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Abstract 
A postcompletion error is a type of procedural error that 
occurs after the main goal of a task has been accomplished. 
There is a strong theoretical foundation accounting for 
postcompletion errors (Altmann & Trafton, 2002; Byrne & 
Bovair, 1997). This theoretical foundation has been leveraged 
to develop a logistic regression model of postcompletion 
errors based on reaction time and eye movement measures 
(Ratwani, McCurry, & Trafton, 2008). The work presented 
here further develops and extends this predictive model by (1) 
validating the model and the general set of predictors on a 
new task to test the robustness of the model, and (2) 
determining which specific theoretical components are most 
important to postcompletion error prediction.   

Keywords: Procedural error; postcompletion error   

Introduction 
Even while performing a routine procedural task that has 
been performed hundreds of times in the past, occasional 
errors still occur (i.e. a slip or lapse) (Reason, 1990). These 
procedural errors have been termed skill-based errors 
(Rasmussen & Jensen, 1974) and occur despite having the 
correct knowledge of how to perform a particular task. A 
common type of procedural error is the postcompletion 
error; this error is associated with forgetting a final step 
which occurs after the main goal of a task has been 
completed (Byrne & Bovair, 1997). There are several 
examples of postcompletion errors, such as leaving an 
original document on the glass of a copy machine after 
making a copy or failing to attach a document to an email 
message. 

The holy grail of error research is to be able to predict 
when an error is going to occur before the error actually 
occurs (Reason, 1990). In order to be able to make advances 
toward error prediction, strong theoretical accounts of the 
cognitive mechanisms underlying procedural errors are 
required. In the case of postcompletion errors, these 
theoretical accounts do exist; Byrne and Bovair (1997) have 
put forward a theory specific to postcompletion errors, and 
Altmann and Trafton (2002) explain postcompletion errors 
using a general theory of goal memory, called memory for 
goals. Both theories are activation-based memory accounts 
and there is substantial overlap between the theories.  

Byrne and Bovair (1997) suggest that postcompletion 
errors are due to goal forgetting and inattention to the 
postcompletion step. Specifically, postcompletion errors 
occur because the postcompletion step of a task is not 
maintained in working memory and, thus, is not executed as 

part of the task. The main goal of a task and the subsequent 
subgoals are stored in working memory and must remain 
active to be executed. The main goal provides activation to 
the subgoals. When the main goal of a task is satisfied, the 
goal no longer provides activation to the subgoals; 
consequently, the remaining subgoals may fall below 
threshold and may not be executed.  

The memory for goals theory (Altmann & Trafton, 2002) 
accounts for goal-directed behavior with the constructs of 
activation and associative priming. The theory suggests that 
behavior is directed by the current most active goal and that 
the activation level of goals decay over time. In order for a 
goal to direct behavior, the goal must have enough 
activation to overcome interference from previous goals; 
thus, the goal must reach a certain threshold to actually 
direct behavior.  

Goal activation is determined by two main constraints. 
The strengthening constraint suggests that the history of a 
goal (i.e. how frequently and recently the goal was 
retrieved) will impact goal activation. The priming 
constraint suggests that a pending goal will be retrieved and 
will direct behavior if the goal is primed from an associated 
cue. These cues can either be in the mental or environmental 
context.  

Leveraging these theoretical accounts, Ratwani, McCurry 
and Trafton (2008) developed a logistic regression model 
predicting when a postcompletion error will occur on a 
computer-based procedural task. A logistic regression 
analysis was used because the outcome variable (occurrence 
of an error) was a dichotomous variable, which violates 
many of the assumptions of standard linear regression 
(Tabachnick & Fidell, 2001). A simple description of 
logistic regression is that it is a multiple linear regression 
model with a dichotomous variable as an outcome variable; 
a more detailed description can be found in Peng, Lee, & 
Ingersoll (2002). 

