Title
Relativistic treatment of light quarks in D and B mesons and W-exchange weak decays

Permalink
https://escholarship.org/uc/item/6xs6h9g8

Journal
Physical Review D, 38(1)

ISSN
0556-2821

Authors
Silverman, Dennis
Yao, Herng

Publication Date
1988

DOI
10.1103/physrevd.38.214

License
CC BY 4.0

Peer reviewed
Relativistic treatment of light quarks in \(D \) and \(B \) mesons and \(W \)-exchange weak decays

Dennis Silverman and Herng Yao

Department of Physics, University of California, Irvine, California 92717

(Received 11 December 1987; revised manuscript received 23 May 1988)

A relativistic bound-state equation is applied to formulate the nonspectator (or \(W \)-exchange) decay rates of \(D, D_s, \) and \(B \) mesons, and their leptonic decay constants. The nonspectator decay rates are also calculated here in the Dirac-equation limit. In this limit we show that up to a logarithm the nonspectator rate grows with heavy-quark mass like \(m^6 \), faster than the spectator rate of \(m^4 \). Including an analysis of experimental \(D^\pm, D^0, \) and \(D_s \) decay rates shows that the enhancement of \(D^0 \) decays from the nonspectator diagram is about a quarter of the contribution from the spectator diagram. The relativistically calculated weak decay constant \(f_B \) is in the \(260-300\text{-MeV} \) range. Predictions are also made for nonspectator \(B, b_s, \) and \(B_c \) decay rates including the ratio \(\tau_B/\tau_{D^0} \approx 2 \).

I. INTRODUCTION

In order to evaluate the relativistic corrections to bound-state spectra in QCD, and to understand and establish the relativistic nature of the parts of the QCD potential, a relativistic expansion of the Dirac field equation was formulated by Bander, Silverman, Klima, and Maor\(^1,2\) using a valence-quark–antiquark pair in the lowest order. This type of equation applying a multi-quantum intermediate-state expansion has a long history from Greenberg,\(^3\) Gross,\(^4\) and Johnson.\(^5\) It includes successful QED calculations\(^6\) of the \(O(\alpha^6) \) contributions to the hyperfine splitting in positronium and muonium (\(\mu^+e^- \)). In the relativistic valence-quark bound-state equation we used a relativistic vector-gluon exchange corrected by an asymptotically free coupling strength, along with a linear confining potential which was established to have a scalar nature. The resulting equation, after partial-wave projection, is a single-variable integral equation for the radial wave functions in momentum space with the mass of the state as the eigenvalue. It reduces to the Breit-Fermi interaction in the Schrödinger-equation limit, and to the Dirac equation in the limit where one quark mass is much heavier than the other. In the first papers,\(^1,2\) the studies were concerned mainly with the spectra, emphasizing the relativistic spin-spin and spin-orbit effects. The spectra and wave functions were calculated for all mesons except the chiral-symmetry-dominated \(\pi \) and \(K \) mesons.

The relativistic nature is most important in short-distance or high-momentum phenomena and in cases involving light-mass quarks where the Schrödinger equation is a poor approximation since the momenta are typically larger than the light-quark \((u, d, \) or \(s \)) constituent masses.

In the annihilation decays of mesons we are examining short-distance processes, and in the case of mesons with one or both quarks being light, a four-component relativistic treatment. In this paper we formulate and calculate the nonspectator decay rate of \(D_s^+, D_s^0, B^0, \) and \(B^\pm \) mesons, which involve a short-range exchange of a virtual \(W \) boson between the constituent \(c \) and \(\bar{c} \) quarks (in the \(D^0 \)) converting them into light \(s \) and \(\bar{d} \) quarks and emitting a gluon to avoid helicity suppression. We also calculate the weak decay constants for \(D, D_s, B, \) and \(B_c \) mesons.

A number of experiments have shown that \(D^0 \) mesons decay faster than \(D^\pm \) mesons by an excess decay rate about the same as that of \(D^\pm \) itself. The weak decay of a charmed quark by itself, or spectator contribution,\(^7\) is present for both mesons, Fig. 1. The \(D^0 \) also has the internal-\(W \)-exchange graph, which does not exist in \(D^\pm \) decay, with an emitted gluon to avoid helicity suppression, Figs. 2(a) and 2(b). This is called the nonspectator (or \(W \)-exchange) contribution.\(^8\) The original calculation of this contribution by Bander, Silverman, and Soni\(^9\) was approximated in an extreme nonrelativistic mode, with the virtual-\(W \) propagator taken with momentum considered small with respect to \(m_q \) and \(f_D \) estimated only from a nonrelativistic wave function. In this paper we remedy both of these approximations with first, relativistic wave functions, where the equivalent to the nonrelativistic \(\psi(0) \) or \(f_D \) is embedded in the calculation and second, with a relativistic propagator for the \(q \) quark which includes both positive- and negative-energy poles. We find that the nonspectator decay rate is then rather insensitive to the up-quark mass since the propagator is dominated by the larger up-quark momentum.

The \(D \) meson also has nonspectator diagrams of the constituent \(c \) and \(\bar{c} \) quarks annihilating into a virtual \(W \) with the emission of a gluon to avoid the helicity suppression, which are exactly the same as the Fierz transforms of the nonspectator \(D \) decay graphs.

The rates of the nonspectator \(D, D_s, B, \) and \(B_c \) decays depend on the value of the strong coupling constant \(\alpha_s \) due to the emission of a gluon from the quark. More work will be required to find the appropriate value of \(\alpha_s \) including the calculation of QCD radiative corrections to the decay. We call \(\alpha_{qg} \) the product of \(\alpha_s \) and \(m_D \) multiplied by the higher-order QCD corrections and find that agreement with the data for \(D \) decays occurs for \(\alpha_{qg} \approx 0.39 \). In this analysis, the nonspectator process gives about a 25%
enhancement to the \(D^0 \) decay, and for \(D^\pm \) decays a 60% reduction from the spectator rate due to Pauli interference is required. In the case of the non spectator \(B^0 \) decay we predict a ratio \(\Gamma(B^0)/\Gamma(B^-) \approx 1.9 \), ignoring the interference effect which has been found to be very small here.

In Sec. II we summarize the relativistic bound-state equation that was previously formulated and used in calculations of the mesonic spectra. In Sec. III we formulate the decay amplitudes for the non spectator decays of \(D^0, D^\pm, B^0, \) and \(B^\pm \) mesons and present our calculations in terms of the wave functions derived from the fits to the spectra. In Sec. IV the weak-leptonic-decay constants \(f_D, f_{D^*}, f_B, \) and \(f_{B^*} \) are formulated in terms of the relativistic wave functions. We then calculate the leptonic weak decay rates of \(D, D^*, B, \) and \(B^* \) mesons. In Sec. V we apply the results of the rates of non spectator decays and the leptonic decays to explain the lifetime differences among \(D^0, D^\pm, \) and \(D^\pm \) mesons, and to predict the lifetime difference between \(B^0 \) and \(B^\pm \) mesons. We also calculate the rate and photon spectrum for \(D^0 \rightarrow \gamma + \text{anything} \).

II. FORMULATION OF THE RELATIVISTIC BOUND-STATE EQUATION

A. Formulation of the integral equation

The relativistic bound-state equation\(^1\)\(^2\) we use is based on the equation for the quark field \(\psi(x) \) with mass \(m_1 \), coupled to a vector gauge potential \(A_\mu(x) \) and a scalar potential \(S(x) \):

\[
(B - \nu - m_1)\psi(p, \lambda) = \sum_{\lambda'} \int {d^3 p'} m_2^2 \left[V_\nu((p - p')^2)\gamma_\mu \psi(p', \lambda')\bar{\psi}(p', \lambda')\gamma^\mu v(p, \lambda) + V_5((p - p')^2)\psi(p', \lambda')\bar{\psi}(p', \lambda')v(p, \lambda) \right],
\]

(2.4)

\[
(i\mathbf{\nabla} - m)\psi(x) = [gA(x) + S(x)]\psi(x).
\]

(2.1)

The bound-state equation is obtained from the matrix element of Eq. (2.1) between the bound state of four-momentum \(B \) and an antiquark state of mass \(m_2 \), momentum \(p \), and spin \(\lambda \):

\[
(i\mathbf{\nabla} - m_1)\langle p, \lambda, \psi(x) | B \rangle
\]

\[
= \sum_n \langle p, \lambda | gA(x) + S(x) | n \rangle \langle n | \psi(x) | B \rangle,
\]

(2.2)

where a complete set of states has been inserted. Up to this point the equation is exact. The approximation we are going to apply consists of keeping only the antiquark state \(| p, \lambda \rangle \) in the sum. The justification for this approximation is that, at least at larger distances, the valence-quark model appears to work quite well; in this model the mesons are made up of only a quark and an antiquark which is put on mass shell. This then leads to a linear integral equation for the matrix elements \(\langle p, \lambda | \psi_d(x) | B \rangle \).

By using the gluon propagator\(^3\) and source,

\[
A^{\mu}(x) = g \int d^4 x' D^{\mu}(x - x')\bar{\psi}(x')\gamma_\mu\psi(x')
\]

(2.3)

with a similar equation for \(S(x) \), and converting to momentum space, we obtain

\[
A^{\mu}(p, \lambda) = g \omega \int {d^3 p'} m_2 \left[V_\nu((p - p')^2)\gamma_\mu \psi(p', \lambda')\bar{\psi}(p', \lambda')\gamma^\mu v(p, \lambda) + V_5((p - p')^2)\psi(p', \lambda')\bar{\psi}(p', \lambda')v(p, \lambda) \right],
\]

(2.4)
where
\[
\Psi(p, \lambda) = (2\pi)^3 \frac{2\omega_B \omega(p)}{m^2} \left(\langle p, \lambda | \psi(0) | B \rangle \right)^{1/2},
\]
\[
\omega_B = (B^2 + M^2)^{1/2} \quad \text{and} \quad \omega = (p^2 + m^2)^{1/2}.
\]
In the meson's rest frame Eq. (2.4) is a linear eigenvalue problem for the bound-state mass \(B^0 = M \). The interactions are denoted by \(V_F \) and \(V_S \). Since \(\psi(p', \lambda') \) always appears summed with \(\bar{\psi}(p', \lambda') \), it is appropriate to introduce a \(4 \times 4 \) component wave function \(\Phi \) where the rows are the components of the quark and the columns of the antiquark:
\[
\Phi_{a0}(p, \lambda) = \sum_\lambda \Phi_a(p, \lambda) \bar{\psi}_\lambda(p, \lambda).
\]
(2.6)

The wave equation for \(\Phi \) becomes, by Eqs. (2.4) and (2.6),
\[
\mathbf{B} - \mathbf{p} - m_1 \Phi(p) = \int \frac{d^4p'}{(2\pi)^2 \alpha'} \left[V_F ((p - p')^2) \gamma_{\mu} \Phi(p') \gamma^\mu + V_S ((p - p')^2) \Phi(p') \right] |p - m_2\rangle.
\]
(2.7)

We introduce the analogs of Dirac components in \(2 \times 2 \) submatrices:
\[
\Phi = \begin{bmatrix}
G_u & \bar{G}_d \\
\bar{F}_u & \bar{F}_d
\end{bmatrix},
\]
where \(u \) and \(d \) stand for upper and lower \(\bar{u} \) components and \(G \) and \(F \) stand for upper and lower quark components. We note the restrictions arising from Eq. (2.6) that
\[
\Phi(p) |p + m_2\rangle = 0,
\]
which means that \(\bar{G}_u, \bar{F}_u \) can be taken as dependent on \(\bar{G}_d, \bar{F}_d \) by
\[
\bar{G}_u = -\bar{G}_d \frac{\sigma \cdot p}{\omega + m_2}, \quad \bar{F}_u = -\bar{F}_d \frac{\sigma \cdot p}{\omega + m_2}.
\]
(2.10)

