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Abstract 

This paper is devoted to a study of the nonlinear evolution of a disturbed plane 

ftame front in a hydrodynamic instability regime induced by thermal expansion of the 

burnt gas. 

It is shown that. in sufficiently small-scale flames, spontaneous instability appears 

in the guise of stationary wide-spaced irregular folds. · However. in sufficiently large

scale flames, one encounters a completely new type of hydrodynamic instability: the 

tlame front splits into separate cells which are constantly subdividing and merging in a 

chaotic manner. The average dimension of the cells is approximately five times greater 

than the wavelength of the disturbance which has the highest amplification rate 

(according to the linear the.ory). 
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1. Introduction 

In a recent paper on hydrodynamic instability of premixed flames [ 1] the following 

equation describing the evolution of the perturbed flame front was derived 

(1) 

where 

Here z = F(x, y ,t) is a perturbation of a plane flam.e front; Ub is the velocity of the 

undisturbed plane flame front relation to the burnt gas; Du.. is the thermal diffusivity of 

the gas, Le = Dthl Dmot - Lewis number; DmDt is the diffusivity of the deficient reactant; 

{3 = E( Tb- Tu. )I R 0 Tb2 , where Tu, Tb are the temperatures of the unburnt and burnt gas, 

respectively; E is the activation energy; R 0 is the universal gas constant; e = Pul Pb is 

the density ratio (thermal expansion coefficient); 4h = Dthl Ub is the flame thickness. 

Eq. ( 1) was derived on the assumption that the thermal expansion of the gas is weak, 

i.e. (1-e) « 1. 

It is readily seen that the dispersion relation corresponding to the linear stability 

problem for a plane flame front (F = 0) is 

a=* (1-e) Ubk - [1+ * ,B(Le -1)]Du..k2 

(F"' exp(at +ikx) . k =If I) . 

(2) 

Hence it follows that if Le > Lee = 1-2/ {3 (i.e., in the absence of thermo-diffusive insta

bility [ 1]) there exists a wavelength 1\c = 2rr/ kc corresponding to the maximum 

amplification rate o small disturbances (maximum a). 

Contrary to this prediction of the linear analysis, numerical experiments with the 

one-dimensional version of Eq. (1) in an interval of width lOA.c showed that during the 

flame's ·nonlinear evolution there develop only one or two steady folds, showing very 

sharp edges toward the burned gas [2] (Fig. 1). The speed of the wrinkled flame 
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Uw = Ub -Ft is almost independent of the initial disturbance; it is .approximately: 

Numerical experiments with Eq. ( 1) are conveniently done after writing it in the follow-

ing parameter-free form, which is obtained by an elementary rescaling of the variables: 

(3) 

The shape of the steady-state front, i.e., the dimensions of the arc-shaped folds and 

their distribution over the front, depends essentially on the initial disturbance. The 

distance between adjacent folds may be significantly greater than the wavelength 

Ar; ::: 211'/ kc corresponding to the highest amplification rate of small disturbances 

(according to the linear theory). 3 Such folds are frequently formed when the flame 

crosses various kinds of obstacles, such as electrodes [ 4] or a widely-spaced wire grid 

[3]. 

The eft'ects of diffusion and head conduction are obviously most significant in the 

zone of the cusp, where the curvature of the front is extremely large. Outside this 

region the flame may be described perfectly well by the_ following truncated equation, 

corresponding to the Darrieus-Landau model: 

(4) 

Since the Darrieus-Landau model does not involve any characteristic length, Eq. ( 4) 

permits the existence of flames in which the distances between consecutive folds are 

arbitrarily large. 

