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Abstract

A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic 

(EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with 

conductors is proposed. The simulator relies on Muller and combined field surface integral 

equations (SIEs) to account for scattering from mine walls and conductors, respectively. During 

the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier 

transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory 

requirement is further reduced by compressing large data structures via singular value and Tucker 

decompositions. The efficiency, accuracy, and real-world applicability of the simulator are 

demonstrated through characterization of EM wave propagation in electrically large mine tunnels/

galleries loaded with conducting cables and mine carts.
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Index Terms

Electromagnetic (EM) simulator; EM wave propagation; fast multipole method–fast Fourier 
transform (FMM-FFT) technique; frequency domain analysis; integral equations; mine tunnels

I. Introduction

Reliable wireless communication, sensing, and tracking systems in underground mine 

environments are critically important to ensure workers’ safety and productivity during 

routine operations and catastrophic events. As mandated by the MINER Act of 2006 [1], 

U.S. mine operators are required to install reliable and disaster-proof communication 

systems that support two-way post event communication and tracking functions. The 

development, operation, and reconfiguration of these systems, as well as the mitigation of 

possible electromagnetic (EM) compatibility and interference issues associated with their 

deployment, all benefit from EM simulation tools. These tools should be capable of 

analyzing EM wave propagation in mine tunnels and galleries that are loaded with 

conductors (e.g., lighting/power cables, mine carts, mining machinery, rails, ventilation 

systems), occupied by miners, and possibly obstructed by cave-in debris.

Present simulation techniques for analyzing EM wave propagation in mine environments are 

either approximate or full-wave in nature. Examples of approximate techniques include, but 

are not limited to, single/multimode waveguide models [2], [3], ray-tracing techniques [4]–

[6], and cascaded-impedance methods [7]. The equivalence of the ray tracing and modal 

methods have been discussed in [8]. For other approximate techniques, see [9] and 

references therein. The above-referenced techniques typically only apply to EM 

characterization in restricted frequency bands and do not readily account for the presence of 

conductors and miners, wall roughness (especially when comparable to the wavelength), or 

unstructured debris. Full-wave techniques for analyzing EM wave propagation in mine 

environments include finite difference time domain [10]–[14] and surface integral equation 

(SIE) methods [15]. In principle, these techniques permit faithful modeling of EM wave 

propagation in real-world mine environments. However, in practice, due to their high-

computational requirements, their applicability is limited to the study of EM wave 

propagation in electrically small or moderately sized tunnels even when they are 

implemented on graphics processing units [10].

This paper presents a fast, full-wave, CPU, and memory-efficient three-dimensional (3-D) 

SIE technique for analyzing EM wave propagation in electrically large and realistically 

loaded mine environments. The technique leverages Muller and combined field SIEs to 

model scattering from mine walls and perfect electrically conducting (PEC) objects residing 

inside mine tunnels and galleries. The naive iterative solution of such SIEs requires O(N2) 

CPU and memory resources. Here N is the number of basis functions used to discretize 

current densities on the mine walls and PEC objects. These requirements are prohibitive 

even when characterizing moderately sized tunnels and galleries. Therefore, the proposed 

simulator leverages a fast multipole method-fast Fourier transform (FMM-FFT) acceleration 

scheme [16] with O(N4/3 log2/3N) CPU and memory resources [17] when applied to mine 
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environments of arbitrary layout, and O(N logN) resources when applied to straight long 

tunnels or mine galleries populated with dense posts [16]. When applied to the analysis of 

EM propagation in mine environments, FMM-FFT accelerated SIE simulators tend to be 

memory—as opposed to CPU—limited. The simulators’ memory requirements derive from 

the requirement to store the following:

1. near-field interaction matrices;

2. matrices that characterize far-field signatures of basis functions;

3. tensors that hold FFT’ed translation operators on a structured grid.

The proposed simulator compresses the first two and third data structures via singular value 

decomposition (SVD) and its higher-dimensional counterpart, Tucker decomposition [18], 

respectively. These compression schemes enable the application of the FMM-FFT 

accelerated SIE simulator to the analysis of EM wave propagation in much larger and 

complex mine environments. The paper’s contributions are two-fold. First, it describes the 

first-ever application of a fast SIE simulator to the characterization of EM wave propagation 

in electrically large and realistically loaded mine environments. Second, it proposes a 

scheme, which compresses all large data structures of the FMM-FFT accelerated SIE 

simulator, to reduce its memory requirement and enable its application to larger scale 

problems on memory-bound computer clusters. The accuracy, efficiency, and applicability of 

the proposed simulator is demonstrated via the analysis of EM wave propagation in a 600 m-

long arched tunnel loaded with conductors, a mine gallery consisting of eight rectangular 

tunnels, and a rectangular tunnel with rough walls.

II. Formulation

This section details the Muller and combined field SIEs and their numerical solution via the 

method of moments (MoM). It also elucidates the proposed SVD and Tucker-enhanced 

FMMFFT acceleration scheme.

A. SIEs and their Discretization

Let Sd denote the walls of a closed mine tunnel or gallery, which is surrounded by 

unbounded lossy ore with permittivity ε1 and permeability μ1 (medium 1). The tunnel or 

gallery is assumed to be filled by air with permittivity ε0 and permeability μ0 (medium 0) 

[see Fig. 1(a)]. (Note: the scheme detailed below can be trivially modified for tunnels and 

galleries filled by dust with permittivity different from ε0.) Let Sp represent the arbitrarily 

shaped open or closed surfaces of PEC objects (e.g., mine carts, cables, or other equipment) 

residing inside Sd. Sd and Sp are excited by the incident EM field {Ei(r), Hi(r)} that is 

generated by a transmitter’s electric current density Ji(r) (e.g., an electric dipole) residing 

within Sd [see Fig. 1(a)]. The interaction of {Ei(r), Hi(r)} with Sd and Sp gives rise to 

electric and magnetic current densities, Jd (r) and Md (r) on Sd and electric current 

densities, Jp (r) on Sp.

