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ABSTRACT OF THE DISSERTATION  
 

Quantification of Endomembrane Phenotypes Using Chemical Genetics and 
Image Informatics 

 
 

by 
 
 

Nolan Michael Ung 
 
 
 

Doctor of Philosophy, Graduate Program in Plant Biology 
University of California, Riverside, June 2015 

Dr. Natasha V. Raikhel, Chairperson 
 
 

 

Recent advances in computer vision and image analysis have enabled 

biological screens of large volumes. Such high-throughput assays increase the 

likelihood and scope of discovery ultimately leading to functional analysis of a 

gene or protein. To increase the efficiency of high-throughput screens, 

computational tools are essential expedite image analysis, models to make sense of 

the extracted data, and biological assays to characterize the mutation or small 

molecule. Chemical genomics, the use of small molecules to inactivate proteins, is 

an advantageous approach when studying a conserved process such as 

endomembrane trafficking.  Endomembrane trafficking spans kingdoms and is 

important in defense, development, stress response and other vital physiological 

process.  We have taken numerous approaches to study the quantitative behavior 
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of the dynamic endomembrane system to accelerate discovery and better 

understand these complex phenomena. First, We identified six small molecules 

altering endomembrane trafficking in tobacco pollen; we characterized their effect 

on trafficking dynamics using video tracking facilitated by commercially available 

software giving us insight into intrinsic quantitative properties of the 

endomembrane system. Next, we wanted to create an automated tool to enable 

automatic phenotypic screening in Arabidopsis. EndoQuant is an automated 

computational tool for automatic sub cellular phenotypic analysis. Once this data 

was collected we developed a model to predict the biological being disrupted 

based on the cellular phenotype of a fluorescent marker.  Using Gaussian Mixture 

Model, we were able to successfully predict that a subset of small molecules was 

disrupting endocytic recycling, leading to better experimental design and faster 

discovery of bioactive molecules.  One particular biologically active molecule in 

Arabidopsis drastically reduced the root length of seedlings. This was found to be a 

result of cellulose deposition, most likely due to the miss localization of the 

cellulose synthesis machinery in response to disrupted trafficking membrane. We 

have analyzed real time membrane dynamics, automated phenotypic analysis, 

created a predictive model to link a phenotype with a biological process and 

characterized a small molecule disrupting the transport of a vital protein complex. 

These tools and methodologies will augment and accelerate the discovery process 

and our understanding of endomembrane trafficking in plant cells.  
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Chapter 1 

Video Bioinformatics and Bioimage Informatics: The Application of Computer 

Vision to Plant Cell Biology 

 

1.1 Analysis of Static and Dynamic Data from Biological Systems 

Video bioinformatics is a relatively new field which can be described as the 

automated processing, analysis and mining of biological spatiotemporal 

information extracted from videos obtained with varying spatial and temporal 

resolution (Bhanu, 2009).  Advancements in the field of computer vision has given 

biologists the ability to not only quantify spatial and temporal dynamics but the 

ability to do so in a semi automatic and automatic manner.  Understanding 

temporal dynamics can provides data previously obscured by the lack of temporal 

data. The challenges that arise from bioimage informatics become increasingly 

more complicated with the addition of the time dimension.  Both techniques share 

very similar applications and challenges including detection of regions of interest 

(ROI’s) via segmentation, registering images, subcellular localization determination 

and dealing with large amounts of image data.  Here we will discuss the challenges 

in plant cell biology that can be addressed using automatic quantitative tools such 

as image and video bioimformatics and the current shortcomings that need to be 
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improved upon as we continue to discover and describe dynamic biological 

phenomena at the cellular level.  

Most of the image data collected to date has been interpreted in a subjective 

sense, allowing for personal interpretation and a loss of objectivity (Peterson and 

Wolffsohn, 2007). In the pursuit of biological discovery we strive for objectivity 

and quantitative data that we can manipulate and use to better uncover genuine 

biological phenomena versus artifacts or biased results.  The degree of phenotypes 

can be continuous and cover a large spectrum, for example, when using chemical 

genomics to dissect conserved cellular processes (Drakakaki, Robert, Szatmari, 

Brown, Nagawa, Van Damme, Leonard, Yang, Girke, Schmid, Russinova, Friml, 

Raikhel and Hicks, 2011). Varying concentrations of bioactive compounds or drugs 

can illicit proportional phenotypes (Robert, Chary, Drakakaki, Li, Yang, Raikhel 

and Hicks, 2008).  Therefore, the need for quantitative image and video data is 

essential when interpreting image data on any spatial or time scale.  

 Ultimately, the quantified data demonstrates the most utility when subjected to 

statistical analysis. Therefore, it makes sense to quantify enough data to allow for a 

statistically valuable sample size. This often requires large amounts of data that 

needs to be quantified. Additionally, chemical or genetic screens have much to 

gain from using quantitative metrics to screen for valuable phenotypes (Beck, Zhou, 

Faulkner, MacLean and Robatzek, 2012). To meet these challenges in a practical 
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manner, quantification needs to be automated. Automation not only provides 

decreased analysis time, it also allows for greatly reduced inter and intra-user 

variability. A being able to provide a consistent analysis from sample to sample 

provides more reliable data. Reliable data is essential to fully understand the true 

nature of any dynamic subcellular process. Dynamic cellular phenomena such as 

cell division, lipid dynamics, plant defense processes and cell wall biosynthesis, 

often require the measurement of various static and dynamic features (Tataw, Liu, 

Roy-Chowdhurry, Yadav and Reddy, 2010; Liu, Elmore, Lin and Coaker, 2011; 

Sampathkumar, Gutierrez, McFarlane, Bringmann, Lindeboom, Emons, Samuels, 

Ketelaar, Ehrhardt and Persson, 2013).  The automated detection tracking and 

analysis of these regions of interest summarizes the major goals of video 

bioinformatics in a cell biological context.  

Live cell imaging has become an indispensable tool for discovery throughout 

the basic and applied sciences. This relatively recent technique has allowed for 

realtime observation and quantification of dynamic biological processes on the 

scale of  nanometers to meters and milliseconds to days (Domozych, 2012). The 

advent of GREEN FLUORESCENT PROTEIN (GFP), has enabled this live cell 

imaging revolution and has subsequently enabled the capturing of in vivo spatial 

and temporal dynamics (Brandizzi, Fricker and Hawes, 2002). Because of the 

utility and versatility of GFP and its derivatives, these tools have become ubiquitous 

in molecular and cell biology generating large quantities of image and video data.   
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Many of the technical advancements in bioimaging have come from a resolute and 

prolific collaboration between the biological sciences and engineering. The 

cooperation of these two disciplines has produced indispensable tools to cell 

biology such as the laser scanning confocal microscope (Rajadhyaksha, Anderson 

and Webb, 1999), spinning disc confocal microscope (Nakano, 2002), 

mulptiphoton microscope (Meyer and Fricker, 2000), Variable-angle 

epifluorescence microscopy (VAEM) (Konopka and Bednarek, 2008), and STORM 

(Rust, Bates and Zhuang, 2006) just to name a few.  All of these imaging modalities 

produce large quantities of complex multidimensional data. Scientists need to work 

together with engineers to dissect, manage, manipulate and ultimately make sense 

of the image data collected.  Practitioners of both disciplines, while still working to 

improve the acquisition hardware, are also working together to manage and 

analyze the large amounts of quantifiable image data.  

The traditional way of quantifying image data is to manual draw regions of 

interest containing the biologically relevant information. To this day, this manual 

measurement is the most popular method of image quantification. Software tools 

including ImageJ and distributions of ImageJ such as Fiji are free and readily 

available (Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, 

Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak and 

Cardona, 2012). Subcellular phenotyping is time consuming and impractical when 

performing high-throughput screens, which are necessary for most cell biologists. 
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This data load is only increased when analyzing videos.  A recent push toward 

automation has favored the use of automated microscopes, and robots that perform  

automated high-throughput sample preparation (Hicks and Raikhel, 2009).  This 

has lead to the development and implementation of and automated semi-

automated tools that require modest to little user input (Kuehn, Hausner, Bungartz, 

Wagner, Wilderer and Wuertz, 1998; Ung, Brown, Hicks and Raikhel, 2012). 

Automated methods can be more consistent and faster since the user does not have 

to provide information. However, this lack of user input can also lead to reduced 

flexibility and robustness. On the other hand, semiautomated methods are flexible 

and possibly more robust due to user input but can often be slower because the 

user had to provide prior information to the software. As this analysis becomes 

more user friendly and practical, the ability to apply a single software tool to 

multiple biological problems including multi dimensional data, will be favored by 

the biologist thereby most likely favoring the semiautomated methods.  

Bioimage informatics has experienced a recent surge in popularity due to the 

advent of automated microscopes and the subsequent burst of image data. 

Engineers had to develop methods to manage and interpret large amounts of image 

data generated by these automated systems. Bioimage informatics relies on several 

engineering disciplines including computer vision, machine learning, image 

processing image analysis and pattern recognition (Eils and Athale, 2003). The 

application of theses methods aid biologists is rapid detection quantification and  
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classification of biological phenomena. Bioimage informatics is generally 

concerned with 2-dimensional data , in the x and y planes, though it is possible to 

deal with 3-dimensional, X, Y and Z,  and 4dimensional data X,Y,Z and frequency 

domain (Cheung and Cousin, 2011). Using these dimensions, data can be 

accurately extracted when computational techniques are properly applied.  

However, much information is lost when the 5th dimension of time in not 

considered. Here we discuss the importance of including temporal dynamics when 

quantifying cellular phenomena and the recent advances that were possible due to 

the collaboration of biologists and engineers.  

 

1.2 Segmentation: Detecting Regions of Interest 

Ultimately, biologists want to be able to extract data from the acquired multi-

dimensional images. However, the biologist needs to be able to identify those sub-

regions within the image that hold the most data and that are therefore more 

important. As expert biologists, we can accurately identify the interesting regions of 

an image intuitively.  Segmentation is the process of partitioning the regions of an 

image into segments (Shapiro, 2001). Before we can extract data, we must first 

detect the objects or regions that are biologically meaningful.  Biological images 

are acquired with various modalities and therefor one segmentation method is not 

going to be effective for all cases, therefore specialized methods must be applied to 
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each case on a case-by-case basis. Much progress has been made in the domain of 

confocal microscopy. Bright fluorophores allow for high contrast images that 

facilitate robust segmentation. In the realm of plant cell biology, many organelles 

and protein localization sites resemble bright spots or blobs. This is due to the light 

diffraction limit which limits the resolution of light microscopy at 250nm, making 

small objects appear as fuzzy blobs (de Lange, Cambi, Huijbens, de Bakker, 

Rensen, Garcia-Parajo, van Hulst and Figdor, 2001). Quantifying the number or 

size of these bright blobs is often done manually and can take several days. Simple 

segmentation can greatly improve this process, which can then lead to feature 

extraction in both static and dynamic datasets.  

Imaging static 2D images is by far the most popular type of microscopy data to 

analyses because of its ease and relatively short acquisition and analysis time. The 

majority of subcellular imaging is focused on the localization of proteins of interest. 

Using Fluorescent markers fused to proteins of interest and dyes, cell biologists can 

understand the proteins that are involved with biological processes by monitoring 

the abundance, size shape and localization within organelles. Organelles are of 

constant interest to cell biologist because of their diverse and extremely important 

roles in plant development, homeostasis and stress responses. Automatic tools are 

being developed and used to quantify protein localization and spatial features of 

discrete compartments (Sethuraman, Taylor, Pridmore, French and Wells, 2009). 

Organelles often manifest as punctate dots when imaged using fluorescent confocal 
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laser scanning microscopy. These dots are then quantified per cell area and 

features extracted such as area, intensity and number of compartments (Ung, 

Brown, Hicks and Raikhel, 2012). Salomon et al. used such a tool to quantify the 

response of various endomembrane compartments to bacterial infection, cold stress 

and dark treatment (Salomon, Grunewald, Stüber, Schaaf, MacLean, Schulze-Lefert 

and Robatzek, 2010). Crucial information can also be garnered from the cells 

themselves. Cell borders can be detected when labeled and size as well as shape 

information analyzed automatically (Salomon, Grunewald, Stüber, Schaaf, 

MacLean, Schulze-Lefert and Robatzek, 2010).  This information can then be used 

to track cell growth and development. Segmentation is the first crucial step to 

extracting quantitative information from live cell imaging data.  

Cells exist in 4 dimensions, X,Y,Z and time. If cell biologists want the full 

complement of information from imaging data we have to consider all 4 of these 

dimension. Collecting and processing 3D data is computationally more expensive 

and more difficult to manage but can yield a greater understanding of spatial 

information. Most confocal microscopes can easily collect data in the Z direction 

and 3D reconstructions are relatively easy to do now with the capable software. 

Most of the images captured of dividing plant cell are 2 dimensional leaving out 

the critical third dimension.  Miart et al. Used 3D constructions of a growing cell 

plate to understand the role of cellulose synthase complexes in cell plate formation 

by analyzing time lapse video data of fluorscently labeled Cellulose synthase 
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complexes (Miart, Desprez, Biot, Morin, Belcram, Höfte, Gonneau and Vernhettes, 

2013).  Although these analyses did not take advantage of automated 

quantification, the visualization of the 3D cell plate greatly contributed to the 

understanding of how cellulose synthase complexes (CESAs) are involved in cell 

plate formation (Miart, Desprez, Biot, Morin, Belcram, Höfte, Gonneau and 

Vernhettes, 2013). Quantifying temporal dynamics in a study such as this would 

lend insight into how fast this process happens and perhaps how the population of 

CESA complexes shifts from a homeostatic role to an actively dividing role.  

4 dimensional data including 3-D movies of cellular phenomena, will become 

more popular as the tools to analyze this data become more sophisticated and 

more user friendly. Automated 4-D analysis tools are already being used by cell 

biologists to analyze trichome development (Domozych, 2012). This system 

extracts the leaf surface, segmenting the mid-plane of the young leaf and detects 

the developing trichomes using a hough transform which can detect circles 

(Illingworth and Kittler, 1987).   One 3D image is registered to the next 3D image 

in the time series to maintain consistency and to track and compare its growth over 

time (Bensch, Ronneberger, Greese, Fleck, Wester, Hulskamp and Burkhardt, 

2009). These tools will need to be adapted from analyzing gross morphology to 

tracking moving cellular structures over time.  
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1.3 Machine learning allows automatic classification of cellular components 

Machine learning is a sub-discipline of artificial intelligence that is focused on 

the development of algorithms that can learn from given data (Goldberg and 

Holland, 1988). These methods often require the use of training data and user input 

to learn how the data should be classified. Upon training the algorithm can then 

correctly identify the class that each subject should belong to. A simple example is 

the spam filter on most email accounts that can discern between those messages 

that are spam and those that are important.  

 An logical application of machine learning in cell biology was determining 

the sub cellular localization of fluorescent markers base on extracted features. 

Traditionally Cell biologists have to co-localize their protein of interest and markers 

of known localization to determine where the protein is located. Biologists could 

simply analyze an confocal micrograph with a machine learning program and 

receive the location of their protein of interest.  An additional advantage to the 

machine learning methods over traditional cellular methods, other than reduced 

time investment is that these methods provide statistics as to how likely the 

determined localization is to be true (Hua and Sun, 2001). Though there seems to 

be reasonable progress in determining sub cellular localization using machine 

learning, the biological community has yet to adopt the methodology. Prediction of 
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subcellular localization will streamline experimental design and support traditional 

co-localization assays.  

Machine learning is a powerful tool for gene discovery and organelle dynamics. 

It can help us uncover relationships and details that we otherwise could not. 

Because organelle dynamics can be complex and highly variable its valuable to be 

able to simplify and summarize dynamics. Using Baysian networks, Collinet et al. 

Found that endosome number, size, concentration of cargo and position are 

mediated by specific genetic regulation and not random (Collinet, Stöter, 

Bradshaw, Samusik, Rink, Kenski, Habermann, Buchholz, Henschel, Mueller, 

Nagel, Fava, Kalaidzidis and Zerial, 2010). Furthermore,  they used this method to 

discover novel components regulating endocytosis by clustering endocytic 

phenotypes caused by screening siRNA libraries Collinet 2010}.  Statistical analysis 

was similarly used to summarize and classify organelle movement in Arabidopsis 

Stomata {Higaki 2012}. The result is an atlas of organelle movement in stomata that 

can be compared to various conditions. Organelle movement patterns were 

compared between open and closed stomata revealing differences in ER position in 

response to stomatal opening. Organelle movement These new findings emphasize 

the need for statistical methods to manage complex data and present this data in 

forms we can easily understand and manipulate.   
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Though we are interested in cell autonomous processes, cells do not exist in a 

vacuum.  We are also greatly interested in how a cell influences the development 

and function of its neighboring cells. To address this challenge segmentation 

coupled with machine learning  was used to jointly detect and classify cell types in 

whole tissues. 3dimensional images of propidiumiodide stained roots were used to 

automatically find cell files in longitudinal and transverse sections using watershed 

segmentation and a support vector machine to classify cell types (Liu, Schmidt, 

Blein, Durr, Palme and Ronneberger, 2013).  An alternative approach used 

histological sections of arabidopsis hypocotyls to differentiate tissue layers and 

predict the location of phloem bundle cells (Sankar, Nieminen, Ragni, Xenarios 

and Hardtke, 2014). The true utility of these tools will be realized when they are 

used to compare wild type cell profiles with mutants, possibly being used in large 

content screening.  

