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Abstract

We present a general framework to predict the excess solubility of small molecular solids (such as phar-

maceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution

with conventional molecular models. The present study used molecular dynamics with the General AM-

BER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine,

and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility

enhancement and the results are in good agreement with available experimental data. The accuracy of the

predictions in addition to the generality of the method suggest that molecular simulations may be a valuable

design tool for solvent selection in drug development processes.
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I. INTRODUCTION AND MOTIVATION

Solubility drives a huge range of biological and physical processes, and so prediction and con-

trol of solubility is a key challenge for modeling in the physical and biological sciences. For exam-

ple, crystallization is an important solid-liquid separation process capable of creating high purity

products, but control of crystallization requires knowledge of the equilibrium solubility of the

solid solute(s) of interest [1–4]. Here, we are particularly interested in solids of small molecules,

such as pharmaceutical solids. Pharmaceutical solids constitute an important class of compounds

subject to many design challenges. Knowledge of the solubility of pharmaceutical solids is im-

portant not just for purification, formulation, and production (e.g. crystallization) but additionally

for drug synthesis and bio-availability [5–7]. Each of these processes can have different solubility

requirements, complicating design. Additionally to satisfy pharmaceutical requirements of solu-

bility and price, multiple co-solvents may be used during manufacturing and formulation [5, 7].

This is further complicated by the often complex chemistries involved.

Since solubility plays such a key role in molecular and process design, we want methods which

can predict the ability of a given solvent to dissolve a particular solute. These methods could not

only guide the design process by predicting solubility in advance of experiment, but could also

provide new insight into mechanisms driving solubility. But, as a consequence of the many com-

peting intermolecular forces, the development of such methods is extremely challenging. While

considerable work has been done in this area, it is still generally the case that solubility predic-

tions rely on empirical and semi-empirical correlations [8]. These correlations are often limited

to a specific solvent, and require extensive experimental solubility data for a range of chemically

different solute molecules to allow for their training. Recently, promising solubility predictions

have been made with the theoretically based NRTL-SAC model [9], the 2005 revised MOSCED

model [10], and the PC-SAFT equation of state [11–13]. Normally, however, solubility data is

first required for the solute of interest to determine the necessary model parameters prior to mak-

ing predictions in the solvent of interest. All of the PC-SAFT parameters may be computed using

ab initio methods 11 . However, as common with equation of state methods [14], the results are

sensitive to the employed combining rules, and are difficult to predict a priori [11].

Since many of these methods require extensive input data, then, they are often poorly suited

for design problems like designing processes for dealing with a novel drug candidate, since this
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extensive data may not yet be available. Thus, we seek methods which predict solubility from

physical principles. Currently, there are very few available approaches which do this. Previous

attempts have been made to use the predictive UNIFAC method to characterize the solution phase

behavior of pharmaceutical solids along with limited pure component data to predict equilibrium

solubility (see for example refs. 15, 16). But UNIFAC parameters are missing for many molecules

of pharmaceutical interest, and predictions with existing parameters may show appreciable error

[15, 16]. Efforts are currently being made to extend UNIFAC to pharmaceutical compounds [17]

and to develop methods to estimate missing parameters [18, 19]. With use of ab initio calculations,

COSMO based methods have shown great promise in predicting solubility in the absence of ex-

perimental data [20–22]. While COSMO models only solution-phase properties, the solid-phase

properties necessary to make solubility predictions are estimated using an empirical correlation of

experimental data [20]. COSMO is under active development, and has been successfully used in

both academic and industrial settings [22]. A comparison of a priori predictions of infinite dilution

activity coefficients, binary vapor-liquid equilibrium, and the solubility of pharmaceutical solids

with the various COSMO and UNIFAC was conducted by Gmehling and co-workers [17, 23], and

the interested reader is directed therein for a detailed comparison. Nonetheless, these methods

are unable to probe the atomistic details of the solvation process. Such insight may be useful for

rational design purposes.

Thus, we seek physical techniques which can predict solubilities in the absence of experimental

data. Here, our focus is on atomistic molecular simulations, which can do exactly this. In this case,

not only will such a method help guide solubility control, but also provide insight into the molec-

ular level details governing solubility. However, only a limited number of molecular simulation

studies have attempted to directly predict the solubility of solids [24–31]. Solubility calculation

requires determining the concentration at which the chemical potential of the solute in solution is

equal to that in a solid (crystalline) phase, at the same temperature and pressure. The solubility

may be computed in the complete absence of experimental thermodynamic data so long as the

solute solid crystal structure is known [24–26, 28, 29], or may alternatively be computed from

experimental data [27, 31] or estimated using group-contribution methods [30] or other predictive

means [31].

