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Personalized medicine: from genotypes, molecular phenotypes 
and the quantified self, towards improved medicine
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Advances in molecular profiling and sensor technologies are expanding the scope of 

personalized medicine beyond genotypes, providing new opportunities for developing richer 

and more dynamic multi-scale models of individual health1,2. Recent studies demonstrate 

the value of scoring high-dimensional microbiome3, immune4, and metabolic5 traits from 

individuals to inform personalized medicine. Efforts to integrate multiple dimensions of 

clinical and molecular data towards predictive multi-scale models of individual health and 

wellness are already underway6–8. Improved methods for mining and discovery of clinical 

phenotypes from electronic medical records9 and technological developments in wearable 

sensor technologies present new opportunities for mapping and exploring the critical yet 

poorly characterized "phenome" and "envirome" dimensions of personalized medicine10,11. 

There are ambitious new projects underway to collect multi-scale molecular, sensor, clinical, 

behavioral, and environmental data streams from large population cohorts longitudinally to 

enable more comprehensive and dynamic models of individual biology and personalized 

health12. Personalized medicine stands to benefit from inclusion of rich new sources and 

dimensions of data. However, realizing these improvements in care relies upon novel 

informatics methodologies, tools, and systems to make full use of these data to advance both 

the science and translational applications of personalized medicine.

Genotyping and large-scale molecular phenotyping are already available for large patient 

cohorts and may soon become available for many patients. Exome or complete genome 

sequences are increasingly being collected, and in some cases are now covered by insurance. 

Prenatal diagnosis has been improved by genotyping fetal DNA circulating in mother’s 

blood tissue. Robust statistical and computational methods for analyzing these data will be 
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critical to realizing the promise of personalized medicine. The challenges span from accurate 

low-level analyses of high throughput datasets to high-level synthesis of mechanisms of 

action, and identification of causal links between different abstract layers of molecular 

information, before, finally, incorporating them into health-care such as diagnostics. 

Important analysis problems include accurate phenotypic characterization, identifying and 

correcting for latent structure, dealing with missing data, deciding at what level to test (e.g., 

within genomes, whether to use single base pair values, sets of polymorphisms, exonic 

regions, etc.), data heterogeneity, the problem of multiple testing, integrating various 

modalities, deducing functional consequences in silico, addressing data quality, and making 

sense of new data types as they become available.

The path from genotype to disease state goes through intermediate phenotypes. To modulate 

the disease risk or trait, one of the molecular intermediates must be changed in a controlled 

way using small molecules or changes in environment. Finding the right intermediate 

molecule to target for these interventions remains a key challenge. A first level of 

understanding should come from genetic mapping studies – that is, to determine to which 

extent do the loci responsible for heritable disease risk affect intermediate traits. Much 

progress has been made on this front over the last years, especially for genetic control of 

RNA levels13,14—so-called “eQTL” analysis, but also for protein, metabolite and epigenetic 

modification abundances15–18, with much remaining to be done. The next task is 

distinguishing the actual drivers of ailment from traits that do respond to genotype, but do 

not cause disease. Causal models, such as those based on Mendelian randomization and 

mediation analysis, will play a crucial role in separating out the molecular causes of disease 

from the high-dimensional state of the organism19,20.

Medicine is gradually moving away from the traditional model of reactive sick-care towards 

wellness and all-time learning healthcare systems that aim to prevent individuals from 

perturbing their individual biology towards states of disease1,2. Personalized medicine aims 

to soon allow dynamic, quantitative representation of an individual patient's heath "GPS 

coordinates" estimated from multiple modalities of personal health data1. Still, much work is 

required in all areas, from basic discovery of molecular mechanisms of disease pathology, to 

statistical methods of causality and publicly available computational infrastructure to deliver 

on the promise of genetic and other personalized information in the clinic and beyond.

Session contributions

Dr. Nathan Price gives the invited talk. Dr. Price, along with colleagues at the Institute for 

Systems Biology, is spearheading the innovative Wellness 1K program that aims to take 

personalized medicine from “sick care” to maintenance of wellness by way of democratized 

healthcare2.

The electronic medical record (EMR) captures clinical phenotype information and is being 

used increasingly as an important source of research data for precision medicine discovery. 

In our session, Glicksberg et al. discuss a novel integrative method combing genetic and 

EMR data for data-driven discovery of disease relationships. The authors integrate disease-

associated variants reported in the literature with EMR data from a large metropolitan 
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hospital. The method evaluates statistical overlaps between patients sharing disease 

diagnoses in the EMR and disease phenotypes sharing overlapping associated loci. The 

results identify 19 putatively novel disease pairs supported by both EMR and genetic data 

that suggest possible shared etiological factors or novel risk factors.

Equipping clinical investigators with the ability to perform large-scale analysis of integrated 

clinical and molecular data is a key challenge in precision medicine. Clinical scientists sit at 

the interface of patient care and medical research and thereby serve as critical translators of 

clinical needs into specific research questions. Integrative methods combining genomic and 

clinical data offer powerful high-dimensional approaches for clinical hypothesis testing and 

patient cohort exploration. However, clinical investigators often lack the technical skills 

required to build, manage, and query integrated genomic and clinical data. In our session, 

Hinterberg et al. present the Phenotype-Expression Association eXplorer (PEAX) software 

enabling interactive data exploration of relationships between multivariate phenotype models 

and gene expression. The PEAX software interface enables visual, interactive definition of 

sub-phenotyping using clinical parameters and the system performs background statistical 

analysis to identify and plot gene expression correlates of sub-phenotype definitions. The 

PEAX software implementation uses open-source frameworks and source code is made 

available for download.

