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Electrocatalysis provides a potential solution to NO –
3 pollution in wastewater by converting it to innocuous N2 gas.

However, materials with excellent catalytic activity are typically limited to expensive precious metals, hindering their
commercial viability. In response to this challenge, we have conducted the most extensive computational search to
date for electrocatalysts that can facilitate NO –

3 reduction reaction, starting with 59,390 candidate bimetallic alloys
from the Materials Project and Automatic-Flow databases. Using a joint machine learning- and computation-based
screening strategy, we evaluated our candidates based on corrosion resistance, catalytic activity, N2 selectivity, cost,
and synthesizeability. We found that only 20 materials will satisfy all criteria in our screening strategy, all of which
containing varying amounts of Cu. Our proposed list of candidates is consistent with previous materials investigated in
the literature, with the exception of Cu-Co and Cu-Ag based compounds which merit further investigation.

I. INTRODUCTION

Ammonia production in large-scale agricultural processes
came with the unforeseen consequences of an excess of ni-
trate (NO –

3 ) by-product1–3. This results in NO –
3 runoff be-

ing one of the leading sources of surface and groundwater
pollution. When left untreated, NO –

3 pollution can lead to
significant damage to the surrounding ecosystem via eutroph-
ication and have dire consequences for human health, such
as methemoglobinemia in infants4. The removal of anthro-
pogenic NO –

3 pollutants is essential to closing the nitrogen
cycle in order to avoid further damage to human health and
the environment.

Several methods exist to either remove NO –
3 , such as re-

verse osmosis5, oxo-anion adsorption6, and ion exchange7; or
transform it into more benign by-products via chemical NO –

3
reduction8–10 and biological degradation11–13. Although these
technologies can be highly effective, with NO –

3 removal rates
of up to 90%, each carries notable drawbacks. For example,
chemical treatments require constant replenishment of reac-
tants such as aluminum or hydrogen, reverse osmosis has high
capital and operation costs (especially if NO –

3 is the only
pollutant of concern), and biological degradation processes
may not perform well in colder climates and produce biolog-
ical waste products that require further treatment. The most
widely used process, ion exchange, requires periodic regener-
ation, which consumes significant chemical inputs and gener-
ates a highly concentrated brine waste that must be disposed
or treated14. Both reverse osmosis and ion-exchange only
serve to remove and store NO –

3 in temporary waste reservoirs
that require further processing15.

Electrocatalysis provides an alternative solution towards

removing NO –
3 through electrochemical reduction reaction

(NO –
3 RR)16. Unlike in ion exchange, a catalyst does not re-

quire regeneration. Furthermore, NO –
3 RR transforms NO –

3
into benign by-products that stem from the available reaction
pathways rather than storing it in excess brine solutions or bi-
ological wastes, reducing the cost of subsequent water treat-
ments. Factors such as the catalyst, applied potential, acid-
ity, and reducing agent can be adjusted to control the selectiv-
ity and activity17,18. For example, Rh has higher activity for
NO –

3 RR when compared to other platinum group metals19.
Meanwhile, the use of NaCl and Na2SO4 solutions as the
electrolyte for a Pt catalyst demonstrated increased efficiency
for NO –

3 removal. The NaCl solution, in particular, demon-
strated an increase in selectivity towards N2, a desired by-
product in water purification that safely dissipates back into
the air20.

Despite the clear advantages, a major concern in the eco-
nomic viability of electrocatalytic NO –

3 RR lies in the cost of
the catalyst. The most commonly used electrocatalysts are
rare and expensive metals such as palladium and platinum
and their alloys, which have demonstrated excellent activity
for electrochemical NO –

3 RR in water18. The use of precious
metals drastically increases the material cost of electrocatal-
ysis with the recent costs (as of April 30 2021) of Pt and Pd
ranging up to $38,694/kg and $79,855/kg, respectively21. The
search for catalysts composed of cheap earth-abundant metals
with high activity and selectivity is therefore crucial for the
commercial viability of electrocatalytic NO –

3 RR.
Computational screening can potentially be used to iden-

tify catalytically and commercially viable materials. Re-
cently, computational screening has grown in popularity as
a quick and efficient tool for identifying heterogeneous cat-
alysts based on a series of criteria used to screen desired
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properties22–26. Singh et al. 22 for example were able to iden-
tify 52 potential photocatalysts for CO2 reduction using sim-
ple thermodynamic and electronic properties. However, the
high computational cost renders the explicit assessment of cat-
alytic activity and selectivity in candidate materials impracti-
cal in these strategies.