In the present study we describe a framework using molecular simulation to compute the ex-

cess solubility of small molecular solids in binary solvents via molecular simulation. By excess
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solubility, we refer to the solubility in the actual solution relative to what would be observed if the

solvents mixed to form an ideal solution [32, 33]. The study of excess solubilities is advantageous

for a number of reasons, the most important of which is that framing these as relative or excess

solubility calculations means it is not necessary to calculate the properties of the pure solid. Thus,

this work can focus entirely on solution-phase properties. If absolute solubilities are desired, ex-

cess solubilities can be converted to absolute solubilities using knowledge of a single reference

solubility or by modeling the solid phase directly (as done in refs 24–26, 28, 29).

We use our framework to study the excess solubility of acetanilide, acetaminophen, phenacetin,

benzocaine, and caffeine (see fig. 1) in binary water/ethanol mixtures. The solutes were all mod-

eled using the General AMBER Force Field. Acetaminophen and phenacetin are both acetanilide

derivatives, allowing for a systematic test of the models. Overall, the molecular simulations are

in good qualitative agreement with experiment and are able to predict the existence of an extrema

in the the excess solubility at intermediate binary solvent concentrations. The encouraging results

highlight the potential use of molecular simulation as a design tool for solvent selection.

II. METHODOLOGY

A. Thermodynamic Approach to Solid-Liquid Equilibrium

III. METHODOLOGY

The solubility of a solid solute (component 1) in a binary solvent (components 2 and 3) may

be described by the classical equations of phase-equilibrium thermodynamics. At equilibrium,

the temperature, pressure, and chemical potential of component 1 in both phases are equivalent.

Assuming that the solid phase is pure component 1 (i.e. that the solvent does not dissolve into the

crystalline solid solute in equilibrium with the solution phase), the equality of chemical potential

criteria takes the form

βµS
1 (T, p) = βµL

1,m

(
T, p,NL

1 , N
L
2 , N

L
3

)
(1)

where µS
1 and µL

1,m are the chemical potential of component 1 in a pure solid (S) and in the liquid
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(L) phase, respectively, T is the temperature, p is the pressure, NL
1 , NL

2 , and NL
3 are the number

of molecules of component 1, 2, and 3, respectively, in the liquid solution phase, and β−1 =

kBT where kB is Boltzmann’s constant. The chemical potential may be written as the sum of a

residual (res) and ideal gas (ig) term. The residual chemical potential of component 1 in the liquid

solution phase may be computed using conventional free energy calculations in the isothermal-

isobaric (NpT) ensemble [34–36]. Using classical molecular models this leads to the following

re-expression of eq. (1) [37, 38]

βµS,res
1 (T, p)+ln

(
Λ3

1

vS1 (T, p)

)
−lnZ ig

1 = βµL,res
1,m

(
T, p,NL

1 , N
L
2 , N

L
3

)
+ln

(
NL

1 Λ3
1

〈V 〉T,p,NL
1 −1,NL

2 ,N
L
3

)
−lnZ ig

1

βµS,res
1 (T, p)− ln vS1 (T, p) = βµL,res

1,m

(
T, p,NL

1 , N
L
2 , N

L
3

)
+ ln

(
NL

1

〈V 〉T,p,NL
1 −1,NL

2 ,N
L
3

)

βµS,res
1 (T, p)− ln vS1 (T, p) = βµL,res

1,m

(
T, p,NL

1 , N
L
2 , N

L
3

)
+ ln

(
x1,m

(
NL

1 +NL
2 +NL

3

)
〈V 〉T,p,NL

1 −1,NL
2 ,N

L
3

)
(2)

where Λ1 is the thermal de Broglie wavelength of component 1 (which is only a function of T ), vS1
is the molar volume of component 1 in the solid phase, Z ig

1 is the ideal gas configuration integral of

a single molecule (which is also only a function of T ), 〈V 〉T,p,NL
1 −1,NL

2 ,N
L
3

is the ensemble average

volume of the liquid solution phase system in the absence of the solute molecule that is being

coupled/decoupled to the system (to compute βµL,res
1,m ), and x1,m is the mole fraction of component

1 in the liquid solution phase. Since the two phases are at the same temperature at equilibrium,

Λ1 and Z ig
1 conveniently cancel out of the equality. Equation (2) may then be solved for the mole

fraction of component 1 in the liquid solution phase at equilibrium

lnx1,m =
[
βµS,res

1 (T, p)− βµL,res
1,m

(
T, p,NL

1 , N
L
2 , N

L
3

)]
− ln vS1 (T, p) + ln

(
〈V 〉T,p,NL

1 −1,NL
2 ,N

L
3

NL
1 +NL

2 +NL
3

)
(3)

Equation (3) is rigorously correct and forms the basis of the present study.
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Next, let us assume that the equilibrium solubility of component 1 is sufficiently small that it

may be considered infinitely dilute. The infinite dilution limit is achieved in a molecular simulation

free energy calculation by adding a single solute molecule (NL
1 = 1) to the binary solvent. If

NL
2 +NL

3 � 1, eq. (3) reduces to

lnx1,m =
[
βµS,res

1 (T, p)− βµL,res,∞
1,m

(
T, p, xb2, x

b
3

)]
+ ln

vbm
(
T, p, xb2, x

b
3

)
vS1 (T, p)