 

1.4 Quantifying temporal dynamics adds a new dimension of data 

Once an object has been detected and classified its often very important to 

follow its movement through time and space. This extremely important problem of 

tracking has been tackled by many engineers developing the field of computer 

vision.  A multitude of tools are available for tracking cells and organelles, most of 

these being  manual and semi automated (Ung, Brown, Hicks and Raikhel, 2012).  
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Tracking organelles is difficult because rarely do they have a straight forward 

movement model.  It is because of the diversity and variability of tracking problems 

that semi automated methods are the most widely used.  Common problems 

include object moving out of the plane of focus when using 2D images. It is 

because of this issue that 3D movies are such valuable data sets (Carlsson, 

Danielsson, Liljeborg, Majlöf, Lenz and Åslund, 1985). Therefore, automatically 

tracking object in a 3D image set is an invaluable tool (Racine, Sachse, Salamero, 

Fraisier, Trubuil and Sibarita, 2007).  Other challenges include, maintaining 

identity when two objects fuse or break off from one another, and maintaining 

multiple tracks at the same time.  A perfect tracking algorithm would overcome all 

of these problems while maintaining minimal user input and accurate 

segmentation.   

The purpose of quantifying movement and movement patterns is to gain useful 

biological insight such as diffusion rates, types of motion including brownian 

motion, non-brownian motion, confined motion, directed motion or anomalous 

diffusion (Saxton and Jacobson, 1997). Ung et al. correlated multiple dynamic 

features which suggested that when tobacco pollen tubes where treated with 

specific bioactive compounds the contained  golgi bodies increased in size and this 

increase in size was correlated to an increase in signal intensity and  a decrease in 

straightness suggesting that these were possibly multiple fused Golgi and that this 
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fusion disrupted movement (Ung, Brown, Hicks and Raikhel, 2012). Similar 

correlations were made by collinet et al. When examining endocytosis in 

mammalian cells (Collinet, Stöter, Bradshaw, Samusik, Rink, Kenski, Habermann, 

Buchholz, Henschel, Mueller, Nagel, Fava, Kalaidzidis and Zerial, 2010). These 

trends are possibly indicative of larger principals. Indeed these data are consistent 

with hypothesis proposed by hamilton et al. (2007) including conservation of 

surface area, measurement of volume, flux across a membrane the role of pressure 

and tension and vesicle fusion.  These biological details would not be obtainable 

without quantitative video analysis.    

Although each challenge was presented separately, they are by no means 

mutually exclusive. The vast majority of image analysis problems require 

identification of regions of interest before they can be quantified, tracked or 

classified.  

 

1.5 Opportunities for innovation in cellular video bioinformatics 

As video bioinformatics tools become increasingly accurate and biologist 

friendly they will become more prevalent in biological studies. The future of video 

analysis is moving toward automatic quantification of cellular dynamics in 4-

dimensions (3D time lapse images).  The amount of data that can be extracted from 

3D movies will increase with the availability and ease of use of software. Biologists 
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will be able to quantify difference in movement possibly identifying underlying 

principals of movement and other components essential to cellular dynamics. 

Once these video analysis tools become more fully automated, it will become 

more practical to then screen for factors that influence dynamics by performing 

time lapse video screens. In this manner, biologists will be able to directly screen 

for changes in cellular dynamics.  

Creating the tools to quantify cellular dynamics is futile unless biologists use 

them to produce data.  The pipeline from engineer to the biological community 

needs to be stronger. This could be enhanced by taking advantage of open source 

repositories of image analysis tools. A small pool of these repositories currently 

available and will grow in popularity as the need for these programs becomes 

greater (Swedlow and Eliceiri, 2009). As we take advantages of quantitative 

methods w will produce large amounts of quantitative data that has the potential to 

fuel mathematical models or other future studies (Phillips and Milo, 2009). It is to 

this end that repositories of quantitative data would be indispensable.  Many 

mathematical models require know numerical parameters to be of use.  

 As live cell imaging modalities and acquisition methods become more 

advanced including super resolution methods and as biological systems change, 

our analysis methods will to have to adapt. In the future these efforts will be 

spearheaded by a handful of interdisciplinary scientists that will be trained in 
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biological principals, experimental design, computer programming and image 

analysis's tool design. Future biologists will have to be well versed in computer 

programming basics and be able to design tools that are applicable to their specific 

research topic while having a basic understanding of the appropriate algorithms all 

while being able to communicate with engineers. Engineers on the other hand, will 

have to understand biological limitations, know which features are useful, 

experimental design and acquisition methods.  
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Chapter 2  

An approach to Quantify Endomembrane Dynamics in Tobacco Pollen  

Utilizing Bioactive Chemicals 

 

2.1 Abstract 

Tip growth of pollen tubes and root hairs occurs via rapid polar growth. These 

rapidly elongating cells require tip-focused endomembrane trafficking for the 

deposition and recycling of proteins, membranes and cell wall materials. Most of 

the image-based data published to date are subjective and non-quantified. 

Quantitative and comparative descriptors of these highly dynamic processes have 

been a major challenge, but are highly desirable for genetic and chemical 

genomics approaches to dissect this biological network. To address this problem, 

we screened for small molecules that perturbed the localization of a marker for the 

Golgi Ras-like monomeric G-protein RAB2:GFP expressed in transgenic tobacco 

pollen. Semi-automated high-throughput imaging and image analysis resulted in 

the identification of novel compounds that altered pollen tube development and 

endomembrane trafficking. Six compounds that caused miss localization and 

varying degrees of altered movement of RAB2:GFP-labeled endomembrane bodies 

were used to generate a training set of image data from which to quantify vesicle 

dynamics. The area, velocity, straightness, and intensity of each body were 
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quantified using semi-automated image analysis tools revealing quantitative 

differences in the phenotype caused by each compound. A score was then given to 

each compound enabling quantitative comparisons between compounds. Our 

results demonstrate that image analysis can be used to quantitatively evaluate 

dynamic subcellular endomembrane phenotypes induced by bioactive chemicals, 

mutations or other perturbing agents as part of a strategy to quantitatively dissect 

the endomembrane network. 

 

 

2.2 Introduction 

Endomembrane trafficking is a dynamic network of processes that is essential for 

abiotic stress response, pathogen response, cytokinesis, cell expansion, tip growth 

and development (Samuels et al., 1995; Wick, et al., 2003; Carter et al., 2004). The 

endomembrane system consists of discrete membrane-bound compartments that 

are interconnected within complex trafficking pathways. These pathways are highly 

coordinated and regulated to ensure proper localization and allocation of proteins, 

cell wall components and other vital materials for proper growth and development  

(Roberts 1994; Miller et al., 1997; Fürthauer and González-Gaitán, 2009).  

Pollen tubes are single, elongated cells that undergo a specialized form of 

polar growth known as tip growth, a mode of growth shared by root hairs, 

trichomes and neurons (Hepler et al.,, 2001). Tip growth requires high levels of tip-
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focused endomembrane trafficking to deposit lipids, proteins and cell wall 

materials to facilitate rapid growth (Hepler et al., 2001). Pollen tubes must form an 

elongating tube that travels from the surface of the stigma to deliver the sperm to 

the ovule (Lord, 2000). This rapid tip growth is facilitated by the coordination of the 

actin cytoskeleton and a highly active secretory system (Hepler, et al., 2001). 

 Within the Ras superfamily of proteins, the Rab family of small GTPases is 

evolutionarily conserved and regulates the budding, transport and fusion of vesicles 

from intracellular donor compartments to target compartments, thus, mediating 

intracellular trafficking (Stenmark and Olkkonen, 2001; Nielsen et al., 2008; Ebine 

et al.,  2011). When bound to GDP, RABs are inactive; however, when bound to 

GTP they are activated and interact with downstream effector proteins (Stenmark 

and Olkkonen, 2001).  Although many RAB proteins are found in yeast, plants and 

mammals, of the three, RAB2 is found only in mammals and plants (Rutherford and 

Moore, 2002). The Arabidopsis thaliana ortholog RAB B1 and the mammalian 

RAB2 are involved with vesicle maturation of the anterograde trafficking pathway 

from the endoplasmic reticulum (ER) to the Golgi stacks and localizes primarily in 

the Golgi (Rutherford and Moore, 2002). In Nicotiana tobaccum (tobacco), RAB2 is 

found predominantly in pollen grains, pollen tubes and root hairs, probably due to 

the high secretory demands of the two cell types. Transcripts are detected in floral 

buds and lateral roots, though this might be due to its presence in pollen and root 

hairs (Cheung et al., 2002). When fused to GFP, RAB2 is observed in Golgi stacks 
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that are highly active within the germinating pollen grain as well as the elongating 

tube (Cheung at al., 2002). This localization can be exploited to study 

endomembrane trafficking in a developing pollen tube. Because the endoplasmic 

reticulum (ER) and Golgi are major components along the secretory pathway, it can 

be inferred that if agents such as bioactive small molecules perturb this pathway, 

global secretion will be significantly impaired, allowing the effect of the small 

molecules to be identified by microscopy.   

 Qualitative descriptions of trafficking are useful but very limited in the 

number of comparisons that can be made and conclusions that can be drawn. 

Since endomembrane trafficking is a physical phenomenon that can be observed 

by microscopy, it can be quantified and subjected to statistical analysis. Indeed, 

our ability to quantify distribution, sizes and rates of endomembrane compartments 

in many organisms and tissue types has been growing over the past two decades  

(Pyke and Leech, 1991; Derksen, et al., 1995; Logan et al., 2003; Rink et al.,  2005; 

Pochynyuk et al., 2007; Ketelaar et al., 2008; Sparkes et al., 2008; Kato, et al., 

2010; Collinet et al.,  2010; Salomon et al., 2010). Earlier studies used various 

methods to quantify trafficking that were limited by the available technology. Initial 

investigations utilized transmission electron microscopy and manual measurement 

of organelles. This was used to infer growth rates based on mathematical models 

(Ketelaar et al., 2008) or by calculating organelle distribution (Derksen et al., 
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1995). Although informative, these studies observed frozen or fixed tissue rather 

than live cells, which provide a more accurate depiction of cellular processes.  

 The advent of GREEN FLOURESCENT PROTEIN (GFP) made quantitative 

analyses of living cells possible. Live imaging in combination with image analysis 

gave a more comprehensive description of organelle size and distribution 

(Pochynyuk et al., 2007).  Nevertheless, these approaches used still frame images, 

snapshots in time that omit any temporal dynamics. To account for this, video data 

can capture movements and morphological changes of cellular compartments in 

real time while simultaneously measuring several features in animal cells (Collinet 

et al., 2010) and endomembrane trafficking in plant pathogen infected leaf 

epidermal cells (Salomon et al., 2010). To visualize and quantify video images from 

cells displaying rapid growth and highly dynamic trafficking, we used germinating 

pollen as a model system. Our present study combines quantitative video analysis 

with bioactive chemicals to rapidly and controllably perturb trafficking, permitting 

the quantitative and comparative description of compounds affecting intracellular 

trafficking in pollen grains.  

 There are several challenges to be overcome in understanding 

endomembrane trafficking in the sporophyte and gametophyte. Classical genetic 

approaches are limited by functional gene redundancy because mutation of a 

single gene can result in a lack of phenotype due to compensation. Alternatively, 
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when an essential gene is mutated, embryo lethality can result. These obstacles can 

be circumvented by a chemical genomics approach that uses small molecules to 

temporarily modulate protein function. Small molecules often bind to proteins, 

transiently inhibiting proper function. This marriage of synthetic chemistry and 

biology coupled with the grand scale of genomics is a powerful approach that 

produces large amounts of useful phenotypic data prior to genetics  (Hicks and 

Raikhel, 2012). However, the power of chemical biology and genetics are both 

limited by an inability to accurately quantify trafficking processes to obtain 

objective descriptors to compare the dynamics in the presence of different 

inhibitors or mutations. For example, due to the high throughput nature of 

chemical screening, data analysis should be quantitative and automatable to 

accommodate large image datasets.  

 To address the pressing need to develop quantitative image analysis and 

comparative descriptors, we report a chemical genomics approach coupled to 

semi-automated image acquisition and image analysis to identify chemical 

compounds with differential effects on endomembrane trafficking.  Utilizing these 

compounds as a training set to develop our approach, we quantified their effects on 

vesicle traits such as size, velocity and straightness and intensity as quantitative 

descriptors. Furthermore, we developed a scoring system that permitted a 

comparison of differential intracellular dynamics induced by each of the 
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molecules, a critical step toward fully automated image characterization of 

endomembrane dynamics.  

 

2.3 RESULTS 

A pollen-specific chemical screen reveals eight classes of morphological and 

developmental phenotypes  

 To discover novel compounds that allow the dissection of endomembrane 

trafficking pathways and to identify a set of compounds to generate a training 

dataset for quantification, a chemical genomic screen was used to identify small 

molecules that affect pollen tube morphology and development. Because of their 

rapid growth and ease at which vesicle movement is visualized, Nicotiana 

tobaccum (tobacco) pollen was an ideal model system in which to perform this 

screen. Compounds were screened for those that inhibited germination or altered 

tube morphology, both of which are dependent upon proper tip-focused vesicle 

trafficking. In a developing pollen tube, vesicle traffic follows a distinct reverse 

fountain flow in which cargo moves towards the growing tip on the sides of the 

tube and cargo moving from the tip moves down the center of the tube (Pierson 

and Cresti, 1992). Several small molecules were found that disrupted this distinct 

trafficking pattern. 

 Previously, more than 46,000 compounds were screened in pollen at a 

concentration of 50-100µM (Robert et al., 2011). Of these, 360 compounds were 
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found to cause morphological or developmental defects in pollen demonstrating 

their bioactivity (Robert et al. 2008). Small molecules were categorized as bioactive 

if they had an observable effect on morphology, development or localization of a 

fluorescent marker. A small molecule was considered to be bioactive if pollen 

grains did not germinate or there were defects in tube morphology such as 

isodiametric tip growth. In this current study, the 360 compounds were serially 

diluted to 25-50µM and 10-20µM, depending on the molecular weight of the 

compound, to determine the minimal effective concentrations and to uncover 

possible latent phenotypes (Figure 2.1). This permitted us to focus our screens on 

the resulting 225 compounds that inhibited germination and that remained 

bioactive at lower concentrations, thereby determining effective concentrations for 

potential compounds of interest (Supplemental Table1). 

 

Identification of compounds that affect endomembrane trafficking 

 To test the effect of these 225 bioactive compounds on endomembrane 

trafficking in tobacco pollen, a secondary screen was performed using a transgenic 

tobacco line expressing RAB2:GFP in pollen (Cheung et al.,  2002) to visualize the 

potential effects on RAB2 trafficking at two concentrations: 25-50µM and 10-20µM.  



 

 34 

  

Figure 2.1 Morphological phenotypes of pollen expressing Rab2:GFP. (a) Control treatment treated 

with DMSO. (b) Inhibition of germination. (c) Collapsed pollen tubes. (d) Short tubes due to delayed 

growth. (e) Swollen pollen tubes. (f) Vesiculated tubes. (g) A complex phenotype in which multiple 

phenotypes are demonstrated. All images were taken using a 40x objective. Concentration of 

compounds ranged from 10µM to 50µM depending on the compound used. Scale bar = 20mm. 
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Table 2.1. Phenotypes resulting from different concentrations of library compounds. Number of 

compounds resulting in different phenotypes are indicated.  

 

Images were collected for each compound, analyzed using the Imaris image 

analysis software package and organized into groups that exhibited the same or 

similar phenotypes (Figure 2.1). Table 2.1 shows the number of compounds 

resulting in each phenotype observed. To focus our efforts on compounds that 

showed the most dramatics effects, a subgroup of six compounds were selected 

which caused disruptions in the localization of RAB2:GFP associated with 
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endomembranes (Figure 2.2). The compounds that comprised this subgroup were 

termed RAB2 effectors (RAEs). Compared to untreated controls, disruptions in the 

localization of RAB2:GFP were manifested as agglomerations (Figure 2.3.) which 

we  termed “RAB2 bodies”. The bodies were presumed to be derived from Golgi 

stacks and ER. RAEs 6 and 7 elicited similar phenotypes, suggesting a similar mode 

of action and structure. Structure-activity relationship (SAR) analysis indicated that 

both RAE 6 and 7 have a nitro group along with a nitrile group next to a double 

bond. These compounds disrupted RAB2:GFP movement or localization and 

mestherefore, globally altered trafficking in the cell, allowing to measure these 

changes.  

 Thirty-second time lapse videos were taken of untreated pollen tubes and 

pollen tubes treated with the candidate compounds that affected RAB2:GFP 

localization or movement (Figure 2.4). Although the images of the automated 

confocal microscope were of lower quality compared to available manual confocal 

instruments, our eventual goal was to fully automate image capture and analysis; 

thus, we developed our approach utilizing the automated instrument. Quantitative 

comparison of the phenotypes induced by the RAEs demonstrated that the semi-

automated method can be used to study endomembrane trafficking pathways by 

disrupting RAB2:GFP movement and localization. RAEs resulted in either 

moderately or drastically decreased movement.  
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Figure 2.2. RAE’s alter the localization and movement of RAB2:GFP. (a) Control DMSO treated 

tobacco pollen expressing RAB2:GFP. (b) RAB2:GFP localization in a pollen grain and tube 

following inhibition of trafficking by RAE2. (c) Tobacco pollen showing defects in normal 

localization of RAB2:GFP caused by treatment with RAE7 . Images are taken using a 63x objective. 