To compute Jd (r), Md (r), and Jp (r), the surface equivalence principle is invoked to 

construct the exterior and interior problems illustrated in Fig. 1(b) and 1(c). In the exterior 

problem [see Fig. 1(b)], Jd (r) and Md (r) radiate in medium 1 and generate total and zero 
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electric and magnetic fields exterior and interior to Sd, respectively. Imposing boundary 

conditions on the tangential components of electric and magnetic fields on Sd yields the 

following exterior electric field integral equation (EFIE) and magnetic field integral equation 

(MFIE):

0 = (0.5Md (r) − nd × ℜ1 [Md (r)]) + nd × 𝔍1 [Jd (r)] (1)

0 = nd × 𝔍1 [Md (r)]/η1
2 + ( − 0.5Jd (r) + nd × ℜ1 [Jd (r)]) (2)

r ∈ Sd. Here, n̂d is the outward normal to Sd, ηa = (μa/εa)0.5 with a ∈ {0, 1} is the wave 

impedance, and the source-field operators a [·] and ℜa [·] are

𝔍a [X (r)] = − jωμa∫
S

I + ∇ ∇′
ka

2 · X (r′) Ga (r, r′) dr′ (3)

ℜa [X (r)] = ∇ × ∫
S

X (r′) Ga (r, r′) dr′ (4)

where the integral in (4) is evaluated in the principal value sense. Here Ga (r, r′) = exp(−jka |
r − r′|)/(4π|r − r′|) is the scalar Green’s function, ka = ω(μaεa)0.5, ω = 2πf, f is the 

frequency, and r and r′ denote observation and source locations on support S, respectively.

In the interior problem [see Fig. 1(c)], −Jd (r) and −Md (r) radiate alongside Ji(r) and Jp (r) 

in air and generate total and zero electric and magnetic fields interior and exterior to Sd, 

respectively. Imposing boundary conditions for tangential electric and magnetic fields on Sd 

and Sp yields the following interior EFIE and MFIE for Sd and interior EFIE and MFIE for 

Sp :

nd × Ei(r) = − (0.5Md(r) + nd × ℜ0 [Md(r)]) + nd × 𝔍0 [Jd(r)] − nd × 𝔍0 [Jp(r)], r
∈ Sd

(5)

nd × Hi(r) = nd × 𝔍0 [Md(r)]/η0
2 + (0.5Jd(r) + nd × ℜ0 [Jd(r)]) − nd × ℜ0 [Jp(r)], r

∈ Sd

(6)
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t p · Ei(r) = t p · ( − ℜ0 [Md(r)] + 𝔍0 [Jd(r)] − 𝔍0 [Jp(r)]), r ∈ Sp (7)

np × η0Hi(r) = np × 𝔍0 [Md(r)]/η0 + np × η0ℜ0 [Jd(r)] + η0 (0.5Jp(r) − np × ℜ0 [Jp(r)]),
r ∈ Sp .

(8)

Here n̂p and t̂p are the outward pointing unit normal and arbitrary unit vector tangential to 

Sp, respectively. Exterior and interior EFIEs for Sd in (1) and (5) can be linearly combined 

after multiplying them by α1 and α0, respectively, as

nd × α0Ei(r) = 0.5 (α1 − α0) Md(r) − nd × (α1ℜ1 [Md(r)] + α0ℜ0 [Md(r)]) + nd × (α1𝔍1 [Jd
(r)] + α0𝔍0 [Jd(r)]) − nd × α0𝔍0 [Jp(r)] .

(9)

Similarly, exterior and interior MFIEs for Sd can be multiplied by β1 and β0, respectively, 

and combined as

nd × β0Hi(r) = nd ×
β1
η1

2 𝔍1 [Md(r)] +
β0
η0

2 𝔍0 [Md(r)] + 0.5 (β0 − β1) Jd(r) + nd × (β1ℜ1

[Jd(r)] + β0ℜ0 [Jd(r)]) − nd × β0ℜ0 [Jp(r)] .

(10)

Finally, linearly combining the αp times interior EFIE and (1 − αp) times interior MFIE for 

Sp yields
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t p · αpEi(r) + np × η0 (1 − αp) Hi(r)
= ( − t p · αpℜ0 [Md(r)] + np × (1 − αp)/η0𝔍0 [Md(r)])
+ (t p · αp𝔍0 [Jd(r)] + np × η0 (1 − αp) ℜ0 [Jd(r)])
+ ( − t p · αp𝔍0 [Jp(r)] + η0 (1 − αp) · (0.5Jp(r) − np × ℜ0 [Jp(r)])) .

(11)

Equations (9)–(11) with α1 = ε1, α0 = −ε0, β1 = μ1, β0 = −μ0, and 0 ≤ αp ≤ 1 are known as 

Muller-combined field SIE formulation [19] and can be solved simultaneously for Md (r), Jd 

(r), and Jp (r) via the MoM. (Note: In this study, αp is set to 0.2 and 1 for closed and open 

PEC surfaces, respectively.) To this end, Md (r), Jd (r), and Jp (r) are approximated in terms 

of Rao–Wilton–Glisson (RWG) basis functions fn (r) [20] as

Md (r) = ∑
n = 1

Nd
Infn (r) Jd (r) = ∑

n = Nd + 1

2Nd
Infn (r) (12)

Jp (r) = ∑
n = 2Nd + 1

2Nd + N p
Infn (r) (13)

where In, n = 1, …, 2Nd + Np, are unknown expansion co-efficients. Substituting (12) and 

(13) into (9)–(11) and applying Galerkin testing to the resulting equations with fm(r), m = 1, 
…, 2Nd + Np, yields the linear system of equations of dimension N = 2Nd + Np

ZI = V (14)

where Z̄ is the MoM matrix, and I and V are vectors of unknown expansion coefficients and 

tested incident EM fields, respectively. The entries of I, In, n = 1, …, N, as well as those of Z̄ 

and V are provided in Appendix I.