To build their logistic regression model, Ratwani et. al. 
(2008) recorded and developed eye movement and reaction 
time measures as the behavioral indicators of the cognitive 
constructs outlined by the Byrne and Bovair (1997) and 
Altmann and Trafton (2002) theories. Specifically, three 
predictors were used in the logistic regression model: time 
between actions, total number of fixations between actions, 
and fixation on the postcompletion action button. The 
logistic regression model was as follows: 
 
Predicted logit of Error = .12 + (time x -.001) + (total 
fixations x .63) + (postcompletion fixation x -5.7) 
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The motivation for these predictors followed directly 
from cognitive theory. The time predictor represents goal 
decay. The total number of fixations represents decay, but 
may also capture individual differences in decay rates and 
differences in visual and cognitive processing demands (Just 
& Carpenter, 1976; Rayner, 1998). Finally, the fixation on 
the postcompletion action represents inattention/attention to 
this action and associative priming provided by the 
postcompletion action button on the task interface.  

Using this model, over 90% of the postcompletion error 
and correct actions were correctly classified on the dataset 
from which the model was based. The successful 
classification rate with this model provides some confidence 
that the predictors, and, more importantly, the underlying 
theoretical constructs which the predictors represent, are 
able to account for the cognitive mechanisms that contribute 
to postcompletion errors.  

Despite the successful classification rate of this model, 
several important issues remain. First, the model was 
developed and tested on a single task. Consequently, it is 
difficult to determine how robust the specific model and the 
general set of predictors are. Second, the relative importance 
of each of the predictors, and the underlying cognitive 
constructs is unknown. For example, is decay a more 
important theoretical and predictive component than 
associative activation?  How do we differentiate between 
the predictors?  

We sought to address these issues in two ways. To 
determine the robustness of the logistic regression model 
and the set of predictors, the logistic regression model from 
Ratwani, et al. (2008) was applied to a new task to see how 
well the model could account for postcompletion errors on 
that task. Performance of the model was compared to a task 
specific logistic regression model using receiver-operating 
characteristic curves and by examining classification 
success rates. To differentiate between predictors, 
discriminant function analysis was utilized to linearly 
separate the predictors. This analysis provides insight into 
which specific predictors, and underlying cognitive 
constructs, are contributing the most in regard to 
predictability.  

Experiment 
Reaction time and eye movement data were collected on a 
computer-based procedural task, called the financial 
management task. This task has a postcompletion step and is 
different from the sea vessel task used by Ratwani et al. 
(2008). While performing the task, participants were 
interrupted to increase the rate of postcompletion errors (Li, 
Blandford, Cairns, & Young, 2008). This technique of 
increasing the postcompletion error rate was used by 
Ratwani et al. as well.  

To determine the robustness of the original logistic 
regression model (called the sea vessel model), this model 
was used to predict the occurrence of a postcompletion error 
on the financial management task. A task specific logistic 
regression model (called the financial model) was also 

created, and the models were compared. We examined 
which predictors loaded significantly and the weights of the 
predictors. Although some differences are expected between 
the two models because they are based on different tasks, if 
the underlying theoretical constructs account for the 
cognitive mechanisms contributing to postcompletion errors 
the models should share the same general set of predictors 
and these models should have strong predictive power. 
Similarities in regression weights between the two models 
would suggest particularly pervasive cognitive components.  

To determine the relative contribution of the predictors in 
the logistic regression models, discriminant function 
analysis was used. This statistical technique was used 
because logistic regression (unlike multiple regression) does 
not provide an indication of the importance of predictor 
variables (i.e. there is no indication of unique variance 
accounted for) (Tabachnick & Fidell, 2001). Discriminant 
function analysis is a linear technique that will provide an 
indicator of the importance of each predictor. Discriminant 
function analysis was used on the dataset from Ratwani et 
al. (2008) and on the data from this experiment to compare 
the relative importance of each the predictors across tasks.  

Method 
 

Particpants. Thirty-six George Mason University 
undergraduate students participated for course credit.  
 

Materials. The primary task was a complex financial 
management task. The goal of the task was to successfully 
fill client’s orders for different types of stocks. The orders 
were to either buy or sell and were presented four at a time 
at the top of the screen (see Figure 1). The current prices of 
the stocks associated with the orders were presented in the 
center of the screen in the Stock Information column.  The 
actual stock price fluctuated every 45 seconds.  