Typically these properties are calculated using microki-
netic modelling in conjunction with first-principles calcula-
tion methods, such as density functional theory (DFT)27–30.
Using the reaction rates of elementary steps (i.e., activation
and reaction energies, Eact and Erxn), microkinetic models can
determine the activity and selectivity of material surfaces31.
Typically Eact and Erxn are calculated with the expensive
nudged elastic band (NEB) method. However, Brφnsted-
Evans-Polanyi (BEP) relations demonstrate that Eact and Erxn
can linearly scale as a function of the adsorption energies
(Eads) of intermediates which can be determined with rela-
tively inexpensive DFT calculations. This scaling relationship
can be exploited to construct activity and selectivity models
described by Eads instead of Eact and Erxn. Previous screening
strategies have used such models to incorporate activity and
selectivity criteria23,24,26 to identify viable catalysts.

Recently, Liu et al. 32 were able to construct such a model
for the activity of NO –

3 RR and by-product selectivity as a
function of the adsorption energies of O and N (EO∗

ads and
EN∗

ads). Although the model was constructed using the lim-
ited adsorption energies of elemental transition metal sur-
faces, the predictive capabilities of these descriptors were
extended to screen several binary intermetallics with a Pt-
Ru based compound demonstrating excellent activity towards
NO –

3 RR. A subsequent joint experimental and computational
study by Wang et al. 33 validated the catalytic activity for Pt
doped with varying concentrations of Ru with Pt0.78Ru0.22 ex-
hibiting activity for NO –

3 RR on par with Rh.
These models can potentially be used to perform large data-

driven screening of materials with the hope of identifying
cheap earth-abundant electrocatalysts. However, the compu-
tational cost of EO∗

ads and EN∗
ads using DFT is still impractical

given the number of materials, facets, and surface-adsorbate
configurations that exist, the combination of which would re-
quire millions of DFT calculations. A predictive model for
Eads is necessary if such a large-scale screening exercise is
feasible. Recently, the Ulissi group in conjunction with Face-
book AI Research, implemented the Open Catalyst Project34

(OCP), a framework developed with the purpose of using ma-
chine learning (ML) to construct such models. The OCP
dataset contains over 872,000 adsorption energies calculated
with DFT across 55 adsorbates and 27,775 inorganic mate-
rials. Combining this training dataset with state-of-the-art
graph neural network (GNN)35 models allowed for the con-
struction of predictive ML models generalized across any ad-
sorbate and material surface with mean absolute errors (MAE)
as low as 0.3 eV. The model is then able to determine the ad-
sorption energy based on the initial unrelaxed geometries of
an adsorbed slab. The small MAE and generality of these
models can be used to screen the activity and selectivity of
large material data sets based on the ML values for EO∗

ads and
EN∗

ads.

In this manuscript, we present a data-driven screening
framework to accelerate our search for earth-abundant elec-
trocatalysts for NO –

3 RR. We assessed the technical and com-
mercial viability of materials based on its resistance to cor-
rosion, activity for NO –

3 RR, N2-selectivity, material cost15,
and thermodynamic stability. We began our search by screen-
ing all symmetrically distinct binary transition metal al-
loys from the Materials Project (MP)36 and Automatic-Flow
(AFLOW)37 databases which yielded 59,390 materials. By
leveraging the ML models for Eads developed in the OCP
and the models for activity and selectivity developed by Liu
et al. 32 we quickly and inexpensively estimated the catalytic
capabilities of these materials. Through a series of progressive
criteria, our screening pipeline has revealed 20 materials that
satisfied all the requirements for commercial viability. Fur-
thermore, we were able to qualitatively demonstrate that the
compositional selection of catalytically active materials from
our screening pipeline is consistent with previous experimen-
tal and computational observations.

II. APPROACH

A. Slab Generation

We described all surfaces considered in this work with a
slab model containing an atomic and vacuum layer of 8 Å
and 20 Å thick, respectively. We considered the surfaces of
12 randomly selected and symmetrically distinct Miller index
(hkl) planes with a maximum index of 3. We expanded our
search to all (hkl) planes with a maximum index of 4 when
investigating the final set of candidate materials. We excluded
slabs that exceeded 250 atoms to avoid subsequent intense us-
age of computational resources. To avoid periodic interactions
between the monatomic adsorbates, all slabs were expanded
along the length and width to at least 8 Å. We then identified
the adsorption sites for monatomic O and N on the surfaces
using the method described by Montoya and Persson 38 .

