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Abstract

Phylogenetic profiling has been widely used for comparing bacterial communities, but has so far been impossible to apply
to viruses because of the lack of a single marker gene analogous to 16S rRNA. Here we developed a reference tree approach
for matching viral sequences and applied it to the largest viral datasets available. The resulting technique, Shotgun UniFrac,
was used to compare host-associated and non-host-associated phage communities (130 total metagenomes), and revealed
a profound split similar to that found with bacterial communities. This new informatics approach complements analysis of
bacterial communities and promises to provide new insights into viral community dynamics, such as top-down versus
bottom-up control of bacterial communities by viruses in a range of systems.
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Introduction

The phylogenetic composition of bacterial communities is

primarily determined by whether they are found in host-associated

or free-living environments [1]. Much less is known about the

phylogenetic composition of viral communities, which may

comprise most of the genetic diversity on Earth. If viral

communities follow this pattern, microbial and viral community

composition should be correlated, adding to recent evidence that

phage predation can exert top-down control on microbial

communities [2,3].

The lack of a single marker gene in viral genomes complicates

phylogenetic profiling of viral communities, a powerful technique

for studying microbial communities, and previous studies have

focused on profiling viral gene functions [4]. To complement these

data with phylogenetic profiles of phage community composition,

we developed Shotgun UniFrac (Figure 1). Shotgun UniFrac

matches metagenomic reads against full phage genomes from the

Phage Proteomic Tree [5] using BLAST. OTUs are assigned to

reads by best hit, discarding reads with no significant hit, and

UniFrac is applied using QIIME [6] and the Phage Proteomic Tree.

Results

We applied Shotgun UniFrac to 130 phage metagenomes from

diverse environments. As observed with microbial communities,

the primary factor separating metagenomes was whether they

were derived from a free-living or host-associated environment.

Host-associated environments vary more than a variety of free-

living communities (considering only matches to the subset of

viruses in the reference tree), and phage communities from the

same host species tended to cluster (Figure 2a).

Our analysis also included 26 human feces phage metagenomes

from 12 individuals with between 1 and 4 metagenomes per

individual (recently presented in [7]). To include a metagenome in

this analysis, we required a minimum of 200 reads assignable to a

viral genome. We observed clustering of metagenomes by

individual, although some aberrant clustering occurred

(Figure 3a). This is likely due to the limited number of phage

genomes currently available, which limits the resolution of

Shotgun UniFrac (see Discussion). Confirming the observations

of [7,8] we found between-individual Shotgun UniFrac distances

to be significantly greater than within-individual distances

(Figure 3b; p = 3610223, one-tailed t-test; p,0.001, Monte Carlo

t-test with 1000 iterations), suggesting stability in distal gut phage

community membership over time.

Discussion

Taken together, our results suggest that phage communities

mirror microbial communities, and that comparison of phage

communities by phylogenetic identity of viral types, even with

relatively few sequenced phage genomes available to assign

sequences, can be a powerful complement to functional profiles

of the communities. Collecting viral metagenomes, microbial

metagenomes, and 16S reads from the same samples and

comparing these data with techniques such as Procrustes analysis

[9] will provide insight into fundamental parameters of microbial

ecosystems, such as whether control occurs in a top-down or

bottom-up manner.

Currently the limiting factor in applying Shotgun UniFrac to

phage data is the availability of phage genomes, because sequences

not matching known genomes are excluded from the analysis. For

some metagenome types less than 1% of the viral metagenomic
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Figure 1. Schematic of the Shotgun UniFrac analysis pipeline.
doi:10.1371/journal.pone.0016900.g001

Figure 2. Principal Coordinates plot of weighted Shotgun UniFrac distances between viral communities where each point
represents a metagenome colored by (a) host type and (b) data source.
doi:10.1371/journal.pone.0016900.g002
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sequences could be classified (Table 1, Table S1) resulting in

relatively few sequences per metagenome for comparing commu-

nities. The UniFrac results presented in Figures 2 and 3 are based

on exactly 200 sequences per metagenome. Data sets of this size

are useful for comparing microbial communities [10] and phage

communities (Figure 2), but increasing the database of sequenced

phage genomes and their phylogenies will further enhance the

resolution of these techniques. Better resolution will aid under-

standing the complex dynamics and large compositional shifts seen

in the human infant microbiome and virome [11,12] that might be

due to predator-prey cycling leading to chaos. Understanding such

disruptions might be key to developing an understanding of

probiotics and a wide range of time-variable diseases, such as

Crohn’s disease.