When analyzing electrically large mine tunnels and galleries loaded with conductors that 

require large N, the solution of the matrix system in (14) cannot be obtained using classical 

algebraic solvers. To mitigate the computational and memory requirements of the iterative 

solution of (14), we deploy the SVD and Tucker enhanced FMM-FFT scheme described 

next.

B. SVD and Tucker Enhanced FMM-FFT Algorithm

1) FMM-FFT Algorithm—The FMM-FFT scheme introduces a hypothetical box enclosing 

the mesh of Sd (and hence Sp). This large box is split into Nx, Ny, and Nz smaller boxes 
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along the x, y, and z directions [see Fig. 2]. The resulting boxes are denoted by Bu with 

indices u = (ux, uy, uz), ux = 1, …, Nx, uy = 1, …, Ny, uz = 1, …, Nz, and centered at ru that 

coincide with the points of a uniform 3-D grid [see Fig. 2]. All boxes that contain triangle 

pairs of source/testing basis functions, fn (r)/fm(r), are termed “groups” and enclosed by a 

sphere of radius Rs. Two groups Bu and Bu′ constitute a near-field pair if the distance 

between their centers Ru′u = |Ru′u| = |ru′ − ru| is smaller than a prescribed threshold, i.e., 

Ru′u < κRs ; otherwise, they form a far-field pair [see Fig. 2].

Interactions between basis functions in the same group and near-field pairs are directly 

computed via (27)–(35) (in Appendix I) and stored, resulting in the first large data structure 

mentioned in the introduction. A large portion of this data structure is pertinent to 

interactions between basis functions in near-field pairs and compressed by SVD, as 

elucidated in the following section. The contributions of self and near-field interactions to 

the result of each matrix-vector multiplication required by the iterative solution of (14) are 

directly computed. The interactions between basis functions in far-field pairs are computed 

by the FMM-FFT algorithm. To this end, first, the far-field patterns of source basis functions 

P+(ka
pq, fn) with

P±(ka
pq, c) = ∫

Sc
exp ( ± jkaka

pq · (r − ru))(I − ka
pqka

pq) · c(r)dr (15)

are computed and stored for all directions ka
pq = ( sin θp cos ϕq, sin θp sin ϕq, cos θp), p = 1, 

…, Ka + 1, q = 1, …, 2Ka + 1. Here, θp are the inverse cosine of abscissas of (Ka + 1)th–

order Gauss–Legendre quadrature rule, ϕq = q2π/(2Ka + 1), Ka = 2kaRs + 1.8(log10(1/
γ1))2/3(2kaRs)1/3 is the number of multipoles for medium a = {0, 1}, γ1 is the number of 

desired accurate digits in the FMM approximation [21], Sc is the support of c(r), and u 

corresponds to the box containing c(r). Since Ī is unit dyad and I − ka
pqka

pq = θθ + ϕϕ, θ and 

ϕ components of far-field patterns are computed [21]. Note that only the far-field patterns of 

source basis functions discretizing Jd (r)and Jp (r) are computed and stored for both media 

and only air (medium 0), respectively; the ones pertinent to Md (r) can be directly obtained 

from those related to Jd (r) by invoking the duality and thereby are not stored. Similarly, the 

receiving patterns of testing functions used to test electric and magnetic fields on Sd, 

P−(ka
pq, nd × fm), and electric and magnetic fields on Sp, P−(ka

pq, fm) and P−(ka
pq, np × fm), are 

computed and stored for both media and only air, respectively. These operations give rise to 

the second large data structure alluded to in Section I, which is compressed by SVD, as 

explained in the following section. During matrix-vector multiplication, the far-fields of 

basis functions in each group are summed to construct all groups’ outgoing far-field patterns 

for both media as
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𝓕u(ka
pq) = ∑

n ∈ Bu
P+(ka

pq, fn)αacIn (16)

p = 1, …, Ka + 1, q = 1, …, 2Ka + 1, a ∈ {0, 1}. Here c is – 1 for far-field patterns of basis 

functions used to discretize Jp (r) and 1 otherwise. (Note: far-field patterns of basis 

functions discretizing Jp (r) are not computed/stored for medium 1 and not included in 

summation in (16) for a = 1.) Next, for each ka
pq, these far-field patterns 𝓕u(ka

pq) are 

convolved via FFT with the translation tensor 𝓣u′ − u
∼ (ka

pq) to obtain all groups’ incoming 

plane wave spectra 𝓖u′(ka
pq) as

𝓖u′(ka
pq) = Ψ−1(𝓣u′ − u(ka

pq)Ψ(𝓕u(ka
pq))) . (17)

Here Ψ is the FFT operator, 𝓣u′ − u(ka
pq) = Ψ(𝓣u′ − u

∼ (ka
pq)) is the tensor that stores FFT’ed 

translation operator values and

𝓣u′ − u
∼ (ka

pq) =
ka

2ηa

16π2 ∑
l = 1

Ka
( − j)l(2l + 1)hi

(2)(kaRu′u)Φl(Ru′u · ka
pq) . (18)

where R̂
u′u = Ru′u/Ru′u, Φl (·) is the Legendre polynomial of degree l and hl

(2) denotes the 

spherical Hankel function of the second kind. All 𝓣u′ − u(ka
pq) computed and stored for all 

directions constitute the third large data structure mentioned in Section I and can be 

compressed via Tucker decomposition [18], as explained in the following section.