Scale bar = 10mm. 
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Table 2.2. Quantitative values describing the effect of each RAE. The name and 

Identification number of each compound is given along with its structure, the net a relative 

area, velocity, straightness and intensity of the RAB2 bodies created by it, ultimately 

culminating in a difference index score. 
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Figure 2.3. RAE phenotypes. RAB2:GFP in pollen treated with (a) DMSO, (b) 36µM RAE1, (c) 38µM  

RAE2, (d) 35µM of RAE5, (e) 78µM  RAE6, (f) 32µM of RAE7, (g) 28µM of RAE7. All images were 

taken using a 63x objective. Scale bar = 10mm. Insets indicate zoomed image of the respective 

labeled body. Scale bar within inset = 1µm.  
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Figure 2.4. Movement of RAB2:GFP is inhibited by RAEs. (a-o) Selected frames from time-lapse 

videos of pollen tubes. (a-e)  DMSO treated RAB2:GFP labeled pollen. Scale bar = 15µm. (f-j) RAE2 

treated RAB2:GFP labeled pollen. Scale bar = 10µm. (k-o) RAE7 treated RAB2:GFP labeled pollen. 

Scale bar = 20µm.  Phenotypes are shown at  0, 20, 45, 70, and 95 s after acquisition. Arrows 

denote the position of the same RAB2 body in each frame. Insets indicate zoomed image of the 

respective labeled body. Scale bar within inset = 1µm. 
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Quantification of RAB2 bodies reveals distinct groupings and latent effects  

 The observed phenotypes had varying degrees of severity, which could not be 

sufficiently described using qualitative descriptors. We, therefore, quantified the 

area, velocity, straightness of movement, and intensity of the RAB2:GFP 

agglomerations using the segmentation function in the Imaris image analysis 

software package. Values were quantified as means (Table 2). However, 

determining the mean values of RAB2 body measurement in pollen tubes was 

insufficient to fully understand this system. Since both the Golgi bodies and the 

RAB2 bodies were highly dynamic and displayed a broad range of sizes, 

movements, movement patterns and intensities, we presented the area, velocity, 

straightness, and intensity measurements as cumulative distribution plots (Sparkes 

et al., 2008) to better describe organelle movement. By permitting a perspective on 

the variation, these plots provided a more informative comparison of organelle 

movement (Figure 5). The cumulative distribution plot of the areas indicates a trend 

that is also inferred by the mean values. In the case of RAEs 1 and 2, the 

localization of RAB2:GFP was altered causing the formation of RAB2 bodies that 

were 228% and 221% larger than control Golgi stacks, respectively. RAEs 1 and 2 

also had a range of velocity values between approximately 0.03µm/s and 1.5µm/s, 

which was about half the range of the untreated Golgi bodies (Figure 2.5A). 
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Figure 2.5. Cumulative distribution function (CDF) of the four features measured, area, velocity, 

straightness, and intensity of all six RAEs plus an untreated control. (a) The CDF for the average area. 

(b) The CDF for the average velocity. (c) The CDF for average straightness. (d) The CDF for the 

average intensity. In all plots, blue diamonds represent the Untreated control. Red squares represent 

RAE1. Green triangles represent RAE2. Purple X’s represent RAE5. Teal asterisks represent RAE6. 

Orange circles represent RAE7. Gray Crosses represent RAE8. All bodies measured were within the 

pollen grain.  
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RAEs 5, 6, 7 and 8 resulted in RAB2 bodies that ranged from 268% to 401% larger 

than the mean of untreated Golgi bodies. They also exhibited lower variance 

(Figure 56b), indicating that the individual agglomerations were of similar size.  

 Changes in velocity were also apparent. Initially, RAEs 1 and 2 resulted in 

slightly reduced speed of the RAB2 bodies, whereas RAEs 5, 6, 7, and 8 

dramatically reduced speed. Similar to area measurements, velocity was measured 

and reported as a percentage of the velocity of the untreated Golgi bodies (Figure 

2.5B). RAEs 1 and 2 moved at only 31% and 37% of the velocity of the untreated 

Golgi bodies, respectively. The quantification of RAEs 5, 6, 7, and 8 supported our 

initial observation of a dramatic reduction in speed. The RAB2 bodies produced by 

treatment with the RAEs traveled between 11.9% and 5% of the velocity of 

untreated Golgi bodies. Upon quantification of the data, we noted that the 

compounds formed natural groups of weak effectors (RAEs 1 and 2) and strong 

effectors (RAEs 5, 6, 7 and 8).  

 Beyond the speed of movement, the pattern of movement was a key 

component of dynamic organelle behavior. A robust descriptor of movement 

pattern was the straightness of trajectory of each body. The straightness was 

determined by the ratio of displacement over the track length. Values closer to one 

indicated a tendency towards linear movement, whereas those farther from one 

indicated movements resembling short-distance random or Brownian motion 



 

 44 

(Figure 5C). Similar to our previous results, there was a distinct grouping and 

similarity between RAEs 1 and 2, which had greater values for straightness. This 

indicated more directed movement, whereas RAEs 5, 6, 7, and 8 stimulated a 

tendency towards random motion.   

  Lastly, we quantified the intensity of RAB2:GFP fluorescence (Figure 2.5D). 

The untreated pollen showed the lowest RAB2:GFP intensity followed closely by 

RAE 5. RAEs 1 and 2 resulted in an intermediate level of intensity, 137% and 160% 

of the untreated, respectively. RAEs 6, 7 and 8 resulted in the highest levels of 

intensities ranging from 191% to 218% of untreated RAB2:GFP intensity levels.  

 It stands to reason that some of these parameters are most likely correlated. To 

confirm our hypothesis, the Pearson correlation coefficients for every parameter 

combination were calculated (Figure 2.6). Area was positively correlated with 

intensity (R = .715) suggesting that a the amount of RAB2:GFP increased with the 

size of RAB2 bodies. As to be expected, straightness was negatively correlated with 

velocity (R = .569). Bodies traveling in a straight line moved faster than those 

exhibiting Brownian motion.  Less obviously, intensity and straightness were 

negatively correlated (R = .571). In other words, vesicles that moved in a more 

directed manner tended to have lower intensities. All other parameters showed 

little to no correlation.  
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Figure 2.6. Correlation of trafficking features. (a) A correlation matrix showing the Pearson 

correlation coefficients showing the relationships of all features. (b) The correlation between 

velocity and area. (c) The correlation between straightness and area. (d) The correlation between 

intensity and area. (e) The correlation between velocity and straightness. (f) The correlation between 

velocity and intensity. (g) The correlation between intensity and straightness.  
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The Difference score provides a quantitative measure of bioactivity  

 To understand the relative global effects of the RAEs on trafficking, we 

developed a quantitative score that incorporated all the descriptors of RAB2:GFP 

dynamics. Our “difference index” was developed to give an integrated quantitative 

value to describe the degree to which each compound affected the area, velocity 

straightness, and intensity of each agglomeration (Table 2.2). This straightforward 

index was the sum of the squares of the normalized value for each measure 

multiplied by an assigned weighting factor. Because it was difficult to determine if 

one feature might play a larger role in the identity of a compound, each feature was 

given equal weight. However, our approach can permit alterations in the weighting 

of particular phenotypes as necessary.  

 

2.4 Discussion 

We utilized tobacco pollen as an efficient system to screen for chemicals that 

inhibit endomembrane trafficking. In a previous study (Drakakaki, et al., 2011), 

more than 46,000 chemicals were screened in tobacco pollen. Of these 

compounds, 360 were found to be bioactive, affecting morphology or development 

of the pollen tube. Our goal was to utilize this screening system to identify 

compounds among the 360 that would perturb the secretory pathway in pollen. 

We reasoned that the tracking of Golgi bodies that were perturbed in movement 

and other descriptors would offer an ideal model to develop a video imaging 
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approach to quantify and compare the dynamics of trafficking. Golgi compartments 

are relatively easy to visualize and are mobile within the pollen grain and tube in 

this rapidly growing organism. In the past, imaging fixed tissue and single still 

frame images have limited quantitative studies of endomembrane dynamics.  The 

development of powerful computational tools such as commercially available 

Imaris image analysis software packages have allowed for the quantification of 

trafficking parameters in living pollen tubes over time, providing a more accurate 

measure of in planta conditions.  

  Six compounds were identified that altered the localization and/or movement 

of RAB2:GFP. Upon quantification of size, velocity, straightness and intensity, the 

compounds RAE1,2,5,6,7 and 8  formed two phenotypic classes. The first group 

caused modest changes in size, velocity, straightness, and intensity, whereas the 

second caused dramatic changes in these descriptors. The first group comprised of 

RAEs 1,2 and 5 resulted in smaller agglomerations whose movement was modestly 

reduced compared to the untreated controls. This was reflected in their difference 

indices, which were 1.88 and 2.14, and 1.12 respectively. Because this is a relative 

index, the score of the untreated pollen is 1.00. Greater deviations from 1.00 

indicate greater relative differences in dynamics compared to the untreated 

condition. Interestingly, RAE 5 initially grouped with RAEs 6, 7 and 8 but received 

a score of 2.12, which grouped it with the weaker compounds RAEs 1 and 2. More 

specifically, whereas RAE 5 was similar to RAEs 6 and 7 in terms of percent 
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velocity and percent straightness of untreated RAB2 Golgi bodies, it was much 

similar to RAEs 1 and 3 and terms of percent area of normal RAB2 Golgi bodies 

and essentially unchanged in percent intensity of normal (Table 2). RAE5 RAB2 

bodies were of similar size and intensity as the untreated bodies, but were less 

mobile and directional.   

 The second group consisted of RAEs 6, 7 and 8 which gave rise to relatively 

large agglomerations, drastically reduced movement and directionality, and greater 

intensity. Their difference index scores of 4.59, 5.22 and 4.37, respectively, 

indicated that these compounds resulted in overall endomembrane phenotypes 

with major differences compared to untreated pollen. This type of analysis 

indicates the value of quantification of vesicle dynamics in a non-biased manner, 

permitting more precise phenotype classification.  

 These differences in the degree of effect could be caused by a variety of 

mechanisms of which we could only speculate here. RAEs 1, 2 and 5 could be 

targeting proteins that have a minor role in regulating the localization of RAB2:GFP 

and therefore only cause a minor defect, whereas RAEs 6, 7 and 8 may be targeting  

proteins that play a major role in regulation of RAB2:GFP localization and 

endomembrane trafficking thereby causing a dramatic defect. Alternatively, RAEs 1, 

2 and 5 may effect trafficking via reversible target binding, whereas RAEs 6, 7 and 

8 could bind irreversibly to their target(s) resulting in stronger phenotypes.  
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 Interestingly, RAEs 6 and 7, two of the more potent compounds have a nitrile 

and nitro group in common. The nitrile group can undergo a nucleophilic reaction 

that is facilitated by the nitro group to irreversibly bind with proteins (Beck, 1978; 

Habibi et al., 2011.). Likewise, RAE 8 contains a functional group containing N-

ethylmaleimide (NEM). NEM is a Michael acceptor, which adds nucleophiles such 

as the thiols in cysteine residues and is a commonly used cysteine modifier 

(Crankshaw and Grant, 2001) which could lead to irreversible target binding. This 

could very well be the case with RAE8. In fact, soluble N-ethylmaleimide-sensitive 

factor adaptor protein receptors (SNAREs) are by definition sensitive to NEM 

suggesting that the target of RAE 8 might conceivably be a specific SNARE (Söllner 

et al., 1993). Because RAE 8 is predicted to be an irreversible inhibitor, 

Multidimensional Protein Identification Technology (MudPIT) would be a 

promising approach for target identification. However, this is beyond our scope to 

develop an image analysis approach to quantify endomembrane dynamics. 

Although it is intriguing to consider the reversibility and targets of RAEs, this is 

beyond our goal of developing a technically robust video-imaging tool to quantify 

trafficking.  

  This approach can be used for the rapid characterization and management of 

small molecules. This method has the ability to streamline chemical genetic 

screens and aid in experimental design. It is important to note that other automatic 

or semi automatic image acquisition modalities can be used as well as freely 
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available image analysis software. When analyzing data the limitations of scale are 

determined by the resolution of the image and the frame rate at which the video 

data were collected, not necessarily the image analysis software. One advantage of 

our approach to classify small molecules is the difference score. This will help 

facilitate the classification of compounds into meaningful clusters based on 

bioactivity as a quantitative measure of vesicle dynamics (Drakakaki et al., 2011). 

Though each feature value was given equal weight, one could increase the weight 

of any given feature, tailoring this score to any application. However, the difference 

index can only take into account phenotypes that can be quantified and the 

number of features measured determines the usefulness and flexibility. In addition, 

the score is highly dependent on the control phenotype and can only describe 

changes in preexisting conditions. It is not helpful in describing new phenotypes 

that were not represented in the control condition.  

 Among the six RAEs, 6 and 7 are the only previously characterized 

compounds. RAE 6, also known as 3-Pyridinecarbonitrile, 4,6-dimethyl-5-nitro-2-

(phenylsulfonyl), is an inhibitor of severe acute respiratory syndrome coronovirus 

(SARS-CoV), a main protease (Mpro) which is essential to the life cycle of the SARS-

CoV (Lu et al., 2006). This suggests that the target in tobacco might be a protease. 

RAE 7, a substituted pyrrole derivative, is an androgen receptor inhibitor, 

suggesting that its target in tobacco might be a hormone or other type of receptor 
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(Matsunaga 2006). Analyzing the known effects of RAE 6 and RAE7 in mammalian 

systems could shed some light to their possible targets in pollen.  

 Overall, our study has contributed several important advances in the 

evaluation of vesicle trafficking dynamics: 1. We have focused on the 

quantification of video images to capture true real time dynamics in vivo; 2. We 

examined the correlations of individual parameters such velocity and straightness 

of movement; 3. The summary value score permitted a quantitative and 

comparative measure of overall vesicle dynamics; 4. The quantification of dynamic 

behaviors will make it possible to move toward the increased automation of 

chemical and genetic screens that can be focused directly on changes in vesicle 

dynamics, permitting the more efficient linkage of cellular and developmental 

phenotypes.   

 Quantitative analyses such as these provide a deeper understanding of highly 

dynamic intracellular movement by providing data that is objective. The difference 

index gives a single quantitative value that can immediately give insight into the 

degree of compound effects. A subset of compounds acts transiently, causing a 

range of phenotypes that vary in degree and duration. Excluding temporal changes 

excludes potentially important data. Our approach allows quantification and 

observation of temporal dynamics that occur as a result of transient binding of 

small molecules.  
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 Full automation of image analysis and quantification of vesicle dynamics will 

become essential with increased throughput and the dramatically larger resultant 

image datasets. Quantitative descriptions such as these will facilitate the 

development of realistic predictive mathematical models of endomembrane 

trafficking in response to small molecules. Quantitative analysis allows for the 

identification of the dominant biological forces that contribute to a given biological 

phenomenon in addition to focusing the biological questions that are subsequently 

asked (Phillips and Milo, 2009).   

 Chemical genomics, though still a young field, is starting to gain popularity 

for dissecting dynamic biological processes. Quantitative analysis will extract 

comparative information for the elucidation of endomembrane trafficking pathways 

and their effects on organism development. This connection will allow 

understanding of the developmental consequences of changes in endomembrane 

dynamics at the cellular level. 

 

 2.5 Methods  

Semi-Automated Image Based Screen 

Chemical libraries were screened as indicated previously to derive a set of 360 

compounds inhibiting pollen germination (Drakakaki et al, 2011). For the present 

study, chemical stocks were in 100% DMSO and distributed in 96 well clear-
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bottom plates at concentrations of 5mg/ml (50-100µM), 0.5mg/ml (25-50 µM), and 

0.05mg/ml (10-20µM). For the primary screen wild type Nicotiana tobaccum 

pollen was harvested at dehiscence. Thirty anthers from six flowers were harvested 

and allowed to germinate in 14ml of GM2 medium (18% sucrose, 0.01% boric 

acid, 5 µM CaCl2, 5 µM Ca(NO3)2, and 1 mM MgSO4 (pH 6.5–7.0). Pollen was 

then vortexed to release the pollen grains from the anthers. The pollen suspension 

was added to the 96 well clear-bottom plates and incubated at room temperature 

in the presence of the appropriate compound on a covered orbital shaker for 3 

hours. Images of pollen tubes were acquired using the BD Pathway automated 

microscope (BD Biosciences) with the 40x and 63x objective. The sample was 

imaged using 470nm/30 excitation filters and 520nm/30 for GFP.   

 A custom semi-automated program was created for a 96 well plate using 

autofocus for the primary screen. Bright field Images were then viewed and 

screened for defects in morphology as previously described (Robert et al., 2008). 

The compounds that were found to cause defects in pollen development were 

screened again using transgenic tobacco pollen expressing the RAB2:GFP fusion 

protein under the LAT52 pollen-specific promoter (Cheung et al., 2002). Still 

images as well as 4-5 second time-lapse movies containing 20 frames were 

captured over a period of approximately 2 minutes. Compounds were screened 

based on their effect on RAB2:GFP localization and movement. Of the 290 

compounds that initially caused defects in pollen tube development, six were 
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found to consistently affect the localization and movement of RAB2:GFP and were 

termed RAEs.  RAE1 (Benzoic acid, 2-methyl-, 2-[(3-bromo-4-

hydroxyphenyl)methylene] hydrazide, Chembridge 5271226) and RAE 2 ( Acetic 

acid, 2-(2-methylphenoxy)-, 2-[(2-methyl-1H-indol-3-yl)methylene]hydrazide, 

Chembridge 5532951) which both caused small agglomerations and decreased 

movement of the RAB2 bodies. RAE 5( Benzamide, N-[[[4-

(acetylamino)phenyl]amino]thioxomethyl]-3-chloro-, Chembridge no. 6396311), 

RAE 6 (3-Pyridinecarbonitrile, 4,6-dimethyl-5-nitro-2-(phenylsulfonyl), LATCA no. 