B. DFT Calculation Parameters

All DFT energy calculations were performed using the
Vienna Ab initio Simulation Package (VASP)39,40 within
the projector augmented wave (PAW)41 approach. The
exchange-correlation effects were modeled using the Perdew-
Berke-Ernzerhof (PBE) generalized gradient approximation
(GGA)42 functional to be consistent with the work performed
by Liu et al. 32 . All slab and bulk calculations were per-
formed without spin-polarization except when Fe, Ni, and
Co were present. The external electrons were expanded in
plane waves with kinetic energy cut-offs of 400 eV. The en-
ergies and atomic forces of all calculations were converged
to within 1× 10−4 eV and 0.02 eV Å−1, respectively. The
Methfessel-Paxton method43 was chosen as the smearing al-
gorithm. We used Γ-centered k-point meshes of 35

a ×
35
b ×

35
c

and 35
a ×

35
b × 1 for bulk and slab calculations, respectively,

with non-integer values rounded up to the nearest integer.
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FIG. 1. Plot of E∗Nads and E∗Oads (blue and red respectively) with DPP
machine learning results on the x-axis and corresponding DFT PBE-
GGA results on the y-axis with triangular and circular data points
from Liu et al. 32 and this work respectively. Fitted lines for E∗Nads,
E∗Oads, and all data points are given in the blue, red, and green dashed
lines, respectively.

In all DFT calculations and ML predictions of EO∗
ads and

EN∗
ads, we used the total energy of an isolated O and N atom

respectively in a 16 × 16 × 16 Å3 box as the adsorbate refer-
ence energy.

All VASP input generation, slab modelling, adsorbate
placement, thermodynamic, and cost analysis were per-
formed using the Python Materials Genomics (pymatgen)
package38,44,45.

C. Validation of Machine Learning and DFT

The OCP allows us to predict the relaxed adsorption ener-
gies of O and N from the initial structure of any intermetallic
slab (IS2RE). Consolidating the IS2RE model with existing
adsorption energy-based activity and selectivity maps allows
us to efficiently infer the catalytic capabilities of large ma-
terial datasets without the need of any DFT calculations. In
this work, we adapted a modified implementation of the Di-
rectional Message Passing Neural Network (DimeNet++)59,60

model. DimeNet improves upon GNN models by accounting
for directional information in triplets of atoms via bond an-
gles and interatomic distances. The improvements developed
by Klicpera et al. 59 modifies to the hidden layers of the neural
network to improve upon the runtime speeds and accuracy of
DimeNet. Under the OCP, we adapted the DimeNet++ model
for slabs by introducing a periodic boundary condition when
constructing the graph. We considered all interatomic inter-

actions within a cutoff radius of 6 Å which under 256 hidden
channels will yielded 1.8 million parameters. For a complete
list of all other hyperparameters, we direct the reader to Table
S4 from the reference herein34. We used this GNN model to
predict EO∗

ads and EN∗
ads.

The training dataset from OCP is composed of adsorp-
tion energies calculated using the revised PBE (rPBE) func-
tional which is in contrast to the activity and selectivity maps
built using the PBE functional32. We trained and validated
the machine learning model with a subset of the Open Cat-
alyst 2020 (OC20) dataset with a train/validation split of
183,075/9,88834, and then tested using PBE data from this
work to be consistent with Liu et al. 32 . Our train/validation
subset of the OC20 dataset contained 202 metallic, 1,829 bi-
nary and 2,030 ternary intermetallic crystals queried from the
Materials Project36 with 82 different adsorbates (see Chanus-
sot et al. 34 ). The adsorption energy dataset was constructed
by randomly sampling low-Miller-index facets from the avail-
able intermetallics and adsorbates.

