feedback projections and the prediction-
error neurons have feedforward projections. Because feedforward connections mostly
begin at layers II/III and feedback connections come from layers V/VI (Felleman &
van Essen, 1991), it is expected that the hypothesis neurons reside in layers II/III and
the prediction-error neurons reside in layers V/VI (Heilbron & Chait, 2018). On the
other hand, in the PC/BC-DIM scheme (Spratling, 2008), the hypothesis neurons have
reciprocal connections between regions, and the prediction-error neurons are processed
intracortically (Spratling, 2008). This leads to a different location for hypothesis and
prediction-error neurons compared to the classic predictive coding schemes (see Figure
3.5). Another consequence of this different neural architecture is that the calculation of
the residual error is performed by connections within each cortical region, as opposed to
between cortical regions (Spratling, 2010).

3.8 Empirical Evidence for Predictive Coding
Some findings from well-known classical studies can be understood in terms of, and
provide evidence for, predictive coding. For instance, Rao and Ballard (1999) showed
that the end- stopping (Hubel & Wiesel, 1965) classical visual phenomenon may be the
result of predictions from higher-level representation inhibiting the surrounding area
of extra-classical receptive fields (ECRF). The stimulus presented in these fields gives
a clue about the content of the surrounding regions, which is accurately predicted by
higher-order cortical regions and thus suppressed.

In line with this, cases of decreased neural response when a stimulus is predictable
have also been shown in learned association (Egner et al., 2010) or after the presentation
of the same stimulus (Ulanovsky et al., 2003). These could be explained by a common
principle of sensory processing where the exposure or the presentation of sustained
stimuli lead to an adaptation and a reduction of the neural responses over time (Keller et
al. 2017). These examples are reminiscent of the prediction-error suppression scheme in
predictive coding. In a study on mice, Keller et al. (2017) demonstrated that the reduction
in neuronal responses due to the aforementioned principle could be reversed in contrast
adaptation if the stimulus (re)acquired behavioral relevance. If stimulus predictability by
top-down processes leads to error suppression, a violation of that predictability should
lead to an increased prediction-error response.
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Figure 3.5: Error neurons and expectation neurons in the auditory cortex arranged ac-
cording to two different formulations of predictive coding (PC) (i.e. Standard predictive
coding, PC/BC predictive coding). Cortical columns of the primary (A1), secondary
(A2), and higher order (An) auditory areas are represented. (Left) standard PC: errors
and predictions flow in opposite directions (upward and downward respectively). Error
units are in superficial layers (II/III) and predictions units are in deep layers (V/VI) with
predictions units at higher auditory areas being able to suppress errors units at lower
auditory areas via polysynaptic top-down inhibitory connections (black units in layer IV).
(Right) Biased competition PC: predictions flow bidirectionally (upward and downward)
with prediction unit being both in superficial and deep layers. Error is computed in layer
IV and can be suppressed via inhibition by prediction units that are within the same
cortical columns as the error unit itself. Black arrows represent excitatory top-down
connections. (From ”Great expectations: is there evidence for predictive coding in
auditory cortex?,” by M. Heilbron, and M. Chait, 2018, Neuroscience, 389, p. 55. CC
BY-NC-ND.)

33



Studies on novel events or oddballs in a stream of repeated events (Squires et al.,
1975; Lieder et al., 2013) provide evidence that the mechanisms underlying the mismatch
negativity can be studied within the predictive-coding framework. This effect can be
seen as the result of the inability of the brain to predict a stochastic event, which leads to
a large prediction error every time the event is presented.

Similarly, Eliades and Wang (2008) showed that there is increased cortical activity in
marmosets’ auditory cortex when they received a frequency-shifted feedback of their self-
generated vocalizations. They noted that the average neural activity for the population of
neurons they had studied was strongly inhibited during normal vocal production. This
suggests that self-generated vocalizations, which are generally suppressed in the auditory
cortex, became unexpected and salient as soon as there was an unexpected pitch-shift in
the vocalization.
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3.9 Conclusion
This chapter started with the concept of Bayesian inference. It showed how our beliefs
could be represented as probability distributions that take into account our degrees
of uncertainty. We saw that those beliefs could be combined with new information
(also represented as probability distributions) to form new beliefs. This forms the basis
of the Bayesian optimal agent model. We also saw that this updating process which
consists of taking some information (e.g. prior beliefs), and updating that information by
combining it in a systematic fashion with new information could also be applied in the
behavioral context and used to explain multisensory integration. Indeed, studies like the
seminal study of Ernst and Banks (2002) showed that there is evidence that we integrate
multimodal sensory information following Bayesian optimality. In addition to perception,
this concept of Bayesian optimality could be used to explain sensorimotor integration i.e.
coupling of the motor system and the sensory system to instantiate voluntary movements
or actions, which seems to rely on a forward predictive model and sensory feedback
(Wolpert, 2007). Last, after looking at evidence to provide higher-level explanation of
behavioral mechanisms with a Bayesian model of cognition, we looked for evidence of
lower level implementation of this Bayesian model of cognition in the brain. Combining
these pieces of evidence with those we found about the cerebellum, we’ve seen that: the
cerebellum is involved not only in motor behavior, but also in cognition. We’ve seen
that an activity like singing seems to recruit the cerebellum on both of these aspects (i.e.
behavioral and cognitive). In addition, singers were shown to rely on internal models
for accurate vocal production, and those internal models could be explained within a
Bayesian cognitive model framework. While it would be very informative to know
if there is evidence that the cytoarchitecture of the cerebellum implements predictive
coding, here we will restrict ourselves to look at higher level explanations for inaccurate
singing and see if our experiment provides evidence that poor singing is the result of
an inefficient internal model implementation that is thought to be instantiated by the
cerebellum.
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Chapter 4

The Experiment

4.1 Introduction
In this project we intend to test the inverse-model-deficit hypothesis as a possible reason
for pitch inaccuracy. In order to do so we will use neuroscience tools and methods. The
goal of this research project is to shed lights on the cognitive processes believed to be
involved in vocal-pitch-matching accuracy.

4.2 Materials and Methods

4.2.1 Participants
16 students were recruited from the University of California, Merced, student population.
All participants were dominantly right-handed and screened for atypical hearing, amusia,
and contraindications for TMS including increased risk for seizure, unstable medical
problems, metal in the body other than dental fillings, neurological or psychiatric illness,
history of syncope, and head or spinal cord surgery or abnormalities (Huang et al., 2005).
Participants were asked to remove all metal jewelry before TMS. The age range was
18-34 years old (M = 21.63, SD=4.5). 30% of the sample was male and 70% was
female. The experimental protocol was carried out in accordance with the Declaration of
Helsinki, reviewed by the University of California, Merced, institutional review board,
and all participants gave informed consent before testing.

4.2.2 Task
Participants took the Seattle Singing Accuracy Protocol (SSAP) (Demorest & Pfor-
dresher, 2015) which is an online pitch measurement test hosted by Northwestern
university. The test consisted of the following tasks:

1. Pitch matching to a vocal model: This subtask required participants to sing back
a single vocal target pitch in 10 trials (5 pitches x 2 trials per pitch). The pitches
within each series of 5 different pitches were randomized.

2. Pitch matching to piano tones: This subtask required participants to sing back a
single piano timbre in 10 trials (5 pitches x 2 trials per pitch). The piano timbres
within each series of 5 different timbres were randomized
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3. Imitative singing of 4-note vocal patterns: This subtask required participants to
sing back a 4-note pattern based on the same vocal pitch used in the first imitation
subtask. There were 6 trials in total (6 x 4-pitch patterns, 3 ascending and 3
descending, in the range of a 5th based on the participant’s comfort pitch)

4. Familiar song singing: This subtask required participants to sing a familiar song a
cappella from a predetermined list, first with the lyrics then with a neutral syllable
(i.e., “doo”)

5. Simple pitch discrimination: Adaptive pitch discrimination test

6. Questionnaire responses: Survey about participants’ musical background.

4.2.3 Procedure
This experiment was a within subject design, pretest-posttest with four different ran-
domized conditions. The conditions were stimulation of the left cerebellum (region of
interest), stimulation of the right cerebellum (region of interest), sham stimulation (i.e.,
placebo, passive control) with coiled turned away from the motor cortex and stimulation
of the visual cortex (active control). Below is an example of the entire experiment for
one participant:
Condition 1: SSAP pre −>TMS right cerebellum −> SSAP post
Condition 2: SSAP pre −> sham TMS −> SSAP post
Condition 3: SSAP pre −>TMS V1 −> SSAP post
Condition 4: SSAP pre −> TMS left cerebellum −> SSAP post

Figure 4.1: Example of the entire study for 1 participant

All conditions were done with one-week interval in between to respect the TMS
safety guidelines established by Rossi et al. (2009).

Below is a description of the material used and how the stimulations were conducted:

4.2.4 Material
The SSAP was given on a Macbook (Retina, 13-inch, Mid 2014) with processor 3 GHz
Dual-Core Intel Core i7 and 8 GB 1600 MHz DDR3 Memory . Participants heard the
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tones on a MHX 5 pair of headphones. They were instructed to adjust the volume to a
level that they deemed comfortable to complete the task. Their voices were recorded
using a Senheiser microphone. The fundamental singing frequencies of the recordings
were analyzed in SSAP via the Yin algorithm (de Cheveigné & Kawahara, 2002).

Single Pulse

Single pulses of TMS were delivered with a figure-of-eight coil (Magstim Rapid2). The
coil was placed at the optimal position for eliciting MEPs from the contralateral FDI
muscle. The optimal position was tracked and saved using an ANT Visor 2 motion
capture based neuro-navigation system in order to ensure identical placement of the
coil throughout the experiment. The handle of the coil pointed backward and was
perpendicular to the presumed direction of the central sulcus, about 45 degrees to the
midsagittal line (see Figure 4.2). The resting motor threshold (RMT) was defined as the
lowest intensity that produced MEPs of 50 µV in at least five out of 10 trials with the
muscles relaxed (Rossini et al., 1994). The active motor threshold (AMT) was defined
as the lowest intensity that produced MEPs of 200 µV in at least five out of 10 trials
when the subject made a 10% of maximum contraction using visual feedback (Rothwell,
1997).

Continuous Theta Burst Stimulation (cTBS)

Following Koch et al.’s (2008) procedure, a MagStim Super Rapid magnetic stimulator
(Magstim Company, Whitland, Wales, UK), connected with a figure-of-eight coil with a
diameter of 90 mm was used to deliver rTMS over the scalp site corresponding to the
lateral cerebellum. The magnetic stimulus had a biphasic waveform with a pulse width
of about 300 ls. During the first phase of the stimulus, the current in the centre of the
coil flowed toward the handle. Three-pulse bursts at 50 Hz repeated every 200 ms for 40
s (equivalent to “continuous theta burst stimulation, cTBS” in Huang et al. (2005) were
delivered at 80% AMT (600 pulses).