In practice, the circular convolution in (17) for each ka
pq is performed as follows. First, 

𝓣u′ − u(ka
pq) is computed by Fourier transforming 𝓣u′ − u

∼ (ka
pq) with indices 

ux′ = − Nx + 1, …, Nx, uy′ = − Ny + 1, …, Ny, uz′ = − Nz + 1, …, Nz, (ux′ , uy′ , uz′ ≠ 0), and u = (1, 

1, 1). Second, 𝓣u′ − u(ka
pq) is multiplied with the Fourier transform of 𝓕u(ka

pq) with indices 

ux = 1, …, Nx, uy = 1, …, Ny, uz = 1, …, Nz, after the dimensions of 𝓕u(ka
pq) are increased 

to (2Nx − 1) × (2Ny − 1) × (2Nz − 1) by zero padding. After computing all 𝓖u′(ka
pq), those 

are projected onto the testing basis functions and far-field contributions to the matrix-vector 

multiplication in (14) are computed by summing over all directions with quadrature weights 

wa
pq as
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∑
a = 0

1
∑

p = 1

Ka + 1

∑
q = 1

2Ka + 1

wa
pqP−(ka

pq, nd × fm) · 𝓖u′(ka
pq), 1 ≤ m ≤ Nd (19)

∑
a = 0

1
∑

p = 1

Ka + 1

∑
q = 1

2Ka + 1

wa
pq P−(ka

pq, nd × fm) × ka
pq · 𝓖u′(ka

pq)(βa/αa), Nd + 1 ≤ m ≤ 2Nd (20)

∑
p = 1

K0 + 1

∑
q = 1

2K0 + 1

w0
pq/α0 αpP−(k0

pq, fm) − (1 − αp)P−(k0
pq, np × fm) × k0

pq · 𝓖u′(k0
pq), 2Nd

+ 1 ≤ m ≤ N .

(21)

To execute the FMM-FFT algorithm on high-performance parallel computers for 

characterizing large-scale mine tunnels/galleries loaded with conductors, a hybrid spatial/

angular parallelization strategy, which utilizes hybrid message passing interface/open 

multiprocessing (MPI/OpenMP) standards, is deployed. This parallelization strategy, 

described in Appendix II, uniformly partitions the memory and computational loads along 

angular dimension (i.e., plane-wave directions) and spatial dimension (i.e., groups) among 

processors. Such parallelization strategy introduces two additional processor-to-processor 

communications compared to the spatial partitioning strategy in [22]. These additional 

communications require negligible time when nonblocking MPI operations are used. On the 

other hand, the hybrid spatial/angular parallelization strategy permits scalable workload 

partitioning of compression of far-field patterns, while the spatial parallelization strategy in 

[22] does not.

2) SVD and Tucker Decomposition Enhancements—To reduce the memory 

requirement of the SIE simulator leveraging FMM-FFT algorithm, large data structures 

storing the near-field interactions, far-field (and receiving) patterns of basis functions, and 

FFT’ed translation operator tensors are compressed viaSVD and its higher-dimensional 

counterpart Tucker decomposition.

Compression of near-field interaction matrices: Assume that the near-field interactions 

between Ns source basis functions in a group Bu (e.g., u = (1, 1, 1) in Fig. 2) and Nt testing 

basis functions in a group Bu′ (e.g., u′ = (2, 1, 1) in Fig. 2) are stored in a matrix Q̄ with 

dimensions Nt × Ns, which is a rank deficient block of MoM matrix with entries Z̄
mn, m ∈ 

Bu′, n ∈ Bu, and can be compressed via truncated SVD (TrSVD(·)) as
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Q ≈ TrSVD (Q) = U∑V∗ (22)

where * stands for conjugate transpose, Ū and V̄ are truncated unitary matrices with 

dimensions Nt × r and Ns × r, respectively, and Σ̄ is the diagonal matrix with descending r 
singular values of Q̄, δi, i = 1, …, r, which are greater than a prescribe tolerance γ2 times the 

value of first singular value, i.e., δi ≥ γ2δ1, i = 1, …, r. During the setup stage, truncated 

SVD compression is applied to all MoM matrix blocks that stores the near-field interactions 

between groups, but not applied to full rank blocks pertinent to self-interactions of groups. 

During the iterative solution of (14), the reduced representations in (22) are directly used 

without restoring the full block Q̄ to compute the contributions of near-field interactions to 

the matrix vector multiplication.

Compression of matrices holding far-field patterns: Assume that one component (θ or ϕ) 

of far-field (or receiving) pattern of a basis function for a medium a ∈ {0, 1} is stored in a 

matrix W̄ with dimensions (Ka + 1) × (2Ka + 1), which tabulates the farfield samples along 

elevation and azimuthal directions through its rows and columns, respectively. Given the 

prescribed tolerance γ3, W̄ can be approximated by its truncated SVD as

W ≈ TrSVD (W) . (23)

This operation is applied to θ and ϕ components of all basis functions’ far-field and 

receiving patterns for both media. The resulting truncated unitary matrices and singular 

values obtained and stored during setup stage are used to restore the far-field and receiving 

patterns one-by-one during the iterative solution of (14).