In order to do the spin and angular momentum decomposition we convert the \(2 \) representation for the antiquarks to a \(2 \) representation by defining \(G_d = \hat{G}_d \sigma_y \) and \(F_d = \hat{F}_d \sigma_y \). We then expand \(G_d(p) \) and \(F_d(p) \) in terms of \(Y_{LM}^{M_-}(\hat{\theta}) \) and \(2 \times 2 \) projection operators for \(S = 0 \) and \(S = 1 \) states, coupling them to the total \(J, M_f \). For the unnatural-parity \(0^+ \) states we will be treating here, since \(J = 0 \) the expansion simplifies into two wave-function components:
\[
F_d(p) = f_+(p) |L = J + 1, S = 1\rangle |L = J + 1, S = 1\rangle, \quad G_d(p) = g_0(p) |L = J = 0, S = 0\rangle |L = J = 0, S = 0\rangle.
\]
(2.11)

Expanding the interactions in Legendre polynomials of \(\cos \theta = \hat{p} \cdot \hat{p} \) and performing the angular integrations, we obtain the desired integral equations of the wave functions containing the bound-state mass as an eigenvalue
\[
\begin{bmatrix}
M - \omega + m_1 & -p \\
-p & M - \omega - m_1
\end{bmatrix}
\begin{bmatrix}
f_+(p) \\ g_0(p)
\end{bmatrix} = \int dp' K_0(p, p') \begin{bmatrix}
f_+(p') \\ g_0(p')
\end{bmatrix},
\]
(2.12)

where \(K_0(p, p') \) is the \(2 \times 2 \) kernel matrix containing the angular momentum projections of the interactions for \(J = 0 \). For the interactions we start with the QCD gluon interaction which is considered to have a vector propagator modified by an asymptotically free coupling strength,
\[
V_R(q^2) = \frac{-4\pi g^2(4\pi/9)}{-q^2 \ln(1 - q^2/\Lambda_R^2)},
\]
where \(q^2 \) is the four-momentum transfer squared. While the large-\(q^2 \) (or small-distance) modified Coulomb part is due to a vector exchange, the long-distance infinitely rising part cannot be pure vector since it would lead to a Klein paradox. To avoid this we subtract off the linear part from \(V_R \). The resulting vector interaction is
\[
V_R(q^2) = -4\pi \left[\frac{16\pi}{27} \right] \times \left[\frac{1}{-q^2 \ln(1 - q^2/\Lambda_R^2)} - \frac{\Lambda_R^2}{(q^2)^2} \right].
\]
(2.14)

For the scalar interaction we have the linear confining part with slope \(k \). This interaction is cut off at a distance \(b \) or equivalently at a height \(kb \) for numerical calculations; i.e.,
\[
V_L(r) = \kappa r \theta(b - r) + kb \theta(r - b).
\]
(2.15)

We chose ramps at values of \(kb \geq 3 \) GeV and the results were insensitive to the value of the height at or above this value. Taking the Fourier transform of Eq. (2.15) and generalizing to \(q^2 \to -q^2 \) we have
\[
V_S(k, q = (-q^2)^{1/2} = (2\pi)^3 kb/(\omega/m) \delta^3(q) + (4\pi k/q^4)[kb \sin(bq) + 2 \cos(bq) - 2].
\]
(2.16)

The integral equation diverges slowly at large momentum no worse than logarithmically. Before that becomes important the neglected multiquanta states become important in competing for probability or amplitude with the valence-quark channel. We shall approximate this effect by introducing a large momentum, or in effect, a small-distance cutoff. We introduce into the kernel of Eq. (2.12) and into all other interactions of the valence-antiquark states a cutoff function \(S_c(\Lambda_0 p) \), with \(\varepsilon > 0 \), which approaches 0 for \(p \gg \Lambda_0 \) and approaches 1 for \(p \ll \Lambda_\varepsilon \):
\[
S_c(\Lambda_0 p) = \left[\frac{\Lambda_\varepsilon^2}{\Lambda_\varepsilon^2 + p^2} \right]^{1+\varepsilon}.
\]
(2.17)
with $\Lambda_{\epsilon} = \Lambda_0 (1 + \epsilon) \sqrt{2}$. Expanding this for small $p^2 / \Lambda_{\epsilon}^2$,

$$S_{\epsilon}(\Lambda_0 p) = \frac{1}{1 + p^2 / \Lambda_{\epsilon}^2} \approx \frac{1}{1 + (1 + \epsilon) p^2 / \Lambda_0^2 (1 + \epsilon)}$$

$$= \frac{1}{1 + p^2 / \Lambda_0^2} \quad (2.18)$$

does not show that the cutoff, in the predominant region where $p^2 < \Lambda_0^2$, is independent of ϵ.

The parameters used in the fits to the spectra of the mesonic systems are, hence, the quark masses m_1, m_2, the QCD potential scale Λ_R, the linear slope κ, and a cutoff $S_c(\Lambda_0 p)$ on the slowly diverging integral equations. We have found that $\epsilon = 1.0$ is sufficient to give convergent results for all physical quantities, and that the results vary little for $1 < \epsilon < 2$. The value $\epsilon = 1.0$ is used for calculations throughout the paper. The values from the spectral fits were $\Lambda_R = 0.4$ GeV, $\kappa = 0.15$ GeV2, $\Lambda_0(D) = 3.0$ GeV, and $\Lambda_0(B) = 3.7$ GeV.

$$G_d(p) = g_0(p) Y^0_{0}(|\hat{p}| S = 0, m_z = 0) \langle S = 0, m_z = 0 |$$

$$F_d(p) = f_{+}(p) \left[\frac{1}{\sqrt{3}} Y^1_{1}(|\hat{p}| S = 1, m_z = -1) \langle S = 1, m_z = -1 | - \frac{1}{\sqrt{3}} Y^0_{0}(|\hat{p}| S = 1, m_z = 0) \langle S = 1, m_z = 0 |$$

$$+ \frac{1}{\sqrt{3}} Y^0_{-1}(|\hat{p}| S = 1, m_z = -1) \langle S = 1, m_z = -1 | \right]. \quad (2.21)$$

Working out the projection operators gives

$$| S = 0, m_z = 0 \rangle \langle S = 0, m_z = 0 | = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \sigma_y$$

$$| S = 1, m_z = 1 \rangle \langle S = 1, m_z = 1 | = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (I + \sigma_z)$$

$$| S = 1, m_z = 0 \rangle \langle S = 1, m_z = 0 | = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \sigma_x$$

$$| S = 1, m_z = -1 \rangle \langle S = 1, m_z = -1 | = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{\sqrt{2}} (I - \sigma_z). \quad (2.22)$$

Substituting Eq. (2.22) into Eq. (2.21) we find

$$G_d = \frac{g_0}{\sqrt{2 \pi}} \sigma_y \quad \text{or} \quad \bar{G}_d = \frac{g_0}{\sqrt{2 \pi}}$$

$$F_d = - \frac{f_{+}}{\sqrt{2 \pi}} \sigma \cdot \hat{p} \sigma_y \quad \text{or} \quad \bar{F}_d = - \frac{f_{+}}{\sqrt{2 \pi}} \sigma \cdot \hat{p}. \quad (2.23)$$

Comparing with Eq. (2.19) then gives $a(p)$ and $b(p)$ in terms of the solutions to the bound-state integral equation $f_{+}(p)$ and $g_0(p)$:

$$a(p) = \frac{1}{4\sqrt{2\pi}} \frac{1}{\omega + m} \left[-g_0(p) + \frac{\omega + m}{p} f_{+}(p) \right]. \quad (2.24)$$

B. Pseudoscalar-meson case

For the pseudoscalar-meson case, the wave function $\Phi(p)$ can be easily written in Dirac form. From the subsidiary condition $\Phi(p)(\not{m} + m) = 0$, Eq. (2.9), and since the wave function $\Phi(p)$ obeys the integral equation (2.7) and has a definite parity, $\Phi(p)$ for 0$^-$ mesons can be expressed as (we denote $m_2 = -m$ from here on)

$$\Phi(p) = \gamma [a(p) + b(p) B/m] \not{m}. \quad (2.19)$$

Reducing this to the form of Eq. (2.8) yields

$$\bar{G}_d = (\omega + m) \left[-a(p) + \frac{M}{m} b(p) \right],$$

$$\bar{F}_d = - \rho \left[a(p) + \frac{M}{m} b(p) \right] \sigma \cdot \hat{p}. \quad (2.20)$$

Using Eq. (2.11) and expanding $G_d(p), F_d(p)$ by using Clebsch-Gordan coefficients gives

$$b(p) = \frac{1}{4\sqrt{2\pi}} \frac{1}{\omega + m} \frac{m}{M} \left[g_0(p) + \frac{\omega + m}{p} f_{+}(p) \right].$$

The normalization condition1,2

$$\frac{m^2}{(2\pi)^3 M} \int \frac{d^3p}{\omega(p)} \frac{1}{\omega(p) + m} \left(|g_0|^2 + |f_{+}|^2 \right) = 1 \quad (2.25)$$

becomes

$$\frac{(2m)^2}{M} \int \frac{d^3p}{(2\pi)^3} \left[a(p)^2 + \frac{M}{m} b(p) \right] \frac{2M}{\omega} a(p) b(p) \right]$$

$$= 1. \quad (2.26)$$

III. FORMULATION OF THE AMPLITUDES
FOR THE NONSPECTATOR D, D*, AND B DECAYS

A. Ratio of D-meson lifetimes and the weak Hamiltonian

The first measurements of the ratio of D lifetimes relied on the fact that the weak Hamiltonian for a $c \rightarrow s l^+ v_l$ transition is the same for D^0 and D^+ in the spectator model, so that $\Gamma(D^0 \rightarrow l^+ X) = \Gamma(D^+ \rightarrow l^+ X)$. With this equality, the ratio of inclusive semileptonic branching ratios for the D^0 and D^+ may be related to the ratio of their lifetimes:
The lifetimes of the D^0 and D^+ have also been obtained directly by several collaborations by measuring the decay distance in bubble chambers, silicon strip vertex detectors, and proportional tube vertex chambers. The world-average values of the D^0 and D^+ lifetimes from these experiments are

$$\tau(D^+) = (10.29^{+0.54}_{-0.42}) \times 10^{-13} \text{ sec},$$
$$\tau(D^0) = (4.43^{+0.19}_{-0.17}) \times 10^{-13} \text{ sec} \quad (3.3)$$

This is in very good agreement with the ratio given above based on the inclusive semileptonic branching ratios.