(4)

where the superscript∞ is used to indicate the infinite dilution limit, vbm is the solute free molar

volume of the binary solvent, and xb2 and xb3 are the solute free mole fractions of component 2 and

3 (the binary solvent), respectively. Since the solute is infinitely dilute, eq. (4) may be re-arranged

to obtain the equilibrium solubility in molar concentrations (c1,m in moles/volume)

ln c1,m = ln

(
x1,m

vb
(
T, p, xb2, x

b
3

)) =
[
βµS,res

1 (T, p)− βµL,res,∞
1,m

(
T, p, xb2, x

b
3

)]
− ln vS1 (T, p) (5)

In the study of multicomponent solutions, it is often most interesting to study the excess prop-

erties of the solution [14]. Excess properties of solutions are the thermodynamic properties of a

solution relative to those of an ideal solution at the same T , p, and composition. In an ideal so-

lution, all excess properties are therefore zero. Following the work of O’Connell and co-workers

[32, 33], the expression for the log excess solubility of component 1 (in mole fractions) in the

binary solvent (lnxE1,m) is given by the expression

lnxE1,m = lnx1,m −
[
xb2 lnx1,2 + xb3 lnx1,3

]
(6)

where x1,m, x1,2, and x1,3 are the equilibrium solubility of component 1 in the binary solvent, in

pure component 2, and in pure component 3, respectively, and the terms in brackets correspond to

the solubility if components 2 and 3 mixed to form an ideal solution. In the present study we will

likewise compute the log excess solubility of component 1 (in moles/volume or mass/volume) in

the binary solvent (ln cE1,m) as
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ln cE1,m = ln c1,m −
[
xb2 ln c1,2 + xb3 ln c1,3

]
(7)

where c1,m, c1,2, and c1,3 are the equilibrium solubility of component 1 in the binary solvent, in pure

component 2, and in pure component 3, respectively, and the terms in brackets again correspond to

the solubility if components 2 and 3 mixed to form an ideal solution. In eq. (7) the concentrations

may either be expressed in units of moles/volume or mass/volume; the conversion factor of the

molecular weight of the solute cancels out of the expression.

For an infinitely dilute solute, eqs. (4) to (7) lead to the following expressions

lnxE1,m = −βµL,res,∞
1,m

(
T, p, xb2, x

b
3

)
+
[
xb2βµ

L,res,∞
1,2 (T, p) + xb3βµ

L,res,∞
1,3 (T, p)

]
+ ln vb

(
T, p, xb2, x

b
3

)
−
[
xb2 ln v2 (T, p) + xb3 ln v3 (T, p)

]
(8)

and

ln cE1,m = −βµL,res,∞
1,m

(
T, p, xb2, x

b
3

)
+
[
xb2βµ

L,res,∞
1,2 (T, p) + xb3βµ

L,res,∞
1,3 (T, p)

]
(9)

where βµL,res,∞
1,2 and βµL,res,∞

1,3 correspond to the dimensionless infinite dilution residual chemical

potential of component 1 in pure component 2 and 3, respectively, and v2 and v3 correspond to the

molar volume of pure component 2 and 3, respectively. Notice that the properties of the pure solid

solute cancel out of eqs. (8) and (9).

It is interesting to point out that ln cE1,m is equivalent to the change in the negative dimensionless

infinite dilution residual chemical potential of component 1 upon mixing [14], −∆
(
βµL,res,∞

1,m

)mix.

Furthermore, lnxE1,m is equivalent to the sum of −∆
(
βµL,res,∞

1,m

)mix and the change in the log

molar volume of the solvent upon mixing, ∆
(
ln vbm

)mix. The decomposition of lnxE1 and ln cE1,m

is interesting because ∆
(
ln vbm

)mix is a solvent dependent property (independent of the solute),

whereas −∆
(
βµL,res,∞

1,m

)mix results from intermolecular interactions (solute–solvent and solvent–

solvent) and the size of the cavity formed by the solute in the solvent. Additionally, it is interesting

to note that if components 2 and 3 form an ideal solution, x1,m and c1,m are exponential functions
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of the solvent composition whereas βµL,res,∞
1,m is a linear function of the solvent composition [32].

Using eqs. (8) and (9), lnxE1 and ln cE1 may readily be computed by performing a series of

conventional molecular simulation free energy calculations for the solute (component 1) at infinite

dilution in pure component 2 and 3, and at the binary solvent concentrations of interest. Equa-

tions (8) and (9) assume that component 1 is infinitely dilute, typically corresponding to values

of x1,m ≤ 0.01 [33]. However, the work of Ellegaard et al. [33] showed that this assumption

frequently works well when modeling lnxE1 of solid pharmaceutical solutes in binary mixtures for

solute mole fractions in excess of 0.01. The application of eqs. (4) and (5) to compute the relative

solubility of a solute in two pure solvents is discussed in the appendix to this manuscript.