To complete an order, participants first had to determine 
which of the client orders was valid by comparing the 
client’s requested price to the actual market price of the 
stock from the Stock Information column. Once an order 
was determined to be valid, the participant clicked the Start 
Order button for the respective stock. To actually fill the 
order, the participant had to enter details from the order 
itself and the Stock Information column in to eight different 
modules on the screen. Participants had to follow a specific 
procedure to complete the order; the specific sequence was: 
Quantity, Cost, Order Info, Margin, Stock Exchanges, 
Transaction, Stock Info, and Review.  The spatial layout of 
the interface is quite intuitive (working down the left 
column and then the right column of Figure 1), unlike the 
sea vessel task used by Ratwani et. al (2008). 

After entering information in each module the participant 
clicked the Confirm button and could then move on to the 
next module. After clicking confirm on the final module 
(the Review module), a pop-up window appeared 
confirming the details of the order. The participant then had 
to acknowledge the window by clicking Ok. Finally, to 
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complete the order the participant clicked the Complete 
Order button (upper right corner). This final action was the 
postcompletion step and the pop-up window is a false 
completion signal that is generally associated with 
postcompletion errors (Reason, 1990).  

All of the information required to complete the task is 
directly available on the task interface. After completing a 
particular module and clicking the Confirm button, the 
information disappears from the module. If a participant 
attempts to work on a module or clicks a button that 
deviates from the strict procedure, the computer emits a 
beep signifying that an error has been made. The participant 
must then continue working on the task until the correct 
action is completed.  

The interrupting task consisted of multiple choice 
addition problems. Each problem contained five single digit 
addends and five possible solutions (4 incorrect, 1 correct). 
A single addition problem and solution set was presented at 
one time; participants completed as many problems as 
possible during the interruption.  

 

 
Figure 1. Screenshot of the financial management task. 

 
Design. Control and interruption trials were manipulated 

in a within-participants design. The completion of one order 
on the financial management task constituted a trial. 
Participants completed twelve trials; six were control and 
six were interruption trials. The order of control and 
interruption trials was randomized. Each interruption trial 
contained two interruptions. There were eight possible 
interruption points. These points occurred after clicking the 
Confirm button following the first seven modules and after 
acknowledging the false completion signal, just prior to the 
postcompletion action. The location of the interruptions was 
randomized with the constraint that exactly two 
interruptions occurred just prior to the postcompletion step 
and at least one interruption occurred at each of the other 
seven possible locations. The interruption itself lasted for 
fifteen seconds.  

Procedure. Participants were seated approximately 47cm 
from the computer monitor. After the experimenter 
explained the financial management and interrupting tasks 
to the participant, the participant completed two training 
trials (one with and one without interruptions). In order to 
begin the experiment, participants had to complete two 
consecutive error free trials to ensure the task was well 
learned.   

Each participant was instructed to work at his/her own 
pace. When performing the interrupting task, participants 
were instructed to answer the addition problems as soon as 
the solution was known. Upon resumption of the financial 
management task there was no information on the primary 
task screen to indicate where the participant should resume. 
Removing this information prevented global place keeping 
(Gray, 2000).  

 
Measures.  Keystroke and mouse data were collected for 

every participant. Eye track data were collected using a 
Tobii 1750 operating at 60hz. A fixation was defined as a 
minimum of five eye samples within 10 pixels (approx 2˚ of 
visual angle) of each other, calculated in Euclidian distance. 
The Complete Contract button was defined as an area of 
interest and subtended an area greater than 1.5°. This button 
was separated from its nearest neighbor by at least 2°. 

A postcompletion error was defined as skipping the step 
of clicking the Complete Contract button and making an 
action that is related to a new order on the financial 
management task (e.g. erroneously attempting to click the 
Start Order button or attempting to work on the first 
module). The percent of postcompletion errors in the 
interruption trials was compared to the percent of 
postcompletion errors in control trials. The percent of errors 
was a ratio of the actual number of postcompletion errors to 
the opportunity for a postcompletion error.  

The three predictors of interest (time, number of fixations, 
and fixation on postcompletion step) were calculated for 
every postcompletion action. In the cases where there was 
no interruption prior to the postcompletion step, the period 
of measurement was from the completion of acknowledging 
the pop-window to the next action (i.e. correctly making the 
postcompletion action or making an error). In the cases 
where an interruption occurred just prior to the 
postcompletion action, the period of measurement was from 
the onset of the financial management task immediately 
following the interruption to the next action. The time 
predictor was measured in milliseconds. The total number 
of fixations predictor was a count of the number of 
fixations. Fixation on the postcompletion action button was 
a binary variable that was coded 0 if the participant did not 
fixate on the postcompletion button and 1 if the participant 
fixated on the postcompletion button.  