The charm-changing weak Hamiltonian11 is

$$H_{\mu, A C} = - \frac{G_F}{\sqrt{2}} \left[(f_+ + f_-) [\bar{c} \gamma_\mu (1 - \gamma_5) c_m \bar{b} \gamma^\mu (1 - \gamma_5) b_n] + (f_+ - f_-) [\bar{c} \gamma_\mu (1 - \gamma_5) d_m \bar{b} \gamma^\mu (1 - \gamma_5) c_n] \right]. \quad (3.4)$$

From renormalization-group techniques,11,12 we have

$$f_\pm \approx \left[a_c (\mu^2) / a_c (M_W^2) \right] f_\pm, \quad (3.5)$$

where

$$\gamma_+ = - \frac{6}{33 - 2N_f}, \quad (3.6)$$
$$\gamma_- = \frac{12}{33 - 2N_f}. \quad (3.7)$$

For the decay of the charmed quark, there are three lighter quarks which may participate ($N_f = 3$) so

$$\gamma_+ = - \frac{2}{3} \quad \text{and} \quad \gamma_- = \frac{4}{3}.$$

B. Spectator decay rate

Before proceeding with the nonspectator calculation, we review the spectator decay calculation since we will be using its result. If only Cabibbo-favored spectator amplitudes are included, the nonleptonic decay proceeds via $c \rightarrow s \bar{u} d$, and the semileptonic decay via $c \rightarrow s l^+ \nu_l$. For the nonleptonic decay, it is useful to rewrite the Hamiltonian again as a sum of color-singlet and -octet parts in the $c\bar{s}$ channel. To do this, we use the Fierz identity

$$[\gamma_\mu (1 - \gamma_5) \lambda_{0\beta}]_{ab} \left[\gamma^\mu (1 - \gamma_5) \lambda_{\beta 0} \right] = - [\gamma_\mu (1 - \gamma_5) \lambda_{0\beta}]_{ab} \left[\gamma^\mu (1 - \gamma_5) \lambda_{\beta 0} \right], \quad (3.8)$$

on the $(f_+ - f_-)$ term in Eq. (3.4) to get

$$H_{w, \Delta C} = - \frac{G_F}{\sqrt{2}} \left[\frac{1}{3} (2f_+ + f_-) \bar{s} \gamma_\mu (1 - \gamma_5) c_m \bar{u} \gamma^\mu (1 - \gamma_5) d_n + \frac{1}{4} (f_+ - f_-) \bar{s} \gamma_\mu (1 - \gamma_5) \lambda_{mk} \delta_{nk} \bar{c} \gamma^\mu (1 - \gamma_5) \lambda_{ml} d_l \right]. \quad (3.9)$$

The first term of $H_{w, \Delta C}$ is the color-singlet part and the second term is the color-octet part. Hence, they do not interfere. To simplify the notation, write $H^{(1)}$ for the first term of $H_{w, \Delta C}$ and $H^{(8)}$ for the second term. In order to calculate the decay rate, it is necessary to separately square $H^{(1)}$ and $H^{(8)}$, sum the results over the final-state spins and colors, and average over the initial-state spin and color. After performing the color calculations,
Following the notation of (3.9) we have

\[|H_{w,AC = -1}|^2 \approx 3 \left(\frac{1}{2}(2f_+ + f_-)^2 + \frac{3}{2} \left(\frac{1}{2}(f_+ - f_-)^2 \right) \right)^2 = 2f_+^2 + f_-^2 , \quad (3.11) \]

\[|H_{w,AC = -1}|^2 = \left(\frac{G_F}{\sqrt{2}} \right)^4 \left(2f_+^2 + f_-^2 \right) \left[\tilde{d} \gamma^\alpha(1-\gamma_5)u \tilde{c} \gamma^\alpha(1-\gamma_5)s \right. \]
\[\left. \times \bar{s} \gamma^\mu(1-\gamma_5)c \bar{u} \gamma^\mu(1-\gamma_5)d \right] . \]

The spin calculations must now be performed and the result integrated over the available phase space. This task is greatly simplified by noting that, if the u and d quarks are considered massless, the Hamiltonian above is equivalent to that of the decay \(D \rightarrow \mu^- \rightarrow e^- \bar{\nu}_e \nu \). The spectator decay rate is then

\[\Gamma(c \rightarrow s \bar{d}) = (2f_+^2 + f_-^2) \frac{G_F^2 m_c^5}{192\pi^3} g(m_s/m_c) . \quad (3.12) \]

The function \(g(m_s/m_c) \) is a phase-space factor which corrects the decay rate for the nonzero strange-quark mass.

The semileptonic decay rate is again like that for \(\mu \) decay giving

\[\Gamma(c \rightarrow s l^+ \nu_l) = \frac{G_F^2 m_c^5}{192\pi^3} g(m_s/m_c) . \quad (3.13) \]

The total \(D^+ \) decay rate is given by the sum of the nonleptonic and semileptonic decay rates

\[\Gamma_{\text{tot}}(D^+) = \Gamma(c \rightarrow s \bar{d}) + \Gamma(c \rightarrow s \bar{e}^+ \nu_e) + \Gamma(c \rightarrow s \mu^+ \nu_\mu) \]
\[= (2f_+^2 + f_-^2 + 1 + 1) \frac{G_F^2 m_c^5}{192\pi^3} g(m_s/m_c) . \quad (3.14) \]

The semileptonic branching ratio for \(D^+ \) is

\[B(c \rightarrow s l^+ \nu_l) = \frac{\Gamma(c \rightarrow s l^+ \nu_l)}{\Gamma_{\text{tot}}(D^+)} = \frac{1}{2f_+^2 + f_-^2 + 2} . \quad (3.15) \]

If the values from the leading-logarithm calculation, \(f_+ = 0.74 \) and \(f_- = 1.8 \), are used, the branching ratio is

\[B(c \rightarrow s l^+ \nu_l) = 16\% . \]

The semileptonic branching ratio obtained here is in agreement with that of the \(D^+ \) [recall by Eq. (3.2), \(B(D^+ \rightarrow l^+X) = (17.0 \pm 1.9\%) \], but very far from that of the \(D^0 \) [i.e., \(B(D^0 \rightarrow l^+X) = (7.5 \pm 1.1\%) \].

There are two conventional mechanisms for correcting this problem. One is the destructive (Pauli) interference, due to Fermi statistics, between the spectator antiquark \(\bar{d} \) in \(D^+ (c \bar{d}) \) decay and the identical \(\bar{d} \) arising in the final state from the nonleptonic \(c \) decay \((c \rightarrow s \bar{d}) \). This interference increases the \(D^+ \) lifetime, while the \(D^0 \) is totally unaffected. The second mechanism is an important enhancement in nonleptonic decays of the \(D^0 \) since there is an amplitude for \(D^0 \) decay which is forbidden to the \(D^+ \). This is the so-called nonspectator diagram (or \(W \)-exchange diagram) shown in Fig. 2, which in lowest order should be small due to helicity suppression at the light-quark vertex. A distinct mechanism has been advanced for the lifting of helicity suppression by Bander, Silverman, and Soni. It is the explicit radiation of soft gluons shown in Figs. 2(a) and 2(b), which produces, nonrelativistically, a contribution to the \(D^0 \) width given by

\[\frac{\Gamma_{\text{NS}}}{\Gamma_{\text{sp}}} = \left(\frac{m_D}{m_c} \right)^2 \frac{2\pi\alpha_s}{27} \frac{(f_+ + f_-)^2}{2f_+^2 + f_-^2 + 2} \left(\frac{f_D}{m_u} \right)^2 \approx 0.35 \left(\frac{\alpha_s}{0.53} \right) \left(\frac{m_D}{m_u} \right)^2 \approx 0.13 - 3.6 . \quad (3.16) \]

The factor of \(m_u \) comes from the propagator \(1/(g - m_u) \) and the extreme assumption of \(p_u << m_u \). \(f_D \) comes from the wave function at the origin. The values used in Eq. (3.16) were \(m_u = 250 \text{ MeV} \) and \(f_D = 150 - 800 \text{ MeV} \). Since this calculation was an approximation, and it was performed in the extreme nonrelativistic limit, we need to have a precise relativistic calculation, which can give us more accurate results.

C. Calculations of relativistic amplitudes

for the nonspectator \(D, D^*, B, \) and \(B \) decays

1. \(D^0 \) mesons

In this section we are going to calculate the decay rate of the nonspectator diagrams of Figs. 2(a) and 2(b). From the reduction formula for gluons, a gluon with momen-
turn k', spin λ', can be removed from the final state giving for the non spectator D' meson decay amplitude

$$
\langle s'd^k g^a | \bar{D}^0 \rangle = -i \left[\frac{1}{(2\pi)^3 2q_0} \right]^{1/2} \epsilon^{s,q} (q, \lambda')
$$

$$
\times \int d^4x e^{i \bar{q} \cdot x} \langle s'd^k | \bar{J}_s^\alpha (x) | \bar{D}^0 \rangle,
$$

where l, k, and a are color indices of the \bar{s}, d, and gluon g,
and J_s^α is the color-current operator. At first we treat the current of the u quark, Fig. 2(a),

$$
J_s^\alpha (x) = \frac{1}{2} g_s \bar{\psi}_s^\alpha (x) \lambda^a_{\mu} \gamma_\mu \psi_u^\alpha (x),
$$

where ψ_u represents the u-quark field. By inserting the intermediate c-antiquark states, the current element can be written as

$$
\langle s'd^k | \bar{J}_s^\alpha (x) | \bar{D}^0 \rangle = -i g_s \sum_s \sum_{\lambda'} \int d^4p d^4x \langle \bar{s}'d^k | \bar{\psi}_s^\alpha (x) | \bar{c}_p \rangle \lambda^a_{\mu} \gamma_\mu \langle \bar{c}_p | \psi_u^\alpha (0) | \bar{D}^0 \rangle e^{-i \bar{B} \cdot x},
$$

where s_c denotes the spin, p is the momentum of the inserted c-antiquark state, and B is the four-momentum of the bound-state D meson. Hence, the decay amplitude becomes

$$
\langle \bar{s}'d^k | \bar{J}_s^\alpha (x) | \bar{D}^0 \rangle = -i g_s \sum_s \sum_{\lambda'} \int d^4p d^4x \langle \bar{s}'d^k | \bar{\psi}_s^\alpha (x) | \bar{c}_p \rangle \lambda^a_{\mu} \gamma_\mu \langle \bar{c}_p | \psi_u^\alpha (0) | \bar{D}^0 \rangle e^{-i \bar{B} \cdot x},
$$

where s_c denotes the spin, p is the momentum of the inserted c-antiquark state, and B is the four-momentum of the bound-state D meson. Hence, the decay amplitude becomes

$$
\langle \bar{s}'d^k | \bar{J}_s^\alpha (x) | \bar{D}^0 \rangle = -i g_s \sum_s \sum_{\lambda'} \int d^4p d^4x \langle \bar{s}'d^k | \bar{\psi}_s^\alpha (x) | \bar{c}_p \rangle \lambda^a_{\mu} \gamma_\mu \langle \bar{c}_p | \psi_u^\alpha (0) | \bar{D}^0 \rangle e^{-i \bar{B} \cdot x},
$$

The bound-state wave function appears in $\langle \bar{c}_p | \psi_u^\alpha (0) | \bar{D}^0 \rangle$. We know the relativistic bound-state wave function already from the bound-state equations (2.5), (2.6), (2.12), and (2.24). By Eq. (2.6) and the definition of $\Phi(p, \lambda)$ in Eq. (2.5), we can express the wave function as

$$
\langle \bar{c}_p | \psi_u^\alpha (0) | \bar{D}^0 \rangle = -\frac{1}{(2\pi)^3} \frac{1}{\sqrt{3}} \delta^m_0 \left[\frac{m_c}{2\omega_d \omega(p)} \right]^{1/2} \Phi_{\omega_d \omega(p)} (p, s_c).
$$

We repeat the reduction formula on the matrix element $\langle \bar{s}'d^k | \bar{\psi}_s^\alpha (x) | \bar{c}_p \rangle$ until we remove all particles from in and out states and reach the vacuum expectation value of a product of field operators:

$$
\langle \bar{s}'d^k | \bar{\psi}_s^\alpha (x) | \bar{c}_p \rangle = -i^l \int d^4y d^4z d^4w [\bar{U}_d(z)(i\bar{V} - m_d)] \langle \bar{V}_c(y)(i\bar{V} - m_c) \rangle
$$

$$
\times \langle 0 | T[\bar{\psi}_s^\alpha (x) \psi_s^\beta (z) \psi_u^\alpha (w)] | 0 \rangle (i\bar{V} - m_z) V_s(w),
$$

where

$$
\bar{V}_c(y) = \frac{1}{(2\pi)^{3/2}} (m_c / E_c)^{1/2} \psi(p, s_c) e^{-i \bar{p} \cdot y},
$$

$$
\bar{U}_d(z) = \frac{1}{(2\pi)^{3/2}} (m_d / E_d)^{1/2} \psi(p, s_d) e^{-i \bar{p} \cdot z},
$$

$$
V_s(w) = \frac{1}{(2\pi)^{3/2}} (m_s / E_s)^{1/2} \psi(p, s_s) e^{-i \bar{p} \cdot w},
$$

and $E_c = \omega(p)$, E_d, and E_s are the energies of the c, d, and s quarks. Now we will evaluate

$$
\tau(x, y, z, w) \equiv \langle 0 | T[\bar{\psi}_s^\alpha (x) \psi_s^\beta (z) \psi_u^\alpha (w)] | 0 \rangle
$$

to first-order perturbation theory in the weak Hamiltonian from Eq. (3.4).