For our test set, we used DFT to calculate 59 additional data
points for E∗Nads and E∗Oads of 30 Pourbaix stable compounds at
randomly chosen facets with a maximum Miller index of 3.
We also included the 52 data points from Liu et al. 32 for the
binary intermetallics with Miller indices of (310) and (211)
for the body and face centered cubic crystals respectively. Fig-
ure 1 plots the DFT calculated data points against the corre-
sponding ML quantities with triangular data points obtained
from Liu et al. 32 . The R2 of the test set is 0.85, indicating
strong linear correlation between the DFT and ML quantities.
The test set MAE is 0.35 eV, which is consistent with the MAE
of 0.3 eV obtained from the validation set. Both the linear fit
for E∗Nads and E∗Oads demonstrate a slope close to unity with the
ML quantities for E∗Oads consistently underestimating the DFT
calculated quantities by 0.39 eV while the ML quantities for
E∗Nads overestimates by 0.22 eV. The difference in functionals as
well as the inherent MAE of 0.3 eV in the Dimenet++ model
are possibly responsible for the offset of 0.39 eV in the ML
values of E∗Oads. This is in contrast to previous reports of the
rPBE functional overestimating PBE by 0.1 eV in regards to
adsorption energy61. Many of the materials and Miller indices
sampled in the test set were out-of-domain from the training
and validation sets. The strong linear correlation and consis-
tent MAE with this out-of-domain test set indicates that our
model is generalized for any intermetallic material and facet.
Since the offset for E∗Oads exceeds the expected MAE, we ac-
counted for any disparity between the ML and DFT quantities
by adding 0.39 eV to all ML quantities of E∗Oads.

Next we assess the predictability of the DFT inferred cat-
alytic performance using the computed TOF as our primary
metric. Here we qualitatively compared previous experimen-
tal trends in catalytic performance across different metals and
alloys to the trends in log(TOF) observed by Liu et al. 32 in
their calculations. Figure 2 plots the range of log(TOF) in-
ferred from the DFT calculated EO∗

ads and EN∗
ads

32 for each mate-
rial explored in the study. We then annotated the correspond-
ing sets of materials with a ranking of catalytic performance
using experimental TOF values when available in the litera-
ture and the reported nitrate removal rate when not (see refer-
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FIG. 2. Plot of the estimated range of TOF obtained from microkinetic modelling by Liu et al. 32 . The formula of each alloy considered in
the study is organized on the x-axis from lowest to highest range of TOF. Experimental performance trends of different alloys and metals
obtained from the available literature are also displayed on the top (see references herein). Groups of alloys with trends qualitatively consistent
with the work of Liu et al. 32 are labelled in black while alloys with inconsistent trends are labelled in red.
a Chen et al. 46 , b Dima, De Vooys, and Koper 19 , c Valiyeva et al. 47 , d Hasnat et al. 48 , e Wang et al. 49 , f Hamid, Bae, and Lee 50 , g Witońska, Karski, and

Gołuchowska 51 , h Liu et al. 52 , i Maia, Rodrigues, and Passos 53 , j Park et al. 54 , k Siriwatcharapiboon et al. 55 , l Soares, Órfão, and Pereira 56 , m Hasnat
et al. 48 , n Hasnat, Karim, and Machida 57 , o Lemaignen et al. 58

ences in 2).

We note our assessment of computational predictability
for experimental catalytic performance comes with additional
caveats that must be addressed. First, we acknowledged the
experimental rankings in Figure 2 were performed under vary-
ing conditions (e.g. applied potential, pH, and support ma-
terials) derived from varying references. We emphasize that
the ranking of different materials presented here are confined
within the same experiments and that no comparisons of cat-
alytic performance was done across different references. This
will prevent any bias in our ranking that results from the vary-
ing experimental conditions while still allowing for a quali-
tative comparison between experiment and DFT. Second, we
emphasize that although the computational results correspond
primarily to binary compositions of A3B, the experimental re-
sults do not necessarily follow the same stoichiometry or crys-
tal structures with some studies focusing on the formation of
nanocomposites or doping of metal B. However the implica-
tions of the DFT results presented by Liu et al. 32 was not
to predict the catalytic performance of intermetallics with an
exact 3:1 ratio. Instead, the purpose was to assess the perfor-
mance of candidate materials resulting from the synergy be-

tween two different metals using a standard crystal structure
for ease in comparison. This synergy is possible regardless of
the stoichiometry investigated by Liu et al. 32 as demonstrated
subsequently in a joint experimental and computational study
of Pt−Ru whereby the same authors identified the optimal sto-
ichiometry to be Pt78Ru22

49.