IV. COMPUTATIONAL DETAILS

Force Fields

Acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine (the solutes, see fig. 1) were

all modeled with the General AMBER Force Field (GAFF) [39, 40]. To obtain partial charges for

GAFF, the geometry of each molecule was optimized followed by a single point energy calculation

at the MP2/cc-pVTZ level of theory in a self-consistent reaction field (SCRF) using the polarizable

continuum model (PCM) for water using the default parameters provided in Gaussian 09 [41].

Partial charges were then obtained from the electrostatic potential using the restrained electrostatic

potential (RESP) [42, 43] method in ANTECHAMBER (part of the AMBER 11 simulation suite)

[44, 45].

Since the ultimate goal of the present study is to predict lnxE1 and based on our previous expe-

rience [46], solvent force fields were chosen which accurately model the excess thermodynamic

properties of the binary solvent. The force field for ethanol was constructed as an extension of the

united-atom methanol model of Weerasinghe and Smith [47] which was optimized to reproduce

the composition dependent Kirkwood-Buff integrals (and hence the excess Gibbs free energy)

of aqueous methanol solutions at ambient conditions when used with the SPC/E water model

[48]. The extension of the methanol force field was performed so as to remain consistent with the

original methanol parameterization. The molecular geometry, angle bending force constants, and
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the dihedral potential for ethanol were all adopted from the united-atom version of the Transfer-

able Potential for Phase Equilibria (TraPPE-UA) force field [49]. Bond vibration constants were

adopted from the united-atom GROMOS87 force field (gmx.ff) in GROMACS 4.5.5 [50, 51]. The

united-atom Lennard-Jones parameter for the additional methyl site was taken from the united-

atom GROMOS96 force field [52]. The partial charges of the original methanol model were

retained. The SPC/E water model was adopted for water.

All of Gaussian 09 input files and GROMACS force field files used in the present study may be

found in the Supplementary Material of this manuscript [53].

Simulation Details

System Preparation

System preparation began with structures of the solvents (water and ethanol) and solutes (ac-

etaminophen, acetanilide, benzocaine, caffeine, and phenacetin) in PDB and .mol2 format. These

were generated by exporting 2D structures of the molecules from MarvinSketch [54], then gener-

ating 3D structures via OpenEye’s Python toolkits[55] and Omega[56, 57] and writing these out.

GROMACS topology and coordinate files were then generated from the .mol2 files by parame-

terizing with ANTECHAMBER using GAFF and partial charges as described above, then using

acpype [58] to convert to GROMACS format.

Solvent boxes were set as cubic, with a box edge length of 32 Å on each side. Solvated systems

containing water/ethanol mixtures at specified mole fractions containing each solute were then

generated. These were generated using Packmol [59] and a custom Python script, and (solute free)

solvent mole fractions in increments of 10% ranging from pure water (0% ethanol) to zero water

(100% ethanol). We used Packmol to fill a box of the target volume (32 Å on a side) with one solute

molecule, plus a number of solvent molecules estimated by the ideal molar volume of the binary

solvent mixture (vb,id = xb2v2 + xb3v3, where vb,id is the estimated molar volume of the binary

solvent). The number of solvent molecules was rounded up to the nearest integer, the Packmol

tolerance for the minimum distance between atoms was set to 2.05 Å, and the molecules were

initially placed randomly. Following placement of molecules via Packmol, output coordinates (in

PDB format) were converted to GROMACS .gro format for simulation. All of the .gro files may
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be found in the Supplementary Material of this manuscript [53].

Because the AMBER force fields use different intramolecular 1-4 scaling factors than TraPPE-

UA, we used the AMBER intramolecular 1-4 scaling factors (1/2 for Lennard-Jones, 5/6 for

Coulomb) were used for the studied solutes. Consistent with TraPPE-UA, no intramolecular 1-

4 interactions were used for ethanol.

Simulations

Simulations were conducted in a developmental version of GROMACS 4.5.3 customized for

free energy calculations [60], and consisted of a minimization, followed by a constant volume

equilibration, constant pressure equilibration, an affine transformation to ensure the box volume

corresponds to the average volume over the constant pressure equilibration, and a constant vol-

ume “production” simulation. Minimization consisted of up to 1500 steps of steepest descents

minimization. For dynamics, the integrator was the GROMACS “stochastic dynamics” integrator

corresponding to Langevin dynamics, with a 2 fs timestep, with 5000 steps for the initial equi-

libration period, followed by an additional 100,000 steps for the NpT equilibration. Production

simulations were 5 ns for each alchemical λ value (and minimization and equilibration were also

done separately for each λ). The first 100 ps of production was discarded as additional equilibra-

tion. Cut-offs, etc., were generally as described elsewhere [61], with PME used for electrostatics

and long-range Lennard-Jones dispersion corrections applied to the energy and pressure [62].