Compression of FFT’ed translation operator tensors: The tensor storing the FFT’ed 

translation operator samples for each ka
pq, 𝓣u′−u, has dimensions D1 × D2 × D3 = (2Nx − 1) 

× (2Ny − 1) × (2Nz − 1) and can be compressed via Tucker decomposition as [23]

𝓣u′ − u ≈ 𝓧 ×1 U1 ×2 U2 ×3 U3 (24)

where 𝓧 is the core tensor with dimensions r1 × r2 × r3, Ūi, i = 1, …, 3, denote the factor 

matrices with dimensions Di × ri, i = 1, …, 3, and ×i, i = 1, …, 3, stands for the i–mode 

matrix product of a tensor, which can be performed as explained in [24]. The core tensor and 

factor matrices are obtained via the following procedure:

1. The unfolding matrices of 𝓣u′−u, T̄
i, i = 1, …, 3, are formed. (Note: An 

example of forming unfolding matrices of a tensor is given in [24, eq. 2.1]).
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2. Given the prescribed tolerance γ4/ 3, the truncated SVDs of unfolding matrices, 

TrSVD(Ti) = Ui∑iVi
∗, i = 1, …, 3, are obtained. The resulting truncated unitary 

matrices Ūi, i = 1, …, 3, are the factor matrices of (24).

3. The core tensor can be obtained via

𝓧 = 𝓣u′ − u ×1 U1
∗ ×2 U2

∗ ×3 U3
∗ . (25)

The core tensors and factor matrices of FFT’ed translation operator tensors for all ka
pq

directions are obtained during the setup stage and used to restore 𝓣u′−u one ka
pq at a time 

during the iterative solution stage.

III. Numerical Results and Discussion

This section presents numerical examples that demonstrate the accuracy, efficiency, and 

applicability of the proposed FMM-FFT- SIE simulator. In all examples below, the FMM 

box size is half of the wavelength in ore, FMM accuracy is three digits (γ1 = 3), matrix 

system (14) is solved by a transpose-free quasiminimal residual iterative solver [25] with a 

residual error tolerance of 10−6, which uses a right diagonal preconditioner, and tolerances 

γ2, γ3, and γ4 for compressing matrices and tensors are 10−3, 10−4, and 10−6, respectively. 

Furthermore, tunnels and galleries are surrounded by ore with permittivity ε1 = ε0 (εr,1 − 

jσ1/ωε0) and permeability μ1 = μ0 ; εr,1and σ1 are the relative permittivity and conductivity 

of the ore, respectively. All simulations are performed on a cluster of dual hexacore X5650 

Intel processors with 64 GB RAM, launching one MPI process on each processor and 

distributing the computational load assigned to each processor among its 16 cores via 

OpenMP. The CPU and memory requirements of the proposed solver for all numerical 

examples are tabulated in Table I.

A. Arched Tunnel

First, the proposed simulator is used to analyze EM wave propagation in an arched tunnel 

surrounded by ore with εr,1 = 8.9 and σ1 =0.15 S/m [see Fig. 3(a)]. A transmitting 

electrically small electric dipole with unit moment is positioned at (0.915, 50, 1.22) m and 

power densities are computed on lines inside the tunnel. Three different scenarios are 

considered: an empty tunnel, a tunnel loaded with mine carts, and a tunnel loaded with 

conducting strips that model a transmission line.

1) Empty Tunnel—A 600 m-long tunnel is excited by either a z– (vertically) or x– 

(horizontally) oriented dipole operated at 455 MHz or 915 MHz (4 cases) [see Fig. 3(a)]. At 

the lower and higher frequencies, the current densities on the tunnel walls are discretized 

using N = 15, 153, 996 and N = 58, 510, 782 RWG basis functions, respectively. Power 

densities computed on the line connecting (0.915, 51, 1.22) m and (0.915, 600, 1.22) m are 

compared with measured data [8], [26] following normalization to account for uncertainties/

differences in the excitation mechanism [see Fig. 3(b)–(e)]. Computed and measured power 

densities are in good agreement, thereby validating the accuracy of the simulator. The 
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dynamic range of both the simulator and measurements is approximately 100 dB and 

reflected in Fig. 3(b), 3(c), and 3(e). The magnitude of the electric current density on the 

tunnel walls computed for each orientation of the transmitting dipole and frequency is shown 

in Fig. 3(f)–(i). The electric current density decays in accordance with the power density 

along the tunnel. It can be seen from Table I that the proposed compression schemes reduce 

the memory requirements of the simulator by factors of 2 for 455 MHz and 1.8 for 915 

MHz. It should be noted here that the simulations at 915 MHz could not be executed on the 

current computer cluster using only the FMM-FFT acceleration. Memory requirement of the 

FMM-FFT accelerated simulator had to be reduced further using the compression schemes.

2) Tunnel Loaded With Mine Carts—A 200 m-long tunnel loaded with six PEC mine 

carts is excited by a z–directed electric dipole operated at 455 MHz [see Fig. 4(a)]. The mine 

carts are centered at (0.915, 80.25 + (j − 1) × 20, 0.55) m, j = 1, …, 6; their surfaces and 

wheels are modeled by truncated inverted pyramids and circular cylinders, respectively [see 

Fig. 4(a)]. The current densities on the tunnel walls and mine carts are discretized using N = 

5, 433, 360 RWG basis functions. Power densities computed on the line connecting (0.915, 

51, 1.22) m and (0.915, 200, 1.22) m are compared with those in the empty tunnel (obtained 

in scenario A) [see Fig. 4(b)]. The power density at y = 184 m (just after the sixth mine cart) 

is 9 dB below that observed in the empty tunnel. Oscillations in the power density graph in 

the loaded tunnel beyond y = 81 m, that is just after the first mine cart, result from 

reflections from subsequent carts, as evidenced by plots of the electric current density on 

tunnel walls displayed in Fig. 4(c). Again, the proposed compression schemes reduce the 

solver’s memory requirement by a factor of two [see Table I].