Cerebellar Stimulation

After eliciting MEPs from the contralateral FDI muscle to determine the adequate motor
threshold to be used for the cerebellar stimulation, cTBS was applied via a coil positioned
1 cm inferior and 3 cm lateral to the inion (referred to as 3L1I) on both the contralateral
side, and ipsilateral side of the head corresponding to the participant’s dominant hand
(see Figure 4.2)

Visual Cortex Stimulation

To determine the phosphene threshold, the coil was placed in a vertical position (handle
pointing rightward) on the inion–nasion line, with its inferior limit 1 cm above the inion
(see Figure 4.2). Stimulation was initially applied at 40% of maximum stimulator output
and increased in 5% increments until the subject reported phosphenes. The threshold
was then finely determined, by changing the intensity in 1% increments. cTBS was then
applied to the visual cortex.
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Figure 4.2: Coil position for the different stimulation sites

4.2.5 Pitch Scoring
The scoring was done automatically by the SSAP. The three imitation singing tasks were
scored acoustically. A percentage accuracy score was given based on mean deviation
scores from target pitches for all items in a block. To be considered accurate, the sung
pitch needed to be within +/- 50 CENTS of the target pitch (see Figures 4.3 & 4.4 for
examples). The accuracy of ‘Familiar song’ was scored by comparing the histogram of
the fundamental frequency that is sung to the ‘ideal’ histogram and then computing the
percent match.

4.3 Analysis
For this analysis, we decided to divide the models in three parts: One for each vocal
imitation subtask. For the first model used the SSAP data coming from the first pitch-
matching subtests (i.e., Pitch matching to a vocal model). The second pitch matching
subtask (i.e., Pitch matching to piano tones) will be analyzed with a slightly different
model that takes into consideration the different piano notes to match. The last pitch imi-
tation subtask (i.e., Imitative singing of 4-note vocal pattern) had about 1.5% of missing
data. We conducted a missing data analysis which combines multiple-imputations and
Bayesian multilevel model for that data of this subtask

In addition it is relevant to note that we removed 6 participants from the analysis
for the first two subtasks. Four of those students were removed because they left the
study before completion of the four conditions, and two were removed from the study
analysis because the system had failed to record their singing data for two (or more)
of the conditions. Thus, the remaining population sample that was analyzed was 10
for subtask 1 and 2. The criteria to keep or exclude participants from the analysis of
subtask 1 and 2 was that participants had to have completed all the conditions. We
also decided not to include the “Familiar song singing” data in the analysis based on a
recommendation from the team of researchers who built the SSAP. The measures from
this subtask might be too coarse for research purposes according to them.

The analysis was done using R version 4.0.2 (2020-06-22), and brms 2.15.0. We
implemented the WAMBS checklist steps (van de Schoot & Depaoli, 2020).
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Figure 4.3: SSAP pitch traces of the fundamental frequency of target pitch (blue) and
the fundamental frequency of sung pitch (red) for male participant. Middle blue trace is
target pitch, upper blue trace is target pitch +50 cents, lower blue trace is target pitch
–50 cents. Here participant is not within +/- 50 cents of target pitch, thus the participant
pitch matching is considered inaccurate.
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Figure 4.4: SSAP pitch traces of the fundamental frequency of target pitch (blue) and the
fundamental frequency of sung pitch (red) for female participant. Middle blue trace is
target pitch, upper blue trace is target pitch +50 cents, lower blue trace is target pitch –50
cents. Here participant is within +/- 50 cents of target pitch, thus the participant pitch
matching is considered accurate

4.3.1 Subtask 1: Pitch matching to a vocal model
The model used for this analysis was a Bayesian hierarchical multilevel model with
random intercept and random slope. The dependent variable was the deviation score
from the target pitch (in cents), the predictors were: the stimulation condition (with four
levels i.e., left cerebellum, right cerebellum, sham, visual cortex) and the test time point
(with two levels i.e., pre, post). A random intercept and slope were fitted for participants
in both those predictors.A random intercept was also added for notes/intervals items that
each participant had to reproduce. The predictors were sum-zero coded -0.5, 0.5 with
‘sham’ being the reference level in ‘condition’ and ‘pre’ being the reference level in ‘test
timepoint’.

Most parameters in this model have weakly informative prior distributions. The
baseline parameter β0 was given a normal prior distribution with a fairly wide variance
relative to the measure of interest (i.e., deviation score in cents) . Given the contrast
coding, β0 here is the grand mean across conditions and time points. β1 and β2 are the
group deflection parameter (i.e., parameter indicating how much the central tendency
value of a predictor deviates from the grand mean β0) are given a normal prior distribution
with mean of zero as well. The mean of zero for these parameters was chosen following
Kruschke’s (2014) analysis so as to constrain the deflection parameters to a zero-sum
(i.e., deflection parameters need to sum to zero in this model). γ0, γ1 , γ2 the subject
adjustments for the intercept, and the slopes for the two predictors were also given
multivariate normal distributions with mean zero and a variance covariance matrix Σ.
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Within that variance covariance matrix the standard deviations σ ’s for each of the
adjustment parameter were half-normally distributed with mean zero, and a moderately
restricted scale parameter. ζ0 is the ’note’ or ’interval’ adjustment for the intercept. It is
recommended to have this adjustment in the model as each participant has to imitate the
same series of notes or intervals. The correlation parameter ρ of the variance covariance
matrix was given an η of 2. This assumes the correlation between the intercept and
the slopes to be most likely zero, but it allows correlations that are non-zero (with
correlations that are furtherer away from zero being less likely). A prior predictive check
was done and gave plausible values, thus we decided to keep those parameter settings
for our model.

Model

Deviationi j ∼ N(µi j,σ)

ui j = (β0 + γ0 j +ζ0i)+(β1 + γ1 j) · x1i j +(β2 + γ2 j) · x2i j +β3 · (x1i j · x2i j)

β0 ∼ N(0,20)
β1 ∼ N(0,10)
β2 ∼ N(0,10)
σ ∼ N+(0,50)

γ0
γ1
γ2

∼ N3


0

0
0

 ,

 σ2
γ0 ργσγ0σγ1 ργσγ0σγ2

ργσγ0σγ1 σ2
γ1 ργσγ1σγ2

ργσγ0σγ2 ργσγ1σγ2 σ2
γ2




ζ0i ∼ N(0,σζ 0)

σγ0 ∼ N+(0,8)
σγ1 ∼ N+(0,5)
σγ2 ∼ N+(0,5)

σζ 0 ∼ N+(0,15)

ρ ∼ LKJ(2)

i = indexes observations
j = indexes subjects
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Descriptive plots

Absolute value pitch to target difference by condition and time points

Figure 4.5: Figure shows the absolute deviation values from pitch sung to target pitches.
It seems to indicate that most vocal pitch imitations are below +/-100 cents regardless
of the conditions or time points. There are however some people who sung more than
+/-200 cents of the target pitches.

Mean absolute value pitch to target difference by condition and time points

Figure 4.6: Figure shows the mean deviation from the target pitches in each condition,
pre and post. Some means are higher than other (e.g., Post-sham stimulation, Pre and
Post visual stimulations) but that higher means seem to be driven by what appears to be
outlier sung pitches.
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Absolute value pitch to target difference by condition and participants (pre and post)

Figure 4.7: Figure shows the absolute deviation from the target pitches in each condition,
pretest. Some participants (e.g., 04 and 08) were less accurate overall (i.e., deviation
score above 50 cents) in several conditions (e.g., sham and visual) prior to stimulation.
Other participants (e.g., 11) were fairly accurate (i.e., deviation score below 50 cents) in
all conditions prior to stimulation.

Figure 4.8: Figure shows the absolute deviation from the target pitches in each condition,
posttest. Participants seem to be showing more variability post stimulations in some
conditions (e.g., sham and visual) and less in others (e.g., left cerebellum.)
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Results

We ran the Bayesian multilevel analysis with 4 chains for the MCMC, 8000 iterations
and 2000 warm-up iterations. No thinning was applied. We assessed convergence with
the diagnostic plots, Potential Reduction Scale Factor, and Effective Sample Size. The
caterpillar plots showed that the chains perfectly blended with each other, the variance
of the chains remained stable and not too large for all the parameters estimated. The
PSRF (i.e., Rhat) was below 1.05 and the effective sample sizes were relatively high
for all parameters estimated. Thus, these diagnostic measures did not seem to indicate
absence of convergence. The prior predictive check gave reasonable values. The result
of posterior predictive check indicated some level of misfit. This needs to be taken into
account when interpreting the results.

Figure 4.9: Figure shows the posterior distributions of mean deviation scores for the
intercept (i.e., grand mean) and the four other conditions (i.e., Condition1 = Left Cere-
bellum, Condition2 = Right Cerebellum, Condition3 = Visual, Post = Posttest) in the
vocal model imitation task. (Posterior distributions of interactions not shown)

Based on the model, the posterior estimate of grand mean deviation score (i.e.,
collapsed across conditions and time points) was 18.43 cents, 95% HDI [2.37, 32.78].
The posterior estimate of the mean difference from the grand mean for the left cerebellum
condition (i.e., Condition1 in our analysis) was -10.90 cents, 95% HDI [-18.41, -3.04].
This seems to indicate that there is some main effect of left cerebellum stimulation.
However, because it is a main effect (resulting from the sum-coding step), it is averaging
across time points (i.e., Pre and Post). The posterior estimate of the mean difference
from the grand mean for the right cerebellum condition, visual condition and the Post
timepoint were -0.55 cents, 95% HDI [-9.19, 8.05], 1.04 cents, 95% HDI [-0.60, 2.66],
and 2.20 cents 95% HDI[-3.50, 7.80] respectively.
The posterior estimate of the interaction coefficient for the left cerebellum condition and
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Table 4.1: Summary results from Bayesian Analysis of vocal model

the Post timepoint was -4.70, 95% HDI [-15.53, 6.07]. The one for the right cerebellum
condition and the Post timepoint was -7.00, 95% HDI [-17.77, 3.89]. The last one, for
the visual condition and the Post timepoint was -0.37, 95% HDI [-2.26, 1.50]. Aside
from the posterior distribution for the intercept (i.e., the grand mean) and the posterior
distribution for the left cerebellum condition level, all the other posterior distributions
of the mean estimates have estimates that include 0. This was also the case for the
correlations between our variables and their levels. Thus, in the majority of the cases,
we do not have enough evidence to say that there is an effect of conditions or time points
on our dependent variable (i.e., deviation score). In addition, while we can say that there
seems to be some evidence that the left cerebellum condition may have an impact on
singing accuracy (and the resulting deviation from target scores), that difference from
the grand mean is collapsed across time points (i.e., Pretest, Posttest). Thus, it may be
possible that by chance, participants ended up being fairly accurate overall while in this
condition.