If the distance between the folds is increased indefinitely, the stabilizing eft'ects of 

stretching and curvature are weakened, and one expects new folds to appear. Thus, in 

order to investigate the fully developed hydrodyanamic instability one must consider 

sufficiently large-scale flames. Experiments of this type were recently carried out, in 

3Eq. (1) provides an example of how the characteristic structure dimension (2rr/ kc) predicted by 
linear stability ana:lysis may differ significantly frorri the dimension yielded by the original nonlinear system. 
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connection with the investigation of accidental industrial explosions, by Lind and Whit

son [5] and Ivashchenko and Rumiantsev [6]. Lind and Whitson experimented with lean 

hydrocarbon'"air mixtures in 0.05 mm thick polyethylene film hemispheres of 5 m and 

10 m radius. Ivashchenko and Rumiantsev carried out similar experiments in 0.05 to 

,. . 0.08 mm thick rubber spherical shells of 2.5 m radius. It was noticed that, as the flame 

expanded, it became rough, with a "pebbled" appearance. This structure increased in 

size to about 0.4 to 1.0 m, with .finer· structure superimposed. It was observed that for 

systems with markedly different burning velocities the measured space velocity was 1.6 

to 1.8 times the expected value, calculated from the normal burning velocity measured 

in the laboratory (Lind & Whitson [5]). 

.. 

Ivashchenko and Rumiantsev also noted that when the sphere radius reached "'5 

em the flame became cellular, with cells about 1 to 2 em in size. As the flame sphere 

grew the cell size increased, reaching ..... 5 to 10 em for sphere radius "'0.3 to 0.5 m. As 

the cells appeared the ftame propagati~m speed increased, reaching its maximum value 

at radius "'0.3 to 0.5 m. The maximum speed was 1.5 to 2 times the speed of the undis

turbed spherical flame. 

Of the earlier experimental observations of hydrodynamic instability i:n flames, we 

would like to mention the work of Simon and Wong [7], studying flames in a rich 

methane-air mixture filling a soap bubble of initial radius "'5 em. When the flame 

radius was "'1. 5 em, the initially smooth flame front took on a cellular appearance, and 

simultaneously the tlame was seen to accelerate. However; the relatively small volume 

of the mixture did not permit a sufficiently developed cellular instability and the wrin

kled flame did not reach the. uniform propagation mode . 
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2. Two-dimensional patterns~ 

It turns out that the nonlinear equation (1), considered in a sutiiciently wide 

region, may describe (in addition to the wide-spaced folds) also cellular instability of 

the ftame. 

Fig. 2 shows the results of a numerical solution of the one-dimensional version of 

Eq. ( 1) over interval of length. 40>-c with periodic boundary conditions. As we see; in 

this case irregularity fluctuating cells do indeed appear together with the large-scale 

substructure (one fold). 

The average cell dimension is about 5 times gre.ater than the characteristic 

wavelength >-c predicted by linear stability analysis. For example, taking ~ = 0.2, 

{J = 15, Le = 1.2, lth = 0.02 em the average cell dimension (5>-c) is apprmdmately 7.5 

em. This estimate is in reasonable. agreement with experimental observations. The 

average propagation velocity of the flame is Uw = Ub [ 1 +0.4( 1-~ )2] which is markedly 

greater than that obtained for an interval of length 10A.c, when cellular structl:ITe does 

not develop at all. 

3. Three-dimensional patterns 

One can best understand the nature of hydrodynamic instability by considering 

the two-dimensional version of Eq. ( 1), which describes the evolution of the actual 

ftame surfa.ce. 

Fig. 3 presents the results of solving Eq. ( 1) in a square 5A.c x5A.c with periodic 

boundary conditions. 4 As initial disturbance we took the function 

F(x,y,O) = 4lthcos(kcz)cos(kcy). (5) 

The limiting steady configuration is in good agreement with studies of the one-

4The new numerical computation method used here is described in the Appendix. 
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dimensional problem (Fig. 1) and also with experimental observations [3,4]. 

In this case the propagation speed of the wrinkled flame is Uw = Ub[1+0.3(1-t:)2], 

i.e., appreciably higher than in the one-dimensional case (Fig. 1).' 

However, in order to observe cellular instability one must enlarge the domain so 

much as to require an enormous amount of computer time. Fortunately, this difficulty 

can be avoided. Recall that in an expanding spherical flame the cell size at the stabil-

ity threshol:d is considerably less than that reached in flame propagation. A similar 

cell-diminishing effect may be obtained by considering a spherical flame stabilized on a 

point source of combustible mixture or a plane flame in a stabilizing acceleration field. 