3) Tunnel Loaded WITH Conducting Strips—A 650 m-long tunnel loaded with two 

PEC strips is excited by a z–directed electric dipole operated at 50 MHz [see Fig. 5(a)]. The 

PEC strips, which are 600 m long, infinitesimally thin, 4 cm wide, and separated by 0.3 m, 

model a transmission line placed near the lateral tunnel wall and are centered at (0.17, 345, 

1.07)m and (0.17, 345, 1.37) m. The current densities on the tunnel walls and conducting 

strips are discretized using N = 442, 044 RWG basis functions and the simulation is 

performed without FMMFFT acceleration as the FMM-FFT algorithm is numerically 

unstable for low frequencies [21]. This is simply achieved by setting κ to a very large 

number and box size to one wavelength in ore, which ensures that all groups become near-

field pairs and their interactions are compressed using SVD. Normalized power densities 

computed along two lines connecting point (0.915, 51, 1.22) m to (0.915, 645, 1.22) m 

(tunnel center), and point (0.17, 51, 1.22) m to (0.17, 645, 1.22) m (middle of strips) are 

shown in Fig. 5(b). A standing wave phenomenon can be observed at receiver points near to 

the wall at y = 650 m. The magnitude of the electric current densities induced on tunnel 

walls and conductor strips are shown in Fig. 5(c). The current densities induced on the strips 

conform to a bifilar mode [9], allowing the field to travel deep into the tunnel. The unloaded 

tunnel does not support any propagating modes.

B. Mine Gallery

Next, the proposed simulator is used to analyze EM wave propagation in a mine gallery 

formed by eight rectangular tunnels [see Fig. 6(a)], four of which extend along the x 
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direction and intersect the remaining four extending along the y direction [see Fig. 6(a)]. The 

tunnels are surrounded by ore with εr,1 = 3 and σ1 = 0.001 S/m. The gallery is excited by an 

electric dipole with unit moment that is centered at (7.5, 15.91, 1.12)m}, either z– 

(vertically) or y– (horizontally) oriented, and operated at either 455 or 915 MHz (four 

cases). The current densities on the walls are discretized using N = 15, 766, 560 and N = 58, 

794, 816 RWG basis functions at the lower and higher frequencies, respectively. For both 

polarizations and frequencies, normalized power densities computed at receiver points along 

four lines in the x-directed tunnels connecting (8.5, y, 1.12) m to (81.5, y, 1.12) m with y set 

to 15.91, 32.73, 49.55, and 66.37 are shown in Fig. 6(b)–(e), The following observations are 

in order:

1. In tunnel 2, power densities at receivers with x–coordinates less than 15.91 m are 

always larger than those at receivers with x–coordinates exceeding 15.91 m [see 

Fig. 6(b)–(e)]. Slight or no decay is observed for receivers with x–coordinates 

lower than 15.91 m as direct coupling from the transmitter to these receiver 

points occurs through the low-loss ore.

2. Small or large spikes appear in the power density plots near receivers with x–

coordinates 15.9, 32.7, 49.5, and 66.3 m in tunnels 3 and 4 [see Fig. 6(b)–(e)]. 

Note that these receivers reside at the intersections of tunnels 3 and 4 and tunnels 

5, 6, 7, and 8; these spikes result from waves guided by tunnels 5, 6, 7, and 8.

The electric current densities on gallery walls computed for each frequency and polarization 

are shown in Fig. 6(f)–(i); these plots indirectly confirm the above power density 

observations. It can be seen in Table I that the proposed compression schemes reduce the 

memory requirements of the simulator by factors of 2 at 455 MHz and 1.6 at 915 MHz.

C. Rectangular Tunnel With Rough Walls

Finally, the proposed simulator is used to analyze EM wave propagation in a rectangular 

tunnel with rough walls, excited by a z– (vertically) oriented unit electric dipole positioned 

at (50.0, 0.925, 1.12) m and operated at 455 MHz [see Fig. 7(a)]. The tunnel is surrounded 

by ore with εr,1 = 3 and σ1 = 0.001 S/m. Tunnel walls have a random profile with 0.1 m 

root-mean-square height and 0.25 m correlation length [27]. The current densities on the 

tunnel walls are discretized using N =13, 580, 916 RWG basis functions. Results for the 

tunnel with rough walls are compared to those for the corresponding tunnel with smooth 

walls, and power densities are computed along a line connecting (51.0, 0.925, 1.12) m and 

(200, 0.925, 1.12) [see Fig. 7(b)]. The power density at y = 175 m for the tunnel with rough 

walls is 7.34 dB below that for the tunnel with smooth walls. Furthermore, the power 

densities computed by the proposed solver for the tunnel with smooth walls are compared to 

those obtained using the multimodal decomposition method of [3] in Fig. 7(b). Near-perfect 

agreement between the two results is observed, validating the accuracy of the proposed 

simulator one more time. In addition, the electric current densities computed on rough and 

smooth walls are shown in Fig. 7(c) and 7(d). Clearly, the decay of the current densities on 

tunnel walls for both cases conforms with the decay of the power densities along the tunnels. 

The proposed compression schemes reduce the solvers’ memory requirements by a factor 

more than two [see Table I]. When the FMM-FFT accelerated simulator without the 

compression schemes is used for characterization of EM wave propagation in tunnels with 
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rough and smooth walls, the simulations are completed in 4 h and 54 min and 4 h and 33 

min, respectively. By comparing these simulation times with those in Table I, it can be 

concluded that for these examples, the compression schemes increase the simulation time by 

a factor around one-third.