Discussion

This study aimed to investigate the possible involvement of the cerebellum in one’s pitch
production accuracy (Pfordresher et al., 2014). Our hypothesis was that by stimulating
the cerebellum of participants, they would become less accurate at vocally matching
pitches. This task in particular looked at participants’ ability to imitate pitches of similar
timbre as their own voice. Contrary to our hypothesis, TMSing the cerebellum didn’t
seem to have a substantial effect on the pitch matching performance of participants. Data
from this experiment seems to lack strong evidence to support this hypothesis when it
comes to pitch matching to a vocal model. It showed the opposite prediction for one of
the condition (i.e., left cerebellum stimulation) where the variance in the deviation scores
seemed to decrease. Several elements from the present study could explain the obtained
results. One could be related to the experimental protocol. It is difficult to assess proper
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stimulation of the cerebellum. Unlike stimulations of the motor cortex or visual cortex
which elicit responses such as twitches or phosphenes, respectively, the stimulation
of the cerebellum doesn’t elicit any responses. In addition, the cerebellum is ‘hidden’
behind thick neck muscles, which may dampen the strength of the stimulations. Studies
have shown that the depth of stimulation has an impact on the stimulation effectiveness
(Harwick, Lesage & Miall, 2014). Adding to this, there is an upper limit to maximum
stimulation power output that a researcher can administer when using the cTBS protocol
(Huang et al. 2005), and that upper limit is maintained regardless of participants’ active
motor threshold. Thus, it could be possible that participants who had high active motor
threshold were understimulated given the cTBS stimulation cap. Another element that
could explain the results is the small sample size. This study had to remove participants
from the analysis. This removal was due to attrition or equipment failure. Thus, the
study might be underpowered, and the chances of detecting a true effect were reduced
(Button et al, 2013).

Other elements from this study that could explain those results could be related
to the model building and analysis themselves. The posterior predictive check of the
model revealed difference between the model predicted values and the observed data.
This could indicate potential failing of the model to account for some aspects of the
data if those differences appear to be systematic. Therefore, these results should be
interpreted with caution. In addition, a number of potentially impactful choices were
made in building the model and before running the analysis (e.g., inclusion and exclusion
criteria for participants in the dataset, variables to include or exclude from the model,
prior distribution parameters to choose). While these decisions are faced by all scientists,
making one or two different decisions could lead to different results. To understand
the impact of those decisions in our results, we could incorporate a multiverse analysis
(Steegen, 2016).

4.3.2 Subtask 2: Pitch matching to piano tones
The model used to analyze task 2 (i.e., pitch matching to piano tone) was similar to
the model used for task 1, but the priors were made broader so as to account for the
increased difficulty that participants might have when imitating a pitch that is of different
timbre (Pfordresher, 2014). The contrast coding remain identical as the previous model.
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Model

Deviationi j ∼ N(µi j,σ)

ui j = (β0 + γ0 j +ζ0i)+(β1 + γ1 j) · x1i j +(β2 + γ2 j) · x2i j +β3 · (x1i j · x2i j)

β0 ∼ N(0,40)
β1 ∼ N(0,20)
β2 ∼ N(0,20)

σ ∼ N+(0,100)

γ0
γ1
γ2

∼ N3


0

0
0

 ,

 σ2
γ0 ργσγ0σγ1 ργσγ0σγ2

ργσγ0σγ1 σ2
γ1 ργσγ1σγ2

ργσγ0σγ2 ργσγ1σγ2 σ2
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ζ0i ∼ N(0,σζ 0)

σγ0 ∼ N+(0,16)
σγ1 ∼ N+(0,10)
σγ2 ∼ N+(0,10)
σζ 0 ∼ N+(0,30)

ρ ∼ LKJ(2)

i = indexes observations
j = indexes subjects
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Descriptive plots

Absolute value pitch to target difference by condition and time points

Figure 4.10: Figure shows the absolute deviation values from pitch sung to target piano
pitches. It seems to indicate that most vocal pitch imitations are below +/-200 cents
regardless of the conditions or time points. There are however extreme outliers i.e.,
people who sung more than +/-600 cents of the target pitches.

Mean absolute value pitch to target difference by condition and time points

Figure 4.11: Figure shows the mean deviation from the target pitches in each condition,
pre and post. Pre left-cerebellar stimulation condition shows a higher mean deviation.
This mean is probably driven by the outlier sung pitches of a participant. Overall all
mean absolute pitch deviations are below +/- 50 cents which indicates that participants
are on average fairly accurate in imitating a vocal model.

49



Absolute value pitch to target difference by condition and participants (pre and post
separate)

Figure 4.12: Figure shows the absolute deviation from the target pitches in each condition
per participants, pretest. Pre stimulations, some participants show more variability in
their absolute deviation scores (e.g., 04, 08, 12 ) while others are fairly accurate (e.g., 10,
T2) regardless of conditions.

Figure 4.13: Figure shows the absolute deviation from the target pitches in each condition
per participants, posttest. It appears that participants who were accurate pre stimulations
remained accurate post stimulations (e.g., 03, 11, T2) regardless of conditions. Others
(e.g., 04, 08) also showed the same level of variability.
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Results

Figure 4.14: Figure shows the posterior distributions of mean deviation scores for
the intercept (i.e., grand mean) and the four other conditions (i.e., Condition1 = Left
Cerebellum, Condition2 = Right Cerebellum, Condition3 = Visual, Post = Posttest) in
the piano tone imitation task. (Posterior distributions of interactions not shown)

Table 4.2: Summary results from Bayesian Analysis of piano tone model

The results indicated that the posterior estimate of the grand mean deviation score
(i.e., collapsed across conditions and time points) was 15.11 cents, 95% HDI [-2.97,
32.24].
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The posterior estimates of the mean difference from the grand mean for the left cere-
bellum condition, the right cerebellum condition and the (post) timepoint variable (i.e.,
in our Pre-Post condition) were -8.37 cents, 95% HDI [-20.78, -4.05], 1.52 cents, 95%
HDI [-11.12, 14.07] and 2.12 cents, 95% HDI [-6.54, 10.85] respectively. The pos-
terior estimate of the interaction coefficient for the left cerebellum condition and the
Post timepoint was -15.28, 95% HDI [-5.03, 35.79]. The one for the right cerebellum
condition and the Post timepoint was -11.03, 95% HDI [-31.60, 9.15]. The last one,
for the visual condition and the Post timepoint was 0.38, 95% HDI [-2.94, 3.73]. All
credibility interval of the posterior estimates included 0. This was also the case for the
correlations between our variables and their levels. Thus, this suggests that we do not
have enough evidence to say that there is an effect of conditions or time points on our
dependent variable (i.e., deviation score).

Discussion

This task looked at participants’ ability to imitate pitches of a piano tone. Imitating
pitches of a different timbre than one’s own voice has been shown to be more difficult
than imitating a sung pitch (Pfordresher, 2014). Our hypothesis remained the same i.e.,
stimulating participants’ cerebellum will perturb their auditory-vocal system representa-
tion which would make them less accurate at vocally imitating pitches in general, and
piano tones in particular for this task. Similarly to the previous task, stimulations of
the cerebellum didn’t not seem to impact participants’ ability to imitating a piano tones.
Participants who were accurate before stimulations, remained accurate (i.e., absolute
deviation scores below +/-50 cents) after stimulations regardless of stimulations sites,
and those who were less accurate (i.e., absolute deviation scores above +/-50 cents) also
maintained their level of inaccuracy. As the same sample was used, under the same
experimental protocol and with similar model of analysis, elements that could explain
the obtained results are identical to the previous task.
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4.3.3 Subtask 3: Imitative singing of 4-note vocal patterns
Descriptive plots

Absolute value pitch to target difference by condition and time points

Figure 4.15: Figure shows the absolute deviation values from pitch sung to target vocal
melody. It seems to indicate that most vocal pitch imitations are below +/-200 cents
regardless of the conditions or time points. Some are below +/-400 and some condition
have people who sung more than +/-600 cents of the target pitches.

Although participants completed all conditions of this subtask, some of the mea-
surements were missing. Thus, we first checked amount of missingness in the data (see
Figure 4.16). We used the R software version 4.0.2 (2020-06-22), the VIM package
(version 6.1.0) and the naniar package (version 0.6.0). The aggr function in VIM and
the vis miss function in naniar were used to check missing data patterns and missing
data proportion respectively. The missingness here was believed to be due to a piece
of software failing to record some of the participants singing. Because the data was
recorded on an online platform, and saved at another university, it was not possible for
researchers to double-check right after each session that each recording was properly
saved. Those problems seemed to have happened randomly. We checked our missingness
by doing a MCAR little’s test and using the mcar test function in naniar.

We ran the analysis of the missing data pattern, missing data proportion, and the
MCAR little’s test. Missing data patterns was at 2, and only 1.5% of the total data set
for this subtask was missing. The variable with the missingness was ‘Values’ which
had 7.39% (Result are shown in Figure 4.15). Little’s test was significant (T-statistic
= 211.95, df = 5, p-value < 0.001) meaning that the data was not missing completely
at random. We attempted to identify auxiliary variables through a path analysis, but
none could be identified. Given the hierarchical structure of our data and our small
sample size, we decided to analyze our data using a Bayesian hierarchical model. Also
given the nature of the analysis and that our data was not normally distributed (data was
leptokurtic), we decided to handle missing data using multiple imputation. Some of the
practical issues were, as mentioned above, the non-normality of the data, the hierarchical
nature of the data and the data violating the MCAR assumption.
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Figure 4.16: Figure shows missing data proportion for Subtask 3

We kept in mind that multiple imputation is a method that assumes a MAR (i.e., missing
at random) assumption, and if this is not the case then our results may be biased.

The software we used to run the multiple imputation was R version 4.0.2 (2020-06-
22) with the mice package version 3.30.0 (to create the imputed data set), and the brms
package version 2.15.0 to fit each imputed data set and pooled the result.

We decided to impute 20 data sets with 50 iterations. The chains seems to have
converged (although there seemed to be some recurrent values coming periodically).
We increased the number of iterations but we were not able to remove the periodicity
observed in some of the chains.

Figure 4.17: Figure shows MCMC Chains from imputed data sets

We checked that imputed values were also plausible by plotting the imputed values
against the data. The plot showed that the imputed values were all plausible (see Figure
4.17, 4.18 and 4.19).

Our imputation model was a Bayesian hierarchical mixed effect model with Condition
and Session time (i.e., pre or post) as fixed effects, and participants and intervals as
random effect. Participants had random intercept and a slope in Condition in our
model. We also included an interaction between Condition and Session time (full model
specification identical to subtask 1).
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Figure 4.18: Figure shows imputed values (red) against complete data (blue). Imputed
values were plausible and remained within boundaries of the real data values

Figure 4.19: Figure shows imputed values (red) against complete (blue) data in density
plot forms
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We intended to sum-code both predictors [-0.5,0.5] with ‘pre’ being the reference
level for the ‘Session time’ predictor and sham/placebo being the reference level for the
‘Condition’ predictor, but the imputation function from mice did not seem to allow dataset
with such coding. Thus, we dummy coded our variables with sham being the reference
condition within the Condition variable and pretest being the reference time point within
the Session time variable. The pooling procedure necessary in multiple imputation could
be done in two different ways with Bayesian analysis (to our knowledge). We decided to
use the most common way which is the “two-step process” recommended by Gelman et
al. (2013). In this process, imputation happens before model fitting (as in frequentist
statistics). After the data set is imputed multiple times, one can use a software to analyze
each imputed data set. The same Bayesian model is ran on all the imputed data sets and
then draws from the different models are just pooled, combining results from multiple
imputed Bayesian models. The two step process bypass the need for Rubin’s rules. One
thing to be aware of is that the PSRF may indicate non-convergence. This is usually a
“false positive” which can be due to some differences between the data in the different
imputed datasets as well as the chains being from different data sets. It is recommended
when possible to inspect the PSRF individually.