LAT033E05), RAE 7 (Benzonitrile, 4-[(1E)-2-nitro-1-propen-1-yl]-, LATCA no. 

LAT035F05), and RAE 8 (1H-Pyrrole-2,5-dione, 1-(3,4,5-trimethoxyphenyl), LATCA 

no. LAT045A04) caused larger bodies and reduced movement to a greater degree.  

All confocal images were taken at the same gain and magnification as to not 

artificially increase or decrease the intensity. 

 

Image analysis 

Images were analyzed using Imaris (version 7.3.1,Bitplane, South Windsor, CT) 

with the ‘spots’ software package. RAB2:GFP bodies were quantified using the 

automatic threshold function provided by the ‘spots’ algorithm builder. The number 

of bodies measured per pollen grain ranged from 66 to 220. The mask value used 

was between 13 and 14, which determined the regions that the algorithm would 
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measure. Segmentation along with region growing was used to quantify the 

fluorescent RAB2:GFP bodies. The average area of three replicates was recorded in 

µm2. Three biological replicates were used in quantifying the average speed of 

RAB2:GFP bodies using the ‘spots’ tracking function. The automatic settings were 

used for creating the segmentation algorithm. Because of the small size of the 

bodies measured, the maximum distance traveled between frames was 2µm. Once 

the bodies were identified and tracked, an additional filter included in the spots 

package was used to exclude those bodies that were unable to be tracked more 

than 15 frames. Area, Velocity, straightness and intensity were represented as 

cumulative distribution plots. The plots were developed by determining the average 

of each parameter for each spot over three replicates. The mean and standard 

deviation for all spots in a movie were calculated and used in determining the z 

score. This z score also called the CDF% was plotted against the average of the 

selected parameter.  

 From these average values, a difference index was created. The Following 

equation was used to calculate the difference score: 

ω1a2 + ω2b2 + ω3c2 + ω4d2  

Where a is the area of the organelles, or in this case RAB2 bodies, b is the average 

velocity of all RAB2 bodies, c is the average intensity of all RAB2 bodies and d is 

the average straightness of all rab2 bodies. Each normalized value was given an 
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equal weight of .25.  The sum of the squares of the normalized values was then 

found for each feature. The resulting number is the difference index. 
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Chapter 3 

EndoQuant: An Image Analysis Package for Automated Quantitative Cellular 

Phenotyping 

 

3.1 Abstract 

As microscopic imaging technology continues to improve, the ability to quantify 

observations using computational techniques will greatly increase its utility. The 

need for increases in assay throughput will require automatic tools to quantify and 

interpret phenotypes at the level of cellular and subcellular structures. EndoQuant, 

short for endomembrane quantification tool, is a novel user-friendly image analysis 

tool for automatic quantification of discrete endomembrane phenotypes from 

multiple images. It measures features of structures within each cell resulting in the 

computation of statistics on a per cell basis, giving a biologically powerful metric. 

Additionally, one can process a large volume of datasets or compare any two 

images quantitatively. After the analysis is complete, biologists can immediately 

visualize both data and computed information in subsequent graphs allowing the 

extracted features to be easily visualized as bar graphs for each cell as well as 

feature histograms for population analysis. When comparing two images, any two 

features can be directly compared in a single graph including their standard error 

bars and as a box plot showing basic statistics including statistical outliers. This 
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method is applicable to multiple tissue types assuming the cell borders can be 

properly defined. EndoQuant identifies a mean of 83% true positives and maintains 

a low false positive rate while reducing processing time by more than 100-fold. 

EndoQuant is a rapid, accurate and user-friendly automated phenotyping tool that 

will permit rapid quantitative cellular phenotype analyses and facilitate important 

biological discovery.  

 

3.2 Introduction 

 A forward genetics approach for gene discovery requires intensive screening 

and analysis of large quantities of data, regardless of experimental method (Mayer, 

1999; Stockwell, 2000). Indeed, forward genetic screens are often designed to 

reduce the labor needed to identify individuals of interest by using an obvious 

macroscopic qualitative or quantitative phenotype as a discriminatory marker (Page 

and Grossniklaus, 2002). However, when investigating cellular phenomena, 

cellular phenotypes may not necessarily manifest into obvious and discrete 

macroscopic phenotypes. Additionally, cellular mechanisms cannot be fully 

understood until an analysis of microscopic phenomena is incorporated into the 

forward genetics approach. Imaging and manually analyzing every potentially 

interesting individual can be highly inefficient, wasting time and resources. 

Therefore, we have taken advantage of the recent advancements in the computer 
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vision and image analysis to develop a user-friendly tool which is complete with 

Graphical User Interface (GUI) to automatically quantify and classify 

endomembrane features within plant cells. The past years have been marked with a 

recent trend toward more quantitative methods in plant cell biology and imaging 

(Matas, et al, 2004; Tataw et al. , 2010; Farhidzadeh, et al. 2012; Mkrtchyan et al. 

2013; Liu et al. 2013; Ung et al. 2013) . New tools are needed to easily and 

efficiently process and analyze large quantities of data produced by high 

throughput experiments. Computational tools are most commonly user-friendly and 

generally applicable to most platforms or they are highly technical and specific. 

EndoQuant attempts to bridge the gap, exhaustively addressing the pressing 

problem of automatic cellular phenotyping in plant cell biology in a user-friendly 

manner.   

 In an effort to dissect the endomembrane system in a systems-wide 

approach, Drakakaki et al. screened multiple small molecule libraries resulting in 

the investigation of 46,418 compounds (Drakakaki, et al. 2011).  They used an 

automated primary screen in free-living tobacco pollen to identify compounds 

disrupting endomembrane processes required for pollen tube growth. It is 

reasonable to hypothesize that due to evolutionary conservation, molecules that 

produce phenotypes in pollen could potentially elicit a similar effect in Arabidopsis 

roots. To this end, the authors used several polar membrane markers to dissect 

recycling at the plasma membrane (PM) in the roots of Arabidopsis seedlings. Three 
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hundred and sixty compounds caused different morphological phenotypes in 

tobacco pollen presumably as a result of altered endomembrane dynamics as 

pollen tube growth relies heavily on the endocytosis and exocytosis machinery. Of 

these three hundred and sixty small molecules, 123 showed altered localization of 

endomembrane markers in Arabidopsis roots, which provide a readily available 

model for easily visualizing endomembrane trafficking in Arabidopsis through the 

use of fluorescent markers. In total, 15 subcellular phenotypes were identified, the 

most prevalent being the formation of intracellular bodies of various sizes, 

subdivided qualitatively into small, medium and large aggregates (Drakakaki, et al. 

2011). The placement of each phenotype into a small, medium or large sub-class is 

descriptive and lacks objectivity. Additionally, in an effort to describe the cellular 

phenotypes in a biologically relevant manner, the effect of each small molecule 

was characterized on a per-cell basis.   

 The challenge of automatically quantifying subcellular structures in 

eukaryotic cells is hardly new. Most of the computer vision innovations enabling 

biologists to better study cellular phenomena have been in an effort to develop 

tools for animal cells, not taking into account unique challenges that exist for plant 

systems. For example, many segmentation methods involving animal cells rely on 

an initial estimate of the cell location. Using DAPI stain to mark the nucleus of the 

cell provides this estimate (Quelhas et al. 2010). These markings are easily detected 

based on their color. The rest of the cell is detected by employing a region-
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growing-type algorithm to detect cell edges. This is not possible in plant cells 

where the large vacuoles result in tight appression of the nuclei to the PMs. 

Additionally, plant cells come in many different shapes including rectangular root 

cells, tube shaped pollen tubes and root hairs and puzzle piece shaped pavement 

cells; therefore shape based detection would not be generally applicable.   

 Many freely available open image analysis software programs and 

commercially available products have been used to automatically detect cell 

boundaries and endosomal bodies (Bashline, et al. 2013), but they lack the balance 

of flexibility and specificity needed to address specific challenges in plants 

including differing cell shapes, multilayers of cells, dispersed Golgi bodies, a large 

central vacuole, and other challenging architecture while requiring a large amount 

of user input (Steffens et al. 2014). Existing platforms analyze either a manually 

designated region-of-interest or the entire image leaving the biologist without a 

biologically meaningful measurement of specific cellular phenotypes.  

 Modification of an existing cell detection program designed for animal cells 

was used to detect pavement cell boundaries in Arabidopsis, as well as endosomal 

bodies, in an effort to automate confocal microscopy screening (Salomon et al. 

2010). This approach consisted of two separate scripts, one that detected cell 

boundaries and one that detected endosomal bodies. However, it described a 

limited number of features on a per cell basis.  
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 Here, we report a novel user-friendly image analysis tool for automatic 

quantification of discrete endomembrane phenotypes from multiple images. It 

measures features of structures within each cell resulting in the biologically 

relevant computation of statistics on a per cell basis. A large volume of datasets can 

be processed or any two images can be compared quantitatively. The data can be 

visualized immediately in graphs allowing the extracted features to be easily 

visualized for each cell or as feature histograms for population analysis. 

 

3.3 Results 

Detection of cell boundaries 

Because of the interest in recycling at the PM, Drakakaki et al imaged roots 

expressing a fusion protein consisting of PIN-FORMED2 (PIN2) fused to green 

fluorescent protein (GFP) which allowed for the visualization of the PM and 

endosomal recycling bodies (Drakakaki et al. 2011). In order to provide a 

biologically useful measure of body number per cell, we first needed to 

automatically detect the cell regions. Because the PM is clearly labeled in contrast 

to the background, we needed to detect the boundaries. After pre-processing we 

used a Laplacian of Gaussian filter on the entire image, highlighting regions of 

rapid intensity changes such as edges (Chen, et al.1987). The user can define and 

adjust two parameters associated with this detection method including the window 
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size and the sigma. The sigma alters the distribution of the weighted pixel values 

and the window size adjusts the size of the filter that is the number of pixels within 

the filter.   The filtered image was then made binary through the use of Otsu’s 

method creating a black and white image (Otsu, 1975). Holes in the cellular 

regions were filled-in by using binary morphological operations completing a 

continuous cellular region (Kong et al. 1996). These regions were used as masks to 

represent each cell. The contour of each mask was extracted enabling the 

manipulation of the cell border. The border was then smoothed to remove noisy 

edges and provide a smooth continuous shape (Figure 3.1A and 3.1B). This 

parameter can be adjusted by the user in the GUI.   

 It is important to note that when visualizing a cross-section of a cell in a 

confocal image all four sides of a cell do not need to be clearly visible to provide 

clear cell regions. Often, one or more sides are not visible due to being out of the 

plane of focus or polar PM localization of the fluorescent marker. The cell 

detection algorithm could reasonably estimate the cell region with only three walls 

clearly visible. When inferring the boundary of the missing wall, the resulting 

boundary was unpredictable and not simply a fourth wall, often intruding into the 

cell or bulging outside of the real cell boundary. Our GUI allowed filter parameters 

to be altered in order to best capture the border of each cell. Additionally, the 

borders of the detected cells were overlaid on the subject image with the number 

of each cell, giving an immediate count of the number of cells in an image. This 
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allowed the user to determine the cells that were detected correctly and 

subsequently omit the cells that were improperly detected or of unimportance.  
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Figure 3.1.  EndoQuant detects cellular structures within cell boundaries of PIN2:GFP transformed 

plants. (A) Original image showing Arabidopsis root cell in the meristematic zone. (B) Cell 

boundaries detected by EndoQuant. White dotted lines show initially detected regions; solid 

magenta lines denote smoothed shape. (C) Cellular structures within each cell are detected and 

outlined in white. (D) Flowchart describing detection and analysis steps in the fourth panel.  MSER 

refers to Maximally Stable Extremal Regions. Scale bars in A-C = 20µm.  
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Figure 3.2. EndoQuant graphical user interface.  (A) Settings panel. (B) Dual display. (C) Histogram 

displaying average parameter value per cell (upper) and histogram of values (lower).  (D) Histogram 

(upper) comparing two images (panel B) and box plot showing basic statistics (lower). 
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Detecting cellular structures within individual cells 

Each cell mask detected by the previously discussed method was then used to find 

cellular structures within each region. Within the cellular region, bright cellular 

structures were detected using Maximally Stable Extremal Regions (MSER). For the 

given region, MSER varied an intensity threshold using a user-defined step size, 

noting the area and location of the segmented objects. A region was considered 

stable if a change in intensity threshold did not lead to a change in region area. 

This process continued until all stable regions were determined. Note that MSER 

was performed for each segmented region obtained from the previous step in the 

algorithm. As such, the search for stable regions within each cell was independent 

of other cells (Figure 3.1C). Thirteen features were extracted and presented to the 

user as average values per cell in a graphical form and as raw numerical data 

(Supplemental Table 3.1). Each feature was calculated with respect to the number 

of whole cells present within the two-dimensional image. This provided an intuitive 

and biologically meaningful metric with which to measure cellular phenotypes. 

Figure 3D provides a summary of the steps taken to detect the cellular boundaries 

and structures.  
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The GUI has multiple useful features.  

The GUI was designed with plant biologists in mind. It was crafted to be intuitive 

and user friendly. One simply needs to select and upload data, adjust three 

parameters to detect cell borders, one parameter for detection of structures within 

the cell, and then select two buttons, one for each detection step. Adjustment of 

three parameters provided flexibility to accommodate image variation (Figure 2A). 

 The graphical displays offered a number of different visualization options, 

effectively eliminating the time consuming step of processing and displaying raw 

data. A more detailed graph can be selected that shows the average value of each 

cell (Figure 3.2C, upper histogram). Simultaneously, a histogram of values with a 

best fit, was displayed showing the user a distribution of values (Figure 3.2C, lower 

histogram). This feature was particularly useful if there were multiple structures 

labeled or there were two populations of cellular structures; the user was able to 

track the dynamics of this complex population of cellular entities. 

 The flexibility of this tool also gives biologists the ability to analyze two 

images simultaneously and view each image independently or directly compare 

images, most likely a control and a treatment image (Figure 3.2B).  The results of 

these images were immediately viewed and directly compared with each other by 

selecting the corresponding graph option, complete with standard error bars (Figure 

2D, upper histogram). When this option was chosen, a box and whisker plot was 



 

 77 

also displayed directly below the conventional bar graph (Figure 3.2D lower 

histogram). The box and whisker plot allowed the biologist to view fundamental 

statistics concerning the two sets of data such as the quartiles, medians and outliers 

of the dataset.  

 Once the cells and bodies have been detected and the extracted data has 

been visualized, the user can then export both the raw numerical data and the 

graphical data. The raw data is exported in a format compatible with common 

spreadsheet software for further statistical analysis, and the graphs are exported as 

image files for inclusion in presentation or publications.  

 

EndoQuant has cross-tissue utility and high accuracy 

EndoQuant was amenable to multiple cell types as it only required the defined 

boundaries and did not take shape information into account. Therefore, it was 

applicable to images of various cell types including root cells, pavement cells, and 

pollen tubes (Figure 3.3). It is reasonable to assume that protoplasts and root hairs 

would also be amenable to this technique. A common lipid or cellulose dye can be 

used to indicate boundaries in samples that lack boundary definition by labeling 

the PM or cell wall respectively. The only requirement was that a continuous 

border must surround the object.   
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Figure 3.3.  EndoQuant is applicable to multiple tissue types. (A-C), Arabidopsis pollen tube 

expressing ROP1 activity Marker Rab2:GFP. (D-F), Arabidopsis pavement cells expressing the 

endosomal and PM marker BRI1:GFP (Geldner at al. 2007). (A) and (D), original confocal images. 

(B) and (E), Detection of cell borders; cell boundaries indicated by magenta outlines. (C) and (F), 

detection of stable regions indicated by yellow outlines. White arrow indicates outlined region. 

Scale Bars A-C = 10µm, D-F = 25µm.  

 

 To evaluate the utility of MSER when detecting cellular structures we 

compared the performance of the combined methods designed to detect the cell 

boundaries and the structures within those boundaries with the manually detected 

ground-truth. The resulting receiver operating characteristic (ROC) curve which 
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was used to show the performance of a binary classifier not only demonstrated the 

efficacy of our tool but also indicated that on average, the sensitivity parameter was 

most effective at a delta value of four (Figure 3.4A.). Delta is the user defined step 

size the MSER algorithm uses when varying the intensity threshold to determine 

stability. Change in This delta value means that an intensity threshold is varied by a 

value of 4 and the region does not change; thus it is considered stable. We took 

advantage of this fact by making this the default value for delta; however, the user 

has the ability to adjust this parameter to optimize detection for any given dataset. 

In its current state EndoQuant can detect bodies with an accuracy of up to 85% 

(n=32 Image fields) while maintaining a low false positive rate. Twenty features are 

then extracted from these detected regions including the number of structures, area, 

basic shape information, mean intensity and other relevant features for each cell.  