Free energy simulations were used to compute βµL,res,∞
1,m (a.k.a. solvation free energies) in each

different binary mixture, in essentially an identical manner as applied previously to hydration free

energy calculations [61]. The simulations used 20 λ values, first turning off the solute electrostatic

interactions with the environment (Coulomb λ = 0.0, 0.25, 0.75, and 1.0), then turning solute

Lennard-Jones parameters to zero (Lennard-Jones λ = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65,

0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). To close the thermodynamic cycle, the free energy of restoring

these Lennard-Jones parameters in vacuum was also computed, thus computing the total transfer

free energy from an ideal gas to solution, and thereby βµL,res,∞
1,m .
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Analysis

Free energies were computed via the multistate Bennett acceptance ratio (MBAR) [63] method

via our own Python analysis script which is distributed along with PyMBAR [64]. Error bars

for the free energy difference between each pair of λ values were taken as the value provided by

PyMBAR, and standard error propagation was used to estimate the error in the overall computed

chemical potential.

The molar volume for each solvent mixture was computed as the average volume of the sim-

ulation box over the pure solvent simulation, and similarly for the excess enthalpy [65]. Five

independent simulations using the same protocols as above were performed, and the computed

values were the average across these five trials, while uncertainty estimates were computed as the

standard error in the mean (the standard deviation divided by the square root of the number of

trials).

V. RESULTS AND DISCUSSION

Binary Solvent

In the present study, we seek to understand the ability of molecular simulation to compute

lnxE1 devoid of experimental solubility data. Recall from eq. (6) that lnxE1 is equal to the actual

log solubility of the solute (component 1) in the binary solvent relative to the ideal log solubility

of the solute in the binary solvent which would result if components 2 and 3 (which make up the

binary solvent) mixed to form an ideal solution. Therefore, it is informative to first consider our

ability to accurately model the binary solvent. Throughout this study, components 2 and 3 will

refer to water and ethanol, respectively.

Figure 2 shows the solute-free composition dependence of the binary solvent molar volume

(vb), excess molar volume (vb,E), and excess molar enthalpy (hb,E) computed via molecular

simulation in this study and from experiment [66, 67]. vb,E and hb,E are computed as the ac-

tual value of the solution relative that of an ideal solution, vb,E = vb −
[
xb2v2 + xb3v3

]
and

hb,E = hb −
[
xb2h2 + xb3h3

]
, where the terms in brackets correspond to vb and hb if water and

ethanol mixed to form an ideal solution, and h2 and h3 are the molar enthalpy of pure water and
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ethanol, respectively. We find that the computed pure component molar volume of ethanol is

slightly too large by 2.8% (or 1.65 cm3/mol), and as a consequence, vb is slightly over-predicted

for ethanol-rich concentrations. For vb,E, we find that the simulation and experimental results are

in excellent agreement, with the simulations systematically predicting values too negative. How-

ever, qualitatively, the simulations capture the key experimental trends. Likewise, we find that hb,E

from the simulation results are in good qualitative agreement with experiment. The simulations are

able to reasonably capture the the region of negative hb,E, suggesting that the models reasonably

capture the formation of hydrogen bonds between water and ethanol [14]. The values of hb,E for

ethanol-rich concentrations are in excellent agreement with experiment while hb,E for water-rich

concentrations are underestimated. Note that hb,E is plotted in units of J/mol, suggesting that the

agreement is quite good considering typically hydrogen bond strengths are between 8–40 kJ/mol

[14].

Overall, we find that the simulation results for vb, vb,E, and hb,E are in good agreement with ex-

periment, suggesting that the molecular models reasonably accurately capture the thermodynamic

properties of the binary solvent.

Excess Solubility

First consider lnxE1 of acetanilide, acetaminophen, and phenacetin as shown in fig. 3. As seen

in fig. 1, the molecules are all chemically similar. All three molecules have a scaffold consisting

of N-phenylethanamide. Acetanilide contains no other functional groups. On the other hand,

acetaminophen and phenacetin contain a hydroxy and ethoxy group attached to the para (or 4)

position, respectively.

We find that for acetanilide, the simulation results are in excellent quantitative agreement with

experiment. The simulation and experimental results overlap, and the simulation results accurately

predict the extrema at approximately xb2 = 0.7.

For acetaminophen, the simulation results and experiment are in good agreement. As compared

to acetanilide, acetaminophen has an additional hydroxy group attached to the para position, which

is capable of both accepting and donating hydrogen bonds. Comparing the experimental data for

acetanilide and acetaminophen, we find that the hydroxy groups has only a minute effect on lnxE1 ;
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the quantitative results are similar and the extrema remains at approximately xb2 = 0.7. On the

other hand, the simulation results predict the location of the extrema to be near xb2 = 0.6, with

the quantitative value of the extrema over-predicted by approximately one log unit. Given the

excellent agreement of the simulation results for acetanilide with experiment, this would suggest

that the hydroxy group be reparameterized (electrostatic and/or Lennard-Jones). This result is

consistent with our previous work demonstrating the sensitivity of the hydration free energy to

the charge parameterization scheme [68] and specifically for the case of acetaminophen [46], in

addition to potential systematic errors with GAFF hydroxy groups [69, 70], and future work should

test whether it is corrected by updated GAFF-DC hydroxyl parameters [71].