There is no term in $(f_+ + f_-)$ here, because it is associated with

$$
\delta_{ij} \delta_{\mu_\alpha} \lambda^a_m = \delta_{\mu a} \lambda^a_m = \sum_i \lambda^a_i = 0.
$$

This is because the gluon is a color octet and the final $\bar{u}d$ must be in a color octet to make a colorless initial state. Referring to Eq. (3.4), \bar{u} and d quarks are partly in the color octet in the $(f_+ + f_-)$ term, but are pure color singlet in the $(f_+ - f_-)$ term.

After using the standard method we obtain
\[
\langle \bar{\psi}^{i}d^{k} | \bar{\psi}^i_{u}(x) | \bar{\psi}^{j}ps_c \rangle = \frac{G}{2\sqrt{2}} \frac{g_s}{(2\pi)^{3/2}} \frac{m_c m_d}{E_c E_d} \left(\frac{m_c m_d}{E_c E_d} \right)^{1/2} e^{i(p_d + p_s - p)_z} (f_+ + f_-) \times \delta_{ij} \delta_{ik} l_\mu \bar{u}(p, s_c) \gamma_\mu (1 - \gamma_5) \frac{1}{B - \vec{p} - \vec{q} - m_u + i\epsilon},
\]

(3.24)

where

\[
l_\mu = \bar{u}(p_d, s_d) \gamma_\mu (1 - \gamma_5) u(p, s_c).
\]

Finally, substituting Eq. (3.24) into (3.20), the decay amplitude becomes

\[
\langle \bar{\psi}^{i}d^{k} | D^0 \rangle_u = \bar{A}^q_{kl} \epsilon(q, \lambda', \lambda) l_\mu \sum_{x} \int d^3 p \left(\frac{m_c}{E_c} \right)^{1/2} \bar{u}(p, s_c) \gamma_\mu (1 - \gamma_5) \frac{1}{B - \vec{p} - \vec{q} - m_u + i\epsilon} \gamma_5 \langle \bar{\psi}^j | p_s \rangle \bar{\psi}^0(0) | D^0 \rangle,
\]

(3.25)

where

\[
\bar{A}^q_{kl} = \frac{G}{2\sqrt{2}} \frac{g_s}{(2\pi)^{3/2}} \frac{m_c m_d}{E_c E_d} \left(\frac{m_c m_d}{E_c E_d} \right)^{1/2} \frac{1}{2(2q_0)^{1/2}} \frac{1}{(2\pi)^6} (f_+ + f_-) \lambda^q_{kl} (2\pi^4 \delta^4(q + p_d + p_s - B)).
\]

(3.26)

Using Eqs. (3.21) and (3.25), we finally obtain the decay amplitude in terms of the wave function of the \(D^0 \):

\[
\langle \bar{\psi}^{i}d^{k} | D^0 \rangle_u = A^q_{kl} \epsilon(q, \lambda', \lambda) l_\mu \int d^3 p \left(\frac{m_c}{E_c} \right)^{1/2} \bar{u}(p, s_c) \gamma_\mu (1 - \gamma_5) \frac{1}{B - \vec{p} - \vec{q} - m_u + i\epsilon} \gamma_5 \Phi(p),
\]

(3.27)

where

\[
A^q_{kl} = \frac{1}{(2\pi)^3} \sqrt{2M_D} \frac{1}{\sqrt{3}} \bar{A}^q_{kl}.
\]

This amplitude can also be deduced from Feynman-graph rules that include the relativistic bound-state wave function by the additional rules:

- closed fermion loop
- Trace
- on-shell quark in loop
- bound-state wave function

Referring to Fig. 2(b), we now analyze the charm-quark color-current term

\[
J^q_c(x) = \frac{1}{2} \bar{\psi}^i \gamma_5 \lambda'^\mu \lambda_\mu \gamma_c \psi^0(x).
\]

(3.28)

By the same perturbation method, we obtain

\[
\langle \bar{\psi}^{i}d^{k} | D^0 \rangle_c = A^q_{kl} \epsilon(q, \lambda', \lambda) l_\mu \int d^3 p \left(\frac{m_c}{E_c} \right)^{1/2} \bar{u}(p, s_c) \gamma_\mu (1 - \gamma_5) \Phi(p) \gamma_5 \frac{1}{(B - \vec{p} - \vec{q} - m_u + i\epsilon)}.
\]

(3.29)

Again, this can be derived from the Feynman-graph rules. Using the subsidiary condition \(\Phi(p)(\vec{p} + m_c) = 0 \) and the fact that the \(c \) antiquark is on mass shell, the amplitudes of Eqs. (3.27) and (3.29) become

\[
\langle \bar{\psi}^{i}d^{k} | D^0 \rangle_u = A^q_{kl} \epsilon(q, \lambda', \lambda) l_\mu \int d^3 p \left(\frac{m_c}{E_c} \right)^{1/2} \frac{1}{(B - \vec{p})^2 - 2q \cdot (B - \vec{p}) - m_u^2 + i\epsilon} \times \text{Tr} \left(\gamma_\mu [- \vec{q} \cdot \gamma + 2(B - \vec{p}) \gamma_\mu - \gamma_5 (B - \vec{p} - m_u)] \Phi(p) \right)
\]

\[
- \gamma_\mu \gamma_5 \left(- \vec{q} \cdot \gamma + 2(B - \vec{p}) \gamma_\mu - \frac{(B - \vec{p})^2 - m_u^2}{q \cdot B} B \right) \Phi(p),
\]

(3.30)
We have made one modification, which is the replacement of \(\gamma_5(\mathbf{B} - \mathbf{p} - m_u) \) with \(\frac{[\{(B - p)^2 - m_u^2\}]}{q \cdot B} B \nu \) in the axial-vector term in Eq. (3.30) in order to reach a gauge-invariant amplitude. We did this by the fact that the integral equations of Eqs. (2.4) and (2.7) give, to the lowest order in \(\alpha_s \),

\[
\Phi(p) \equiv 0 \quad (B - p)^2 - m_u^2 \Phi(p) \equiv 0
\]

or multiplying by \((B - p + m_u) \) gives

\[
\frac{[(B - p)^2 - m_u^2]}{q \cdot B} \Phi(p) \equiv 0
\]

If the higher-order intermediate states had been included, the gauge invariance would be obtained without using the approximation of Eq. (3.33).

Now, let us substitute \(\Phi(p) = \gamma_5[a(p) + b(p) \mathbf{B} / m_e](\mathbf{p} - m_e) \), from Eq. (2.20), into Eqs. (3.30) and (3.31). The trace parts can be evaluated as

\[
\begin{align*}
\text{Tr} \left[\gamma_\mu \left[-\gamma_\nu + 2(B - p)_\nu - \gamma_\nu (\mathbf{B} - \mathbf{p} - m_u) \right] \Phi(p) - \gamma_\mu \gamma_5 \left[-\gamma_\nu + 2(B - p)_\nu - \frac{(B - p)^2 - m_u^2}{q \cdot B} B \nu \right] \Phi(p) \right] \\
= -4i \varepsilon_{\mu\nu\rho\sigma}q^\rho (ap^\sigma - b B^\sigma) + 4 [(q_\nu - 2(B - p)_\nu + (M_D^2 + m_e^2 - 2B \nu B_\nu/(qM_D)))(ap_\nu - b B_\nu) \]
\end{align*}
\]

\[
\begin{align*}
\text{Tr} \left[\gamma_\mu \gamma_5 \Phi(p) \right] (-2p_\nu + \gamma_\nu) \\
= 4i \varepsilon_{\mu\nu\rho\sigma}q^\rho (ap^\sigma - b B^\sigma) + 4 [(2p_\nu - q_\nu)(ap_\nu - b B_\nu) - q_\mu (ap_\nu - b B_\nu) + g_{\mu\nu} q^\rho (ap_\rho - b B_\rho) \right]
\end{align*}
\]

One of the integrals over momentum \(p \) can be written, by Lorentz covariance, as a four-vector form in terms of \(q_\mu \) and \(B_\mu \) with coefficients \(F_q \) and \(F_B \):

\[
\int d^4 p \left(\frac{m_e}{E_e} \right) \frac{a(p) p_\mu - b(p) B_\mu}{(B - p)^2 - 2q \cdot (B - p) - m_u^2 + i \varepsilon} = F_q q_\mu + F_B B_\mu
\]

The values of \(F_q \) and \(F_B \) can be obtained by multiplying \(q_\mu \) and \(B_\mu \) times Eq. (3.36). One gets

\[
F_B = \frac{1}{q \cdot B} \int d^4 p \left(\frac{m_e}{E_e} \right) \frac{a(p) p_\mu - b(p) B_\mu}{(B - p)^2 - 2q \cdot (B - p) - m_u^2 + i \varepsilon} \]

\[
= \frac{2\pi}{M_D} \left[\int dp \frac{m_e}{E_e} \frac{p_\mu}{B} \left(a(p) \left(E_e + \frac{A}{B} p \right) + M_D b(p) \right) \ln \left| \frac{A + B}{A - B} \right| - 2pa(p) \right] \\
- i \pi \int dp \frac{m_e}{E_e} \frac{p_\mu}{B} \left(a(p) \left(E_e + \frac{A}{B} p \right) + M_D b(p) \right) \theta(A - B) \theta(-A - B)
\]

An imaginary part appears due to the existence of the pole in the denominator in Eq. (3.36). Writing

\[
(B - p)^2 - 2q \cdot (B - p) - m_u^2 = A + B \cos \theta
\]

where

\[
A = 2(-M_D + q) E_e + M_D^2 + m_e^2 - 2M_D q - m_u^2
\]

and

\[
B = -2pq
\]

we have

\[
\int \frac{d \cos \theta}{A + B \cos \theta + i \varepsilon} = \frac{1}{B} \ln \left| \frac{A + B}{A - B} \right| - \pi \theta(A - B) \theta(-A - B)
\]

where \(\theta \) is the unit step function. Then

\[
F_B = \frac{2\pi}{M_D} \left[\int dp \frac{m_e}{E_e} \frac{p_\mu}{B} \left(a(p) \left(E_e + \frac{A}{B} p \right) + M_D b(p) \right) \ln \left| \frac{A + B}{A - B} \right| - 2pa(p) \right] \\
- i \pi \int dp \frac{m_e}{E_e} \frac{p_\mu}{B} \left(a(p) \left(E_e + \frac{A}{B} p \right) + M_D b(p) \right) \theta(A - B) \theta(-A - B)
\]
The regions, in terms of q and E, where the imaginary parts appear are shown for the D^0 decay in Fig. 3. The pole at low q has positive energy, $(B-p-q)_0 > m_u$, and the pole at large q has negative energy, corresponding to the $ar{c}$ quark decaying to a final state u on its mass shell.

Another integral has a tensor form with indices μ and ν which can be expressed as the sum of all possible tensor forms as

$$
\int d^4p \left\{ \frac{m_c}{E_c} \right\} \frac{p\mu[a(p)p\mu-b(p)B\mu]}{(B-p)^2-2q(B-p)-m_u^2+i\varepsilon} = kM_D g_{\mu\nu} + lq_\mu q_\nu + mq_\mu B_\nu + nq_\mu q_\nu + rB_\mu B_\nu .
$$

We can find the values of k, l, m, n, and r by the same method. Again, from the pole, all of the F_q, $F_{\bar{q}}$, k, l, m, n, and r will have imaginary parts.