Conditions resembling the last-named case are observed in a flame in a periodically 

varying acceleration field [3]. 

Thus, if one introduces such effects as stretching, curvature or acceleration, cells 

may be observed even in a 5\: x5\; square. For example, to incorporate the effect of 

curvature, it suffices to augment the right-hand side of Eq. ( 1) by the term 

-(ZUbl R)F, where R is the radius of the undisturbed flame [8]. 

With curvature includea, the dispersion relation (2) is modified, to become: 

(6) 

Hence, when the flame radius· falls below a certain critical value Rc, a is negative for all 

k. Thus a spherical flame of sufficiently small radius is stable, instability setting in at 

R > Rc. Near the stability threshold the unstable modes concentrate around "Ac - the 

wavelength corresponding to maximum amplification rate a. 

Fig. 4 shows the result of a numerical solution of the initial-value problem for the 

case R = l.ZRc. The domain, boundary conclitions and initial data are identical to 

those employed in the preceding case (Fig. 3). Now, however, the flame front ulti-

mately takes the form of a stationary regular hexagonal cellular structure. 5 The cell 

5When R is near Rc this structure may also be constructed analytically, using a familiar technique of bi
furcation theory (e.g. [8]). 

"i'. ~ 
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size is determined by the critical wavelength .Ac. 

Let us see what happens when the flame radius R is increased. Fig. 5 illustrates 

the successive evolution of the flame front at R = 6.25Rc and initial data (5). At first, 

the flame front assumes a quasi-regular hexagonal structure. However, this stage is 

now transient. With the passage of time, the quasi-regular arrangement of cells disap

pears, their average diameter constantly increases and reaches the order of 3Xc. It is 

interesting to note that the general corltiguration of the flame front shows no tendency 

to stabilize. The cells are in a state of permanent irregular recombination. Although 

the smallness of the domain and the curvature effect influence the behavior of the dis

turbed flame, the resulting configuration as a whole is in qualitative agreement with the 

results of the one-dimensional analysis (Fig. 2). 

4. Concluding remarks 

Our numerical experiments suggest that in large-scale flames heat-expansion 

induced instability may appear i:n two guises: 

(i) deep folds, actually described by the truncated Eq. (4) and therefore having no 

characteristic size; 

(ii) fine structure (cells) of a .characteristic size depending on diffusion effects. 

In relatively small-:scale flames, it is fairly difficult to ·introduce a reasonable definition 

that makes a distinction between the two patterns. However, observations of expand

ing spherical flames indicate that the disturbances formed at the initial stage of flame 

propagation are representatives of the .type (i) pattern. 

Numerical experiments show that an increase in flame aspect ratio implies an 

increase in propagation speed. However, stabilization of the velocity of a cellular flame 

is a slow process, and as yet we have not been able to determine the limiting valUe of 

the average velocity corresponding to .an ,."in.fulite" plane self-turbulent flame. On the 
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other hand. the slow stabilization of the velocity is in good agreement with experimen

tal data [ 4,6]. 

In the case of lean methane-air mixtures. hydrodynamic instability should com

bine with thermo-diffusive instability, which may appear as small cells superimposed 

on the larger heat-expansion induced cells. However~ there is no mention of this effect 

in [6]. Perhaps the superfine structure was too weakly expressed to be easily detected. 

In conclusion, we would like to point out other possible influences. such as effects 

of steady or time-varying acceleration (Taylor instability, interaction of pressure waves 

with the flame), that may cause small-scale cellular structure [3]. 
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APPENDIX 

In the two-dimensional case, Eq. (3) was solved in the region -l ~ ~. TJ ~ l, T;:;.: 0 

with initial conditions <P(~.TJ.O) = <P 0 (~.TJ), and periodic boundary conditions. In view of 

the boundary conditions, the function ip and the integral operator n<Pl may be 

expressed as follows: 

<P((.T}:r) = (Al) 
m,n=-ao 

(A2) 

We now define mesh points (~i ,TJ; ,T_e.) in the region in which the equation is to be solved: 