Likewise, for phenacetin, the simulation results and experiment are in good agreement. For

this case, phenacetin has an additional ethoxy group attached to the para position as compared

to acetanilide. Comparing the experimental data for acetanilide and phenacetin, we find that both

have an extrema at at approximately xb2 = 0.7, with the addition of the ethoxy group increasing the

value of lnxE1 at the extrema by roughly 0.5 log unit. The simulation result also predict the extrema

at xb2 = 0.7, however the simulation results consistently over-predict lnxE1 ; at the extrema lnxE1 is

over predicted by approximately 1.5 log units. Nonetheless, the results are in good agreement, and

we find that the simulations correctly predict the trend of increasing lnxE1 in going from acetanilide

to phenacetin. Just as with acetaminophen, the excellent agreement of the simulation results for

acetanilide with experiment suggest that the ethoxy group be reparameterized (electrostatic and/or

Lennard-Jones).

Next, consider lnxE1 of benzocaine and caffeine as shown in fig. 4. For both systems, we find

that the simulation results are in good qualitative agreement with experiment. The simulation re-

sults are able to both predict an extrema in lnxE1 in addition to the corresponding value of xb2 .

However, we find that the simulation results over-predict lnxE1 , with the extrema over-predicted

by approximately 1.5–2 log units. This shortcoming with caffeine is consistent with our previous

work [70] wherein caffeine was an outlier in a set of 23 small organic molecule hydration free en-

ergy calculations, where the simulation predicted hydration free energy was lower than experiment

by approximately 5 kcal/mol (8.4 kBT ).

To further allow for a quantitative comparison of the simulation results with experiment, the

values of lnxE1 from experiment were fit to a third-order Redlich-Kister expansion of the form [14]
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lnxE1,m = xb2x
b
3

[
A+B

(
xb2 − xb3

)
+ C

(
xb2 − xb3

)2]
(10)

where A, B, and C are model constants which were found for each system by least squares re-

gression. The Redlich-Kister expansion is a series expansion of lnxE1,m/
(
xb2x

b
3

)
in xb2−xb3 , where

the term xb2x
b
3 ensures that the equation exhibits correct limiting behavior (i.e. lnxE1,m = 0 when

xb2 or xb3 are 1). Equation (10) is equivalent to the Jouyban-Acree model with solvent mole frac-

tions replaced with solvent volume fractions; the Jouyban-Acree model is often used to correlate

lnx1,m in binary solvents [8]. The resulting fits are represented as solid lines in figs. 3 and 4. In

all cases the third-order Redlich-Kister expansion fits the experimental data well with R2 values

greater than 0.9, and effectively smooths the data allowing for interpolation to the binary solvent

concentrations at which molecular simulations were performed.

A plot of lnxE1,m computed via molecular simulation
(

lnxE, sim1,m

)
versus lnxE1,m at the same

binary solvent concentration from eq. (10) fit to experimental data
(

lnxE, exp1,m

)
is shown in fig. 5.

Figure 5 contains all of the data from figs. 3 and 4 at the binary solvent concentrations studied

via molecular simulation except for xb2 = 0 and xb2 = 1 where by definition lnxE1 = 0. Overall,

we find that the data is reasonably correlated with a straight line through the origin with a slope

of 1.44 ± 0.08 , yielding a value of R2 = 0.67. The fact that the slope is greater than unity is

in agreement with the observation in figs. 3 and 4 that the simulation results agree better with

experimental results the lower the value of lnxE1,m. The linear relation could serve as a means of

improving predictions for other solutes in water/ethanol mixtures.

Moreover, in the Methodology section, we derived expressions for the excess solubility in units

of mole fractions (lnxE1,m, eq. (8)) and in concentration units of moles/volume or mass/volume

(ln cE1,m, eq. (9)). We found that ln cE1,m was only dependent on −∆
(
βµL,res,∞

1,m

)mix, which results

from intermolecular interactions and the size of the cavity formed by the solute in the solvent.

On the other hand, lnxE1,m additionally contained the term ∆
(
ln vbm

)mix, which is a solvent de-

pendent term (independent of the solute). To understand the contribution of −∆
(
βµL,res,∞

1,m

)mix

and ∆
(
ln vbm

)mix, lnxE1,m and ln cE1,m for acetaminophen are both shown in fig. 6. We find that

−∆
(
βµL,res,∞

1,m

)mix plays a dominant role, with ∆
(
ln vbm

)mix only making a minute contribution.

The results for acetaminophen are representative of the systems studied. This does not suggest

that accurately computing the molar volume of the solvent is not important. The average inter-
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molecular interaction distance between solvent molecules is related to to molar volume, which

is important when computing the residual chemical potential at infinite dilution. However, the

dominant contribution to lnxE1,m is from the the solute residual chemical potential.