 Reduced analysis time is a major motivation for automated image analysis 

programs, given that manual analysis is highly time consuming. When compared to 

manual detection with an open source image analysis package, EndoQuant 

drastically reduced analysis time by more than 100-fold (Figure 3.4B).  
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Figure 3.4. Analysis of EndoQuant Performance. (A) ROC curve showing the effect of delta on MSER 

sensitivity. (B)  Table showing analysis time of EndoQuant versus manual detection using ImageJ. (C) 

The result of EndoQuant’s cell detection algorithm on root tissue labeled with the endosome marker 

ARA7:GFP (Geldner et al. 2009.) (D) The result of EndoQuant’s cell detection algorithm on root 

tissue labeled with ARA7:GFP and overlaid with FM4-64 dye labeling of the PM. 

 

Limitations 

For EndoQuant to be effective images must have high contrast with clearly defined 

borders like those of a fluorescently labeled PM or cell wall images acquired using 
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confocal microscopy. The cell detection algorithm will fail if these borders are 

inconsistent or of low intensity. Cellular structures within the cell and at the PM 

have similar intensities; therefore bodies that are very near the cell boundary were 

occasionally included in the boundary and excluded (see for example cell 28, 

Figure 3.4D; cell 5 Figure 3.3E). This can be minimized by increasing the 

smoothing of the cell boundaries; however over-smoothing may result in a loss of 

the cell corners. A great advantage of our cell detection technique was its ability to 

estimate cell boundaries when given three walls of a cell. However, when these 

borders were established, they could be unpredictable without the fourth side, 

either over or underestimating the true cell boundaries.  A manual selection feature 

helped mitigate this problem by allowing users to select a subset of cells to 

analyze, thereby reducing the amount of error. These instances of mis-detection of 

cell boundaries can be compensated for when the image is acquired. If 

fluorescence signal is weak or absent in the PM, a common cell wall or styryl dye 

such as FM4-64 that labels these boundaries can be used to enhance the visibility 

of these boundaries. (Figures 3.4C and 3.4D).   

 

3.4 Discussion 

The growing high-throughput nature of biology demands innovative tools to 

manage and automatically quantify cellular phenotypes in a manner that is rapid, 
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accurate and user friendly.  Manual region drawing is time consuming and 

inconsistent due to intra- and inter-user variation. Endoquant will not only allow for 

rapid processing of data, but it uniquely allows for rapid decision making through 

instant visualization comparison of data and basic statistical calculations. This tool 

allows high-throughput screens on the single cell level to be practical thereby 

allowing scientists to access previously unobserved phenotypes. Designed by 

biologists, for biologists, EndoQuant addresses issues that have not been accounted 

for by other image analysis suits such as detecting bodies or cellular structures on a 

per cell basis and providing rapid visualization and subsequent analysis of results.  

 First, it provides a biologically relevant metric by delivering results as an 

average per cell. This is achieved by first detecting the cell boundaries indicated by 

a membrane dye, cell wall dye, or PM localized fluorescent protein. The second 

step searches within this cellular region to find areas of maximum stability; that is, 

regions whose area fluctuates the least when the intensity level is increased by 

delta. The full potential of this method is realized when maximum intensity 

projections (MIPs) are used as inputs. A MIP is created by projecting the voxels 

with the highest intensity from every angle throughout the volume onto a two-

dimensional image plane. In this case, MIPs provide more spatial data and 

condense a three-dimensional environment into a more manageable two-

dimensional sample.  
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 Like any detection method, increasing the sensitivity of detection will 

eventually lead to false positives; at high sensitivity the algorithm will detect the 

PM boundaries and skew the data. However, decreasing the sensitivity severely 

will result in false negatives, omitting important data. The adjustable parameters 

and the manual pruning give the biologists control over the ultimate outcome of 

the data. Parameters should be set to minimize both false positives and false 

negatives. These should remain consistent when analyzing multiple images to 

ensure accurate comparative analysis.  

 Second, when analyzing a single image, the features are displayed 

immediately as histograms for each cell and histograms for population analysis. 

This now provides biologists the ability to quantitatively distinguish two 

populations of compartments based on size, intensity and other parameters. For 

example, a mutant may cause the mis-localization of a fluorescently tagged protein 

to two different compartments. Endoquant would allow biologists to quantitatively 

and rapidly visualize the two distinct compartments. When comparing two images, 

two features can be directly compared in a single graph including standard error 

bars and as a box plot showing basic statistics, including statistical outliers. 

Subsequently, both graphical and raw data can be exported for further analysis and 

manipulation.  
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 Although there are limitations with using EndoQuant such as having clearly 

defined borders and regions of interest within the intracellular area that must be 

separated from the boundary limit, it is still represent a major improvement 

compared to existing methods that do not show the accuracy and biological 

relevance demonstrated by EndoQuant. In its current state, EndoQuant is available 

as an open access MATLAB script. However, future versions will be available as an 

ImageJ plugin. It is common for engineering departments at most universities to use 

MATLAB and would most likely be available to biologists. Technology such as 

EndoQuant will allow for high-throughput assays at the cellular level to become 

practical, permitting the investigation of phenotypes and biological phenomena 

that do not have an obvious macroscopic phenotype. It will also enable biologists 

to collect and interpret large amounts of phenotypic data that can be later used to 

influence experimental designs or be incorporated into models. Endoquant can be 

used to analyze organelle dynamics by quantifying changes in endomembrane 

populations over time. Automated tools like EndoQuant will become increasingly 

imperative for dissecting cellular phenomena as quantification becomes 

increasingly essential. 
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3.5 Materials and Methods 

Growth conditions and chemical treatments 

 Arabidopsis thaliana ecotype Colombia (col-0) seedlings were sterilized then 

sown on 0.5X MS containing media with 0.8% phytoagar. Rab2:GFP (Cheung et al. 

2002), BRI1:GFP and VHAa1:GFP-expressing seedlings were stratified for 48hrs at 

4°C then grown on an 18hr light cycle at 22°C. Original chemical screen and 

methods for imaging PIN2:GFP individuals can be found in Drakakaki et al. (2011). 

VHAa1:GFP seedlings were treated with 1µM FM4-64 in 0.5X liquid MS media for 

10 minutes before imaging. Pollen was collected from tobacco plants and 

incubated in a pollen germination media or 2 hours. Pollen grains were then 

transferred on to a microscope slide for imaging (Robert et al, 2008).  

Microscopy  

The pollen tubes, pavement cells and root cells containing VHAa1:GFP were 

imaged using a Leica SP5 Confocal Laser Scanning Microscope (CLSM). Excitation 

wavelengths used were 488nm (GFP) and 543(FM4-64). Rab2: GFP pollen tubes 

were imaged using the BD Pathway automated microscope. Manufacturer settings 

were used for detection of fluorescence. All confocal microscopy was done at the 

Microscopy and Imaging Core at the Center for Plant Cell Biology (CEPCEB) of the 

Institute for Integrative Genome Biology (IIGB) at University of California at 

Riverside.   
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Image analysis 

EndoQuant was developed using Matlab and the image analysis toolbox. The 

subsequent code is included in the Supplementary Material, including the code for 

the GUI. All code is open source and available upon request. Manual detection for 

the ROC plot was done using Matlab. The user indicated the centroid of the body 

by clicking in the center. The centroids of the manual vs. the automatic methods 

were compared and if they were within a three pixel neighborhood of the manually 

detected point they were considered accurate. Manual analysis comparing the time 

of ROI selection was done using FIJI.  
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Chapter 4  

Prediction of Small Molecules Affecting Recycling Using Phenomics and 

Machine Learning 

 

4.1 Abstract 

Advances in automated microscopy and image analysis increasingly require 

computational methods to manage, process and interpret the large amounts of 

phenotypic data that are collected from high-throughput assays. We analyzed the 

quantitative phenotypic data extracted from a large screen of small molecules in 

Arabidopsis roots designed to identify compounds that disrupt endomembrane 

recycling. Using a Gaussian Mixture Model (GMM), a machine learning technique, 

we found that the common “body” phenotypes that manifested as a result of the 

small molecule treatment fit into three clusters based on the size and number of the 

bodies per cell. Cluster one phenotypes were typified by few small bodies, cluster 

two by many large bodies and cluster three by few large bodies. A well-

characterized moleculethat disrupts membrane recycling, , Endosidin2 (ES2)  was 

classified into cluster two which suggested that other compounds in cluster two 

might have similar disruptive properties. A BFA washout was used to validate this 

prediction and found that indeed all tested compounds in cluster two inhibited 

trafficking. In contrast all compounds in cluster one did not alter membrane 
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recycling demonstrating the predictive power of this method. We are now able to 

predict one biological process affected by a small molecule based on the 

phenotype without a priori knowledge. This will guide future experiments and aid 

biologists in further characterizing small molecules of interest. Machine learning 

when applied to subcellular phenotyping can be a powerful strategy for predicting 

biological function and intelligently designing subsequent experiments.  

 

4.2 Introduction 

Accelerated phenotypic analysis and increased throughput are necessary to 

enhance our understanding of quantitative phenotypic differences and gain the 

ability to dissect intricate biological phenomena at the subcellular level. Indeed this 

objective is being addressed by an increased number of automated tools available 

for phenotypic analysis across model systems within recent years  (Mathew et al., 

2012; Vogt et al., 2009; Conrad et al., 2004). These tools require the automated 

processing and extraction of image data, retrieving  relevant quantitative 

biological information using automated computer vision algorithms.  The majority 

of these efforts in plant systems center on macroscopic growth phenotypes for the 

purpose of supporting breeding and growth studies  (Klukas et al., 2014; Hartmann 

et al., 2011). However, the resulting data must be interpreted and supported by 

statistical analysis and extensive biological assays to understand the latent process 



 

 94 

leading to the observed phenotype.  The ability to connect previously 

uncharacterized phenotypes to biological phenomena will give scientists the ability 

to rapidly and efficiently identify the underlying biological basis for the 

corresponding phenotype and greatly aid in experimental design.  

Phenotypes can often offer clues that hint at the corresponding biological 

function that has been modified. For example, a loss of apical dominance in 

Arabidopsis shoots indicates that auxin signaling or transport is disturbed, 

Brassinosteroid mutants exhibit drastic reduction in size and remain bushy rosettes, 

and cellulose synthesis defective mutants have drastically reduced seedling growth 

and swollen cells  (Li and Bangerth, 1999; Li et al., 2001; Desprez et al., 2002). 

Disruptions in biological processes often produce consistent observable 

phenotypes. We can take advantage of this fact by utilizing machine learning 

algorithms to aid in the process of analyzing large amounts of phenotypic data 

produced by high throughput analysis workflows. Machine learning can help 

overcome this challenge by learning a defined set of rules from user provided 

examples, training the algorithm, then subsequently applying these rules to classify 

new data sets, predicting defined properties of these new samples  (Sommer and 

Gerlich, 2013).   

Classical genetic approaches consist of causing random mutations in the DNA 

and observing the resulting phenotype. Some of the challenges that may arise from 
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this approach and lead to the lack of a phenotype include redundancy, the ability 

for similar proteins to compensate for the loss of a single protein and lethality, the 

death of organism due to the loss of a protein that is essential for survival. Chemical 

genomics takes advantage of small bioactive molecule libraries to probe biological 

processes, circumventing the challenges of redundancy and lethality. Unlike a 

classical mutation approach in which the DNA is permanently modified, chemical 

genomics employs small molecules to bind to and inactivate proteins directly.  

We use chemical genomics as an approach to study the endomembrane system, 

namely, a collection of highly coordinated membrane bound organelles that 

transport cellular contents from one subcellular location to another. 

Endomembrane trafficking, the process of transporting cellular cargo within the cell 

is a highly conserved biological process among eukaryotes  (Elias, 2010). 

Exocytosis or secretion, the process of exporting cellular material to the exterior on 

the cell, and Endocytosis, the internalization of the outer membrane and external 

materials, are the prominent trafficking processes vital to a cell’s survival. Once 

vesicle budding at the plasma membrane occurs, beginning the internalization of 

membrane materials, the resulting vesicle can have be directed to multiple 

pathways. The recycling pathway returns to the PM. The molecular mechanisms 

that cooperate to facilitate the recycling process are poorly understood though the 

process is conserved  (Richter et al., 2009). Unlike well studied processes, 

disruptions in recycling do not have well characterized phenotypes. The ability to 
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immediately visualize disruptions in recycling would greatly aid in the 

identification of mutants or small molecules that indicate the discovery of a protein 

involved with endocytic recycling.  

Similar to traditional methods, entire libraries of small molecules need to be 

screened to highlight those that produce the desired phenotype. This often entails 

screening and scoring thousands of compounds.  However, when exploring poorly 

understood phenomena, a obvious phenotype is not assigned to a underlying 

biological process. For example, loss of apical dominance is a phenotype 

associated with auxin mutants, however this could be due to a decrease in auxin 

synthesis, transport, or perception. Similarly, many small molecules have ben 

discovered to cause a general endomembrane phenotype of “endomembrane 

bodies”, anomalous endomembrane derived structures that are a result of 

disrupting normal endomembrane trafficking processes  (Drakakaki et al., 2011). 

However, the origin and nature of these bodies are challenging to determine solely 

based on the image data.  

Here we describe an approach to predict the biological function of a subset of 

small molecules using machine learning to classify the subcellular phenotypes 

produced by each compound.  A Gaussian Mixture Model was used to classify the 

phenotypes into three clusters based on the size of each body and the number of 

bodies per cell. Known compounds to cause disruptions in endomembrane 
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recycling were compared against the three clusters. Cluster 2 contained 

compounds with similar properties to a known endomembrane recycling inhibitor, 

ES2. When this cluster was validated, all compounds tested inhibited recycling as 

suggested by a BFA washout assay. This method can be used to rapidly and 

accurately predict a subset of compounds that appear to be targeting a specific 

biological process reducing the number of experiments that need to be performed 

in order to discover compounds that inhibit endomembrane recycling.  

 

4.3 Results 

Two-dimensional phenotypic clustering reveals three phenotypic groups  

Using EndoQuant, the software package we previously developed to study 

discrete endomembrane phenotypes, we analyzed the phenotypes of 36 

compounds, about one third of the small molecules found to be bioactive in 

Arabidopsis roots  (Drakakaki et al., 2011).  This sample was chosen due to the 

high quality of available images. These visual snapshots showed  Arabidopsis roots 

labeled with a PIN2:GFP construct: a common marker used to visualize recycling 

at the PM. These data were deemed suitable for analysis due to the number of cells 

present, the appearance of clear borders and strength of the flourophore signal.  

Previously, compounds were grouped according to the phenotype, most of 

which exhibited various numbers and sizes of endomembrane agglomerations or 
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bodies. These Categories were arbitrarily constructed based on subjective and 

qualitative criteria and were classified into “small” “medium” and “large” 

categories. Our goal was to create phenotypic groups that were supported by a 

mathematical model and therefore quantitative in nature. A two-dimensional 

Gaussian Mixture Model (GMM) was used to cluster the small molecule 

phenotypes into three groups. A GMM is a probabilistic method that assumes that 

the data points within a given dataset fit within multiple Gaussian distributions 

samples  (Sommer and Gerlich, 2013). The clustering criteria were based on the 

body size and the number of bodies per cell (Figure 4.1A). These are the most 

salient features of the body phenotypes in Arabidopsis roots and have been used by 

previous studies to classify endomembrane phenotypes  (Drakakaki et al., 2011).  

The clustering algorithm divided the 36 phenotypes into three clusters. Cluster 

one consisted of small molecules that caused few relatively small bodies per cell 

(Figure 4.2A). In contrast, cluster two contained phenotypes exhibiting a high 

amount of relatively large bodies per cell (Figure 4.2B). Lastly, cluster three 

contained small molecules that caused a small amount of relatively large bodies 

per cell (Figure 2C). In fact, the average body size of cluster three was greater than 

that of cluster 2. The GMM proved to be a useful approach in revealing the 

underlying phenotypic groups within which the predicted recycling-disrupting 

small molecules naturally occurred.  
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!  

Figure 4.1. GMM cluster analysis of small molecule phenotypes. The X-axis shows the number 

of bodies per cell. The Y-axis shows the average body area per cell in micrometers. Cluster one is 

indicated in red, Cluster 2 in Blue and Cluster 3 in green. Black data points show two images of the 

ES2 phenotype clustered into cluster 2.  

 

Predicting small molecules that target endocytic recycling.  

By using this clustering algorithm to determine three groups, it has “learned” the 

criteria for each group. We hoped that by introducing new data sets, the algorithm 

will cluster the given phenotype into its corresponding group. When we analyzed 

the phenotype caused by ES2 a well-characterized inhibitor of recycling, the 

algorithm sorted it into cluster two. We hypothesized that it might be possible that 

these compounds caused a similar  
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Figure 4.2. Representative images of each phenotypic cluster.  (A) Four representative of 

phenotypes in cluster one exhibiting few small bodies. (B) Four representative images of cluster 2 

exhibiting many larger bodies. (C) four representative images of cluster 3 exhibiting few large 

bodies. Above endomembrane phenotypes are observed using PIN2:GFP a marker for endocytic 

recycling.  
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phenotype to ES2, that is, those clustered with ES2 might also be affecting 

recycling.   

To validate this model, we treated Arabidopsis roots with four compounds from 

the cluster two. These compounds were chosen based on their commercial 

availability. As with the previous images the small molecules were found to 

produce many relatively large bodies (figure 4.3).  A Brefeldin A (BFA) washout 

assay was used to determine if these small molecules were indeed altering 

A B C

D E

 

Figure 4.3. Phenotype confirmation of selected cluster 2 compounds. (A) DMSO treated control. 