Finally from Eqs. (3.30), (3.34), and (3.36)–(3.43), we get, for the decay amplitude due to the gluon coupled to the u quark, Fig. 2(a),

$$
\langle \bar{s} \, d^4k^g \mid D^0 \rangle_u = 4A_k^0 \varepsilon_{(q,\lambda', l/\mu)} [iF_B e^{\mu_\nu}q^\nu B^\mu + (S_1 q^\mu B^\nu + S_2 qM_D g^{\mu\nu} + S_3 B^\mu B^\nu)] ,
$$

where

$$
S_1 = \left[-2 + (M_D^2 + m_2 - m_u^2)/(qM_D) \right] F_B + F_B - 2l + (1 - 2M_D/q) m ,
$$

$$
S_2 = (2M_D/q)k - F_B ,
$$

$$
S_3 = \left[-2 + (M_D^2 + m_2 - m_u^2)/(qM_D) \right] F_B - (2M_D/q)k - 2n + (2 - 2M_D/q) r .
$$

For the second amplitude for Fig. 2(b), given in Eqs. (3.31) and (3.35), we use the same method to expand the integral by Lorentz covariance:

$$
\int d^4p \left\{ \frac{m_c}{E_c} \right\} \frac{a(p) - b(p)B\mu}{-2p\cdot q + i\varepsilon} = G_q q_\mu + G_B B_\mu ,
$$

$$
\int d^4p \left\{ \frac{m_c}{E_c} \right\} \frac{P_\nu[a(p)p_\mu - b(p)B_\mu]}{p\cdot q + i\varepsilon} = cM_D g_{\mu\nu} + dq_\mu q_\nu + eq_\mu B_\nu + fB_\mu q_\nu + hB_\mu B_\nu .
$$

Again, the values G_q and G_B can be obtained by multiplying q_μ and B_μ in Eq. (3.46). c, d, e, f, and h can be obtained by the same method. Since there is no pole in the denominator $p\cdot q = p_0 q_0 - p\cdot q = E_c q_0 - pq \cos \theta = q(\omega - p \cos \theta)$, where $E_c = \omega$ and $q_0 = |q| = q$, all of G_q, G_B, c, d, e, f, and h are real.

Using Eqs. (3.31), (3.35), (3.46), and (3.47), we finally have, for the decay amplitude due to the gluon coupled to the c quark, Fig. 2(b),

$$
\langle \bar{s} \, d^4k^g \mid D^0 \rangle_c = 4A_k^0 \varepsilon_{(q,\lambda', l/\mu)} [i(F_B + G_B) e^{\mu_\nu}q^\nu B^\mu + (T_1 q^\mu B^\nu + T_2 qM_D g^{\mu\nu} + T_3 B^\mu B^\nu)] ,
$$

where

$$
T_1 = -G_B - e ,
$$

$$
T_2 = G_B - (M_D/q) c ,
$$

$$
T_3 = -h .
$$

Using Eqs. (3.44) and (3.48), the total amplitude is

$$
\langle \bar{s} \, d^4k^g \mid D^0 \rangle_u + c = \langle \bar{s} \, d^4k^g \mid D^0 \rangle_u + \langle \bar{s} \, d^4k^g \mid D^0 \rangle_c
\] = 4A_k^0 \varepsilon_{(q,\lambda', l/\mu)} [i(F_B + G_B) e^{\mu_\nu}q^\nu B^\mu + (S_1 + T_1) q^\mu B^\nu + (S_2 + T_2) qM_D g^{\mu\nu} + (S_3 + T_3) B^\mu B^\nu)] .
$$

Gauge invariance, or the vanishing of Eq. (3.50) upon replacing $\varepsilon_{\nu} \rightarrow q_\nu$, implies

$$
S_2 + T_2 = -(S_1 + T_1) \text{ and } S_3 + T_3 = 0 .
$$

Hence,

$$
\langle \bar{s} \, d^4k^g \mid D^0 \rangle_u + c = 4A_k^0 \varepsilon_{(q,\lambda', l/\mu)} \frac{1}{q_0} [iF_\nu e^{\mu_\nu}q^\nu B^\mu + F_A [q^\mu B^\nu + (q\cdot B) g^{\mu\nu}]] ,
$$

where

$$
F_\nu = q_0 (F_B + G_B) \text{ and } F_A = q_0 (S_1 + T_1) .
$$
The decay rate of the \bar{D}^0 through the nonspectator mode is obtained by integrating over q, p_s, and p_d, and summing the result over the gluon state helicities λ' and colors a:

$$\Gamma_{NS} = \mathcal{A}(-g^\nu) m_d m_s \int \frac{d^3 q}{2q_0^2} \frac{d^3 p_s}{2E_s} \frac{d^3 p_d}{2E_d} \frac{1}{q_0^2} \delta^4(p_d + p_s + q - B) \text{Tr}(l_{\mu}^l l_{\mu'})$$

$$\times \left[i F_V \epsilon_{\nu \rho \sigma \mu} q^\sigma B^\rho + F_A [q_{\mu} B_{\nu} + (q \cdot B) g_{\mu \nu}] \right] \{ -i F_V \epsilon_{\nu' \rho' \sigma' \mu'} q'^\sigma B'^{\rho'} + F_A [q_{\mu'} B_{\nu'} + (q \cdot B) g_{\mu' \nu'}] \} ,$$

(3.54)

where

$$\mathcal{A} = 16 \times 4 \times 4 \times \frac{G^2}{2} \frac{g_s^7}{3 (2\pi)^{11}} \frac{1}{2M_D} \left[f_+ - f_- \right]^2 .$$

The trace term over $l_{\mu}^l l_{\mu'}$ gives

$$\text{Tr}(l_{\mu}^l l_{\mu'}) = 2 [p_{d\mu} p_{s\mu} + p_{s\mu} p_{d\mu} - g_{\mu \mu'} (p_{d \cdot p_s} + i \epsilon_{\mu' \rho \sigma \mu} p_d^\rho p_s^\sigma)] / m_dm_s .$$

(3.55)

To calculate the three-body decay rate, we first integrate over p_d and p_s, and set $Q = B - q$. This gives, by Lorentz covariance,

$$\int \frac{d^3 p_s}{2E_s} \frac{d^3 p_d}{2E_d} \delta^4(Q - p_d - p_s) [p_{d\mu} p_{s\mu} + p_{s\mu} p_{d\mu} - g_{\mu \mu'} (p_{d \cdot p_s} + i \epsilon_{\mu' \rho \sigma \mu} p_d^\rho p_s^\sigma)] = K_1 g_{\mu \mu'} + K_2 Q_{\mu} Q_{\mu'} .$$

(3.56)

K_1 and K_2 can be found by the same method as we used in Eq. (3.36) or (3.43). Multiplying $g_{\mu \mu'}$ and $Q_{\mu} Q_{\mu'}$ on both sides of Eq. (3.56), we get

$$K_1 = -\frac{\pi}{6} Q^2 \quad \text{and} \quad K_2 = \frac{\pi}{6} .$$

(3.57)

Then introducing $\int d^4 Q \delta^4(B - q - Q)$ into the integral, we obtain

$$\Gamma_{NS} = \mathcal{A} \int \frac{d^3 q}{2q_0^2} \int d^4 Q \delta^4(Q + q - B) \frac{\pi}{6} Q^2 \left[-g_{\mu \mu'} + \frac{Q_{\mu} Q_{\mu'}}{Q^2} \right] \left[i F_V \epsilon_{\nu \rho \sigma \mu} q^\sigma B^\rho + F_A [q_{\mu} B_{\nu} + (q \cdot B) g_{\mu \nu}] \right]$$

$$\times \left[-i F_V \epsilon_{\nu' \rho' \sigma' \mu'} q'^\sigma B'^{\rho'} + F_A [q_{\mu'} B_{\nu'} + (q \cdot B) g_{\mu' \nu'}] \right] .$$

(3.58)

Now we come across the integral of a two-body decay rate: namely, $B \rightarrow q + Q$. In order to handle the integral over the gluon energy part $q_0 = |q| = q$ properly, and simplify the integral, we introduce $\int dS b^+(S - Q^2) = 1$ into the integral. This gives

$$\Gamma_{NS} = \mathcal{A} \left(\pi^2 M_D^3 / 3 \right) \int_0^{M_D^3} dS \int_0^{\infty} dq \left[M_D^2 - S \right] \left[1 - \frac{q^2}{2M_D^2} \right] (F^2_A + F^2_V) .$$

(3.59)

Finally, the nonspectator decay rate for D^0 is

$$\Gamma_{NS}(\bar{D}^0) = \frac{128G^2 \alpha_s}{9(2\pi)^3} \left[\frac{f_+ + f_-}{2} \right]^2 M_D^2 \int_0^{M_D^3 / 2} q \left[M_D^2 / 2 - q \right] (F^2_A + F^2_V) dq ,$$

(3.60)

where

$$F_A(q) = \frac{\pi}{M_D} \int_0^{\infty} dp \omega \left| \frac{p^2 A}{qB} a(p) + \frac{M_D(p - \omega)}{q} b(p) \right| \left[\frac{A}{B} \ln \left| \frac{A + B}{A - B} \right| - 2 \right]$$

$$+ \left[- \frac{a(p) p^2}{q} - a(p) \frac{A}{B} b(p) + M_D b(p) \right] \frac{A}{A - B}$$

$$+ \left[\frac{m_D^2}{q} a(p) - M_D b(p) \right] \ln \left| \frac{\omega + p}{\omega - p} - 2 \frac{p q}{\omega} a(p) + 4p a(p) \right| .$$
Recall that all of the imaginary parts, in both \(F_A \) and \(F_V \), come from the effect of the pole in the propagator in Fig. 2(a), referring to Eqs. (3.36)–(3.43).

The terms

\[
\frac{m_c^2}{q} \ln \frac{\omega + p}{\omega - p} - 2 \frac{p \omega}{q} a(p)
\]

in Eq. (3.61) give a logarithmic divergence in \(\Gamma_{NS} \) in the \(\int dq \) as \(q \to 0 \). These terms come from the coefficient \(c \) in the expansion of the integral in Eq. (3.47). In order to avoid the divergence, we need to apply the infrared cutoff on \(q \). This is also necessary because the soft gluons with smaller energy will be trapped into the quark-gluon structure of the final-state hadrons, and cannot be included in the inclusive calculations. The value of the cutoff is taken to be 200 MeV. Our calculation shows that the value of \(\Gamma_{NS} \) changes by no more than 10% if we change the cutoff on \(q \) from 200 to 100 MeV, and is, therefore, insensitive to its exact value.

In the nonrelativistic limit, \(p \ll m_c, \omega \approx m_c \), the \(q \to 0 \) divergent term becomes

\[
\frac{m_c^2}{q} \ln \frac{\omega + p}{\omega - p} - 2 \frac{p \omega}{q} a(p) \approx \frac{m_c^2}{q} \ln \frac{\omega + p}{\omega - p} - 2 \frac{p \omega}{q} a(p)
\]

\[
= \frac{2a(p)}{q} p (m_c^2 - \omega^2)
\]

\[
= -\frac{2a(p)}{q} \frac{p^3}{m_q} \to 0
\]

(3.64)

compared to the other terms in Eq. (3.61). Hence, there is no divergence problem in the nonrelativistic case.

The \(\Gamma_{NS} \) in Eq. (3.60) contains the strong coupling constant \(\alpha_s \). It should also be multiplied by the higher-order QCD corrections to the decay. This combination will call \(\alpha_{eff} \) which we now replace \(\alpha_s \) by. After substituting the wave functions \(a(p) \) and \(b(p) \), obtained from the spectral fits to the \(D \) and \(D^* \) mesons,\(^1\) into Eq. (3.60), we finally find the nonspectator decay rate as

\[
\Gamma_{NS}(D^0) = \alpha_{eff} \psi(0, + f_1 - f_2) \approx 0.87 \times 10^{-13} \text{ GeV}
\]

(3.65)

To check the extreme nonrelativistic results \(p \ll m_u \) from our relativistic formula, we may make a reduction by applying \(p \ll m_c \) and \(\omega \approx m_c \). Using the relation\(^8\)

\[
\psi(0) = (M_D^3 / 12) f_D^2
\]

we have

\[
F_A \approx \frac{2\pi^3}{M_D^3} \left(\frac{M_D}{m_c m_u} \right) \psi(0),
\]

\[
F_V \approx \frac{2\pi^3}{M_D^3} \left(\frac{m_c - m_u}{m_c m_u} \right) \psi(0),
\]

(3.66)

and

\[
\Gamma_{NS}^{NR} \approx \frac{(f_1 + f_2)^2}{2} \frac{G^2 \alpha_s f_D^4}{648\pi^2 m_u^2 M_D^4}.
\]

These are all consistent with the previous nonrelativistic results.\(^4\) The nonrelativistic results are poor approximations since the momentum in the propagator is not small compared to \(m_u \).