Also in our session, Diggans et al. describe a translational bioinformatics study identify and 

validate pre-operative mRNA based diagnostic test for V600E DNA mutations in thyroid 

nodules. A machine learning approach was applied in the discovery phase to identify a 

predictive 128-gene linear support vector machine from a feature space 3,000 transcripts 

measured from 716 thyroid fine needle aspirate biopsies (FNABs). The authors evaluate the 

128-gene predictor against qPCR data in an independent test set and observe high positive 

and negative percent agreement with the qPCR test set. The results provide support for 

further clinical validation of the predictor and the potential for a first-of-a-kind diagnostic 

test for an unmet clinical need in thyroid cancer.

Efficient methods for inferring causal relationships across multiple scales of molecular traits 

are critical for modeling the complexity of biological systems. In our session, Chang et al. 
describe a novel method using Bayesian belief propagation for inferring the responses of 

perturbation events on molecular traits given a hypothesized graph structure. The method is 

not constrained by the conditional dependency arguments that limit the ability of statistical 

causal inference methods to resolve causal relationships within sets of graphical models that 

are Markov equivalent. The authors infer causal relationships from synthetic microarray and 

RNA sequencing data, and also apply their method to infer causality in real metabolic 

network with v-structure and feedback loop. Their approach is found to recapitulate the 

causal structure and recover the feedback loop given only steady-state data.

Accurate detection and modeling of tumor heterogeneity is a central challenge in 

understanding tumorigeneis and individual patient tumor characteristics. In our session, 

Sengupta et al. present a novel approach for modeling tumor heterogeneity (TH) using next-

generation sequencing (NGS) data. The authors take a Bayesian approach that extends the 

Indian buffet process (IBP) to define a class of nonparametric models. Instead of partitioning 
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somatic mutations into non-overlapping clusters with similar cellular prevalences, the 

authors do not assume somatic mutations with similar cellular prevalence must be from the 

same subclone and allow overlapping mutations shared across subclones. The authors argue 

that this representation is closer to the underlying theory of phylogenetic clonal expansion, 

where somatic mutations occurred in parent subclones should be shared across the parent 

and child subclones. Their method yields posterior probabilities of the number, genotypes, 

and proportions of subclones in a tumor sample, thereby providing point estimates as well as 

variabilities of the estimates for each subclone. The method is implemented in a software 

package called BayClone that is made available for download.

Technological advances and increased public availability of data offer new opportunities to 

gain insights into the complexity of the eukaryotic transcriptome. Alternative cleavage of 3' 

UTRs has numerous functional consequences pertaining to the stability, transport, and 

translocation of transcripts. 3' UTR cleavages site analysis is also important clinically, 

particularly in cancer, where proto-oncogene can be activated by mRNA isoforms having 

shorter cleaved 3' UTRs. Thus both biological investigations and clinical applications benefit 

from more accurate methods for cleavage site analysis from transcriptional profiling data. In 

our session, Birol et al. describe KLEAT, a novel analysis tool that uses de novo assembly of 

RNA-sequencing data to search for and prioritize cleavage sites in poly(A) tails. The authors 

apply KLEAT to RNA-sequence data from ENCODE cell lines for which RNA-PET 

libraries are also available to compare predicted and actual 3' poly(A) signatures. The 

authors find that KLEAT exhibits > 90% positive predictive value when there are at least 

three RNA-sequencing reads supporting a poly(A) using the validation criteria of a 

minimum of three RNA-PET reads mapping within 100 nucleotides. The KLEAT software 

may accelerate biological and clinical applications of 3' UTR cleavage site analysis by 

enabling accurate analysis from more standard RNA-sequencing data and obviating the need 

for specialized wet lab techniques or sequencing libraries.

Though thousands of genes are implicated as underlying factors of disease it remains 

challenging to identify highest-value targets for novel drug development. In our session, 

Gao et al. address the question whether genes affected by strong genetic or environmental 

effects present better proxy therapeutic drug targets. To address this question, the authors 

propose a modeling approach that recovers both regulatory networks and estimates of 

environmental and genetic effects on gene expression. They apply their method to a gene 

expression data measured from blood samples from monozygotic and dizygotic twins and 

use the Connectivity Map database to assess whether genetic or environmental effects are 

more informative of gene’s competency as a proxy target. The study findings suggest that a 

gene with strong genetic effects is more likely to act as a proxy target than a gene with 

strong environmental effects. This raises the intriguing hypothesis that diversity of a gene's 

expression across a genetically diverse population that makes it a suitable proxy rather than 

its sensitivity to environmental effects.

Finally, Fan-Minogue et al. evaluate the effectiveness of the differential expression (DE), 

disease-associated single nucleotide polymorphisms (SNPs) and combination of the two in 

recovering known therapeutic targets across 56 human diseases. They find that the 

performance of each feature varies across diseases and generally the features have more 
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recovery power than predictive power. The systematic study results offer compelling 

evidence that the combination of the two features has more predictive power than each 

feature alone.
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