Results and Discussion 
 
Error Rates. Participants made a total of 27 postcompletion 
errors; 19 participants made at least one postcompletion 
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error. Participants made significantly more postcompletion 
errors during interruption trials (M = 11.1%) than control 
trials (M = 1.4%), F(1, 25) = 18.8, MSE = 90.3, p<.001. The 
low error rate in the control trials shows that participants 
knew the task well.  
 
Logistic Regression Models. The data from the financial 
management task (all postcompletion error and non-error 
actions, regardless of trial type) were formulated into the 
three predictors of interest, as described in the measures 
section of the method. These predictors were used to create 
a task specific logistic regression model (the financial 
model). The task specific equation was as follows: 
 
Predicted logit of error = -2.6 + (.0003 x time) + (.11 x total 
fixations) – (5.5 x postcompletion fixation) 
 

Table 1 shows the logistic regression results for this 
model; the beta weights are under the column labeled “β 
Financial.” To the right of this column are the associated 
standard error, Walds test and degrees of freedom values. 
As indicated in the table, all three predictors loaded 
significantly in the financial model.  

 
Table 1: Logistic regression results. 

 
Predictor β   

Sea Vessel  
β 
Financial  

SE β Walds 
χ2 

df 

Intercept .12 
(n.s.) 

-2.6 
(p<.001) 

.4 -6.5 3 

Postcompletion 
Fixation 

-5.7 
(p<.001) 

-5.5 
(p<.001) 

1.6 -3.4 3 

Total Fixations .63 
(p<.001) 

.12 
(p<.05) 

.05 2.2 3 

Time -.001 
(n.s) 

.0003 
(p<.05) 

.0001 2.3 3 

 
Table 1 also displays the beta weights from the original 

Sea Vessel model. Comparing the weights between the 
models illustrates several interesting things about the 
predictors. First, the postcompletion fixation predictor 
loaded significantly in both models and the values of the 
weights are nearly identical. As participants fixate on the 
postcompletion action button the probability of a 
postcompletion error decreases by nearly the same amount 
in each model. This comparison suggests the inattention and 
associative activation constructs represented by the 
predictor are prevalent across tasks and are important in 
accounting for errors.  

The total number of fixations predictor is significant in 
both models, suggesting that this is a fairly robust predictor 
as well; however, the weights of the predictors are quite 
different. While the likelihood of a postcompletion error 
increases with each additional fixation in both models, the 
increase in probability is not as drastic for the financial task 
model. The difference in the value of the weights may 
reflect differences in the perceptual processing required in 
each of the tasks.  

The time predictor is different in the two models; the 
predictor is not significant in the Sea Vessel model, but it is 
significant in the Financial model. In the Financial model, 
as time increases, the probability of making a 
postcompletion error increases; this behavior is in 
agreement with the Altmann and Trafton (2002) decay 
predictions.  

Although there are some differences in the beta weights, 
there is clear overlap in two of the three predictors when 
examining the significance of the weights. However, simply 
comparing the value of the weights and the significance of 
the weights does not provide insight as to how well the 
models can actually predict when a postcompletion error 
will occur. Specifically, can the sea vessel logistic 
regression model account for the occurrence of 
postcompletion errors on the financial management task?  

 
Receiver-operating characteristic analysis. To begin to 
examine how well each model predicts the occurrence of a 
postcompletion error on the data from the financial 
management task, a receiver-operating characteristic (ROC) 
analysis was conducted. For each participant on the 
financial management task, his or her data from each 
postcompletion step was entered in to each of the logistic 
regression models. Each model produced a predicted 
probability of postcompletion error. These predicted 
probabilities were then compared to the actual occurrence of 
an error to determine how accurate each model was.  