Results

Figure 4.20: Figure shows the posterior distributions of mean deviation scores for
the intercept (i.e., mean sham) and the four other conditions (i.e., Condition1 = Left
Cerebellum, Condition2 = Right Cerebellum, Condition3 = Visual, Post = Posttest) in
the vocal melody imitation task. (Posterior distributions of interactions not shown)

The results from this Bayesian analysis with imputed data reveal that there doesn’t
seem to be any evidence of decreased pitch matching accuracy when participants have
their cerebellum downregulated. In Bayesian terms, the results are inconclusive.
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Table 4.3: Summary results from Bayesian Analysis of vocal melody model

For instance, all variable estimates have a credible interval which includes zero (see
Table 4.3). The intercept estimate is 15.11 cents, 95% HDI [-2.97, 32.24]. This means
that its estimate of the average deviation score, pre-test in the sham condition (which
was the default reference level for the variable Condition) can be anywhere between
a positive and a negative number. The ‘Pre’ session time estimate is 2.12 cents, 95%
[-6.54, 10.85]. The same is true for the other predictors and the interactions. In addition,
if we take a look at the estimated errors, some are much bigger than the estimated
themselves. This underlines the uncertainty in the those estimate. However, the PRSF
are all below one which implies that convergence was not an issue in this model for
the various predictors. We also conducted an analysis with the complete data set by
doing a classic listwise deletion (i.e., all observations with missing data were removed).
The analysis gave parameter estimates slightly different from the multiple imputation
analysis. Some parameters had their effect size flip sign (i.e., becoming negative while
they were positive in the multiple imputation analysis or vice versa). This might be
expected given the uncertainty in those and the fact that the results had credible intervals
which included zero. The complete data set analysis also yielded slightly bigger estimate
error overall.

Discussion

This task looked at participants’ ability to imitate pitches of sung melodies. Similarly
to previous tasks within this study, this task aimed to investigate the involvement of the
cerebellum in one’s pitch production accuracy (Pfordresher et al., 2014). In addition,
given that our data set had a small sample size and had missing data, we aimed to use a
missing data analysis technique in order to compensate for the lack of power. As with
the previous tasks our analysis remained inconclusive. Elements that could explain the
obtained results remain identical to the previous tasks. In addition, predictive mean
matching algorithm was used with multiple imputation, but another method could have
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been more appropriate such as the 2l.pan or the 2lonly.norm. While both are for imputing
univariate missing data, the first one uses a two-level normal model with homogeneous
within group variances, whereas the second imputes the data at level 2 using Bayesian
linear regression analysis (van Buuren, 2018).
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Chapter 5

General Discussion/Conclusion

5.1 Introduction
The voice is considered to be one of the oldest musical instruments and as such singing is
one of the oldest forms of music. It is a behavior that starts in infancy, develops through
the norms and characteristics of a culture, and can be found in all cultures. Yet, despite
the universal nature of this musical activity, it has been found, in western societies, that
it was not uncommon to find people who could not vocally reproduce a pitch within
accurate range (by western standards). At the onset of this dissertation, I presented the
inverse-model-deficit hypothesis of poor pitch matching which had for goal to provide an
explanation about the cognitive mechanism responsible for poor pitch matching ability.
This hypothesis states that poor singing results from a compromised internal model and
an inability to instantiate a plan of action with one’s vocal apparatus that would lead to
the correct pitch being sung.

Along with investigating the inverse-model-deficit hypothesis of poor pitch matching,
this dissertation addressed the questions of whether the cerebellum is the locus of
the internal inverse-model formation and if those internal models could be considered
Bayesian. Chapter 2 introduced the cerebellum, its structure and functions. Chapter 3
presented an account of the Bayesian brain. Chapter 4 tested the inverse-model-deficit
hypothesis. This chapter will summarize the contributions, important observations and
points across chapters.

5.2 Cerebellum: the seat of inverse model formation?
Across the three chapters presented in this dissertation, first I focused on establishing
the cerebellum as being the locus of formation of internal models which are necessary
for singing; second, I focused on providing evidence that these internal models could be
explained under the Bayesian brain hypothesis; and third I focused on experimentally
testing the assumed mechanisms responsible for inaccurate pitch matching.

Singing is an activity that engages the coordinated control of a respiratory system
(e.g., the lungs), the vocal folds (which creates the sound source) and the vocal tracts
(which acts as a source filter) (Sundberg, 2000). It necessitates the reliance on auditory
and sensorimotor feedback (Pfordresher & Larrouy-Maestri, 2015; Dalla Bella et al.
2011), and makes use of acquired mental representations to drive the vocal production
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(Pfordresher, 2014). In Chapter 2 we observed that, in addition to supporting, controlling,
coordinating, and learning gross and fine movements (Marr 1969; Albus, 1971; Ito, 2008)
the cerebellum was involved in music cognition (Hutchinson et al., 2003; Brown et al.
2004; Parsons, 2001; Keren-Happuch et al., 2014). Moreover, we observed that its neural
architecture and its parallel loop connections to the cerebral cortex (e.g., motor and
associative cortices) could support internal predictive models of actions and, potentially,
of perceptual states (Sokolov, Miall, and Ivry, 2017).

The proposed neural mechanisms for the formation of these internal models are
thought to take advantage of the Cerebro-Pontocerebello-dentato-thalamocortical path-
way (Ito, 2006, 2008; Sokolov, Miall, and Ivry, 2017). The mechanisms are also thought
to rest on a unifying algorithmic principle coined the universal transform i.e., the homo-
geneous local circuitry and single neural computation of the cerebellum that give rise
to a diversity of cerebellar functions (Schmahmann, 1991, 2018, 2019; Diedrichsen et
al., 2019; Tanaka et al., 2020; Welniarz et al.,2021). In particular, some have proposed
that the forward model, which predicts the consequence of an action, and plays a role
in online movement control and motor learning (e.g., singing) (Sokolov et al., 2017)
seems to rely on computations of predicted state estimate (by Purkinje cells) from a
current state estimate relayed by the mossy fibers. Both state estimates are then filtered
and integrated to the deep cerebellar nuclei for optimal estimation and future prediction
(Tanaka et al. 2020).

We can see here the similarities with the use of a Kalman filter to update a state
estimate within the optimal feedback control (OFC) framework (Kording & Wolpert,
2006; Berniker & Kording, 2011). We have observed in chapter 3 that optimal state
estimation of movements involving a forward predictive model and sensory feedback
could be modeled using a Kalman filter. The optimal Kalman filter can be seen as “a
Bayesian technique for continuously varying problems” (Kording & Wolpert, 2006).

It is important to note that the neural underpinnings of the forward model seems
to have gathered all the attention. There seems to be less data regarding the neural
underpinnings of the inverse model and its locus of formation in the sensorimotor
literature. Few studies having investigated this topic include studies on eye movements
which posited that the burst-tonic (BT) neurons (i.e., a group of premotor neurons)
represent the output for the eye’s inverse model (Belknap & McCrea, 1998; Green, 2007;
Ghasia et al., 2008; de Xivry & Ethier, 2008). However, those neural correlates of the
inverse model were restricted only to its output. The notion of prediction, which is
usually associated with a forward model, appears to be more prevalent than the notion of
instantiation, which is usually associated with an inverse model even in music cognition.

One of the aims of Chapter 4, in addition to test the inverse-model deficit hypotheses,
was to address this gap in literature about the locus of formation of the inverse model.
If participants had indeed been less accurate at pitch matching after downregulating
and targeted cerebellar stimulations, that would have provided some evidence that: the
cerebellum is involved in poor pitch matching, and that this involvement may be related
to the formation of an inverse model at the cerebellar level. While we were not able
to determine a causal link between the cerebellum, the formation of an inverse model
and poor singing ability, this research question needs to be explored further in order
to fill this gap in the sensorimotor control, the sensorimotor prediction, and the music
cognition literature.
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5.3 Measurement and Quantification of singing accu-
racy

In this dissertation, fairly novel methods and analysis techniques to experimental studies
in music cognition were used and combined to study and estimate singing accuracy.
Most studies in music cognition which investigate singing make use of fMRI (Brown et
al., 2008, Zarate 2013), PET (Parsons, 2001; Brown et al, 2004) and EEG but only the
context of perception (not vocal production) (Gordon et al., 2010, 2011).

While some studies have used TMS to investigate singing perception (Leveque et al,
2013; Royal et al. 2015), cortical representation of motor functions in singing (Sparing
et al, 2006), speech and song arrest (Stewart et al. 2001), this is to our knowledge the
first study using TMS to investigate singing accuracy.

In addition, given the hierarchical nature of our data, the small sample size, and
the presence of missing information we made choice to use and combine Bayesian
hierarchical modeling with multiple imputation. Both of these techniques have gained
in popularity recently. While the foundation of Bayesian inference was explained in
chapter 3, the multiple imputation technique which was used to guesstimate the missing
deviation scores of some participants (given what they had previously sung) was not.

Multiple imputation is a statistical approach to handling missing data. It’s mathemat-
ical underpinning relies on Bayesian estimation principles (Enders, 2010). It involves
three distinct phases: the imputation phase, the analysis phase and the pooling phase.
The imputation phase consists of creating multiple copies of the dataset and replace
each missing values within those copies by likely values sampled from the posterior
predictive distribution of the observed data (Huque, 2018). Then each (now complete)
data set is analyzed with a specific statistical model (specified by the researcher). Finally,
the pooling phase combines everything into a single complete data set result. Because
the method relies on Bayesian estimation principles, the imputed values all take into
account the uncertainty in their estimation. Thus, in this study, the imputed deviation
scores for each of the missing sung pitch took into account the uncertainty associated
with that missingness given what participants had already produced. The combination of
Bayesian hierarchical model and multiple imputation is also an active area of research.

5.4 Limitations and Future Directions

5.4.1 Limitations
The results drawn from the study in this dissertation were inconclusive at determining if
poor pitch matching is indeed caused by a compromised auditory-vocal system represen-
tation. However, they opened up new avenues to improve future studies looking at pitch
accuracy using cognitive neuroscience methodologies.