Lastly, in fig. 3 we additionally compare our simulations for acetaminophen to the state-of-

the-art 2005 revision of the MOSCED model [10, 72, 73]. MOSCED is a semi-theoretical model

used to estimate infinite dilution activity coefficients, and describes each molecule using five ad-

justable parameters. The interested reader is directed to the original publication for a description

of its formulation and basis [72]. In the 2005 revision, the molecular descriptors of 132 organic

solvents, water, and 5 permanent gases were fit to a set of 6,441 experimental infinite dilution ac-

tivity coefficient data points [10, 74]. In addition, parameters for 26 organic solids were regressed.

For the case of acetaminophen, the parameters were obtained by regressing to solubility data in

19 pure solvents, where the set of solvents included water and ethanol [10, 75]. MOSCED may

therefore be seen as a correlation of experimental data in pure solvents, and is not truly a predic-

tive method (as compared to our molecular simulation results). To compute lnxE1,m in a binary

water/ethanol solvent, MOSCED was used to compute the binary interaction parameters neces-

sary for Wilson’s equation [14, 46, 76, 77]. Wilson’s equation is a semi-theoretical modification

of the Flory-Huggins equation, where the point of departure is Wilson’s use of local compositions.

Wilson’s equation contains two binary interaction parameters for each binary pair in a multicom-

ponent mixture [14]. The results are shown graphically in fig. 3 as a dashed line. We find that

MOSCED is in very good agreement with the experimental data.

This is a very interesting result. Given its parameterization, we would expect the infinite

dilution activity coefficient of acetaminophen in pure water and in pure ethanol computed by

MOSCED to be reasonably accurate. Given reasonable properties at infinite dilution in pure sol-

vents, Wilson’s equation is then able to accurately extrapolate to binary solvent compositions.

Adopting a similar scheme using molecular simulation results would pose an intriguing possibility.

However this is not without great challenge. Computing the activity coefficient of acetaminophen

with respect to a Lewis-Randall standard state requires knowledge of the fugacity of pure (sub-

cooled) liquid acetaminophen at the temperature of interest.
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VI. SUMMARY AND CONCLUSION

We developed a framework to compute the excess solubility of small molecular solids (such as

pharmaceutical solids) in binary solvents via molecular simulation. The use of molecular simula-

tion is advantageous as it is a purely predictive method and may further be used to gain a molecular

level understanding of the phenomenon. The present study considered the solid solutes acetanilide,

acetaminophen, phenacetin, benzocaine and caffeine in binary water/ethanol mixtures. The solutes

were all modeled using the General AMBER Force Field (GAFF) which is capable of modeling a

wide range of solutes of various complexities devoid of experimental data. In all cases, the molec-

ular simulations were in good qualitative agreement with experiment. The simulations were able

to predict the existence of an extrema in the the excess solubility at intermediate binary solvent

concentrations, captured the qualitative behavior (or relative solubility trend) of each solute as a

function of the binary solvent composition, and was able to capture the trend of increasing excess

solubility with changing functional groups in acetanilide and phenacetin.

While the simulation results were not always in excellent quantitative agreement with exper-

iment, we found that the simulation results and experiment were linearly correlated, with the

deviation increasing as the magnitude of the excess solubility increases. The resulting trend could

be used to develop a calibration curve to improve predictions involving other solutes in the same

water/ethanol binary solvent. We additionally found that while the excess solubility is composed

of a term involving the change in the dimensionless infinite dilution residual chemical potential of

the solute upon mixing and a term involving the molar volume of the solvent, the residual chemical

potential dominates the numerical result.

Our results suggest that molecular simulation with conventional force fields may serve a valu-

able role for solvent selection in the drug development process. There is still room for improve-

ment in the parameterization of the molecular models, and the present framework suggests a means

by which this may be accomplished. In the present study we found that GAFF was able to accu-

rately predict the excess solubility for acetanilide. However, noticeable deviations were observed

for acetaminophen and phenacetin, which are both acetanilide deviates with a hydroxy and ethoxy

group substituted in the 4 (or para) position, respectively. The results therefore suggest possible

problems with GAFF hydroxy and ethoxy parameters, and a need for re-parameterization. Param-

eterizing force fields around excess solubility is particularly attractive because it may readily be
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computed from experimental solubility data and is directly related to the residual chemical po-

tential of the solute. Extracting the residual chemical potential (or solvation free energy) directly

from experimental data may be challenging for solid solutes because one needs to know the pure

(sub-cooled) liquid vapor pressure of the solute at the temperature of interest (see for example

ref. 78).