Because the logistic regression models results in predicted 
probabilities, a threshold value must be established to 
categorize cases as errors and non-errors. For example, 
Ratwani et al. (2008) suggested a threshold value of 75% 
for their model on the task on which it was developed. This 
value means when the logistic regression model is applied 
to a particular postcompletion case, if the predicted 
probability is greater than or equal to 75%, the case should 
be classified as an error. If the predicted probability is under 
75%, the case should be classified as a non-error.  

A ROC analysis provides a method for visualizing the 
performance of the logistic regression models at different 
threshold values (Fawcett, 2006). In order to develop the 
ROC curves, these threshold values were systematically 
varied from 0 to 100 percent in each model. The predicted 
errors and non-errors at each threshold value were compared 
to the actual data to generate the true positive and false 
positive rates. Each of these pairs of values was then used to 
generate the ROC curves seen in Figure 2.  

The ROC curves in Figure 2 are plotted in ROC space. 
Points that fall in the upper left hand corner represent 
perfect prediction; the points result in a high true positive 
rate and a low false positive rate. By visually examining 
Figure 2, one can see that the ROC curves for the two 
models are nearly identical, suggesting that the sea vessel 
equation is robust enough to account for the data on the 
financial management task.  
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Figure 2. ROC curves for the logistic models. 

 
In order to quantitatively determine how robust the 

logistic regression models are at predicting postcompletion 
errors on this dataset, the area under the ROC curve can be 
examined. The area under the curve represents the 
probability that the logistic regression model will rank a 
randomly chosen positive instance (i.e. an error) higher than 
a randomly chosen negative instance (i.e. non-error) 
(Fawcett, 2006; Macmillan & Creelman, 2005). The area 
under the ROC curve for the sea vessel model is .96. The 
area under the curve for the financial model is .97. These 
values are considered excellent and suggest that the logistic 
regression models are correctly ranking nearly every case.  

To illustrate the robustness of the sea vessel model, a 
confusion matrix was created by applying the model to the 
financial dataset. A 75% threshold was used to classify non-
errors and error. This threshold was determined to maximize 
true positives and minimize false positives for this particular 
logistic regression model on the sea vessel task (Ratwani & 
Trafton, under review). As can be seen in Table 2, the sea 
vessel model predicts more than 90% of the postcompletion 
errors. This result is based on taking the equation “out of the 
box”; improved performance can be achieved by 
determining the optimal threshold on the financial 
management task.  

A confusion matrix was also generated using the financial 
logistic regression model. This model was applied to the 
financial management dataset using a threshold value of 
30%. Based on the ROC analysis, this threshold value 
maximizes true positives and minimizes false positives. 
Table 3 shows the results. Comparing the tables, it is 
obvious that both models are very accurate. The financial 
model has a 4% higher true positive rate.  

The ROC analysis and the confusion matrix provide 
strong evidence for the robustness of the sea vessel model 
and for the set of predictors in the model. The sea vessel 
predicted over 90% of the errors on the new financial task 
with the 75% threshold, suggesting that the underlying 

theoretical constructs are accounting for the cognitive 
mechanisms contributing to postcompletion errors, 
regardless of task.  

From an applied aspect, note that both models accurately 
identify over 90% of actual errors and have results in less 
than 10% false positives, despite the differences in threshold 
values. The robustness and accuracy of the model strongly 
suggests that these models could be used in an applied 
context to prevent errors before they occur.  The fact that 
the model does not make many false alarms in either 
direction suggests that any system that relies on this 
information would be usable as well as accurate. 

 
Table 2. Confusion matrix based on the sea vessel model.  

 
Actual Value 

True Positive 
25 (92.6%) 

False Positive 
37 (10%) 
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False Negative 
2 (7.4%) 

True Negative 
328 (90%) 

 
Table 3. Confusion matrix based on financial model.  

 
Actual Value 

True Positive 
26 (96.3%) 

False Positive 
34 (9.3%) 

Pr
ed

ic
te

d 
   

   
   

   
   

  
V

al
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False Negative 

1 (3.7%) 
True Negative 
328 (90.7%) 

 
Discriminant function analysis. Logistic regression is an 
excellent statistical technique for maximizing predictive 
value, but it is difficult to draw conclusions about the 
relationships between predictors and the outcome variable.  
Specifically, our interest was in determining which predictor 
has the strongest relationship to the occurrence of an error 
and to examine whether these relationships hold true across 
models and tasks. To answer these questions, discriminant 
function analysis (DFA) was used. DFA is a linear analysis 
technique to predict group membership from a set of 
predictors. Critically, DFA provides information on the 
strength of the relationship between each predictor and the 
outcome variable and the importance of these predictors. It 
is this aspect of DFA that we are most interested in.  