In the nonrelativistic case \(A < 0, B < 0 \), and \(A - B \approx [0.018 - 0.057 q - (M - q)^2 / (2m_c) + 2pq] \approx 0 \) for \(p \leq 0.28 \) so that \(\theta(A - B) \) gives zero. Thus, all of the

FIG. 3. The regions of \(q \) and \(\omega \) where the imaginary parts of the \(u \)-quark propagator contribute to the \(D \)-meson nonspectator decay.
imaginary parts in \(F_A \) and \(F_F \) disappear in the nonrelativistic limit.

When the value of \(m_q \) is varied extremely from 0 to 1.57 GeV, the relativistic \(\Gamma_N S \) is only changed by a factor of 2.6, and shows that \(\Gamma_N S \) is much less sensitive to \(m_u \) than in the extreme nonrelativistic limit, Eq. (3.68), where \(\Gamma_N S \) behaves as \(1/m_u^2 \). Around the fitted value of \(m_u=0.25 \) GeV there is very little variation of \(\Gamma_N S \) with changes in \(m_u \).

For comparison with the calculation with a heavy antiquark and a light quark we deduce the Dirac bound-state equation from the relativistic bound-state equation by setting

\[
M_D=m_c+E' \quad \text{and letting } M_D \text{ and } m_c \to \infty \quad \text{(3.67)}
\]
such that \(E' \) is fixed. From the normalization condition (2.26) we see that in this limit \(g_0/\sqrt{m_c} \) and \(f_+/\sqrt{m_c} \) are normalized independent of \(m_c \). Thus, we find that \(F_D=O(m_c^{3/2}/q) \) and \(F_F=O(m_c^{-1/2}) \ll F_A \) and, hence, \(F_F \) can be neglected. The forms of \(F_A \) and \(F_F \) for the Dirac case are then \(F_F=0 \) and

\[
F_A(q)=-\pi m_c q \left[0 \right. \int_0^\infty dp \left. \frac{A}{B} \ln \frac{A+B}{A-B} -2 \right. b(p)-i \pi \int_0^\infty dp \left. \frac{A}{B} b(p) \theta(A-B) \theta(-A-B) \right] \cdot (3.68)
\]

In this limit \(A=E'^2-p^2-m_c^2-2E'q \) and \(B=-2pq \). From the rate equation (3.60) and the fact that the meson mass \(m_D=m_c \) we see that \(q \) is of \(O(m_c) \) also. In the Dirac limit of \(m_D=m_c \to \infty \), the potential is independent of \(m_c \), and by the normalization conditions Eqs. (2.25) or (2.26), the scaled wave functions \(g_0/\sqrt{m_c} \), \(f_+/\sqrt{m_c} \), \(\sqrt{m_c} a \), and \(\sqrt{m_c} b \) are normalized independent of \(m_c \). In the Dirac limit, \(A \) and \(B \) are proportional to \(q=O(m_c) \) and their ratio, \(A/B \to p/E' \) is independent of \(m_c \). \(F_A \) then becomes

\[
F_A(q)=-\frac{M_D^{3/2}}{q^2} \left[\int_0^\infty dp \left. \frac{E'}{p} \ln \frac{-E'+p}{-E'-p} -2 \right. \frac{f_+}{\sqrt{M}} -i \pi \int_0^\infty dp \left. \frac{E'}{p} f_+ \frac{1}{M} \right] \equiv \frac{M_D^{3/2}}{q} C_A \quad \text{(3.69)}
\]

where \(C_A \) is independent of \(q \). Although this asymptotic form behaves as \(1/q \), the large \(m_c \) form, Eq. (3.68), does not have a \(q \to 0 \) singularity, so we use (3.69) and cut off the \(q \) integration in (3.60) at \(q \approx \Lambda_{QCD} \). This gives, in the \(M_D \to \infty \) limit,

\[
\Gamma_N S(D^{0})=\frac{128G^2\alpha_s}{9(2\pi)^5} \left[\frac{f_+ + f_-}{2} \right]^2 \frac{C_A}{q_m} \times \frac{M_D^6}{2} \left[\ln \frac{M_D}{2\Lambda_{QCD}} - 1 \right]. \quad \text{(3.70)}
\]

We see the important result that, up to logarithms,

\[
\Gamma_N S(m_Q) \to O(m_Q^0).
\]

Thus, the ratio of nonspectator to spectator becomes

\[
\frac{\Gamma_N S(m_Q)}{\Gamma_{sp}(m_Q)} \to O(m_Q^0)
\]

and grows as the heavy-quark mass increases. We, thus, expect and find that this ratio is larger for the \(B \) meson than the \(D \) meson, and expect further enhancements for the \(T \) or top-containing mesons.

The nonspectator decay rate \(\Gamma_N S \) in the Dirac limit from Eq. (3.68) is

\[
\Gamma_N S(D^{0})=\alpha_{eff}(f_+ + f_-)^2 0.42 \times 10^{-13} \text{ GeV} \quad \text{(3.71)}
\]

This is about one-half of the relativistic result, Eq. (3.65).
\[\Gamma_{\text{NS}}(D^\pm_r) = \frac{128G^2\alpha_s^2}{9(2\pi)^3} \left(\frac{f_+ - f_-}{2} \right)^2 M_D^2 \]
\[\times \int_0^{M_D/\sqrt{2}} q \left(\frac{M_D}{2} - q \right) (F_1^r + F_2^r) dq, \quad (3.72) \]

where \(F_1 \) and \(F_2 \) are given by Eqs. (3.61) and (3.62) and \(M_D \) is replaced by \(M_D^r \).

Since \(D \) and \(D_r \) mesons have the same mass scales, they will have the same values of \(f_+ \) and \(f_- \) from the theoretical expressions of Eq. (3.6). By Eq. (3.72), we obtain the nonspectator decay rates for \(D^\pm \) (see also Table I):

\[\Gamma_{\text{NS}}(D^\pm) = \alpha_\text{eff}(f_+ - f_-)^2 0.50 \times 10^{-13} \text{ GeV}, \quad (3.73) \]

\[\Gamma_{\text{NS}}(D^\pm_r) = \alpha_\text{eff}(f_+ - f_-)^2 0.11 \times 10^{-13} \text{ GeV} \]

(Dirac case).

The contribution from \(F_1 \) to \(\Gamma_{\text{NS}} \) is much less than that from \(F_2 \), due to the cancellations between \(f_+ \) and \(g \) in \(F_2 \).

The fact that most of the contributions to \(F_2 \) are from \(g \) shows that the \(D_r \) meson is close to a nonrelativistic case.

3. \(B^0, B_r^0, \) and \(B_r^\pm \) mesons

The decay-rate calculations for \(B^0 \) and \(B_r^0 \) are the same as for the \(D \) case and that for \(B_r^\pm \) is the same as for the \(D^\pm \) case. One difference is the values of \(f_+ \) and \(f_- \). For the \(B^0 \) and \(B_r^0 \) mesons, they are given for four flavors by:

\[f_+ = \left[1 + \frac{25}{6\pi} \alpha_s(m_b) \ln \left(\frac{M_W}{m_b} \right) \right]^{\gamma_\pm}, \]
\[f_- = \left[1 + \frac{25}{6\pi} \alpha_s(m_b) \ln \left(\frac{M_W}{m_b} \right) \right]^{\gamma_-} \]
\[\gamma_+ = - \frac{3}{25}, \quad \gamma_- = \frac{11}{25}, \quad (3.74) \]

\[f_+ = 0.89, \quad f_- = 1.26 \]

for \(m_b = 4.9 \text{ GeV}, \alpha_s(m_b) = 0.17, \) and \(M_W \approx 80 \text{ GeV} \).

Another difference is that we need to add the Kobayashi-Maskawa (KM) mixing element \(|U_{bc}|^2 \). Our numerical values for \(B^0 \) are (where we have used the value\(^9\) for \(U_{bc} = 0.045 \pm 0.008 \))

\[\Gamma_{\text{NS}}(B^0) = \left[\frac{U_{bc}}{0.045} \right]^2 \alpha_\text{eff}(f_+ + f_-)^2 \times 4.4 \times 10^{-13} \text{ GeV (Dirac case)}. \]

For \(B_r^\pm \), the nonspectator process is \(b + \bar{s} \rightarrow c \bar{c}g \) via \(W \) exchange with KM amplitude \(U_{bc} \) and rate

\[\Gamma_{\text{NS}}(B_r^0) = \left[\frac{U_{bc}}{0.045} \right]^2 \alpha_\text{eff}(f_+ + f_-)^2 \times 2.0 \times 10^{-13} \text{ GeV}, \quad (3.76) \]

\[\Gamma_{\text{NS}}(B_r^0) = \left[\frac{U_{bc}}{0.045} \right]^2 \alpha_\text{eff}(f_+ + f_-)^2 \times 1.8 \times 10^{-13} \text{ GeV (Dirac case)}. \]

For \(B_r^\pm \), we have \(b + \bar{c} \rightarrow u \bar{d}q \) and \(c \bar{g} \) which contribute equal amounts when neglecting final-state masses to give

\[\Gamma_{\text{NS}}(B_r^0) = \left[\frac{U_{bc}}{0.045} \right]^2 \alpha_\text{eff}(f_+ + f_-)^2 \times 0.071 \times 10^{-13} \text{ GeV}, \quad (3.77) \]

\[\Gamma_{\text{NS}}(B_r^0) = \left[\frac{U_{bc}}{0.045} \right]^2 \alpha_\text{eff}(f_+ + f_-)^2 \times 0.062 \times 10^{-13} \text{ GeV (Dirac case)}. \]

In the relativistic case, the contribution to \(\Gamma_{\text{NS}} \) from \(F_1 \) is much more than that from \(F_2 \) because \(B \) mesons are close to the Dirac limit where we have shown that \(F_1 = O(m_b^{1/2}/q) \) and \(F_2 = O(m_b^{-1/2}) \ll F_1 \).

Since most of \(F_1 \) comes from the \(f_+(p) \) part in both

TABLE I. Nonspectator decay rates and leptonic decay constants for \(D \) and \(D_r \) mesons. \(m_a = m_d = 0.25, \ m_f = 1.57, \ m_s = 0.41 \text{ GeV}. \ f_+ = 0.65, \ f_- = 2.37. \ \alpha_\text{eff} = 0.39 \) (normalization such that \(f_+ = 132 \text{ MeV}).		
\text{Relativistic}	\text{Dirac case}	\text{Relativistic}
\text{D meson}	\text{D meson}	
\text{Speciator} \((D^0) \) \((10^{-13} \) GeV)	12.5	1.5
\text{Nonspectator} \((D^0) \) \((10^{-13} \) GeV)	3.1	0.08
\text{\(f_D \) (MeV)}	580	360
\text{\(\Psi_D(0) \) (MeV/2)}	230	150
\text{\(D_r \) meson}	\text{\(D_r \) meson}	
\text{Nonspectator} \((D_r) \) \((10^{-13} \) GeV)	0.58	0.13
\text{\(f_{D_r} \) (MeV)}	590	380
\text{\(\Psi_{D_r}(0) \) (MeV/2)}	240	160
B^0 and B^0_s, the B^0 and B^0_s mesons are very relativistic cases.