Materials and Methods

Viral community metagenomic data was compiled from

CAMERA [13], MG-RAST [14], and study authors [7] (Table

S2, Table S3). There was no community clustering by data source

(Figure 2b). Sequences were assigned to source viral genomes using

Shotgun UniFrac, an extension of the reference-based OTU

picking strategy presented by [15], using the open source QIIME

and PyCogent [16] toolkits. Shotgun UniFrac was applied against

Figure 3. (a) UPGMA clustering of individuals by weighted Shotgun UniFrac distances between metagenomes. Cases where
metagenomes from a single individual cluster monophyletically are highlighted in red. Cases where only a single metagenome for an individual was
included are highlighted in blue. 1000 jackknife iterations were performed at a depth of 200 sequences per metagenome, and jackknife support
values are provided for each node. The Reyes et al. analysis from which these samples were derived studied gut microbial communities from human
twins and their mothers. The labels for each sample indicate the individual where: Fn corresponds to family number n; M corresponds to mother; and
T1 and T2 refer to twin 1 and twin 2, respectively. (b) Histograms of within individual (grey) and between individual (pink) Shotgun UniFrac distances.
doi:10.1371/journal.pone.0016900.g003

Table 1. OTU assignment statistics by metagenome type.

Metagenome Type n

Mean fraction
failed OTU
assignments

St. Dev. fraction
failed OTU
assignments

Median fraction
failed OTU
assignments

Min fraction
failed OTU
assignments

Max fraction
failed OTU
assignments

Sequences
(OTU assign-
ment input)

Sequences
(OTU
assignment
output)

Free-living (thermophilic) 2 0.9675 0.0040 0.9675 0.9635 0.9715 30,624 939

Northern Islands Coral 4 0.9851 0.0038 0.9848 0.9813 0.9893 1,079,057 17,433

Mosquito 3 0.9898 0.0016 0.9909 0.9876 0.9910 1,612,878 16,814

Human Feces 81 0.9908 0.0104 0.9929 0.9418 1.0000 1,357,353 12,616

Porites compressa (coral) 6 0.9890 0.0068 0.9931 0.9760 0.9941 238,123 2,567

Free-living (mesophilic) 32 0.9931 0.0037 0.9934 0.9819 1.0000 7,471,890 52,432

Human Lung 5 0.9970 0.0001 0.9970 0.9970 0.9971 1,728,378 5,112

doi:10.1371/journal.pone.0016900.t001
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full phage genomes from the Phage Proteomic Tree, and the

associated reference tree was used for phylogenetic beta diversity

analysis. Sequences were assigned to a viral genome if they

achieved an E-value of less than 0.001, resulting in the viral OTU

table (Table S4). The viral OTU table was then sub-sampled to

200 sequences per metagenome (Table S5) to control for depth of

coverage. The UniFrac diversity metric was applied to the sub-

sampled viral OTU table using the Phage Proteomic Tree. The

version of the Phage Proteomic Tree used here contains 651 tips

built from fully sequenced phage genomes as described in [5].

Community clustering and within- versus between-individual

Shotgun UniFrac distances were calculated using Weighted

UniFrac. Shotgun UniFrac analysis, Principal Coordinates

Analysis, distance calculations and plotting were all performed

using QIIME, and Shotgun UniFrac is accessible in QIIME

v1.2.0-dev using the pick_reference_otus_through_-

otu_table.py workflow.

The number of input metagenomes by type were: Reclaimed

water at discharge point (n = 1); Reclaimed water at point-of-use

(n = 2); Freshwater stromatolite (n = 2); Hot Spring, Yellowstone

National Park (n = 2); Potable water (n = 1); Saltern (medium

salinity) (n = 5); Ocean (db:MG-RAST) (n = 4); Saltern (high

salinity) (n = 3); Northern Islands Coral (n = 4); Marine stromat-

olite (n = 1); Ocean (db:CAMERA) (n = 4); Freshwater (n = 4);

Human feces (n = 80); Saltern (low salinity) (n = 3); Healthy human

lung (n = 2); Mosquito-associated (n = 3); Cystic fibrosis human

lung (n = 3); Porites compressa (coral, wild and experimentally

treated) (n = 6). Four overlapping metagenomes (Ocean (db:MG-

RAST) and Ocean (db:CAMERA)), were used as controls to

ensure that the source database did not affect the clustering results

which is possible, for example, if one required preprocessing that

the other did not.

Supporting Information

Table S1 OTU assignment statistics by metagenome.

(XLS)

Table S2 Description of metagenome types and sources.

(XLS)

Table S3 Full QIIME metadata mapping file.

(XLS)

Table S4 Full viral OTU table (i.e., metagenome 6 viral OTU

abundance matrix). These data were used in jackknifed weighted

Shotgun UniFrac calculations (Figure 3a).

(XLS)

Table S5 Viral OTU table sub-sampled to 200 sequences per

metagenome. These data were used in weighted UniFrac

calculations (Figure 2 and Figure 3b).

(XLS)
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