IV. Conclusion

An FMM-FFT-SIE full-wave simulator is presented for characterizing EM wave propagation 

in electrically large and loaded mine environments. The full-wave simulator rapidly solves 

the Muller-combined field SIE system using a parallel FMM-FFT acceleration scheme. To 

reduce the memory requirements, the simulator employs SVDs to compress matrices 

characterizing near-field interactions and far-field (and receiving) patterns, and Tucker 

decompositions to compress tensors storing FFT’ed translation operator tensors. Numerical 

results demonstrate the accuracy, efficiency, and applicability of the proposed simulator. The 

proposed full-wave simulator is currently being used as a research tool for characterizing 

wireless channels and predicting radio coverage in underground mine tunnels and galleries. 

Wireless system manufacturers and network designers can potentially use the simulator to 

identify best node locations when deploying a wireless communication, tracking, or sensing 

system in underground mines, especially during an emergency when the mine is obstructed 

by debris from a cave-in. The coupling of the proposed simulator to fast and accurate 

uncertainty quantification frameworks [28]–[31] is being investigated for obtaining the 

statistics of observables due to uncertainty in mine geometry, configuration, and excitation 

[32].
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Appendix I

The entries of the unknown expansion coefficient vector I are simply In, n = 1, …, 2Nd + Np. 

The entries of the tested incident field vector V are

Vm =

〈fm (r), α0nd × Ei(r)〉
Sd

, 1 ≤ m ≤ Nd

〈fm (r), β0nd × Hi(r)〉
Sd

, Nd + 1 ≤ m ≤ 2Nd

〈fm (r), αpt p · Ei(r)〉
Sp

+ 〈fm (r), η0(1 − αp) np × Hi(r)〉
Sp

, 2Nd + 1 ≤ m ≤ N

(26)

where 〈a(r), b(r)〉S = ∫S a(r) · b(r)dr. The entries of the MoM matrix Z̄ are

Zm n = 0.5(α1 − α0)〈fm (r), fn (r)〉
Sd

+ 〈nd × fm (r), (α1ℜ1 + α0ℜ0) [fn (r)]〉
Sd

1 ≤ m ≤ Nd,

1 ≤ n ≤ Nd

(27)

Zm n = − 〈nd × fm (r), (α1𝔍1 + α0𝔍0) [fn (r)]〉
Sd

1 ≤ m ≤ Nd, Nd + 1 ≤ n ≤ 2Nd (28)

Zm n = 〈nd × fm (r), α0𝔍0 [fn (r)]〉
Sd

1 ≤ m ≤ Nd, 2Nd + 1 ≤ n ≤ N (29)

Zm n = − nd × fm (r),
β1
η1

2 𝔍1 +
β0
η0

2 𝔍0 [fn (r)]
Sd

Nd + 1 ≤ m ≤ 2Nd, 1 ≤ n ≤ Nd (30)
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Zm n = 0.5(β0 − β1) 〈fm (r), fn (r)〉
Sd

− 〈nd × fm (r), (β1ℜ1 + β0ℜ0) [fn (r)]〉
Sd

Nd + 1 ≤ m

≤ 2Nd, Nd + 1 ≤ n ≤ 2Nd

(31)

Zm n = 〈nd × fm (r), β0ℜ0 [fn (r)]〉
Sd

Nd + 1 ≤ m ≤ 2Nd, 2Nd + 1 ≤ n ≤ N (32)

Zm n = 〈fm (r), − t p · αpℜ0 [fn (r)]〉
Sp

− 〈np × fm (r), (1 − αp)/η0𝔍0 [fn (r)]〉
Sp

2Nd + 1 ≤ m

≤ N, 1 ≤ n ≤ Nd

(33)

Zm n = 〈fm (r), t p · αp𝔍0 [fn (r)]〉
Sp

− 〈np × fm (r), η0 (1 − αp) ℜ0 [fn (r)]〉
Sp

2Nd + 1 ≤ m

≤ N, Nd + 1 ≤ n ≤ 2Nd

(34)

Zm n = 〈fm (r), − t p · αp𝔍0 [fn (r)]〉
Sp

+ η0 (1 − αp)

0.5〈fm (r), fn (r)〉
Sp

+ 〈np × fm (r), ℜ0 [fn (r)]〉
Sp

2Nd + 1 ≤ m ≤ N, 2Nd + 1 ≤ n ≤ N .

(35)

Appendix II

The parallelization strategy used in this paper is built on the hybrid spatial/angular 

partitioning approach that was originally developed for multilevel FMM[33]. This strategy 

achieves uniform memory computational load distribution (among Np processors) during the 

setup stage as follows: Each processor is in charge of computing and storing the matrices 
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that hold near-field interactions and basis functions’ far-fields and receiving patterns for 

Ng/Np groups (spatial partitioning), where Ng stands for the total number of groups 

enclosing the basis functions. In addition, each processor is responsible for computing and 

storing the FFT’ed translation operator tensors for ∑a = 0
1 (Ka + 1)(2Ka + 1)/N p plane wave 

directions (angular partitioning). No communication among processors is required at this 

stage. During the matrix–vector multiplication stage, the uniform computational load 

partitioning is achieved by the following steps, depicted for an example structure in Fig. 8.