One of the main limitations of this study was the sample size. Data collection had to
be stopped short because of the covid-19 pandemic which started in the beginning of
2020 and lasted though my finalizing of this dissertation. Restrictions put in place during
this period severely restricted access to laboratories and forbade behavioral experiments
and behavioral-data collection. The intended number of participants for this study was
originally 30. In addition, like a number of experimental designs that rely on testing the
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same participants several times over a period of time (e.g., longitudinal studies, within-
subject design studies with more than two conditions), the study suffered from attrition.
While nothing can be done to prevent the impact of a pandemic, slight modifications to
this study’s design could increase the power of future similar studies while decreasing
the burden on participants. Graham et al. (2001) have shown that planned missing data
designs could give very similar results (in terms of power) as designs with complete
data. The idea of a planned missing data design is to split the sample of participants
into subgroups and each sub groups is then assigned to do a subsets of the experimental
conditions instead of being in all the condition. For instance, this study had four pretest-
posttest conditions (i.e., sham, visual, left cerebellum, right cerebellum), which required
participants to do the same task (i.e., SSAP) eight times. A planned missing data design
would have participants be in two of those conditions out of four (e.g., sham & right
cerebellum, or visual & left cerebellum). Graham et al. (2001) also showed that in
most of the cases the planned missing data designs was more powerful than complete
data designs with identical number of observations. It is believed that this is due to the
improved quality of the data that one’s get by decreasing the demand on participants.

Another potential limitation was the TMS power output required to effectively inhibit
cerebellar regions might not have been met for some participants in reason of their high
motor thresholds. This could have led to insufficient cerebellar stimulations needed
to perturb the instantiation of an internal model of singing. Studies like the ones by
Hartwick et al. (2014) and Pauly et al. (2019) have shown that the geometry of coils
had an impact on the depth of the tissues reached by TMS, and that the brand of the coil
could have an impact on the efficacy of cerebellar stimulations. One possible way to
ensure proper stimulation could be to combine cerebellar TMS with EEG. While this
method is usually used to investigate cerebellar-cortical connectivity (Fernandez et al.
2020), it could provide a useful way to assess cerebellar stimulation.

In addition, while the accuracy and validity of the SSAP’s scoring of vocal pitch
imitation is very close to that of expert judges for coarse grained categorical measure,
the automated analysis of singing accuracy may not be as robust and accurate to measure
pitch deviation scores (Pfordresher & Demorest, 2020). To this day it remains very
difficult to automate pitch accuracy scoring that rivals that of human expert judges. Being
able to do the same experiment in a conservatory would be ideal. Last but not least,
the fact that the SSAP was hosted online and was not run locally in this experiment
led to multiple instances where some participants had to wait longer (30s-1:30 mins) in
between trials for the content to load. This made the experiment longer and probably
less engaging for participants who had to take it eight times. Having a local version of
the accuracy software will solve that issue.

5.4.2 Future Directions
Once the aforementioned limitations have been addressed, it would be a worthwhile
endeavor to keep investigate pitch accuracy using non invasive brain stimulation tech-
niques. The presented study appears to have been one of the first of its kinds. Other
singing related studies in music cognition that have used TMS investigated: motor cortex
excitability in music perception (Royal et al. 2015), representation of the larynx motor
areas in singing perception (Lévêque et al., 2013), and auditory feedback control of
vocal production (Liu et al, 2020).
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Another interesting future direction would be to look at cross-cultural aspects of pitch
production. In pitch perception/production study involving the Tsimane’ (i.e., residents
of the Bolivian Amazon) and US residents, Jacoby et al. (2019) asked participants to
listen to tones and musical intervals, and reproduce them by singing. While the US
residents sang back notes (or intervals) that were out of their range by taking into account
the chroma of those notes (i.e., notes were sung some octaves below or above the target
tones to match their range), the Tsimane’ completely ignored those chroma. One of their
conclusions was that octave equivalence might be different across cultures and that it may
be dependent on pitch representations gained during enculturation. This provides some
evidence that pitch production (whether dimmed accurate or not) may relies on cultural
specific internal models. In addition, this is a reminder that pitch matching accuracy
should always be defined within the contexts and norms of where the test is being given.
Western ’international’ music theory standards will not hold in other systems.

Last, but not least, one could also look at the effect of facilitatory cerebellar stimula-
tions on pitch accuracy. It is interesting to note that in a sensorimotor study on patients
with cerebellar ataxia, Farzan et al. (2013) have shown that there can be improvement
in speech (as well as limb coordination, and gait) following daily cerebellar 1Hz rTMS
sessions for 3 weeks. Because 1Hz rTMS is an inhibitory type of stimulation, it was
hypothesized that the improvements seen in those patients could be the results of a
decrease in cerebellar brain inhibition (CBI), which allowed for enhanced activation and
potentiation of the dentate nuclei. In turn, the increased activation of the dentate nuclei
was believed to free resources along the cerebello-thalamo-cortical (CTC) pathways,
which enhanced the performance in motor and non-motor functions. Similarly, cTBS
on the right cerebellum of patients who suffer from speech motor disorders (as well as
movement disorders) due to spinocerebellar ataxia has been shown to improve auditory-
motor integration for vocal pitch regulation (Lin et al., 2021). In this frequency-altered
feedback (FAF) study in which the fundamental frequency (F0) of participants is altered
while they produce vocalizations, Lin et al. (2021) demonstrated that spinocerebellar
patients decreased the magnitude of their, usually, abnormal compensatory vocal re-
sponses in these types of tasks after cTBS on the right cerebellum, but not after a sham
stimulation. Akin to Farzan et al. (2013) study, it was hypothesized that downregulation
of CBI might have led to increased activity in the prefrontal cortex and allowed for better
top-down inhibitory control required in compensatory vocal productions during pitch
perturbations (Lin et al., 2021). Following these lines of evidence on the suppression of
cerebellar cortical excitability using TMS and its impact on sensorimotor control of the
vocal apparatus during speech, one may conjecture that if we were to use facilitatory
cerebellar stimulations (e.g., iTBS, 10Hz rTMS) during a pitch-matching accuracy task,
we would see an increase in CBI that may lead to a net result of worse vocal control
and worse pitch imitation outcomes. However, it is important to take into account
that: (1) motor control improvements following inhibitory cerebellar stimulations were
mostly seen in patients with cerebellar disorders, and (2) induced inhibitory CBI can
result in either motor performance improvement or cognitive performance impairment
depending on: participants (healthy vs clinical population), type of coils (figure-of-eight
vs double-cone), stimulation intensity, and the task (Oliveri et al., 2017). Future work
investigating the effects of excitatory cerebellar stimulations on pitch-matching accuracy
in a healthy population would not only help increase our understanding of the neural and
cognitive mechanisms involved in poor pitch matching, but would also provide a better
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understanding of sensorimotor control in human vocalizations.

5.5 Conclusion
This dissertation focused on testing the inverse-model-deficit hypothesis of poor pitch
matching. I have presented two review chapters and one study that focused on establish-
ing this hypothesis within a broader literature and testing it. This dissertation has also
made used of the most recent statistical analysis for multilevel data and missing data to
quantify results on singing accuracy tasks. Future work should focus on ascertaining
the locus of formation of inverse models and their implications in singing and human
vocalizations in general. Future work should also focus on expanding singing accuracy
studies in cross-cultural contexts.

64



References 
 
 

Abdul-Kareem, I. A., Stancak, A., Parkes, L. M., Al-Ameen, M., AlGhamdi, J., 
Aldhafeeri, F. M., ... & Sluming, V. (2011). Plasticity of the superior and middle 
cerebellar peduncles in musicians revealed by quantitative analysis of volume and 
number of streamlines based on diffusion tensor tractography. The 
Cerebellum, 10(3), 611. doi.org/10.1007/s12311-011-0274-1 
 

Ackermann, H., Gräber, S., Hertrich, I., & Daum, I. (1997). Categorical speech 
perception in cerebellar disorders. Brain and language, 60(2), 323-331. 
 

Ackermann, H., Mathiak, K., & Ivry, R. B. (2004). Temporal organization of “internal 
speech” as a basis for cerebellar modulation of cognitive functions. Behavioral 
and cognitive neuroscience reviews, 3(1), 14-22. 

 
Aitchison, L., & Lengyel, M. (2017). With or without you: predictive coding and 

Bayesian inference in the brain. Current opinion in neurobiology, 46, 219-227. 
 

Alais, D., O'Shea, R. P., Mesana-Alais, C., & Wilson, I. G. (2000). On binocular 
alternation. Perception, 29(12), 1437-1445. 
 

Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal 
integration. Current biology, 14(3), 257-262. 

 
Albus, J. S. (1971). A theory of cerebellar function. Mathematical biosciences, 10(1-2), 

25-61. 
 

Amir, O., Amir, N., & Kishon-Rabin, L. (2003). The effect of superior auditory skills on 
vocal accuracy. The Journal of the Acoustical Society of America, 113(2), 1102-
1108. 
 

Apps, R., & Garwicz, M. (2005). Anatomical and physiological foundations of cerebellar 
information processing. Nature Reviews Neuroscience, 6(4), 297-311. 

 
Baer, L. H., Park, M. T. M., Bailey, J. A., Chakravarty, M. M., Li, K. Z. H., & Penhune, 

V. B. (2015). Regional cerebellar volumes are related to early musical training 
and finger tapping performance. Neuroimage, 109, 130-139. 

 
Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617-629. 

 
Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in 

mammals. Nature, 405(6790), 1055-1058. doi: 10.1038/35016580 
 



Barton, R. A., & Venditti, C. (2014). Rapid evolution of the cerebellum in humans and 
other great apes. Current Biology, 24(20), 2440-2444.  
doi: 10.1016/j.cub.2014.08.056. 

 
Baumann, O., Borra, R. J., Bower, J. M., Cullen, K. E., Habas, C., Ivry, R. B., ... & 

Sokolov, A. A. (2015). Consensus paper: the role of the cerebellum in perceptual 
processes. The Cerebellum, 14(2), 197-220. 

 
Belknap, D. B., & McCrea, R. A. (1988). Anatomical connections of the prepositus and 

abducens nuclei in the squirrel monkey. Journal of Comparative 
Neurology, 268(1), 13-28. 

 
Berniker, M., & Kording, K. (2011). Bayesian approaches to sensory integration for 

motor control. Wiley Interdisciplinary Reviews: Cognitive Science, 2(4), 419-428. 
 
Bower, J. M. (2010). Model-founded explorations of the roles of molecular layer 

inhibition in regulating purkinje cell responses in cerebellar cortex: more trouble 
for the beam hypothesis. Frontiers in cellular neuroscience, 4, 27. 

 
Bracha, V., Zbarska, S., Parker, K., Carrel, A., Zenitsky, G., & Bloedel, J. R. (2009). The 

cerebellum and eye-blink conditioning: learning versus network performance 
hypotheses. Neuroscience, 162(3), 787-796. 

 
Braitenberg, V., Heck, D., & Sultan, F. (1997). The detection and generation of 

sequences as a key to cerebellar function: experiments and theory. Behavioral and 
Brain Sciences, 20(2), 229-245. doi: 10.1017/S0140525X9700143X   

 
Braitenberg, V. (2002). In defense of the cerebellum. Annals of the New York Academy of 

Sciences, 978(1), 175-183. doi: 10.1111/j.1749-6632.2002.tb07565.x 
 
Broussard, D. M. (2013). The cerebellum: learning movement, language, and social 

skills. John Wiley & Sons. 
 