Ratwani et al. (2008) did not perform a discriminant 
function analysis (DFA) on the sea vessel dataset. 
Therefore, we have taken that dataset, as well as the data 
from the financial management task, and conducted a DFA 
on each set of data. As expected, there was a strong 
association between the set of predictors and the occurrence 
of an error in Ratwani et al.’s (2008) dataset, χ2 (3) = 350.9, 
p<.001. There was also a strong association between the set 
of predictors and the occurrence of an error, χ2 (3) = 126.9, 
p<.001, in the financial management dataset. These findings 
confirm the findings from logistic regression analyses.  

To determine the relationship of each predictor to the 
classification function, we examined the canonical 
coefficients for each model. These coefficients indicate the 
unique contribution of each predictor to the classification 
function (outcome variables). This value is analogous to 
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determining the unique variance accounted for by each 
predictor in multiple regression. Table 4 shows the 
canonical coefficients for each of the models on their 
respective datasets. Whether the coefficient is positive or 
negative is irrelevant for determining the strength of 
association to the classification function.  
 

Table 4. Canonical coefficients for each model.  
 

 
In both models, the postcompletion fixation predictor has 

the strongest relationship to the classification function. This 
finding suggests that cue association and inattention to the 
postcompletion action are the most important theoretical 
components accounting for postcompletion errors.  

In the sea vessel model, the total fixations predictor has a 
stronger relationship to the classification function than time. 
However, in the financial model, time has a stronger 
relationship to the classification function than total 
fixations. It is also interesting to note that there is a bigger 
difference in the total fixations predictor between the two 
models as compared to the time predictor. While both of 
these predictors represent decay, total fixations may also 
represent differences in visual processing and this may 
account for the differences observed here. The weights from 
the logistic regression models and the discriminant function 
coefficients suggest that the total number of fixations 
predictor and the time predictor are more variable across 
tasks than the postcompletion fixation predictor.  

General Discussion 
The logistic regression and DFA analyses suggest that the 
postcompletion action fixation was the most important 
predictor. Most striking was the nearly similar beta weight 
for the postcompletion fixation in both models. While one 
might argue that a fixation on a to be completed action 
button is generally necessary before the physical clicking of 
the button in computer-based tasks, there were several 
instances where participants fixated on the postcompletion 
action button and failed to complete the step. Additionally, 
this measure is not the only measure nor is it the only 
measure for other error types (Ratwani & Trafton, under 
reivew). We argue that these analyses provide strong 
evidence that inattention and cue association are critical 
theoretical components accounting for postcompletion 
errors, regardless of the task. 

The time and total number of fixations predictors are also 
important components of the logistic regression model. 
However, several questions remain about the differences in 
the weights of the predictors and the differences in the DFA 
correlations between the predictors and the classification 

function. Total number of fixations may be accounting for 
individual differences in visual processing and possibly 
individual differences in decay rates.  The variability in the 
total number of fixations predictor may be due to the 
different visual processing demands of the two tasks. It is 
unclear why time, a clear measure of goal decay, was not a 
consistent predictor in both logistic models. It is clear that 
neither the Byrne and Bovair (1997) nor the Altmann and 
Trafton (2002) can adequately account for these subtleties in 
their current form. The relationship between these two 
predictors needs to be examined further.  

Regardless of these differences, these results show the 
robustness of the predictive power of the original logistic 
regression model and the general set of predictors. This 
model accounted for over 90% of the postcompletion errors 
on a new task. The overall predictive power of this logistic 
regression model on two different tasks is encouraging and 
suggests that an understanding of the cognitive mechanisms 
underlying procedural errors can lead to prediction.   
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Function Coefficients 

 
Predictor Sea Vessel Model Financial Model 

Postcompletion Fixation .88 .73 

Total Fixations -.74 .-27 

Time .35 -.43 
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