IV. WEAK LEPTONIC DECAY CONSTANTS f_D, f_D^*, f_B, AND f_B^* AND LEPTONIC DECAY RATES

A. Formulation of the weak leptonic decay constant $f_D, f_D^*, f_B, \text{and } f_{B^*}$

The leptonic decay constant is defined through the current matrix element for $D^+ \rightarrow l^- \nu_l$ decay,

$$\langle 0 | J_\mu | D^- \rangle = \frac{-i}{(2\pi)^{3/2}(2M_D)^{1/2}} f_D B_\mu \sin \theta_C,$$ \hspace{1cm} (4.1)

where B_μ is the four-momentum of the initial bound-state meson, θ_C is the Cabibbo angle, and f_D is the leptonic decay constant. This matrix element can be expressed in quark fields as

$$\langle 0 | J_\mu | D^- \rangle = \langle 0 | \bar{\psi}_c(x) \gamma_\mu (1 - \gamma_5) \psi_d(x) | D^- \rangle \sin \theta_C.$$ \hspace{1cm} (4.2)

After we insert the intermediate states of an on-mass-shell c antiquark, the amplitude of the current is associated with the bound-state wave function. We have with the $3\sqrt{3}$ color factor

$$\langle 0 | J_\mu | D^- \rangle = \sum_{s_c} \int d^4p \langle 0 | \bar{\psi}_c(p,s_c) \gamma_\mu (1 - \gamma_5) \psi_d(x) | D^- \rangle \sqrt{3} \sin \theta_C.$$ \hspace{1cm} (4.3)

Using

$$\langle 0 | \bar{\psi}_c(p,s_c) | p,s_c \rangle = e^{i p \cdot x} \frac{1}{(2\pi)^{3/2}} \left(\frac{m_c}{\omega} \right)^{1/2} \bar{v}(p,s_c),$$ \hspace{1cm} (4.4)

using the expression of the bound-state wave function $\langle p,s_c | \psi_d(x) | D^- \rangle$ from Eq. (2.5) and (2.6), and summing over the spin states of the c antiquark, we have

$$\langle 0 | J_\mu | D^- \rangle = \sqrt{3} \sin \theta_C \left(\frac{e^{i B \cdot x}}{\sqrt{2M_D(2\pi)^{3/2}}} \right)^{1/2} \times \int d^4p \frac{m_c}{\omega} \text{Tr} \left[\gamma_\mu (1 - \gamma_5) \Phi(p) \right].$$ \hspace{1cm} (4.5)

Replacing

$$\Phi(p) = \gamma_5 \left(a(p) + b(p) \right) \frac{B}{m_c} (\not{p} - m_c)$$

in Eq. (4.5), and using $\int d\Omega_\mu p = 0$, we get

$$\langle 0 | J_\mu | D^- \rangle = \frac{16\sqrt{3} \pi B_\mu}{(2\pi)^2(2M_D)^{1/2}} \sin \theta_C \times \int dp \frac{m_c}{\omega} \not{p}^2 \left[-a(p)\omega + b(p)M_D \right].$$ \hspace{1cm} (4.6)

Equating Eqs. (4.1) and (4.6) and from the relations between $a(p)$, $b(p)$ and $g_0(p)$, $f_+ (p)$ in Eq. (2.24), we find

$$f_D = \frac{2\sqrt{3}}{\pi^2 M_D} \int dp \frac{m_c}{\omega} p^2 \left[-a(p)\omega + b(p)M_D \right]$$

or

$$f_D = \frac{\sqrt{3}}{\pi^2 (8\pi)^{1/2} M_D} \int dp \frac{m_c}{\omega} p^2 \left[g_0(p) - \frac{p}{m_c + \omega} f_+(p) \right].$$

(In the Dirac-equation limit, we have

$$f_D = \frac{2\sqrt{3}}{\pi^2} \int dp \frac{m_c}{\omega} p^2 \left[-a(p) + b(p) \right],$$ \hspace{1cm} (4.8)

$$\sqrt{M_D f_D} = \frac{\sqrt{3}}{\pi^2 (8\pi)^{1/2}} \int dp \frac{g_0(p)}{\sqrt{M_D}}.$$ \hspace{1cm}

From the normalization condition (2.25) in the Dirac limit $g_0 / \sqrt{M_D}$ is independent of $m_c \approx m_D$. From Eq. (4.8) we see as $m_c \rightarrow \infty$ that $f_D \propto 1 / \sqrt{M_D}$ in the Dirac limit.) The calculated values are (see Table I)

$$f_D = 580 \text{ MeV}, \quad f_D = 360 \text{ MeV} \text{ Dirac case}.$$ \hspace{1cm} (4.9)

The Dirac-case value is slightly above the experimental upper bound,17

$$f_D \leq 290 \text{ MeV},$$ \hspace{1cm} (4.10)

and in the range found in a lattice calculation including fermion loops.18 The fully relativistic value of $f_D = 580$ MeV is perhaps a factor of 2 too large, consistent with the calculation of the analogous vector process of the leptonic decay of the ψ whose amplitude is also a factor of 2 too large.1 The leptonic decay rate of the Υ came out about right,1 giving us more confidence in f_B, which is presented later.

The values of f_D, f_B, and f_{B^*} are given in Tables I and II for the relativistic and Dirac cases. Our conventions in Eq. (4.1) are those in which $f_\pi = 132$ MeV. With these conventions the leptonic decay rate for $D^+ \rightarrow \mu^- + \nu_\mu$ is given by

$$\Gamma_{\text{lep}} (D^+ \rightarrow \mu^- + \nu_\mu) = \frac{G^2}{8\pi} f_D^2 m_D m_\mu \left(1 - \frac{m_\mu^2}{m_D^2} \right)^2 \sin^2 \theta_C.$$ \hspace{1cm} (4.11)
TABLE II. Nonspectator decay rates and leptonic decay constants for \(B, B^0, \text{ and } B_{s}^{\pm} \) mesons,
\(m_u = m_d = 0.25, m_c = 1.57, m_{s} = 0.41, m_b = 4.9 \) GeV. \(f_{+} = 0.89, f_{-} = 1.26, \alpha_{\pi} = 0.17, U_{\pi} = 0.045. \)

<table>
<thead>
<tr>
<th></th>
<th>Relativistic</th>
<th>Dirac case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) meson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((B_{s}^{0}, B_{s}^{\pm}, B_{s}^{0, B_{s}^{\pm}})) ((10^{-13}) GeV)</td>
<td>3.9</td>
<td>5.8</td>
</tr>
<tr>
<td>(f_{B}) (MeV)</td>
<td>300</td>
<td>260</td>
</tr>
<tr>
<td>(\Psi_{B_{s}}(0)) (MeV(^{1/2}))</td>
<td>200</td>
<td>170</td>
</tr>
<tr>
<td>(B_{s}^{0}) meson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((B_{s}^{0})) ((10^{-13}) GeV)</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>(\Psi_{B_{s}}(0)) (MeV(^{1/2}))</td>
<td>220</td>
<td>190</td>
</tr>
<tr>
<td>(B_{s}^{+}) meson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((B_{s}^{+})) ((10^{-13}) GeV)</td>
<td>0.0017</td>
<td>0.0015</td>
</tr>
<tr>
<td>(\Psi_{B_{s}}(0)) (MeV(^{1/2}))</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>

with similar formulas for \(D^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau} \), and for \(D_{s}^{\pm}, B^{\pm}, \) and \(B_{s}^{\pm} \) leptonic decays.

V. SPECTATOR, NONSPECTATOR, AND LEPTONIC DECAY RATES OF \(D, D_{s}, \) AND \(B \) MESONS

In this section, we are going to apply what we have learned in the previous sections to discuss the difference in lifetimes of the \(D^0 \) and \(D^{\pm} \) mesons, the total decay rates of \(D_{s}^{\pm}, \) the prediction of the difference in lifetimes between \(B^{0} \) and \(B^{\pm} \), and the decay rate and spectrum of \(D^{0} \rightarrow \gamma + \) anything.

\[
\Gamma_{\text{sp}}(D^{0}) = \Gamma_{\text{sp}}(D^{\pm}) = \Gamma_{\text{sp}}(D_{s}^{\pm}) = \Gamma_{\text{sp}}(\bar{D}_{s}^{\pm}) = \Gamma_{\text{sp}}(\bar{D}^{\pm}) = \Gamma_{\text{sp}}(\bar{D}^{0}) = \Gamma_{\text{sp}}(\bar{D}_{s}^{0}) = \frac{G^{2}m_{c}^{5}}{192\pi^{3}} \cos^{2}\theta_{C}g(m_{s}/m_{c}), \tag{5.1}
\]

where \(g(x) = 1 - 8x^{2} - 24x^{4} \ln x + 8x^{6} - x^{8} \). Assuming that \(e^{-}, \mu^{-}, \bar{\nu}_{e}, \bar{\nu}_{\mu} \), and \(d \) quarks are massless compared to \(c \) and \(s \) quarks, and using \(m_{s} = 0.41 \) GeV and \(m_{c} = 1.58 \) GeV, we get

\[
g(m_{s}/m_{c}) = 0.61. \tag{5.2}
\]

The spectator decay rate of \(D \) or \(D_{s} \) is

\[
\Gamma_{\text{sp}}(D) = \frac{G^{2}m_{c}^{5}}{192\pi^{3}} \cos^{2}\theta_{C}g(m_{s}/m_{c}), \tag{5.3}
\]

In Eq. (5.3) we have included the factors \(R_{\text{SL}} \) and \(R_{\text{H}} \) to represent the effect of higher-order QCD corrections to the spectator rate.

As we have mentioned at the end of Sec. III B, there are two mechanisms to explain the lifetime-difference problem in \(D^{0} \) and \(D^{\pm} \) mesons. A calculation of the interference effect\(^{15} \) in a nonrelativistic approach yields a large effect in reducing the \(D^{\pm} \) decay rate. However, in a relativistic quark model\(^{16} \) or in a nonrelativistic approach in which the Fermi motion of the \(c \) quark is taken into account,\(^{20} \) the effect was estimated to be considerably smaller. Recently, the interference effect was calculated in the relativistic bag model\(^{13} \) and found to reduce the hadronic rate of \(D^{\pm} \) by 41%. The other mechanism is the nonspectator decay of the \(D^{0} \).

We are hampered in making a unique prediction of the nonspectator rate by not having a well-determined value of \(\alpha_{\pi} \) to use at this mass scale. Also, the calculations of the interference effect in the \(D^{\pm} \) decay range over a wide set of values. There is now, however, a large enough set of data on \(D^{0}, D^{\pm}, \) and \(D_{s} \) decays to determine a set of values for the various theoretical contributions. We carry out this analysis below. We use the recently reported results of E691 at Fermilab\(^{22} \) for the three decays since they have small errors and related systematics. This is important since we will be taking differences of rates to find the nonspectator contribution.

In using the experimental data we just use the semileptonic branching ratio of the \(D^{+} \) and its total decay rate to find the semileptonic decay rate of the charmed quark:
\[
B^{\text{SM}}_{SL}(D^+) = 0.17 \pm 0.019 ,
\]
\[
\Gamma^{\text{exp}}(D^+) = (6.04 \pm 0.22) \times 10^{-13} \text{ GeV}
\]
to get
\[
\Gamma_{SL}(D^+) = (1.03 \pm 0.12) \times 10^{-13} \text{ GeV} .
\]
We compare this to the theoretical value of the semileptonic decay rate [Eq. (3.13)]:
\[
\Gamma(\bar{c} \to \bar{q} \ell \bar{\nu}_\ell) = (0.61) \frac{G^2 m_c^2}{192 \pi} \cos^2 \theta R_{SL}
\]
\[
= (1.30 \times 10^{-13}) R_{SL} \text{ GeV} ,
\]
where
\[
R_{SL} = 1 - \frac{2 \alpha_s (m^2_c)}{3 \pi} f(m_c / m_t) = 1 - 0.56 \alpha_s (m^2_c) .
\]

Agreement of Eq. (5.7) with Eq. (5.6) indicates a satisfactory range of \(\alpha_s (m^2_c) \) to be \(\alpha_s (m^2_c) = 0.37 \pm 0.16 \). For consistency we use the experimental value in Eq. (5.6).