Brown, S., Martinez, M. J., Hodges, D. A., Fox, P. T., & Parsons, L. M. (2004). The song 

system of the human brain. Cognitive Brain Research, 20(3), 363-375. 
 
Brugger, P., & Brugger, S. (1993). The Easter bunny in October: Is it disguised as a 

duck?. Perceptual and motor skills, 76(2), 577-578.  
doi: 10.2466/pms.1993.76.2.577 
 

Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., ... & 
Fregni, F. (2012). Clinical research with transcranial direct current stimulation 
(tDCS): challenges and future directions. Brain stimulation, 5(3), 175-195. 
 

 



Busan, P., Zanon, M., Vinciati, F., Monti, F., Pizzolato, G., & Battaglini, P. P. (2012). 
Transcranial magnetic stimulation and preparation of visually-guided reaching 
movements. Frontiers in neuroengineering, 5, 18. doi: 10.3389/fneng.2012.00018 

 
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & 

Munafò, M. R. (2013). Power failure: why small sample size undermines the 
reliability of neuroscience. Nature reviews neuroscience, 14(5), 365-376. 
 

Cantone, M., Lanza, G., Vinciguerra, L., Puglisi, V., Ricceri, R., Fisicaro, F., ... & 
Pennisi, M. (2019). Age, height, and sex on motor evoked potentials: 
Translational data from a large Italian cohort in a clinical environment. Frontiers 
in human neuroscience, 13, 185. doi.org/10.3389/fnhum.2019.00185 
 

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of 
cognitive science. Behavioral and brain sciences, 36(3), 181-204. 
 

Colombo, M., & Seriès, P. (2012). Bayes in the brain—on Bayesian modelling in 
neuroscience. The British journal for the philosophy of science, 63(3), 697-723. 
 

Dalla Bella, S. (2016). Vocal performance in occasional singers. In G. Welch, D. Howard 
& J. Nix (Eds.), The Oxford Handbook of Singing, Oxford University Press, 
Oxford, UK.  

 
D'angelo, E., Mazzarello, P., Prestori, F., Mapelli, J., Solinas, S., Lombardo, P., ... & 

Congi, L. (2011). The cerebellar network: from structure to function and 
dynamics. Brain research reviews, 66(1-2), 5-15. 

 
De Cheveigné, A., & Kawahara, H. (2002). YIN, a fundamental frequency estimator for 

speech and music. The Journal of the Acoustical Society of America, 111(4), 
1917-1930. 
 

De Lange, F. P., Heilbron, M., & Kok, P. (2018). How do expectations shape 
perception?. Trends in cognitive sciences, 22(9), 764-779. 
 

Demorest, S. M., & Pfordresher, P. Q. (2015). Seattle Singing Accuracy Protocol – SSAP 
[Measurement instrument]. https://ssap.music.northwestern.edu/ 

 
Denison, R. N., Piazza, E. A., & Silver, M. A. (2011). Predictive context influences 

perceptual selection during binocular rivalry. Frontiers in human neuroscience, 5, 
166. doi: 10.3389/fnhum.2011.00166 

 
Desmond, J. E., Chen, S. A., & Shieh, P. B. (2005). Cerebellar transcranial magnetic 

stimulation impairs verbal working memory. Annals of Neurology: Official 
Journal of the American Neurological Association and the Child Neurology 
Society, 58(4), 553-560. 



 
de Xivry, J. J. O., & Ethier, V. (2008). Neural correlates of internal models. Journal of 

Neuroscience, 28(32), 7931-7932. 
 

De Zeeuw, C. I., Hoogenraad, C. C., Koekkoek, S. K. E., Ruigrok, T. J., Galjart, N., & 
Simpson, J. I. (1998). Microcircuitry and function of the inferior olive. Trends in 
neurosciences, 21(9), 391-400. 

 
Diamond, A. (2000). Close interrelation of motor development and cognitive 

development and of the cerebellum and prefrontal cortex. Child 
development, 71(1), 44-56. 

 
Diedrichsen, J., King, M., Hernandez-Castillo, C., Sereno, M., & Ivry, R. B. (2019). 

Universal transform or multiple functionality? Understanding the contribution of 
the human cerebellum across task domains. Neuron, 102(5), 918-928. 
doi.org/10.1016/j.neuron.2019.04.021 

 
Dow, R. S. (1942) The evolution and anatomy of the cerebellum. Biological Reviews of 

the Cambridge Philosophical Society, 17, 179-220. 
 
Ebner, T. J., & Pasalar, S. (2008). Cerebellum predicts the future motor state. The 

Cerebellum, 7(4), 583-588. 
 

Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine 
neural population responses in the ventral visual stream. Journal of 
Neuroscience, 30(49), 16601-16608. 

 
Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring 

in primate auditory cortex. Nature, 453(7198), 1102-1106. 
 
Enders, C. K. (2010). Applied missing data analysis. Guilford press. 

 
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a 

statistically optimal fashion. Nature, 415(6870), 429-433. 
 
Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature 

reviews neuroscience, 9(4), 292-303. 
 
Farzan, F., Wu, Y., Manor, B., Anastasio, E. M., Lough, M., Novak, V., ... & Pascual-

Leone, A. (2013). Cerebellar TMS in treatment of a patient with cerebellar ataxia: 
evidence from clinical, biomechanics and neurophysiological assessments. The 
Cerebellum, 12(5), 707-712. doi: 10.1007/s12311-013-0485-8 

 
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the 

primate cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1), 1-47. 



 
Fernandez, L., Rogasch, N. C., Do, M., Clark, G., Major, B. P., Teo, W. P., ... & Enticott, 

P. G. (2020). Cerebral cortical activity following non-invasive cerebellar 
stimulation—A systematic review of combined TMS and EEG studies. The 
Cerebellum, 19(2), 309-335. 

 
Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired non-motor 

learning and error detection associated with cerebellar damage: A single case 
study. Brain, 115(1), 155-178. 

 
Flament, D., & Hore, J. (1986). Movement and electromyographic disorders associated 

with cerebellar dysmetria. Journal of neurophysiology, 55(6), 1221-1233. 
 
Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor 

control. Neuron, 72(3), 425-442. 
 
Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the 

Royal Society B: Biological sciences, 360(1456), 815-836. 
 
Friston, K. (2010). The free-energy principle: a unified brain theory?. Nature reviews 

neuroscience, 11(2), 127-138. 
 

Gao, W., Chen, G., Reinert, K. C., & Ebner, T. J. (2006). Cerebellar cortical molecular 
layer inhibition is organized in parasagittal zones. Journal of 
Neuroscience, 26(32), 8377-8387. 
 

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. 2013. Bayesian data 
analysis. 3rd ed. Boca Raton, Florida: Chapman & Hall/CRC. 
 

Ghasia, F. F., Meng, H., & Angelaki, D. E. (2008). Neural correlates of forward and 
inverse models for eye movements: evidence from three-dimensional 
kinematics. Journal of Neuroscience, 28(19), 5082-5087. 
 

Ghazanfar, A. A., & Rendall, D. (2008). Evolution of human vocal production. Current 
biology, 18(11), R457-R460. 

 
Gibson, J. J., & Carmichael, L. (1966). The senses considered as perceptual 

systems (Vol. 2, No. 1, pp. 44-73). Boston: Houghton Mifflin. 
 

Glickstein, M., Oberdick, J., & Voogd, J. (2010). Evolution of the Cerebellum. 
 

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned 
missing data designs in psychological research. Psychological methods, 11(4), 
323. 
 



Green, A. M., Meng, H., & Angelaki, D. E. (2007). A reevaluation of the inverse 
dynamic model for eye movements. Journal of Neuroscience, 27(6), 1346-1355. 

 
Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the 

Royal Society of London. B, Biological Sciences, 290(1038), 181-197. 
 
Gregory, R. L. (2005). The Medawar lecture 2001 knowledge for vision: Vision for 

knowledge. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 360(1458), 1231-1251. 
 

Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions 
of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1121-
1127. 

 
Griffiths, T. L., & Yuille, A. L. (2006). Technical introduction: A primer on probabilistic 

inference. UCLA. Department of Statistics Papers no. 2006010103. UCLA, Los 
Angeles, CA. 

 
Griffiths, T., Kemp, C., & B Tenenbaum, J. (2008). Bayesian models of cognition. 
 
Grimaldi, G., Argyropoulos, G. P., Boehringer, A., Celnik, P., Edwards, M. J., Ferrucci, 

R., ... & Ziemann, U. (2014). Non-invasive cerebellar stimulation—a consensus 
paper. The Cerebellum, 13(1), 121-138. doi.10.1007/s12311-013-0514-7 
 

Guediche, S., Holt, L. L., Laurent, P., Lim, S. J., & Fiez, J. A. (2015). Evidence for 
cerebellar contributions to adaptive plasticity in speech perception. Cerebral 
Cortex, 25(7), 1867-1877. 
 

Guell, X., Hoche, F., & Schmahmann, J. D. (2015). Metalinguistic deficits in patients 
with cerebellar dysfunction: empirical support for the dysmetria of thought 
theory. The Cerebellum, 14(1), 50-58. 
 

Hardwick, R. M., Lesage, E., & Miall, R. C. (2014). Cerebellar transcranial magnetic 
stimulation: the role of coil geometry and tissue depth. Brain stimulation, 7(5), 
643-649. 

 
Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor 

planning. Nature, 394(6695), 780-784. 
 

Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive 
coding in auditory cortex?. Neuroscience, 389, 54-73. 
doi.org/10.1016/j. neuroscience.2017.07.061 
 

Hickok, G. (2012). Computational neuroanatomy of speech production. Nature reviews 
neuroscience, 13(2), 135-145. 



 
Hoche, F., Guell, X., Vangel, M. G., Sherman, J. C., & Schmahmann, J. D. (2018). The 

cerebellar cognitive affective/Schmahmann syndrome scale. Brain, 141(1), 248-
270. doi: 10.1093/brain/awx317 

 
Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state feedback 

control. Frontiers in human neuroscience, 5, 82. 
 
Hohwy, J. (2013). The predictive mind. Oxford University Press. 

 
Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta 

burst stimulation of the human motor cortex. Neuron, 45(2), 201-206. 
 
Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two 

nonstriate visual areas (18 and 19) of the cat. Journal of neurophysiology, 28(2), 
229-289. 
 

Huque, M. H., Carlin, J. B., Simpson, J. A., & Lee, K. J. (2018). A comparison of 
multiple imputation methods for missing data in longitudinal studies. BMC 
medical research methodology, 18(1), 1-16. 

 
Hutchins, S., Larrouy-Maestri, P., & Peretz, I. (2014). Singing ability is rooted in vocal-

motor control of pitch. Attention, Perception, & Psychophysics, 76(8), 2522-2530. 
Doi: 10.3758/s13414-014-0732-1. 
 