~i = -l +if).~ , n; = -l +j 6.7] , T,e = k 6.-r (A3) 

where 0 ~ i, j ~ N -1. 6.~ = 67] = 2l IN. The values of the function ~(( .17. -r) at the mesh 

points are denoted by 

(A4) 

Eq. (3) will be solved by the so-called splitting method. That is, we express Eq. (3) as 

(A5) 

where 

The nonlinear term L2 <P is split into a sum 

(A6) 

Suppose we know the value of <P(~.7].-r) at time T = -r0. The following three problems 

may be associated with Eq. (A5): 

(A7) 
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~J2> = L2.~~(2) . To~ T~ To+ /).T • ~(2)(~.7J,To) = ~(l)(f;7J,To+/).T) · (.AB) 

~~2) = L2.11~(3) , To~ T~ To+ /).T , ~(3)(~.7J.To) = ~(2)(~.7J.To+[).T). (A9) 

The function ~(3)(~.7'}.T0 +[).T) approximates the exact solution ~(~.7],T0 +[).T) of Eq. (A5) to 

within O(([).T)2), i.e., 

(AlO). 

Since .Eq. (A7) is linear with constant coefficients and periodic boundary conditions, it 

is natural to solve it by Fourier methods. The discrete analog of the Fourier series (Al) 

is 

(All) 

where (~.7'}) = (~,.7Ji ). The coefficients Cl.mn(i0) maybe derived from the function values 

~(~i·7Ji ,7"0) by fast Fourier transform. We then obtain from (A7) 

(A12) 

where l'mn = (1r/l) v'm2+n 2. Once we know ~Imn(T0 +/).T), we can determine 

~(1)(~, ,7Ji ,7]0 +/).T) using Eq. (A12) and the fast Fourier transform. 

Problems (AB) and (A9) are solved by finite differences. Note that in the solution 

of problem (A7) the stability condition imposes no restrictions on the spacing /).T. In 

order to maintain /).T as large as possible, the following implicit scheme was used to 

solve Eq. (AB): 

~,}-~~ 
/).T 

(A13) 

The superscript 0 or 1 in this formula indicates that the function is computed at time 

To or To+~T. respectively. The coet!icients are found from (AB) using the explicit 

scheme of the first-order accuracy 
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[Q!_JI = 
a[],; (A14) 

Together with periodic boundary conditions, Eq. (A13) yields a system of linear equa

tions for the unknown functions ~A. The coefficient matrix of this system is 3-diagonal 

and is therefore easily inverted. Eq. (A9) is solved by the same method. 

The linear stability analysis imposes no restrictions on the spacings ~~.~7'].~1". The 

optimum spacings were therefore determined experimentally. The ·spacing ~~may be 

estimated roughly. based on the reasoning that the critical wavelength 8rr should con-

tain -10 intervals 6.~. In the solution of the two-dimensional problem we took 

~~ = ~77 = ~-r = 2 and N = 64 (number of mesh points). Choosing N as a power of 2 

guaranteed maximum efficiency of the fast Fourier transform. Thus. an interval of 

length 2l = N ~~ included approximately 5 critical wavelengths. The computation rate 

(CPU) was approximately 1 minute per 60 time steps. In each case the solution was 

continued until the ftame had settled down to a steady or pulsating regime; this 

required some 250 lime steps. 
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FIGURE CAPnONS 

Fig. 1. Downward-propagating stationary folded fiame front. Each curve represents 
the configuration of the fiame front at four consecutive equidistant instants of 
time. Runs (a) and (b) correspond to different initial disturbances. 

Fig. 2. Downward-propagating fiame front in cellular instability regime. 

Fig. 3. Downward-propagating stationary fiame front with .four folds. Three
dimensional pattern. 

Fig. 4. Stationary fiarrie front with regular hexagonal cells at R = 1.2Rc. Three
dimensional pattern. 

Fig. 5. Successive evolution of fiame front at R = 6.25Rc. Configurations ~a.)~b)fc)~ d) 
correspond to times 1 = 120,360,720,1040. 
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FigUre 5 (a,b) 
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