Next, we find the spectator decay rate from the \(D_s^\pm \) decay rate which has a very small calculated nonspecator rate. The \(D_s^+ \) decay rate comes from its spectator, non-spectator, and leptonic decay rates
\[
\Gamma(D_s^+) = \Gamma_{sp}(D_s^+) + \Gamma_{NS}(D_s^+) + \Gamma(D_s^+ \to \mu \nu) \\
+ \Gamma(D_s^+ \to \tau \nu) .
\]

The leptonic decay rates depend on \(f_{D_s} \). We know from the experimental bound on \(f_D < 340 \) MeV that our relativistic calculations of \(f_D \) are at least too large by a factor of 2 and this should apply to \(f_{D_s} \) as well. Using \(f_{D_s} < 300 \) MeV also gives a small contribution of the leptonic decays of \(D_s \), mostly from \(D_s^+ \to \tau \nu, (D_s^+ \to \mu \nu) \) is only a tenth of this) and a theoretical range
\[
\Gamma(D_s^+ \to \tau \nu) = (0.5 \pm 0.5) \times 10^{-13} \text{ GeV} .
\]

With our final parameters below we find
\[
\Gamma_{NS}(D_s^+) = 1 \times 10^{-13} \text{ GeV} .
\]

Using the experimental result
\[
\Gamma^{\text{exp}}(D_s^+) = (14.0 \pm 1.3) \times 10^{-13} \text{ GeV}
\]
we find then from Eqs. (5.8)-(5.10) that
\[
\Gamma_{sp}(D_s^+) = \Gamma_{sp}(D_s^+) = \Gamma_{sp}(D_s^0)
\]
\[
= (12.5 \pm 1.4) \times 10^{-13} \text{ GeV}
\]
since the spectator decay rate of the charm quark is by definition the same in each charmed meson.

We now subtract the spectator decay rate from the \(D_s^0 \) decay rate\(^{21} \) to get the nonspecator rate
\[
\Gamma^{\text{exp}}(D_s^0) = (15.6 \pm 0.5) \times 10^{-13} \text{ GeV}
\]
\[
= \Gamma_{sp}(D_s^0) + \Gamma_{NS}(D_s^0) .
\]

With Eq. (5.12) this gives
\[
\Gamma_{NS}(D_s^0) = (3.1 \pm 1.5) \times 10^{-13} \text{ GeV} .
\]

The nonspecator contribution is, thus, about 25% of the spectator decay rate. This is in agreement with recent treatments of \(D \) decays\(^{23,24} \) where two-body spectator decay modes accounted for 80% of the \(D^0 \) width.

We finally turn back to the \(D^+ \) decay rate to find the needed suppression from interference. With the 17% branching into each semileptonic channel, the hadronic branching is (66\pm 2.7)% giving
\[
(0.66) \Gamma^{\text{exp}}(D^+) = R_I (\Gamma_{sp}(D^+) - 2 \Gamma_{SL}(D^+)) ,
\]
where \(R_I \) is the interference effect suppression. From Eqs. (5.5), (5.6), and (5.12) we find
\[
R_I = 0.38 \pm 0.06 .
\]

This is a rather large suppression that is required by the set of data we have used.

In order to calculate the nonspecator decay rates, or to find the experimentally indicated value of \(\alpha_{\text{eff}} \) we need to know \(f_+ \) and \(f_- \) separately. For charm quarks the leading-logarithm estimation may not be considered a good approximation. We, nevertheless, carry on using it in the simple form abstracted from Eqs. (3.5)-(3.7), that
\[
f_+^2 f_-^2 = 1 .
\]

The spectator decay rate is given by
\[
\Gamma_{sp} = \left[2 + (2f_+^2 + f_-^2) \frac{R_H}{R_{SL}} \right] \Gamma_{SL}
\]
and using Eq. (5.6) for \(\Gamma_{SL} \) and Eq. (5.12) we find
\[
(2f_+^2 + f_-^2) R_H (f_+^2 + f_-^2) = (10.1 \pm 1.7) R_{SL} .
\]

\(R_H \) is given\(^{25} \) by
\[
R_H = 1 + \frac{2}{3 \pi} \alpha_s (Q^2) h ,
\]
where
\[
h = \frac{31}{4} \pi^2 + \frac{19}{4} f_+^2 + f_-^2 + f_+^2 f_-^2
\]
\[
+ \frac{3}{2} \alpha_s (Q^2) - \frac{\alpha_s (M^2)}{\alpha_s (Q^2)} f_+ f_- + \frac{2}{f_+^2 + f_-^2}
\]
and for four flavors \(\rho_+ = -0.47 \) and \(\rho_- = 1.36 \). The strong coupling constant which includes two-loop effects is given by
\[
\alpha_s = \frac{4 \pi}{\beta_0 \ln(x)} \left[1 - \frac{\beta_1 \ln[\ln(x)]}{\beta_0^2 \ln(x)} \right] ,
\]
where \(\beta_0 = 11 - \frac{2}{3} n_f, \beta_1 = 102 - \frac{34}{3} n_f, \) and \(x = Q^2 / \Lambda_{MS}^2 \) (MS denotes the modified minimal-subtraction scheme). Solving Eq. (5.19) using (5.17), (5.7), and (5.20) with \(Q = 1.5 \) GeV and \(\Lambda_{MS}^2 = 150 \) MeV gives
\[
f_- = 2.37 \pm 0.24, \quad f_+ = 0.65 \pm 0.04 .
\]
For comparison the solution to (5.19) and (5.17) without
the QCD correction gives \(f_- = 3.07 \pm 0.29 \) and \(f_+ = 0.57 \pm 0.03 \). If one uses constituent masses for \(u \) and \(d \) quarks of 250 MeV, the \(g(m_u/m_c) = 0.61 \) factor in the hadronic decays is reduced\(^{13} \) to \(F(m_c/m_u) = 0.35 \) requiring a larger \(f_- \) of 3.18 with \(f_+ = 0.56 \). From the result of the relativistic calculation of the nonspectator decay rate, Eq. (3.65), we have

\[
\Gamma_{NS}(D^0) = \alpha_{\text{eff}}(f_+ + f_-)^2 0.87 \times 10^{-13} \text{ GeV}.
\]

Using Eqs. (5.22) and (5.14) we find

\[
\alpha_{\text{eff}} = 0.39 \pm 0.19 ,
\]

which is a reasonable value for \(\alpha \) times higher-order QCD corrections at this low-mass scale.

To check for consistency that the nonspectator rate for \(D_i \) is small, we recall Eq. (3.73):

\[
\Gamma_{NS}(D_i) = \alpha_{\text{eff}}(f_+ - f_-)^2 0.50 \times 10^{-13} \text{ GeV} .
\]

Using Eqs. (5.22) and (5.24) gives

\[
\Gamma_{NS}(D_i) = 0.58 \times 10^{-13} \text{ GeV}
\]

consistent with that used in the \(D_i \) analysis.

B. The prediction of the lifetime difference between \(B^0 \) and \(B^\pm \) mesons

For the spectator decays of the \(B \) meson, its rate equals the sum of that for \(b \rightarrow \bar{c}e^-c'e', \bar{c}\mu^-c'\mu', c'\tau^-c\bar{\nu}_\tau, c\bar{d}, \) and \(c\bar{c}c' \). The interference effects have been found to be small in the \(B \) system\(^{20} \). The spectator decay rate is then

\[
\Gamma_{sp}(B^0) = \Gamma_{sp}(B^\pm)
\]

\[
= \Gamma(b \rightarrow c\bar{e} e^-c') + \Gamma(b \rightarrow c\mu^-c'\mu') + \Gamma(b \rightarrow c\bar{d}) + \Gamma(b \rightarrow c\tau^-c\bar{\nu}_\tau) + \Gamma(b \rightarrow c\bar{c}c')
\]

\[
= [2(2 + f_+^2 + f_-^2) F(m_b, m_c, 0) + F(m_b, m_c, m_c) + (2f_+^2 + f_-^2) F(m_b, m_c, m_c)] \cdot U_{bc} \cdot \frac{G^2 m_b^5}{192 \pi^2} ,
\]

where \(F(m_b, m_c, 0), F(m_b, m_c, m_c), \) and \(F(m_b, m_c, m_c) \) are mass correction factors\(^{15,14} \) calculated to be 0.47, 0.10, and 0.14, respectively. We obtain

\[
\Gamma_{sp}(B^0) = \Gamma_{sp}(B^\pm)
\]

\[
= \left[\frac{U_{bc}}{0.045} \right]^2 3.9 \times 10^{-13} \text{ GeV} .
\]

Combining this spectator decay rate with the nonspectator decay rate from Eq. (3.75) and including \(f_\pm \) from Eq. (3.74), we obtain

\[
\Gamma_{avg}(B) = \frac{\Gamma_{tot}(B^0) + \Gamma_{tot}(B^\pm)}{2}
\]

\[
= 2 \Gamma_{sp} + \Gamma_{NS}
\]

\[
= \left[\frac{U_{bc}}{0.045} \right]^2 (3.9 + \alpha_{\text{eff}}) \times 10^{-13} \text{ GeV} .
\]

Equating this to the experimental result\(^{26} \)

\[
\Gamma_{avg}(B) = (5.9 \pm 0.9) \times 10^{-13} \text{ GeV}
\]

gives a poorly determined value

\[
\alpha_{\text{eff}} = 0.20 \pm 0.21 .
\]

If we take a typical value at \(m_b \) of \(\alpha_{\text{eff}} \approx \alpha_\rho(m_b) \approx 0.17 \) for \(\Lambda_{NS} = 150 \text{ MeV} \), we would expect an increase in \(\Gamma_{avg}(B) \) of 43% over the spectator rate from \(\Gamma_{NS} \).

The ratio of lifetimes between \(B^\pm \) and \(B^0 \) from Eqs. (5.26) and (3.75) using \(\alpha_{\text{eff}}(m_b) \approx 0.17 \) is

\[
\frac{\tau_{B^\pm}}{\tau_{B^0}} = \frac{\Gamma_{sp}(B^0) + \Gamma_{NS}(B^0)}{\Gamma_{sp}(B) + \Gamma_{NS}(B)}
\]

\[
= \frac{(3.9 + 3.4) \times 10^{-13}}{3.4 \times 10^{-13}} \approx 1.9 .
\]

We predict the lifetime ratio between the \(B^\pm \) and \(B^0 \) mesons is about the same as that for the \(D \) mesons, but from different effects. This ratio is roughly independent of the particular \(f_\pm \) used.

C. Decay rate of \(D^0 \rightarrow \gamma + \text{anything} \)

The form of the amplitude of \(D^0 \rightarrow \gamma + \text{anything} \) is the same as that of the nonspectator diagram except for two different features. One is the color matrix \(\frac{1}{2} \lambda_{ij} \) is replaced by \(3 \delta_{ij} \). This will add a factor of \(\frac{3}{2} \). The second difference is the requirement of a color singlet in the final state for the decay of \(D^0 \rightarrow \gamma + \text{anything} \). \(\bar{s} \) and \(d \) quarks are in a pure color singlet in the \(f_+ + f_- \) term and the \(f_+ + f_- \) term when crossed to the \(3d \) channel using the color identity in Eq. (3.8) has a color singlet in \(3d \) with coefficient \(\frac{1}{2} \). These two \(3d \) singlet contributions are then added. With the electromagnetic coupling constant re-
placing the strong coupling constant α_{eff}, we have the
decay amplitude for $D^0 \rightarrow \gamma + \text{anything}$ from Eq. (3.60). The
energy spectrum of the photon for $D^0 \rightarrow \gamma + \text{anything}$ is, thus, given by

$$
\frac{d\Gamma_{\text{NS}}}{dq} (D^0 \rightarrow \gamma + X) = \frac{8G_F^2}{(2\pi)^5} \left[(f_+ - f_-) + \frac{1}{2} (f_+ + f_-) \right]^2 M_B^2 \frac{1}{q^2 - 3m_B^2}
$$

and is depicted in Fig. 4. The total rate is

$$
\Gamma (D^0 \rightarrow \gamma + X) = 0.0061 \times 10^{-13} \text{ GeV}.
$$

This has a branching ratio of the order of 0.04% and is very sensitive to the values of f_+ and f_-.

ACKNOWLEDGMENTS

We wish to thank M. Bander, F. Daghighbian, and S. P. Li for discussions. We also acknowledge the hospitality of the Aspen Center for Physics. This work was supported in part by National Science Foundation Grant No. PHY8605552.