(B) compound A7. (C) compound A10. (C) compound B5. (D) compound E4.  
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recycling dynamics.  BFA disrupts the normal trafficking routes from the 

Endoplasmic reticulum to the Golgi apparatus  (Miller et al., 1992).  Once this 

compound is removed the secretory contents of the endomembrane system are 

allowed to progress beyond the Golgi. If a post-Golgi trafficking process such as 

recycling is disrupted, the BFA body will persist beyond that of the control. 

Therefore, recycling is most-likely inhibited if BFA bodies persist in the presence of 

the cluster two compounds  (Hendricks et al., 1992). As predicted, all four of the 

compounds tested show persistent BFA bodies 80 min after BFA has been washed 

out in contrast to the DMSO control  (Figure 4.4). Interestingly, during the washout 

phase of the BFA washout assay, each root treated with its respective bioactive 

compound contain only BFA bodies while others contain BFA bodies in addition to 

other small bodies (Figure 4.4C).  

The fact that all tested compounds could disrupt recycling by itself does not 

show that our clustering method has any predictive capability. It is possible that all 

of the analyzed small molecules could have the ability to disrupt endomembrane 

recycling thus rendering our approach ineffective. To demonstrate that this 

approach can indeed be used to predict compounds that disrupt endocytic 

recycling we tested cluster one, the cluster that is the most divergent from the 

cluster two. If this method is truly predictive then we would expect that cluster one 

compounds would not disrupt the endocytic recycling process.  
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Figure 4.4. BFA washout using Cluster 2 compounds.  (A) DMSO treated control. (B) compound 

A7. (C) compound A10. (C) compound B5. (D) compound E4.  

To validate this prediction, we tested the molecules residing within cluster one 

on the PIN2:GFP marker to confirm their cluster one phenotype typified by the 

presence of few small bodies (Figure 4.5). Even at relatively high concentrations, 

these compounds produced few small bodies, confirming their placement in cluster 

one.  To test their effect on recycling and validate our model, the same BFA 

washout assays was performed with the cluster 1 compounds. We would expect 

that these compounds do not alter recycling dynamics and therefore would not 

produce persistent BFA bodies after washout.  Indeed the BFA bodies did not 

persist, indicating the normal function of the recycling machinery (Figure 4.6). 
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These assays suggest that the clustering method using a Gaussian Mixture Model 

has the ability to predict the biological function of a small molecule based on the 

produced phenotype.  

A B C

D E

 

Figure 4.5. Phenotype confirmation of selected cluster 1 compounds. (A) DMSO treated control. 

(B) compound B5. (C) compound B7. (C) compound C8. (D) compound E11.  

The phenotype shared between the members of each group would presumably 

be caused by the disruption of a similar biological process or even the same 

protein. It is possible that this could be the result of a similarity in structure. 

However, when we compared the structures of the compounds within cluster two,  
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Figure 4.6. BFA washout using Cluster 1 compounds.  (A) DMSO treated control. (B) compound 

B5. (C) compound B7. (C) compound C8. (D) compound E11.  

we did not see a structural trend in that all four groups id not share similar 

functional groups (figure 4.7). Similarly, the small molecules within cluster one do 

not seem to share and similar functional groups that may suggest that they are 

acting in a similar way.  These differences in structure may suggest that the drug-

like molecules aren’t targeting the same protein but similar proteins within the 

same or similar pathways ultimately having the same downstream effect. Similar to 

cluster two, the small molecules within cluster one do not share any structural 

commonalities that unify them (figure 4.8). Additionally, commonalities are not 

observed between either cluster as well, which would be expected. The differences 
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between cluster one and cluster two validate the predictive capabilities of our 

method.   

 

A7 A10 B5 E4
A B C D

 

Figure 4.7. Molecular structure of cluster 2 compounds. (A)  compound A7. (B) compound 

A10. (C) compound B5. (D) compound E4.  

 

 

 

Figure 4.8. Molecular structure of cluster 1 compounds. (A)  compound B5. (B) compound B7. 

(C) compound C8. (D) compound E11.  
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4.4 Discussion 

Chemical genomics is a powerful approach for the dissection of highly 

conserved processes including endomembrane trafficking and has numerous 

advantages including tunable control, applicability to multiple systems and the 

ability to circumvent lethality and redundancy. However, the screens necessary for 

the identification of useful small molecules are high throughput in nature and 

require the subsequent identification of the target protein, which can be 

challenging and labor intensive. To compound these challenges, the resultant 

amount of data is so large that it is often impractical to manage and analyze it 

manually. We have described a method that gives us the ability to predict the 

molecules that are of interest, in this case, those that disrupt endomembrane 

trafficking using a GMM. This allowed us to classify and predict their function 

based on the resulting phenotype. As a result, a more intelligent experimental 

design could be created that would expedite the screening process and enable 

researchers to focus on a subset of predicted hit compounds.  

The GMM showed that the data could be subdivided into three subgroups. 

Generally every compound elicited phenotype can be grouped into one of three 

clusters; cluster one has few small bodies, cluster 2 has many large bodies and 

cluster 3 has few large bodies. Upon first glance, these various cellular phenotypes 
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are indistinguishable from one another, however, the GMM allowed us to parse out 

these subsets and reveal differences that would have otherwise gone unobserved. 

Phenotypes within cluster one showed high association with one another. Cluster 

two and cluster three show more variation, however both clusters show clear 

separation from either cluster one or each other. Although this sample size seems 

to represent the population for phenotypes observed in the secondary Arabidopsis 

screen, increasing the sample size would increase our understanding of the 

phenotypes produced by these bioactive compounds.  Assuming these groupings 

are genuine we would expect that increasing the sample size would reduce the 

variation within the clusters while maintaining the variation between them. Our 

model shows high confidence in the classification of three subgroups of body 

phenotypes, though increasing the sample size would bring us closer to revealing 

the true nature of these compounds and their phenotypes.  

ES2 has been well characterized an inhibitor of recycling and produces very 

stable body phenotypes  (Drakakaki et al., 2011). When multiple images of ES2 

were analyzed and included in the GMM clustering model, it was classified into 

cluster two. We then hypothesized that it might be possible that the other 

compounds that produced similar phenotypes to ES2 may also be affecting the 

endomembrane recycling process. However, like any computational model, our 

GMM and clustering approach are a simplification of extremely complex 

circumstances and needs to be validated by testing the predicted results using a 
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reliable biological test. The BFA washout assays were used to confirm that selected 

compounds from cluster two did indeed inhibit the endomembrane recycling 

process and that compounds in cluster one did not, thereby confirming the 

predictive power of this approach.  Due to the limited availability of some of these 

compounds only four from both cluster one and two were tested. As with any 

constrained model, increasing the sample size would increase the ability to better 

evaluate the accuracy of this method. All compounds tested behaved as predicted, 

compounds in cluster two showed lingering BFA bodies upon washout showing 

inhibition of the recycling pathway. In contrast, all of the compounds in cluster one 

did not show lingering BFA bodies and therefore demonstrates that they do not 

inhibit recycling dynamics. This does not however, rule out the possibility that they 

are effecting recycling in other ways such as increasing recycling or re-routing 

recycled materials. Interestingly, during the washout phase of the BFA washout 

assay, when each root is being treated with its respective bioactive compound, 

some cells contain only BFA bodies and other contain BFA bodies and other small 

bodies.  This might indicate that the persistent bodies are in a BFA insensitive 

compartment and that the small molecule is disrupting recycling by effecting this 

BFA insensitive compartment. Upon validation our model has the ability to truly 

predict those compounds that can disrupt recycling and those that cannot.  

Many endomembrane phenotypes manifest as punctate structures of various 

sizes and abundances making this approach applicable to multiple scientific 
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pursuits. Organelles, early endosomes for example, differ in size and abundance 

from mitochondria, ER bodies, and other compartments  (Mukherji and O'Shea, 

2014). The GMM approach or some variation of it would likely be able to 

differentiate between organelles, supporting the evidence of co-localization studies. 

When added to the pipeline of a high throughput assay this method would also be 

able to identify those body phenotypes that deviate from the normal phenotype, 

identifying mutants of bioactive compounds. It is important to note that this model 

was developed using body size and number per cell However, other parameters 

could be used to create different two-dimensional models or additional features 

could be added to the existing model to produce multi-dimensional models, 

allowing for a more accurate classification.  With minimal modifications, this 

approach could be used for many diverse applications.  

Large amounts of quantitative data need to be managed and interpreted 

efficiently and rapidly. Machine learning approaches such as the described GMM 

approach allowed biologists to make sense of phenotypic data while gaining the 

ability to predict the underlying corresponding biological process based on 

complex phenotypes. Using the information provided, biologists seeking to identify 

compounds that disrupt recycling can now focus on further testing and 

characterizing four compounds rather than testing the full three hundred and sixty 

compound library, saving time, resources and expediting discovery. Methods likes 

this will enable cell biologist to more effectively discover target genes and 
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corresponding small molecules as the technology evolves and assays become 

increasingly higher in throughput and complexity.  

 

4.5 Materials and Methods 

Gaussian Mixture Model and clustering 

Images were collected from the previous screen of three hundred and sixty 

compounds (drakakaki). 40 Images were chosen based on quality and analyzed 

using the software package EndoQuant (Ung et al. In press). The computation and 

modeling was done using MatLab by Mathworks version R2010b. The function 

gmdistribution was used to construct the GMM fitting the data to three Gaussian 

distributions. Subsequently, The function cluster was then used to cluster the 

resultant data from the GMM.   

 

Seedling growth conditions 

 Arabidopsis thaliana ecotype Colombia (col-0) seedlings were sterilized then 

sown on 0.5X MS containing media with 0.8% phytoagar.  Seedlings were stratified 

for 48hrs at 4°C then grown on an 18hr light cycle at 22°C. Original chemical 

screen and methods for imaging PIN2:GFP individuals can be found in Drakakaki 

et al. (2011).  
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BFA Washout Assay and Microscopy 

PIN2:GFP seedlings were incubated in a solution of .5X liquid MS media 

containing 10µM BFA for 1 hour. The seedlings were then dipped in .5X MS media 

and then transferred to a well containing .5x MS liquid media and one of the 

cluster one and cluster two compounds or DMSO for 80 min. The seedlings were 

then transferred to microscope slides for imaging.  Seedlings were imaged using  a 

Leica SP5 Confocal Laser Scanning Microscope (CLSM). Excitation wavelengths 

used were 488nm (GFP). Manufacturer settings were used for detection of 

fluorescence. All confocal microscopy was done at the Microscopy and Imaging 

Core at the Center for Plant Cell Biology (CEPCEB) of the Institute for Integrative 

Genome Biology (IIGB) at University of California at Riverside.   

 

 

 

 

 

 



 

 113 

4.6 References 

Conrad, C., Erfle, H., Warnat, P., Daigle, N., Lörch, T., Ellenberg, J., Pepperkok, R., 

and Eils, R. (2004). Automatic identification of subcellular phenotypes on human 

cell arrays. Genome Res 14, 1130-36. 

 

Desprez, T., Vernhettes, S., Fagard, M., Refrégier, G., Desnos, T., Aletti, E., Py, N., 

Pelletier, S., and Höfte, H. (2002). Resistance against herbicide isoxaben and 

cellulose deficiency caused by distinct mutations in same cellulose synthase 

isoform CESA6. Plant Physiol 128, 482-490. 

 

Drakakaki, G., Robert, S., Szatmari, A.M., Brown, M.Q., Nagawa, S., Van Damme, 

D., Leonard, M., Yang, Z., Girke, T., et al. (2011). Clusters of bioactive compounds 

target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U S A 108, 

17850-55. 

 

Elias, M. (2010). Patterns and processes in the evolution of the eukaryotic 

endomembrane system. Mol Membr Biol 27, 469-489. 

 

Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., and Schreiber, F. (2011). 

HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC 

Bioinformatics 12, 148. 



 

 114 

 

Hendricks, L.C., McClanahan, S.L., Palade, G.E., and Farquhar, M.G. (1992). 

Brefeldin A affects early events but does not affect late events along the exocytic 

pathway in pancreatic acinar cells. Proceedings of the National Academy of 

Sciences 89, 7242-46. 

 

Klukas, C., Chen, D., and Pape, J.M. (2014). Integrated Analysis Platform: An 

Open-Source Information System for High-Throughput Plant Phenotyping. Plant 

Physiol 165, 506-518. 

 

Li, C.-J., and Bangerth, F. (1999). Autoinhibition of indoleacetic acid transport in 

the shoots of two-branched pea (Pisum sativum) plants and its relationship to 

correlative dominance. Physiologia Plantarum 106, 415-420. 

 

Li, J., Nam, K.H., Vafeados, D., and Chory, J. (2001). BIN2, a new brassinosteroid-

insensitive locus in Arabidopsis. Plant Physiol 127, 14-22. 

 

Mathew, M.D., Mathew, N.D., and Ebert, P.R. (2012). WormScan: a technique for 

high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One 7, 

e33483. 

 



 

 115 

Miller, S.G., Carnell, L., and Moore, H.H. (1992). Post-Golgi membrane traffic: 

brefeldin A inhibits export from distal Golgi compartments to the cell surface but 

not recycling. J Cell Biol 118, 267-283. 

 

Mukherji, S., and O'Shea, E.K. (2014). Mechanisms of organelle biogenesis govern 

stochastic fluctuations in organelle abundance. Elife 3, e02678. 

 

Richter, S., Voss, U., and Jürgens, G. (2009). Post-Golgi traffic in plants. Traffic 10, 

819-828. 

 

Sommer, C., and Gerlich, D.W. (2013). Machine learning in cell biology - teaching 

computers to recognize phenotypes. J Cell Sci 126, 5529-539. 

 

Vogt, A., Cholewinski, A., Shen, X., Nelson, S.G., Lazo, J.S., Tsang, M., and 

Hukriede, N.A. (2009). Automated image-based phenotypic analysis in zebrafish 

embryos. Dev Dyn 238, 656-663. 

 

 

 

 



 

 116 

Chapter 5 

A Novel Small Molecule Reduces Anisotropic Growth as a Result of Decreased 

Cellulose Deposition in Arabidopsis Root Cells 

 

5.1 Abstract 

One of the fundamental differences between animal and plant cells is the 

development of a cellulosic cell wall. The cell wall provides structural support, 

mechanical defense against pathogens and it has been implicated in signaling and 

is essential for growth. Cellulose is synthesized by cellulose synthase complexes 

(CSC’s) that are transported to and inserted into the plasma membrane. Exactly how 

the CSC’s reach the membrane is not well understood. We adopted a chemical 

genomics approach to identify compounds that altered root length and 

endomembrane trafficking. D5, a novel small molecule was shown to drastically 

decrease root length and caused cells to swell, a classic indicator of an inability to 

produce cellulose. Subcellular localization of CSC subunits were unable to reach 

the PM when plant seedlings were treated with D5 which seems to be preventing 

proper CSC localization to the PM without disturbing cytoskeletal dynamics. An 

EMS mutant was found to be resistant to D5 reversing the cell swelling phenotype 

associated with the D5 treatment. Understanding the mode of action of D5 will 

perhaps give us some insights into the transport of CSC’s to the PM.  
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5.2 Introduction 

One of the fundamental differences between plant and animal cells is the 

production and maintenance of a cell wall. Cell walls surround the plasma 

membrane (PM) of the cell providing structural support, protection and even 

contribute to signaling and sensing the plant’s environment. Cell walls can be 

found in multiple taxa and are similar in function yet differ in composition. Cell 

walls found in fungi typically have cell walls that are largely composed of chitin, 

whereas the main constituent of plant cell walls is cellulose  (Lipke and Ovalle, 

1998). Cellulose, a 1,4-ß-linked glucan found in cell walls is found in the form of 

microfibrils that interact with other polysaccharide chains to add structural and 

tensile strength. These cellulose microfibrils are synthesized by hexameric protein 

complexes known as the cellulose synthase complex (CSC)  (Emons and Mulder, 

2000). This rosette-like complex is secreted through the Golgi Trans Golgi network 

(TGN) and SYP61 labeled endosomes to the PM where it is attached to 

microtubules via Cellulose Synthase Interacting protein 1(CSI) which links CSC’s to 

microtubules.  These CSC’s then track along microtubules to produce cellulose 

microfibrils  (Bashline et al., 2014). The finer details of how the CSC’s travel from 

the TGN to be finally inserted in the PM is still poorly understood.  

Chemical genetics is a growing approach to study gene and protein function 

using small molecules. This approach uses biologically active compounds to 
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transiently inactivate proteins in order to study their functions. By using small 

molecules we can circumvent challenges that are associated with the more 

classical mutagenesis screen such as genetic redundancy and lethality. 

Additionally, chemical perturbagens enable tunable control allowing the degree of 

severity of the phenotype to be modified by adjusting the concentration of the 

small molecule. By studying the effect of the small molecule we can start to 

understand the role of the protein or biological process that the small molecule is 

targeting.   

 A screen of 46,000 small drug-like molecules in search of endomembrane 

perturbagens yielded three hundred and sixty compounds that inhibited pollen 

germination  (Drakakaki et al., 2011). Pollen tube growth is highly dependent upon 

endomembrane trafficking including both exocytosis and endocytosis.  Screening 

for molecules that inhibit pollen tube germination enriched the library for 

compounds that disrupt endomembrane trafficking. Subsequently these compounds 

were tested for activity in Arabidopsis roots  (Drakakaki et al., 2011).  One hundred 

and twenty two of them were found to be active in Arabidopsis roots and appeared 

to effect the recycling of plasma membrane markers.  