Hutchins, S. M., & Peretz, I. (2012). A frog in your throat or in your ear? Searching for 
the causes of poor singing. Journal of Experimental Psychology: General, 141(1), 
76. 
 

Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of 
musicians. Cerebral cortex, 13(9), 943-949. 
 

Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological 
science, 15(5), 356-360. 
 

Ishikawa, T., Tomatsu, S., Izawa, J., & Kakei, S. (2016). The cerebro-cerebellum: could 
it be loci of forward models?. Neuroscience research, 104, 72-79. 

 
Ito, M. & Kano, M. (1982) Long-lasting depression of parallel fiber-Purkinje cell 

transmission induced by conjunctive stimulation of parallel fibers and climbing 
fibers in the cerebellar cortex. Neuroscience. Letters. 33(3), 253-258. 

 doi: 10.1016/0304-3940(82)90380-9 
 

Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in 
neurobiology, 78(3-5), 272-303. 



 
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature 

Reviews Neuroscience, 9(4), 304-313. 
 
Ivry, R. B., & Spencer, R. M. (2004). The neural representation of time. Current opinion 

in neurobiology, 14(2), 225-232. 
 

Jacoby, N., Undurraga, E. A., McPherson, M. J., Valdés, J., Ossandón, T., & McDermott, 
J. H. (2019). Universal and non-universal features of musical pitch perception 
revealed by singing. Current Biology, 29(19), 3229-3243. 
 

Jones, J. A., & Keough, D. (2008). Auditory-motor mapping for pitch control in singers 
and nonsingers. Experimental brain research, 190(3), 279-287. 
 

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems 
[J]. Journal of basic Engineering, 82(1), 35-45. 

 
Kant, I. (1908). Critique of pure reason. 1781. Modern Classical Philosophers, 

Cambridge, MA: Houghton Mifflin, 370-456. 
 
Kawato, M. (1999). Internal models for motor control and trajectory planning. Current 

opinion in neurobiology, 9(6), 718-727. 
 
Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal 

cortex of a nonhuman primate. Journal of neuroscience, 23(23), 8432-8444. 
 
Keough, D., & Jones, J. A. (2009). The sensitivity of auditory-motor representations to 

subtle changes in auditory feedback while singing. The Journal of the Acoustical 
Society of America, 126(2), 837-846. doi: 10.1121/1.3158600 
 

Keller, G. B., & Mrsic-Flogel, T. D. (2018). Predictive processing: a canonical cortical 
computation. Neuron, 100(2), 424-435. doi:10.1016/j.neuron.2018.10.003 

 
Keller, A. J., Houlton, R., Kampa, B. M., Lesica, N. A., Mrsic-Flogel, T. D., Keller, G. 

B., & Helmchen, F. (2017). Stimulus relevance modulates contrast adaptation in 
visual cortex. Elife, 6, e21589. 

 
Keren‐Happuch, E., Chen, S. H. A., Ho, M. H. R., & Desmond, J. E. (2014). A meta‐

analysis of cerebellar contributions to higher cognition from PET and fMRI 
studies. Human brain mapping, 35(2), 593. 
 

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian 
inference. Annu. Rev. Psychol., 55, 271-304. 

 
 



Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural 
coding and computation. TRENDS in Neurosciences, 27(12), 712-719. 
 

Kok, P., Jehee, J. F., & De Lange, F. P. (2012). Less is more: expectation sharpens 
representations in the primary visual cortex. Neuron, 75(2), 265-270. 

 
Kok, P., Brouwer, G. J., van Gerven, M. A., & de Lange, F. P. (2013). Prior expectations 

bias sensory representations in visual cortex. Journal of Neuroscience, 33(41), 
16275-16284. 

 
Kok, P., & de Lange, F. P. (2015). Predictive coding in sensory cortex. In An 

introduction to model-based cognitive neuroscience (pp. 221-244). Springer, New 
York, NY. 

 
Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor 

control. Trends in cognitive sciences, 10(7), 319-326. 
 
Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. 
 
Kuo, A. D. (1995). An optimal control model for analyzing human postural 

balance. IEEE transactions on biomedical engineering, 42(1), 87-101. 
 

Lega, C., Vecchi, T., D’Angelo, E., & Cattaneo, Z. (2016). A TMS investigation on the 
role of the cerebellum in pitch and timbre discrimination. Cerebellum & 
ataxias, 3(1), 1-7. 

 
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: 

its computing, cognitive, and language skills. Behavioural brain research, 44(2), 
113-128. 

 
Lesage, E., Morgan, B. E., Olson, A. C., Meyer, A. S., & Miall, R. C. (2012). Cerebellar 

rTMS disrupts predictive language processing. Current Biology, 22(18), R794-
R795. 

 
Lévêque, Y., Muggleton, N., Stewart, L., & Schön, D. (2013). Involvement of the larynx 

motor area in singing-voice perception: A TMS study. Frontiers in Psychology, 4, 
418. 

 
Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I., & Friston, K. J. (2013). A 

neurocomputational model of the mismatch negativity. PLoS computational 
biology, 9(11), e1003288. 
 

Lin, Q., Chang, Y., Liu, P., Jones, J. A., Chen, X., Peng, D., ... & Liu, H. (2021). 
Cerebellar Continuous Theta Burst Stimulation Facilitates Auditory–Vocal 
Integration in Spinocerebellar Ataxia. Cerebral Cortex. 



 
Lindle, R. S., Metter, E. J., Lynch, N. A., Fleg, J. L., Fozard, J. L., Tobin, J., ... & Hurley, 

B. F. (1997). Age and gender comparisons of muscle strength in 654 women and 
men aged 20–93 yr. Journal of applied physiology, 83(5), 1581-1587. 

 
Liu, D., Dai, G., Liu, C., Guo, Z., Xu, Z., Jones, J. A., ... & Liu, H. (2020). Top–down 

inhibitory mechanisms underlying auditory–motor integration for voice control: 
evidence by TMS. Cerebral Cortex, 30(8), 4515-4527. 

 
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with 

probabilistic population codes. Nature neuroscience, 9(11), 1432-1438. 
 

Ma, W. J., Beck, J. M., & Pouget, A. (2008). Spiking networks for Bayesian inference 
and choice. Current opinion in neurobiology, 18(2), 217-222. 

  
Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., Da Guarda, S. N. F., 

Gerwig, M., ... & Timmann, D. (2012). Consensus paper: roles of the cerebellum 
in motor control—the diversity of ideas on cerebellar involvement in 
movement. The Cerebellum, 11(2), 457-487. 

 
Mariën, P., & Manto, M. (2018). Cerebellum as a master-piece for linguistic 

predictability. doi.org/10.1007/s12311-017-0894-1 
 
Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202(2), 437-

470. https://doi.org/10.1113/jphysiol.1969.sp008820 
 
Marr, D (1982). Vision: A Computational Investigation into the Human Representation 

and Processing of Visual Information. W. H. Freeman and Company. 
 
McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model 

Newton's laws?. Nature neuroscience, 4(7), 693-694. 
 

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 
1629-1636. 

 
Merfeld, D. M., Zupan, L., & Peterka, R. J. (1999). Humans use internal models to 

estimate gravity and linear acceleration. Nature, 398(6728), 615-618. 
 
Merton, P. A., & Morton, H. B. (1980). Stimulation of the cerebral cortex in the intact 

human subject. Nature, 285(5762), 227-227. 
 
Miall, R. C. (2013). Cerebellum: Anatomy and function. In Neuroscience in the 21st 

Century: From Basic to Clinical (pp. 1149-1167). Springer. doi 10.1007/978-1-
4614-1997-6_38 

 



Moberget, T., & Ivry, R. B. (2016). Cerebellar contributions to motor control and 
language comprehension: searching for common computational principles. Annals 
of the New York Academy of Sciences, 1369(1), 154. 

 
Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., & 

Petrosini, L. (1997). Cerebellum and procedural learning: evidence from focal 
cerebellar lesions. Brain: a journal of neurology, 120(10), 1753-1762. 
 

Morgenstern, Y., Murray, R. F., & Harris, L. R. (2011). The human visual system's 
assumption that light comes from above is weak. Proceedings of the National 
Academy of Sciences, 108(30), 12551-12553. 
 

Mumford, D. (1992) On the computational architecture of the neocortex. II. The role of 
cortico- cortical loops. Biological Cybernetics 66(3), 241–251 
 

Murdoch, B. E. (2010). The cerebellum and language: historical perspective and 
review. Cortex, 46(7), 858-868. 

 
Nigmatullina, Y., Hellyer, P. J., Nachev, P., Sharp, D. J., & Seemungal, B. M. (2015). 

The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in 
dancers. Cerebral Cortex, 25(2), 554-562. doi.org/10.1093/cercor/bht266. 
 

Nikjeh, D. A., Lister, J. J., & Frisch, S. A. (2009). The relationship between pitch 
discrimination and vocal production: Comparison of vocal and instrumental 
musicians. The Journal of the Acoustical Society of America, 125(1), 328-338. 
 

Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and 
feedback in speech recognition. Language, cognition and neuroscience, 31(1), 4-
18. 

 
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in 

cognitive sciences, 11(12), 520-527. 
 
Oliveri, M., Torriero, S., Koch, G., Salerno, S., Petrosini, L., & Caltagirone, C. (2007). 

The role of transcranial magnetic stimulation in the study of cerebellar cognitive 
function. The Cerebellum, 6(1), 95-101. 

 
O’Reilly, J. X., Jbabdi, S., & Behrens, T. E. (2012). How can a Bayesian approach 

inform neuroscience?. European Journal of Neuroscience, 35(7), 1169-1179. 
 

O’Reilly, J. X., & Mars, R. B. (2015). Bayesian models in cognitive neuroscience: a 
tutorial. An introduction to model-based cognitive neuroscience, 179-197. 
 

 
 



Parrell, B., Lammert, A. C., Ciccarelli, G., & Quatieri, T. F. (2019a). Current models of 
speech motor control: a control-theoretic overview of architectures and 
properties. The Journal of the Acoustical Society of America, 145(3), 1456-1481. 
doi.org/10.1121/1.5092807 

 
Parrell, B., Ramanarayanan, V., Nagarajan, S., & Houde, J. (2019b). The FACTS model 

of speech motor control: Fusing state estimation and task-based control. PLoS 
computational biology, 15(9), e1007321. doi.org/10.1101/543728 

 
Parsons, L. M. (2001). Exploring the functional neuroanatomy of music performance, 

perception, and comprehension. Annals of the New York Academy of 
Sciences, 930(1), 211-231. 

 
Pauly, M. G., Steinmeier, A., Bolte, C., Hamami, F., Tzvi, E., Münchau, A., ... & 

Weissbach, A. (2021). Cerebellar rTMS and PAS effectively induce cerebellar 
plasticity. Scientific Reports, 11(1), 1-13. 
 

Penny, W. (2012). Bayesian models of brain and behaviour. International Scholarly 
Research Notices, 2012. 

Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annu. Rev. 
Psychol., 56, 89-114. 

Peretz, I., & Vuvan, D. T. (2017). Prevalence of congenital amusia. European Journal of 
Human Genetics, 25(5), 625-630. 
 

Perry, D. W., Zatorre, R. J., Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. 
(1999). Localization of cerebral activity during simple 
singing. Neuroreport, 10(18), 3979-3984. 

 
Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of" tone 

deafness". Music Perception, 25(2), 95-115. 
 
Pfordresher, P. Q., & Mantell, J. T. (2014). Singing with yourself: Evidence for an 

inverse modeling account of poor-pitch singing. Cognitive psychology, 70, 31-57. 
 
Pfordresher, P. Q., & Demorest, S. M. (2020). Construction and validation of the Seattle 

Singing Accuracy Protocol (SSAP): An automated online measure of singing 
accuracy. In The Routledge Companion to Interdisciplinary Studies in 
Singing (pp. 322-333). Routledge. 

 
Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A., & Seth, A. K. (2015). 

Expectations accelerate entry of visual stimuli into awareness. Journal of 
Vision, 15(8), 13-13. 

 



Popa, L. S., Hewitt, A. L., & Ebner, T. J. (2012). Predictive and feedback performance 
errors are signaled in the simple spike discharge of individual Purkinje 
cells. Journal of Neuroscience, 32(44), 15345-15358. 
 

Popa, L. S., Streng, M. L., Hewitt, A. L., & Ebner, T. J. (2016). The errors of our ways: 
understanding error representations in cerebellar-dependent motor learning. The 
Cerebellum, 15(2), 93-103. 
 

Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies 
of heard speech, spoken language and reading. Neuroimage, 62(2), 816-847. 

 
Pruitt, T. A., & Pfordresher, P. Q. (2015). The role of auditory feedback in speech and 

song. Journal of Experimental Psychology: Human Perception and 
Performance, 41(1), 152. doi.org/10.1037/a0038285 
 

Ramachandran, V.S. (1988) Perceiving shape from shading. Scientific American. 259, 
76–83.  
 

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional 
interpretation of some extra-classical receptive-field effects. Nature 
neuroscience, 2(1), 79-87. 

 
Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., & Binder, J. 

R. (1997). Distributed neural systems underlying the timing of 
movements. Journal of Neuroscience, 17(14), 5528-5535. 
 

Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Safety of TMS Consensus 
Group. (2009). Safety, ethical considerations, and application guidelines for the 
use of transcranial magnetic stimulation in clinical practice and research. Clinical 
neurophysiology, 120(12), 2008-2039. 

 
Rossini, P. M., Barker, A. T., Berardelli, A., Caramia, M. D., Caruso, G., Cracco, R. Q., 

... & Tomberg, C. (1994). Non-invasive electrical and magnetic stimulation of the 
brain, spinal cord and roots: basic principles and procedures for routine clinical 
application. Report of an IFCN committee. Electroencephalography and clinical 
neurophysiology, 91(2), 79-92. 

 
Rothwell, J. C. (1997). Techniques and mechanisms of action of transcranial stimulation 

of the human motor cortex. Journal of neuroscience methods, 74(2), 113-122. 
 

Royal, I., Lidji, P., Théoret, H., Russo, F. A., & Peretz, I. (2015). Excitability of the 
motor system: A transcranial magnetic stimulation study on singing and 
speaking. Neuropsychologia, 75, 525-532. 
 

 



Schmahmann, J. D. (1991). An emerging concept: the cerebellar contribution to higher 
function. Archives of neurology, 48(11), 1178-1187. 
 

Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective 
syndrome. Brain: a journal of neurology, 121(4), 561-579. 

 
Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, 

and the cerebellar cognitive affective syndrome. The Journal of neuropsychiatry 
and clinical neurosciences, 16(3), 367-378. 

 
Schmahmann, J. D., Guell, X., Stoodley, C. J., & Halko, M. A. (2019). The theory and 

neuroscience of cerebellar cognition. Annual review of neuroscience, 42, 337-364. 
 
Seriès, P., & Seitz, A. (2013). Learning what to expect (in visual perception). Frontiers in 

human neuroscience, 7, 668. 
 

Sexton, B. M., Liu, Y., & Block, H. J. (2019). Increase in weighting of vision vs. 
proprioception associated with force field adaptation. Scientific reports, 9(1), 1-
13. doi.org/10.1038/s41598-019-46625-7 
 

Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor 
control. Experimental brain research, 185(3), 359-381. 
 

Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: adaptive prediction 
for movement and cognition. Trends in cognitive sciences, 21(5), 313-332. 
 

Spencer, R. M., & Ivry, R. B. (2013). Cerebellum and timing. Handbook of the 
cerebellum and cerebellar disorders, 1201-1219. 
 

Spratling, M. W. (2008). Predictive coding as a model of biased competition in visual 
attention. Vision research, 48(12), 1391-1408. 
 

Spratling, M. W. (2010). Predictive coding as a model of response properties in cortical 
area V1. Journal of neuroscience, 30(9), 3531-3543. 
 

Spratling, M. W. (2012). Predictive coding as a model of the V1 saliency map 
hypothesis. Neural Networks, 26, 7-28. 

 
Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and 

cognition, 112, 92-97. 
 

Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency 
positive waves evoked by unpredictable auditory stimuli in 
man. Electroencephalography and clinical neurophysiology, 38(4), 387-401. 

 



Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing 
transparency through a multiverse analysis. Perspectives on Psychological 
Science, 11(5), 702-712. 
 

Stein, T., & Peelen, M. V. (2015). Content-specific expectations enhance stimulus 
detectability by increasing perceptual sensitivity. Journal of Experimental 
Psychology: General, 144(6), 1089-1104. 

 
Sterzer, P., Frith, C., & Petrovic, P. (2008). Believing is seeing: expectations alter visual 

awareness. Current Biology, 18(16), R697-R698. doi: 10.1016/j.cub.2008.06.021 
 
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human 

cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489-
501. 

 
Strata, P. (2009). David Marr's theory of cerebellar learning: 40 years later. The Journal 

of physiology, 587(Pt 23), 5519. 
 
Sundberg, J. (1990). What's so special about singers?. Journal of voice, 4(2), 107-119. 
 
Sundberg, J. (1994). Perceptual aspects of singing. Journal of voice, 8(2), 106-122. 

 
Tanaka, H., Ishikawa, T., Lee, J., & Kakei, S. (2020). The cerebro-cerebellum as a locus 

of forward model: a review. Frontiers in systems neuroscience, 14, 19. 
 
Tesche, C. D., & Karhu, J. J. (2000). Anticipatory cerebellar responses during 

somatosensory omission in man. Human brain mapping, 9(3), 119-142. 
 

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature 
neuroscience, 7(9), 907-915. 

 
Tölgyesi, B., & Evers, S. (2014). The impact of cerebellar disorders on musical 

ability. Journal of the neurological sciences, 343(1-2), 76-81. 
 
Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by 

cortical neurons. Nature neuroscience, 6(4), 391-398. 
 

van Beers, R. J., Sittig, A. C., & van der Gon Denier, J. J. (1996). How humans combine 
simultaneous proprioceptive and visual position information. Experimental brain 
research, 111(2), 253-261. 

 
van Beers, R. J., Sittig, A. C., & Gon, J. J. D. V. D. (1999). Integration of proprioceptive 

and visual position-information: An experimentally supported model. Journal of 
neurophysiology, 81(3), 1355-1364. 
 



van Beers, R. J., Haggard, P., & Wolpert, D. M. (2004). The role of execution noise in 
movement variability. Journal of neurophysiology, 91(2), 1050-1063. 

 
van Buuren, S. (2018). Flexible Imputation of Missing Data. Chapman and Hall/CRC. 

https://stefvanbuuren.name/fimd/sec-multioutcome.html.  
 

van de Schoot, R., & Depaoli, S. (2014). Bayesian analyses: Where to start and what to 
report. The European Health Psychologist, 16(2), 75-84. 

 
Van de Schoot, R., Veen, D., Smeets, L., Winter, S. D., & Depaoli, S. (2020). A tutorial 

on using the WAMBS checklist to avoid the misuse of Bayesian statistics. Small 
Sample Size Solutions: A Guide for Applied Researchers and Practitioners; van 
de Schoot, R., Miocevic, M., Eds, 30-49. 
   

Von Helmholtz, H. (1867). Handbuch der physiologischen Optik: mit 213 in den Text 
eingedruckten Holzschnitten und 11 Tafeln (Vol. 9). Voss. 
(English tranl. 1924 JPC Southall as Treatise on Physiological Optics) 
 

Welniarz, Q., Worbe, Y., & Gallea, C. (2021). The forward model: a unifying theory for 
the role of the cerebellum in motor control and sense of agency. Frontiers in 
Systems Neuroscience, 15. 
 

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for 
sensorimotor integration. Science, 269(5232), 1880-1882. 
 

Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the 
cerebellum. Trends in cognitive sciences, 2(9), 338-347. 

 
Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current biology, 11(18), 

R729-R732. 
 
Wolpert, D. M. (2007). Probabilistic models in human sensorimotor control. Human 

movement science, 26(4), 511-524. 
 
Wolpert, D. M., & Flanagan, J. R. (2016). Computations underlying sensorimotor 

learning. Current opinion in neurobiology, 37, 7-11. 
doi: 10.1016/j.conb.2015.12.003 
 

Wyart, V., Nobre, A. C., & Summerfield, C. (2012). Dissociable prior influences of 
signal probability and relevance on visual contrast sensitivity. Proceedings of the 
National Academy of Sciences, 109(9), 3593-3598. 

 
Xu, D., Liu, T., Ashe, J., & Bushara, K. O. (2006). Role of the olivo-cerebellar system in 

timing. Journal of Neuroscience, 26(22), 5990-5995. 
 



 
 
 
Yavari, F., Mahdavi, S., Towhidkhah, F., Ahmadi-Pajouh, M. A., Ekhtiari, H., & 

Darainy, M. (2016). Cerebellum as a forward but not inverse model in visuomotor 
adaptation task: a tDCS-based and modeling study. Experimental brain 
research, 234(4), 997-1012. 
 

Yeo, C. H., & Hesslow, G. (1998). Cerebellum and conditioned reflexes. Trends in 
cognitive sciences, 2(9), 322-330. 

 
Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: analysis by 

synthesis?. Trends in cognitive sciences, 10(7), 301-308. 
 
Zarate, J. M., & Zatorre, R. J. (2005). Neural substrates governing audiovocal integration 

for vocal pitch regulation in singing. Annals of the New York Academy of 
Sciences, 1060(1), 404-408. 

 
Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in 

vocal pitch regulation during singing. Neuroimage, 40(4), 1871-1887. 
 
Zarate, J. M. (2013). The neural control of singing. Frontiers in human neuroscience, 7, 

237. 
 

Zatorre, R. J., Evans, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic 
perception and memory for pitch. Journal of neuroscience, 14(4), 1908-1919. 
 