Lastly, we used the MOSCED model with Wilson’s equation to compute the excess solubil-

ity of acetaminophen in a binary water/ethanol mixture. Given reasonable predictions of infinite

dilution properties in pure solvents, Wilson’s equation was able to accurately extrapolate the re-

sults to binary mixture compositions. This suggests an intriguing possibility for efficiently using

molecular simulation (which is a predictive method) to predict excess solubility which would re-

quire only a limited number of calculations in pure solvents. Before this can be accomplished,

however, an accurate method to compute the fugacity (or vapor pressure or chemical potential) of

pure (sub-cooled) liquid solutes at the temperature of interest is required.

Acknowledgments

A.S.P. gratefully acknowledges a fellowship from the Arthur J. Schmitt Foundation (Notre

Dame) and start-up funding from the College of Engineering and Computing at Miami Univer-

sity. Computing support for all of the Gaussian 09 calculations was provided by Notre Dame’s

Center for Research Computing. DLM acknowledges support of the National Institutes of Health

(1R15GM096257-01A1) and the National Science Foundation (CHE-1352608), as well as the

Louisiana Board of Regents.

Appendix A: Relative Solubility Predictions

For the solubility of a solid solute (component 1) in pure solvent α, expressions analogous

to eqs. (4) and (5) may be derived where we again assume that the solubility of component 1 is

sufficiently small so as to be considered infinitely dilute

lnxα1 = −βµα,res,∞1 (T, p) + ln vα (T, p) +
[
βµS,res

1 (T, p)− ln vS1 (T, p)
]

(A1)
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ln cα1 = −βµα,res,∞1 (T, p) +
[
βµS,res

1 (T, p)− ln vS1 (T, p)
]

(A2)

where the superscript α is used to indicate properties of solvent α, µα,res,∞1 is the infinite dilution

residual chemical potential of component 1 in solvent α computed via molecular simulation by

adding a single solute molecule to solution, and the terms in brackets correspond to properties of

the pure solid solute. It follows that the solubility of component 1 in solvent α relative to solvent

γ may readily be computed via molecular simulation

ln
xα1
xγ1

= βµγ,res,∞1 (T, p)− βµα,res,∞1 (T, p) + ln
vα (T, p)

vγ (T, p)
(A3)

ln
cα1
cγ1

= βµγ,res,∞1 (T, p)− βµα,res,∞1 (T, p) (A4)

where the pure component solute properties conveniently cancel out of the expressions. This set of

equations provides an efficient means to predict the relative solubility of a solute in pure solvents

via molecular simulation devoid of experimental data and may prove useful for solvent selection

processes. Equation (A4) is equivalent to the expression used by Essex et al. [79] to compute

relative partition coefficients and was used previously by Paluch et al. [80] to predict relative

solubilities. If a single experimental solubility is known, either eq. (A3) or eq. (A4) allows for the

properties of the pure solid solute to be obtained by performing a single molecular simulation free

energy calculation in the liquid phase [80].
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FIG. 1: The chemical structure of the studied solutes.
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FIG. 2: The solute-free composition dependence of the molar volume (vb), excess molar volume (vb,E), and
excess molar enthalpy (hb,E) of the binary water(2)/ethanol(3) solvent. The solid lines are experimental data
[66, 67] and the circles are simulation results. The uncertainties of the simulation results are smaller than
the symbols.
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FIG. 3: The solute-free composition dependence of the the log excess solubility of component 1 (the solute,
lnxE1,m) in the binary water(2)/ethanol(3) solvent, where component 1 is acetanilide, acetaminophen, or
phenacetin, as indicated. Simulation results are shown as circles (©) and experimental results are shown
as: triangles up (4, ref. 8), squares (�, ref. 81), and diamonds (♦, ref. 82). For acetanilide, ref. 8 reports
two independent sets of data which we differentiate here using open and filled symbols. The uncertainties
of the simulation results are roughly the size of the symbols. The solid lines correspond to the third-order
Redlich-Kister expansion (eq. (10)) fit to the experimental data [14]. The dashed line (for acetaminophen
only) corresponds to MOSCED with Wilson’s equation [10, 14, 72, 73, 76].
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FIG. 4: The solute-free composition dependence of the the log excess solubility of component 1 (the so-
lute, lnxE1,m) in the binary water(2)/ethanol(3) solvent, where component 1 is benzocaine or caffeine, as
indicated. Simulation results are shown as circles (©) and experimental results are shown as triangles up
(4, ref. 8). The uncertainties of the simulation results are roughly the size of the symbols. The solid lines
correspond to the third-order Redlich-Kister expansion (eq. (10)) fit to the experimental data [14].
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FIG. 5: A comparison of lnxE1,m computed via molecular simulation
(
lnxE, sim1,m

)
and from eq. (10) fit to

experimental data
(
lnxE, exp1,m

)
at the binary solvent concentrations studied via molecular simulation, except

for xb2 = 0 and xb2 = 1 where by definition lnxE1 = 0. The data is the same as in figs. 3 and 4.
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FIG. 6: The solute-free composition dependence of lnxE1,m (circles, ©) and ln cE1,m (triangles left, C) of
acetaminophen (component 1, the solute) in the binary water(2)/ethanol(3) solvent.
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