Several small molecules are known to inhibit cellulose synthesis and are often 

used as herbicides such as isoxeben and 2,6-Dichlorobenzonitrile (DCB)  (Sabba 

and Vaughn, 1999).  Mutations in the cellulose synthase subunit CESA6 were found 
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to confer resistance to Isoxeben, shedding light on its biological target and 

transforming Isoxeben into a useful tool for studying cellulose synthase  (Desprez et 

al., 2002). Although the exact mechanism of action is not known, it seems that 

DCB reduces cellulose synthase mobility  (DeBolt et al., 2007).  In one case, a 

small molecule directly inhibits cellulose synthesis and the other alters the 

dynamics and possibly the ultimate destination of the CESA complexes.  

A novel compound, here on referred to as D5, was found to dramatically 

reduce the root length of Arabidopsis seedlings due to a reduction of cellulose 

delivery to the PM. The results of these experiments provide insight into the link 

between cellulose synthesis and auxin homeostasis and establish D5 as an inhibitor 

of proper cellulose deposition.  

 

5.3 Results 

D5 Inhibits Root Growth due to cell swelling 

To identify cellular factors involved in the maintenance and integrity of the 

Early Endosome (EE), the 122 small molecules that perturbed the recycling of 

known plasma membrane (PM) localized proteins, were assayed for bioactivity by 

observing the phenotypic effect on a EE localized flourescent marker, SYP61:CFP. 

Because the EE is a hub for recycling, retrograde trafficking and anterograde 

trafficking, the EE is likely to have redundant mechanisms in place to maintain its 
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proper function. Therefore, chemical genomics is an appropriate tool to circumvent 

these problems of redundancy and lethality to uncover novel molecular 

components.  D5 is a small molecule that seemingly disrupted the trafficking of 

SYP61:CFP, a phenotype that was supported by the previous screen, hence its 

inclusion the the PMRA library, a collection of small molecules affecting proper 

endomembrane trafficking in Arabidopsis roots. The previous study suggested that 

D5 causes small aggregates of PIN2:GFP to form in the PIN2:GFP marker line. The 

growth phenotype however, was stable and dramatic.  

Those compounds that have been found to disrupt recycling have also been 

found to reduce root length. Therefore, reductions in root length can be used as a 

possible indicator for disruption of endomembrane trafficking. When grown on D5 

containing MS media, Arabidopsis seedlings showed dramatic reductions in root 

length and an increase in root width when compared to seedlings grown on DMSO 

containing media (Figure 5.1 A and B). Closer examination revealed a swollen root 

tip and extremely disrupted cellular organization (Figure 5.1 C and D). Canonical 

meristematic, transition, elongation, and differentiation zones were reduced to the 

point of being indistinguishable.  While the D5 treated roots still seemed to 

produce root hairs, the number was dramatically reduced and many of them burst. 

In addition to the root phenotypes, the plants were clearly stressed due to the 

accumulation of anothocyanins in the cotyledons (Figure 5.1 D).   
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Figure 5.1.  D5 causes sever reduction in root length and cell swelling. (A) fourteen day-old 

seedlings grown on MS media containing DMSO. (B) Fourteen day old seedlings grown on MS 

media containing 20µM D5. (C) Fourteen day-old seedling grown on MS media containing DMSO 

imaged at 2X magnification. (D) Fourteen day old seedlings grown on MS media containing 20µM 

D5 imaged at 2X. (E) Brightfield image of a D5 treated root. (F) D5 treated root stained using the 

styryl dye FM4-64. (G) merged image.  
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Examination of the cellular morphology showed that the cells had not simply 

arrested their development but were swollen well beyond the average Arabidopsis  

root cell size. Seedlings were then treated with the styryl dye FM4-64 to specifically 

label the PM confirming the boundaries of the distended cells. Under normal 

conditions swelling is very tightly controlled and only used to expand cells when 

growing. Swollen cells may indicate an inability to divide or defects in the structure 

of the cell wall.  

 

Cellulose content is reduced in D5 treated root cell walls  

This small swollen root phenotype is strikingly reminiscent of Isoxaben treated 

seedlings, a proven inhibitor of cellulose synthase subunits  (Desprez et al., 2002). 

The inability to produce cellulose synthase is consistent with the swollen cell 

phenotype due to the inability to withstand the outward forces of turgor pressure 

exerted on the weakened cell walls.  

Calcafluor, a common fluorescent dye that is used to visualize cellulose and 

chitin was used to visualize the amount of cellulose within the root. Root cells 

were stained with two concentrations of Calcafluor and imaged, a bright signal 

indicating a higher concentration of cellulose. D5 treated roots clearly show a 

reduced amount of cellulose indicated by the reduced pixel intensity show by the 

image and the histogram (Fig 2 (B) and (D).  
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Figure 5.2. D5 reduces cellulose abundance in root cells. (A) and (B) Arabidopsis root stained 

using 9µM calcofluor white. (A) treated with DMSO for 24hrs and (B) treated with D5 20µM for 

24hrs. (C) and (D) Arabidopsis root stained using 30µM calcofluor white. (C) treated with DMSO for 

24hrs and (D) treated with D5 20µM for 24hrs. (E) The  corresponding intensity histogram for (A). (F) 

The  corresponding intensity histogram for (B). (G) The  corresponding intensity histogram for (C). 

(H) The  corresponding intensity histogram for (D). 

To confirm this we examined the localization of Cellulose synthase complex 

subunits CESA3 and CESA6 fused to a GFP fluorescent marker. Untreated roots 

showed CESA3:GFP signal in both intracellular compartments and the cell wall in 

both the meristematic and elongation zones. Upon 24hr treatment of roots with 

D5, the CESA3:GFP signal in the intracellular compartments was unchanged, 

however, the signal in the cell wall disappeared. In the elongation zone, the 

disappearance of CESA3:GFP signal was accompanied by noticeable swelling of  
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

 

Figure 5.3. CESA3 and CESA6 miss-localize in the presence of D5.  (A) - (D) CESA3:GFP in the 

expansion zone, (A) and (B) and transition zone, (C) and (D) or Arabidopsis roots. (A) and (C) show 

seedlings  treated with DMSO for 24hrs and (B) and (D) show seedlings treated with 20µM D5 for 

24hrs. (E) - (H) CESA6:GFP in the expansion zone, (E) and (F) and transition zone, (G) and (H) or 

Arabidopsis roots. (E) and (G) show seedlings  treated with DMSO for 24hrs and (F) and (G) show 

seedlings treated with 20µM D5 for 24hrs. White bars indicate intensity profile line. Below each 

panel is the corresponding intensity profile of the line in each image.  
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root cells. The cell swelling phenotype observed previously at 6 days is observable 

at high magnification as early as 24hrs. CESA6:GFP showed a similar phenotype in 

the presence of D5 in both the meristematic and elongation zones to that of 

CESA3:GFP. These data suggest that the intracellular trafficking of the CESA 

subunits is not effected but that they are not reaching the cell wall, which might 

explain why the cells are behaving as is cellulose synthase activity is diminished.  

 

Cytoskeleton Dynamics are not affected by D5 

Mutant Arabidopsis seedlings that have disrupted microtubule activity can also 

exhibit cell swelling and isotropic growth similar to that of the D5 treated 

seedlings, due to the lack of the structural support of cellulose microfibrils  

(Sugimoto et al., 2003). This is due to the fact that microtubules are tightly 

associated with cellulose microfibrils, the product of cellulose synthase complexes. 

To test D5’s ability to alter microtubule dynamics, we treated seedlings with either 

DMSO or D and observed the microtubule organization in hypocotyl cells 

expressing TUB:GFP.  Similar results were seen in root cells (data not shown). Cells 

were treated with oryzalin as a positive control for microtubule depolymerization. 

Oryzalin treated cells showed bright punctate spots as well as a reduction of 

microtubules spanning the width of the cell, indicating microtubule 

depolymerization. 
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Figure 5.4. D5 does not affect microtubule dynamics. A TUB:GFP seedlings treated with (A) 

10µM Oryzalin as a positive control (B) DMSO as a negative control and 20µM D5. (D) and (E) 

show Averaged frames of a time course showing MT dynamics of (D) DMSO and (E) D5 treated 

seedlings.  

Cells treated with DMSO and D5 show intact microtubules and a similar 

organization, indicating that D5 most likely does not have microtubule 

depolymerizing activity.   

Because single images would not show if D5 was a microtubule stabilizing 

agent, video of microtubule dynamics were taken using a spinning disk confocal 

microscope. Fig 4 (D) and (E) shows the average of all the frames taken of these 

videos. The blurry nature of both images indicate microtubule movement.  These 

videos showed dynamic movements of TUB:GFP labeled microtubules, indicating 

that D5 neither causing the depolymerization of microtubules nor the stabilization 
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of microtubules, therefore D5 must be acting in an alternative way to prevent the 

delivery of CESA subunits to the cell wall. As with microtubules, actin 

microfilament dynamics were not altered when observed by spinning disk 

microscopy. Microfilaments were neither depolymerized or stabilized indicating 

that D5 was not altering microfilament dynamics (data not shown).  

 

The 2.4 mutant shows resistance to D5  

Using a mutagenesis screen to identify individuals that are resistant to a drug 

like molecule is a common method for the identification of genes required 

associated with the drug target  (Raikhel and Pirrung, 2005). To this end we 

preformed a resistance screen using an EMS mutagenized population using root 

length as a macroscopic discriminatory marker to select for resistant individuals.  

EMS mutant 2.4 was selected as it showed resistance to D5 manifesting as 

increased root length, larger cotyledons and reduced anthoncyanin production.  

The increase in root length of resistant individuals was statistically significant (Fig 

5.5E). Upon closer examination it became clear that the root tips have normal 

developmental zones, highly organized cell files and reduced isotropic growth (Fig 

5.5A - 5.5D). 
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Figure 5.5. 2.4 is a mutant resistant to the effect of D5. Images of D5  treated WT seedlings (A 

and C) and 2.4 resistant mutant seedlings (B and D) at 2x (A and B) and 6.5x (C and D).  (E) The root 

length of D5 treated 2.4 mutant and WT seedlings and DMSO treated seedlings. 2.4 SYP61 root 

length is significantly  longer than WT.  

When grown on the control MS media, the 2.4 mutant seedlings do not show 

any obvious developmental phenotype at two weeks when compared to the WT 

control grown under the same conditions. However, when grown to maturity, 

flowering Arabidopsis plants show a loss of apical dominance, a phenotype 

associated with reduced auxin production or perception (data not shown) (Cline, 

1997).   

 Auxin mutants show resistance to D5 

Because mature 2.4 mutant plants exhibited a loss of apical dominance, a 

phenotype associated with reduced auxin production or perception, we grew auxin  
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Figure 5.6 Auxin mutants show resistance to D5. (A-D) col WT grown on D5. (E-H) abp1 mutants 

grown on D5. (I-L) tir1Q quadruple mutant grown on D5. (A,E,I) seedlings treated with DMSO. 

(B,F,J) seedlings treated with 3µM D5. (C,G,K) seedlings treated with 7µM D5. (D,H,L) seedlings 

treated with 14µM D5.     

perception mutants abp-1 and tir1Q on MS media for four days, then transferred 

them to media containing various concentrations of D5 to determine if these 

known auxin perception mutants were resistant to D5.  ABP1 and TIR1 are both 

auxin receptors governing two separate auxin response pathways, ABP1  

 



 

 130 

mediates cell wall remodeling and cell expansion at the PM and TIR1 in the 

nucleus though they have overlapping functions as well  (Paque et al., 2014).  

Abp1 mutants did not show any resistance to D5 and behave similarly to Col 

seedlings when grown on D5 on increasing concentrations of 3µM, 7µM, and 

14µM (Figure 5.6A – 5.6H). Both abp1 mutant and WT seedlings showed very little 

effect on the 3µM concentration, other than a modest increase in the occurrence of 

root hairs. Swelling of the root tip begins to become apparent when grown on 7µM 

concentrations of D5. At 14µM of D5, root tips swell increasing root tip with and 

root hair density (Figure 5.6D and 5.6H).  In contrast to col and abp1 genotypes, 

the tir1Q quadruple mutants showed a slight resistance to D5 at lower 

concentrations. The tir1Q mutants showed little to no swelling when grown on 

3µM and 7µM concentrations of D5 (Fig 5.6J and 5.6K). These results show that D5 

may be acting within the TIR1 pathway and not the ABP1 pathway giving us the 

ability to chemically dissect these pathways. However, it is important to note that 

the observed resistance of the tir1Q mutants is weaker than that of the 2.4 mutants 

when grown on a higher concentration (Figure 5.6L). Additionally, the tir1Q 

mutant phenotype at maturity is more severe than that of the 2.4 mutant.  This 

suggests that the auxin pathway may not be the only pathways affected.  
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5.4 Discussion 

D5’s dramatic growth phenotype is caused by reduced cellulose.  

 Unlike their animal counterparts, plant cells have evolved a rigid cell wall 

made out of polysaccharides that provide structure and protection. This cell wall is 

mainly comprised of the organic polymer cellulose, which is synthesized by 

hexameric protein complexes termed cellulose synthase complexes. Arabidopsis 

seedlings grown on D5 a novel small molecule show significant developmental 

defects associated with reduction in cellulose synthesis including dramatic 

reduction in root length, reduced cotyledon size, swollen cells, and excessive 

anthocyanin production. Anthocyanin production is a well-documented response 

to abiotic stress  (Paque et al., 2014). It is possible that this could be a direct 

response of cell wall signaling, however, it is more likely that this is in response to 

reduced water and nutrient uptake, due to malformed roots and reduced number of 

root hairs. If D5’s effect on cellulose synthesis was global and non-specific, we 

would expect root hairs to swell as well, however, this is not observed.  The 

number of root hairs is diminished but this could jut be due to the fact that the total 

number of cells has decreased.  This indicates that D5 specifically effects cellulose 

production of non-root hair cells. 

  Interestingly, this compound was discovered in a screen that inhibited pollen 

germination so it is reasonable to conclude that D5 affects the cell wall in pollen 
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tubes, root cells, but not in root hairs cells. Although, pavement cell morphology 

was not observed, cotyledon size and health was reduced, most likely indicating a 

cell expansion and division defect similar to that seen in the roots. This indicates 

that D5 is selectively inhibiting cellulose production in cell type specific manner. 

Similar selectivity is found in other cellulose inhibitory compounds such as 

isoxaben and DCB  (Sabba and Vaughn, 1999). However, CESA3 and CESA6 

mutants do not show any resistance to D5 indicating that D5 is not directly 

targeting these subunits (data not shown).  Phenotypic analysis therefore points to 

the lack of cellulose as the causal factor.  

Indeed reduced cellulose as visualized by calcafluor staining showed that 

Arabidopsis roots treated with D5 for 24hrs showed reduced levels of cellulose. 

There exists a delicate balance between the internal and external forces of the cell. 

This delicate balance is what maintains the cells shape. Cells intentionally 

manipulate this balance in order to grow. Enzymes intentionally loosen the bonds 

between the fibers that compose the cell wall allowing the force of the internal 

turgor pressure to exceed that of the cell wall allowing the wall to expand. Under 

normal conditions this is a highly controlled process and the degree of swelling is 

minimal. Upon treatment with D5 the amount of swelling in root cell is dramatic 

and isotropic. This change in shape and size is apparent as a early as 24hrs.  
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Impaired CESA delivery to the cell wall is cytoskeletal and endomembrane 

independent.  

 Our understanding of cellulose synthesis by cellulose synthase complexes 

and the trafficking of these complexes have suddenly grown over recent years 

thanks to advancements in live cell imaging and microscopy. Its is known that 

cellulose synthase complexes are trafficked from the ER to the PM through the 

Golgi and syp61 compartments  (Drakakaki et al., 2011). Additionally, CESA 

complexes attached to and track along microtubules synthesizing cellulose 

microfibrils  (Paredez et al., 2006). However, gaps in our knowledge still exist in 

the fine details of the delivery of cellulose to the PM which then allows for the 

synthesis of cellulose microfibrils. When we visualized the localization of CESA3 

and CESA6 we did not find any obvious defects in the intracellular trafficking of 

these subunits. All intracellular compartments were intact and no major differences 

in localization when compared to the untreated control. However, it was very 

apparent that the GFP labeled CESA subunits were not reaching the PM. It is 

possible that the target of D5 could be responsible in the finer details of this 

process of delivering the CESA subunits to the PM either acting as an adaptor 

protein or in a specific membrane bound compartment downstream of SYP61 

endosomes delivering the CESA complexes to the PM.  
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Because microtubule dynamics are not altered, yet the CESA complexes are not 

getting to  the membrane, D5 must be acting within this narrow functional range. It 

is most likely inhibiting the association of the CESA subunits with the membrane. 

However, we cannot definitively rule out that this compound could also be an 

inhibitor of cellulose synthase directly by binding to one or more of the subunits 

while it associated with the membrane.  ixr-1 and ixr-2 both isoxaben resistant 

mutants, were grown on D5 containing media with no change in response when 

compared with the WT seedlings (data not shown).  As these are both point 

mutations, we cannot rule out the possibility that D5 is directly targeting CESA6 or 

CESA3 or both.  It would be reasonable to assume that if D5 could directly bind to 

CESA3 and/or CESA6 this binding could result in a conformational change that 

alters the fluorescent properties of the GFP tag.  