Step 1: Each processor computes the outgoing far-field and receiving patterns of the 

groups (along all directions) that it is responsible for. Then it sends a set of directions 

of each group’s far-fields to the processor that is in charge of that set of directions. At 

the same time, it receives all remaining groups’ far-fields along a set of directions that 

it is responsible for. This process can be better explained on the example structure in 

Fig. 8: Each pair of concentric circles represents one group’s far-field (or receiving) 

patterns; outer and inner circles represent the far-field (or receiving) patterns 

computed for the medium 1 and medium 0 (air), respectively. The angular dimension 

of each circle concerns the angular samples (or directions) of the far-field (or 

receiving) pattern. The number printed inside/near (and color of) the concentric 

circles/arcs indicates the ID of the processor in charge of the data. For the example 

structure, each processor computes three groups’ far-field patterns along all directions 

[via (15)] and keeps a quarter of this data (as Np = 4) that is pertinent to directions the 

processor is responsible for. It sends the remaining portion of this data to the other 

processors that are responsible for the remaining directions. At the same time, it 

receives the data from other processors pertinent to remaining groups’ far-fields along 

a set of directions that it is responsible for. The send and receive operations are 

performed using nonblocking MPI commands.

Step 2: Each processor has all groups’ outgoing far-field patterns and FFT’ed 

translation operator tensors for a set of directions that it is responsible for (shown by 

arcs in Fig. 8). Using this data, each processor performs the translation operation (via 

(17)) and obtains incoming plane wave spectra for each direction that it is in charge 

of. Then it sends each group’s incoming wave spectrum along a set of directions to 

the processor that is in charge of that group. At the same time, it receives the 

incoming wave spectrum along remaining directions from the other processors for 

each group that the processor is responsible for. Again, send and receive operations 

are performed using nonblocking MPI commands.

Step 3: Each processor has the incoming plane wave spectra of the groups (along all 

directions) that it is responsible for. Using each group’s incoming plane wave 

spectrum and receiving pattern of the basis function that sits in that group, it 

computes the far-field contribution to the matrix–vector multiplication pertinent to 

mth basis function.

As each processor computes and stores near-field interaction matrices of each group that it is 

in charge of, it also locally computes the near-field contribution to the matrix–vector 

multiplication pertinent to mth basis function that sits in that group. At the end of each 

matrix–vector multiplication, each processor sums the near- and far-field contributions 
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pertinent to all basis functions that sit in groups that the processor is responsible for. Then it 

writes the results to the pertinent entries of a vector with dimension N, which is distributed 

to all processors by all-to-all communication (MPI_Allreduce). It should be mentioned here 

that the parallelization strategy used in this paper is similar to the one described in [34]. 

However, there are several differences in their implementation. The parallelization scheme 

described above makes use of nonblocking send/receive communications as opposed to all-

to-all communications. Furthermore, the strategy in [34] uses each core of the processor to 

compute the 3-D FFTs in (17) serially for the directions assigned to it at the translation stage 

while in this paper, the 3-D FFTs for each direction are computed using all cores of each 

processor in parallel via an OpenMP-FFT library, as explained in [18].
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Fig. 1. 
Generic tunnel geometry for Muller-combined field SIE formulation. (a) Original problem. 

(b) Equivalent exterior problem. (c) Equivalent interior problem.
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Fig. 2. 
Partitioning a fictitious box enclosing the mesh of an example structure into small boxes and 

tabulating near/far-field pairs of a selected group B(2,2,1) in an FMM-FFT scheme.
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Fig. 3. 
(a) Geometry of an empty 600 m-long arched tunnel (the lateral wall is removed for 

illustration). The power values on receiver points computed by the proposed FMM-FFT-SIE 

simulator and obtained by measurements at 455 MHz for (b) vertical and (c) horizontal 

polarizations and at 915 MHz for (d) vertical and (e) horizontal polarizations. Electric 

current density on tunnel walls computed by the proposed simulator at 455 MHz for (f) 

vertical and (g) horizontal polarizations and at 915 MHz for (h) vertical and (i) horizontal 

polarizations (in dB scale).
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Fig. 4. 
(a) Geometry of a 200-m-long arched tunnel loaded with six PEC mine carts (the lateral wall 

is removed for illustration). (b) Power values on receiver points in empty and loaded tunnels 

computed by the proposed FMM-FFT-SIE simulator. (c) Electric current density on tunnel 

walls and mine carts computed by the proposed simulator (in dB scale).
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Fig. 5. 
(a) Geometry of a 650-m-long arched tunnel loaded with two parallel PEC strips (the lateral 

wall is removed for illustration). (b) Power values at receiver points on a line in the middle 

of the strips and on a line in the middle of the tunnel computed by the proposed simulator. 

(c) Electric current density on tunnel walls and conductor strips computed by the proposed 

simulator (in dB scale) (the half of the tunnel is removed to clearly show the currents around 

the strips).
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Fig. 6. 
(a) Geometry of a mine gallery formed by eight tunnels. (b) Power values at receiver points 

on lines inside tunnel 1, 2, 3, and 4 computed by the proposed FMM-FFT-SIE simulator at 

455 MHz for (b) vertical and (c) horizontal polarizations and at 915 MHz for (d) vertical and 

(e) horizontal polarizations. Electric current density on tunnel walls computed by the 

proposed simulator at 455 MHz for (f) vertical and (g) horizontal polarizations and at 915 

MHz for (h) vertical and (i) horizontal polarizations (in dB scale).
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Fig. 7. 
(a) Geometry of a 200-m-long rectangular tunnel with rough walls. (b) Power values at 

receiver points on a line in the middle of the tunnel computed by the proposed simulator for 

the tunnel with smooth and rough walls and by the multi-modal decomposition for the 

tunnel with smooth walls. Electric current density on (c) rough walls and (d) smooth walls of 

the rectangular tunnel computed by the proposed simulator (in dB scale).
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Fig. 8. 
Parallelization strategy in the FMM-FFT scheme for matrix-vector multiplication stage: 

partitioning of groups and plane wave directions among Np = 4 processors for an example 

structure composed of 4 and 3 groups along x and y directions.
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