The exocyst is a large octomeric , conserved protein complex that facilitates the 

fusion of exocytic vesicles with the PM. Exocyst mediated CSC insertion is one 

possible mechanism. It hypothesized that the exocyst is important in depositing 

CSC’s in the membrane though this has not been definitively shown. This is an 

enticing possibility since other compounds within the 122 found to be active in 

Arabidopsis also disrupt exocyst function or proteins associated with the exocyst 

(unpublished data). However, those compounds that disrupt exocyst function and 

therefore fusion with the membrane, induced the formation of anomalous 

endosomal bodies which are not observed in D5 containing compounds.  
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  D5 seems to pheneocopy other cellulose synthase inhibitors yet does not share 

any structural similarity. It also seems to be much less potent than isoxeben or DCB 

which are active at nanomolar concentrations in contrast to D5 which is active in 

micromolar concentrations. Isoxeben and DCB are both powerful herbicides, D5 

might be a useful addition to this arsenal in a climate when plants are constantly 

evolving resistance to such pesticides.  

 

Auxin might be increasing cell wall extensibility 

Both, the auxin-mutant-like phenotype of the 2.4 D5 resistant mutant and the 

fact that the tirQ mutant shows slight resistance suggests that D5 might be targeting 

a protein involved in auxin production or perception. The structure of D5 does not 

resemble the structure of auxin or any other auxin analogs. Additionally, D5 does 

not induce the expression of DR5:GFP constructs indicating that D5 is most likely 

not an auxin analog (data not shown). Furthermore, exogenous auxin does not 

produce a swollen phenotype to the extent of that of D5. Relatively high 

concentrations of auxin are known to inhibit cell elongation in roots, as in the 

mechanism known to cause the gravitropic response. However, recently it was 

found that changes in auxin homeostasis suppress the cell swelling phenotype in 

Arabidopsis roots commonly associated with defects in cell wall function  

(Steinwand et al., 2014).   
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 The acid growth hypothesis postulates that auxin increases the acidity of the 

cell wall, thereby activating expansins, enzymes that disrupt the bonds holding 

cellulose and hemicellulose in the cell wall and allowing the cell wall to expand 

under the force of the turgor pressure within the cell  (Hager, 2003). Therefore it is 

possible that without auxin, the extensibility of the cell wall is reduced, preventing 

the cell expansion that normally accompanies defect in cellulose synthesis.  

Interestingly, ABP1 is likely to play an important role in this by regulating ATPase 

H+ pumps and K+ pumps at the PM  (Hager, 2003). Therefore, if this was the only 

factor, we would have expected abp1 mutants to show resistance to D5, however, 

this was not the case.  

In contrast tir1Q mutants do show some resistance to D5 indicating that the 

swelling phenotype might be more dependent on the TIRQ pathway than the ABP1 

pathway of auxin sensing. Both the ABP1 and TIR1 auxin sensing pathways are 

thought to have some effect on Cell wall remodeling and integrity  (Paque et al., 

2014) (Tsang et al., 2011). D5 may provide a way to selectively disrupt the TIR1 

signaling pathway leading to cell wall remodeling.  It is possible that it does this by 

regulating the delivery of CESA subunits to the cell wall itself, which we know D5 

can inhibit. It is possible that D5 is perturbing a component of TIR1 mediated cell 

wall expansion.  Sequencing the 2.4 resistant plants to determine the nature of their 

resistance will be vital in understanding the activity of D5 and its potential target(s).  
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5.5 Materials and Methods 

Seedling growth conditions 

Arabidopsis thaliana ecotype colombia (col-0) seedlings were sterlized, then 

sown on .5XMS containing media with .8% phytoagar. Seedlings were stratified for 

48hrs at 4°C then grown on an 18hr light cycle at 22°C. Treated seedlings were 

grown on media containing 20µM D5. Seedlings screened for resistance to D5 

were grown for fourteen days  before being imaged and scored for root length.  

 

Chemical Treatments Microscopy and Image analysis 

Four to seven-day-old seedlings were treated with Calcofluor, FM4-64, D5, 

Oryzalin at the concentrations previously mentioned. Seedlings were transferred 

from media plate to .05X liquid MS media and treated for 2hrs for D5, 10 for FM4-

64, and 24hrs for calcoflour.  CESA3:GFP and CESA6:GFP seedlings were treated 

for 24 hrs then imaged using the Leica SP5 LSCM. Cytoskeleton images were taken 

using the Yokagawa spinning disk confocal microscope. Excitation wavelengths 

used were 488nm (GFP) and 543(FM4-64). Calcafluor was visualized using the UV 

laser. Manufacturer settings were used for detection of fluorescence. Whole plate 

images were taken using a desktop scanner at 1000dpi. Single seedling images 

were taken using a Nikon dissecting scope. Mature whole plants were imaged 

using a Rebel DSLR camera. Fiji was used to for subsequent image analysis.  
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Resistance screen 

For the primary screen 50,000 mutagenized Arabidopsis seedlings in the 

SYP61:CFP background were screened for D5 resistance on plates containing 

20µM D5. Seedlings were grown for fourteen days, imaged using a desktop scanner 

and resistant individuals were rescued to soil and grown to maturity.  The 

candidates were grown to maturity, seeds were collected and screened again. 

Those that were confirmed resistant were crossed with Landsberg to create the 

mapping population for sequencing.  
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Chapter 6 

Conclusions and Future Directions 

 

6.1 An Approach to Quantify Endomembrane Dynamics in Tobacco Pollen 

Using Bioactive Compounds 

 

 One of the critical objectives of small molecule and genetic screens in 

plants is to gain the ability to observe and quantify subcellular phenotypes that can 

be eventually related to plant development to gain functional information. This 

requires the ability to generate subcellular video and static images and analyze the 

resultant data in an ultimately high throughput manner. We have made progress 

towards this goal by quantifying vesicle dynamics in plants via the analysis of 

confocal video images. We have chosen Tobacco pollen as a model system due to 

its high dependence on rapid trafficking for proper development and the ability to 

study the effects of small molecules in this free-living organism.  We screened a 

library of 238 molecules found to inhibit pollen germination though have little to 

no effect on trafficking in Arabidopsis roots. To define a subset of molecules that 

specifically altered endomembrane trafficking in pollen, a marker for the ER to 

Golgi trafficking pathway, the Ras-like monomeric G-protein RAB2:GFP, was used 

to confirm the disruption of the endomembrane pathway and exclude other 
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processes that would effect pollen tube growth such as cell wall or cytoskeleton 

function. Six compounds were found to repeatedly alter normal RAB2:GFP and 

were termed RAB effectors (RAE’s). 

  We focused on quantifying the phenotypes of these compounds in video 

images to capture true real time dynamics in vivo of the Rab2:GFP labeled 

compartments. We examined the correlations of individual parameters such as 

velocity, straightness of movement, area of the bodies and intensity of the 

organelles. We found that Area was positively correlated with intensity suggesting 

that a the amount of RAB2:GFP signal  increased with the size of RAB2 bodies. 

Additionally, straightness was negatively correlated with velocity indicating that 

bodies traveling in a straight line moved faster than those that had less direct 

movement patterns. By studying the way these compounds effected localization we 

were able to quantify and infer relationships of fundamental properties of the 

endomembrane system. These intrinsic properties of organelle dynamics need to be 

further explored using many more parameters. Additionally, a principal component 

analysis or similar method could be used to determine the most important 

contributing factors. Once more is understood about these intrinsic properties and 

they are quantified. They could then be integrated into a mathematical model that 

could be used to describe trafficking patterns, leading to a better understanding of 

endomembrane trafficking, dynamics.  
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 In an effort to quantitatively compare the sub cellular phenotype effect of 

one small molecule to another, we implemented a novel metric called the 

difference index.  This quantitative summary value permits a comparative measure 

of overall vesicle dynamics. This can be used when evaluating phenotypes and 

designing experiments, targeting those with similar scores. This could be an 

indication of similar underlying mechanisms.  

 The six RAE’s, when fully characterized may shed light on pollen specific 

mechanisms of polar growth and endomembrane dynamics. Not only are these 

small molecules valuable tools to quantify endomembrane dynamics but they are a 

preselected group of chemical that warrant further study. This opportunity is ripe 

for the taking by any interested group and will serve as a valuable resource for 

biologists interested in pollen biology and polar growth.   

 We have taken an important step in the quantification of dynamic behaviors 

that will make it possible to move toward the increased automation of chemical 

and genetic screens that can be focused directly on changes in vesicle dynamics, 

permitting the more efficient linkage of cellular and developmental phenotypes. 
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6.2 EndoQuant: An Image Analysis Package for Automated Quantitative 

Cellular Phenotyping 

  Innovative tools to manage and automatically quantify cellular phenotypes in 

a manner that is rapid, accurate and user friendly will become increasingly 

necessary as biological screens grow in throughput. EndoQuant is a novel user-

friendly image analysis package designed by biologists for biologists that will not 

only allow for rapid processing of data, but it uniquely allows for rapid decision 

making through instant visualization comparison of data and basic statistical 

calculations. EndoQuant addresses the issue of comparing quantitative features of 

organelles between cells and between individual organisms and is applicable to 

multiple plant cell types. We do this by quantifying the phenotypes on a per cell 

basis, a biologically relevant approach.  The entirety of these useful algorithms are 

packaged in a user-friendly graphical user interface that is intuitive and designed 

for biologists that will be freely available to the community.  

Data, once collected is not of much use to biologists until its is processed and 

interpreted. The next vital step would be to use this method to quantitative 

compare multiple phenotypes. This analysis would be exceptionally powerful 

when coupled with a high throughput screen for the identification of  

endomembrane phenotypes. Indeed, EndoQuant would not only increase the 

practicality of high throughput subcellular screens but also aid in distinguishing 
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subtle differences between cellular phenotypes, identifying those that might have 

otherwise been overlooked.  

EndoQuant has the capacity to analyze temporal dynamics if  it is given a time 

series. One would be able to track the changes in population size and number and 

any other of the features measured.  However, to be more completely analyze 

dynamics, bodies would need to be tracked from one position to another. This 

would be the next step for this type of analysis package. The single cell analysis 

coupled with tracking would truly be unique among analysis software. Similarly, 

Endoquant is limited to two dimensions when analyzing a single image slice or 

attempting to infer 3 dimensions from a compressed two dimensional slice when 

analyzing MIP’s.  To move toward a scenario that is closer to nature, three 

dimensional reconstructions need to be analyzed. More information can be 

garnered by increasing the dimensionality of the analysis however,  With higher 

dimensionality comes increased complexity. Future modifications of this tool will 

need to include these additional dimensions.  

Technology such as EndoQuant will allow for high-throughput assays at the 

cellular level to become practical, permitting the investigation of phenotypes and 

biological phenomena that do not have an obvious macroscopic phenotype. It will 

also enable biologists to collect and interpret large amounts of phenotypic data that 

can be later used to influence experimental designs or be incorporated into 
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modelsAutomated tools like EndoQuant will become increasingly imperative for 

dissecting cellular phenomena as quantification becomes increasingly essential.  

The rapid linkage of cellular and developmental phenotypes will depend on the 

automatic quantification of subcellular phenotypes, making it possible to move 

toward the increased automation of chemical and genetic screens. 

 

6.3 Prediction of small molecules using phenomics and machine learning  

Biological assays are becoming increasingly  high throughput in nature with the 

advent of the age of “-omics”. In the Case of Chemical Genomics, small molecules 

are used to perturb and study conserved biological processes such as membrane 

recycling are prone to lethality and redundancy. The targets of these small 

molecules are often unforeseeable and require and extensive amount of 

characterization and experimentation to uncover. We now have the ability to 

predict those molecules that are of interest to us, in this case, those that disrupt 

endomembrane trafficking using a GMM to classify and predict their function 

based on the resulting phenotype. This machine learning approach will enable us 

to Intelligently design experiments expediting the screening process, focusing our 

efforts on a subset of predicted hit compounds. Generally every phenotype can be 

grouped into one of three clusters cluster one has few small bodies, cluster 2 has 

many large bodies and cluster 3 has few large bodies. Though increasing the 
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sample size would bring us closer to revealing the true nature of these compounds 

and their phenotypes, our model shows high confidence in the classification of 

three subgroups of body phenotypes. ES2, a well-characterized inhibitor of 

recycling was found to group with cluster 2. We hypothesized that it might be 

possible that the other compounds that produced similar phenotypes to ES2 may 

also be affecting the endomembrane recycling process. The BFA washout assay 

was used to confirm that selected compounds from cluster two did indeed inhibit 

the endomembrane recycling process and that compounds in cluster one did not, 

thereby confirming the predictive power of this approach. Upon validation our 

model has the ability to truly predict those compounds that can disrupt recycling 

and that that cannot. Machine learning approaches such as the described GMM 

approach allowed biologists to make sense of phenotypic data while gaining the 

ability to predict the underlying biological process being disrupted based on 

complex phenotypes. 

Through validation this method has proven to be quire reliable and useful, the 

experiments were on a relatively small sample size. Increasing the sample size will 

truly test this methods predictive capacity. Other compounds that are known to 

inhibit specific biological pathways should also be clustered with this data set. If 

they are classified into an existing cluster, the other members of the same cluster 

should be validated to see if they also are involved with a similar biological 

pathway. Within the same theme, cytoskeletal inhibitors could be used to disrupt 
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trafficking and classified by the GMM. Compounds that exhibit a similar phenotype 

might also be altering cytoskeletal dynamics and would allow researchers 

interested in endomembrane specific events to avoid these compounds. 

Alternatively, these compounds might be of interest to those investigating the 

cytoskeleton and its many complex functions.  

To those studying endomembrane recycling and trafficking, cluster 2 is most 

exciting. Cluster 2 is enriched for compounds exhibiting phenotypes consistent 

with ES2 and have shown to alter recycling. These compounds will be of interest to 

begin to characterize and understand how they reduce the rate of recycling and 

disrupt trafficking. Without this method, 360 compound would need to be tested 

using the BFA washout which would be impractical with the amount of time a 

resources need to complete this task. However, implementing this GMM in this 

manner has reduced this large pool to four drug-like molecules that are known to 

inhibit recycling thus more efficiently selecting compounds to characterize and 

pursue based on our interests.  

Machine learning has given us the ability to predict the biological function 

disrupted by a small molecule simply by analyzing the subcellular phenotype. This 

algorithm will expedite discovery and give biologists the ability to better 

concentrate their efforts on compounds that show the most promise according to 

our predictive computational model.  
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6.4  A Small Molecule Reduces Anisotropic Growth in Root Cells as a Result of 

Reduced Cellulose Deposition  

 The organic polymer cellulose is synthesized by hexameric protein complexes 

known as cellulose synthase complexes and is the main polysaccharide component 

of plant cell walls.  D5 is a novel small molecule shown to significantly increase 

developmental defects associated with reduction in cellulose synthesis. However, 

D5 is incubated with plants that have mutations is CESA3 and CESA6, known 

subunits of the cellulose synthase complex do not show any resistance to D5 

indicating that D5 is not directly targeting these subunits (data not shown).  

Cellulose deposition was visualized by calcafluor staining. Arabidopsis roots 

treated with D5 for 24hrs showed reduced levels of cellulose. This could indicate 

several possible scenarios in which cellulose is not being synthesized. Two 

hypothesis are that it is either directly biding to and inhibiting one or more of the 

CESA subunits or it is indirectly preventing proper function by binding to a another 

protein need for function or proper localization. Cellulose synthase complexes are 

delivered to the PM through the endomembrane system from the ER, through the 

Golgi and SYP61 compartments ultimately arriving at the PM {Drakakaki 2011}.  

Using video imaging of cytoskeletal dynamics we found that microtubule function 

are not altered, yet It is very apparent that the GFP labeled CESA subunits were not 
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reaching the PM when observed by live cell imaging and confocal microscopy. 

Unexpectedly, we do not observe an endomembrane phenotype when CESA3:GFP 

or CESA6:GFP plants are treated with D5. Therefore, we hypothesize that D5 must 

be acting within this narrow functional range possibly inhibiting the association of 

the CESA subunits with the PM.  The target of D5 may be responsible for the finer 

details of this process, delivering the CESA subunits to the PM acting either as an 

adaptor protein or in a specific membrane bound compartment downstream of 

SYP61 endosomes.  

A forward genetic resistance screen was used in the Identification of the target 

of D5. A mutant designated 2.4 was resistant to the effects of D5 showing increased 

root length when compared to the WT. Additionally, this mutant showed loss of 

apical dominance, a trait tightly associated with a decrease in auxin signaling. 

Both, the auxin-mutant-like phenotype of the 2.4 D5 resistant mutant and the fact 

that the tir1Q mutant shows slight resistance suggests that D5 might be targeting a 

protein involved in auxin production or perception. The structure of D5 does not 

resemble the structure of auxin or any other auxin analogs. Additionally, D5 does 

not induce the expression of DR5:GFP constructs indicating that D5 is most likely 

not an auxin analog (data not shown).  Tir1Q mutants do show some resistance to 

D5 indicating that the swelling phenotype might be more dependent on the TIR 

pathway than the ABP1 pathway of auxin sensing. D5 may provide a way to 

selectively disrupt the TIR1 signaling pathway leading to cell wall remodeling.  
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However, recently it was found that changes in auxin homeostasis suppress the cell 

swelling phenotype in Arabidopsis roots commonly associated with defects in cell 

wall function (Steinwand 2014).  Sequencing of the 2.4 mutant line will provide 

clues and insight into the nature of this resistance to D5 and possibly reveal hints as 

to the target of D5 and how it is disrupting proper cellulose synthesis.  