The majority of trends found from past experiments are
qualitatively consistent with the trends for log(TOF) obtained
from Liu et al. 32 with the exception of the work performed
by Lemaignen et al. 58 whereby Pd3Sn displayed superior cat-
alytic performance over Pd3Cu experimentally while the com-
putational results demonstrate the opposite. Previous exper-
iments performed by Hasnat, Karim, and Machida 57 have
also showed that Pd3Pt has superior catalytic performance
over Pd3Ag which is inconsistent with the computed results.
Despite the minor discrepancies, the qualitative consistency
between the DFT and experimental results for all other trends
provides enough confidence to use DFT as a tool for catalyst
discovery. We infer by extension, based on the consistency
between DFT and ML shown in Figure 1, that the ML model
is sufficient enough to predict experimentally verifiable trends
in activity and can be used to perform large scale screening of
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3 RR derived from Liu et al. 32 under 0.0 V (a), 0.1
V (b) and 0.2 V (c) vs RHE. The region of high activity in each TOF
plot (black lines) is represented by Equations B1-B3 for (a)-(c) re-
spectively. Activity is simplified to a binary decision map (d) where
any surface with a Euclidean distance of 0.3 eV from Equations B1-
B3 are considered to have high activity (red area). The corresponding
individual areas of high activity are also show in the black oval out-
line in (a)-(c). ML predicted values for EO∗

ads and EN∗
ads using OC20

for the final 20 candidate materials are plotted in (d) as white circles
(see Table III for the list of active facets for each material). ML val-
ues for a select number of elemental and intermetallic compounds
that exceeded $500/kg in cost but exhibited excellent activity in the
literature are also plotted as green circles.

electrocatalysts.

D. Modelling Catalytic Properties

EO∗
ads and EN∗

ads can also be used to describe the most probable
final by-product of NO – 1

3 RR, i.e., selectivity. We adapted
the selectivity maps from Liu et al. 32 in Figure 4(a) at 0.0 V,
(b) at 0.1 V, and (c) at 0.2 V into a single ternary decision
map in Figure 4(d). We specifically highlighted the regions
of N2 (blue) and NH3 (red) selectivity as N2 is the desired
by-product under the context of water purification, while NH3
is desired for its chemical utility. For further details about
the derivation of Figures 3 and 4, we direct the reader to the
references herein32,33.

A model for EO∗
ads and EN∗

ads allows us to leverage the ac-
tivity maps derived by Liu et al. 32 to estimate the turnover
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FIG. 4. Binary decision maps for the selectivity of N2 (blue) and
NH3 (red) as a function of EO∗

ads (x-axis) and EN∗
ads (y-axis) derived

from Liu et al. 32 under 0.0 V (a), 0.1 V (b) and 0.2 V (c) vs RHE.
Adsorption energies in overlapping areas of red and blue can select
NH3 or N2 depending on the applied potential. Figure (d) simplifies
selectivity by combining (a)-(c) into one overlapping decision map
where any data point that falls under it will be considered selective
towards N2, NH3, or both. ML predicted values for EO∗

ads and EN∗
ads

using OC20 for the final 20 candidate materials are plotted in (d) as
white circles (see Table III for the list of active facets for each mate-
rial). ML values for a select number of elemental and intermetallic
compounds that exceeded $500/kg in cost but exhibited excellent ac-
tivity in the literature are also plotted as green circles.

frequency (TOF) of NO –
3 RR, the rate of the reaction per sur-

face site (see Figures 3(a)-(c)). Henceforth, we will describe
log(TOF) > -3 and log(TOF) < -3 as high and low activ-
ity respectively. We assessed the NO –

3 RR activity for each
bimetallic surface under the applied potentials of 0.0 V, 0.1 V,
and 0.2 V vs. RHE while minding the increase in site compe-
tition for hydrogen evolution reactions (HER) at 0.0 V32.

III. RESULTS AND DISCUSSION

Figure 5 summarizes the selection criteria we employed to
screen for candidate electrocatalysts. We evaluated all distinct
binary intermetallics and ground state elemental crystalline
solids reported in the MP and AFLOW databases composed
of any combination of the 26 transition metals from Sc to Au,
which yielded 59,390 materials (338 binary/unary combina-
tions). Hg and Cd are omitted from the list of metals due to
potential toxicity, while Tc is omitted for its radioactivity.

The first criterion describes the Pourbaix stability, i.e., the
electrochemical stability of a material in an aqueous environ-
ment. We quantify Pourbaix stability using the Pourbaix de-
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FIG. 5. Selection criteria for NO –
3 RR electrocatalysts with the number of distinct materials that satisfy the current and all prior criteria (left).

A periodic table above the first criteria indicates the elements (26 transition metals) considered when screening for bimetallic materials in
MP and AFLOW. The selection criteria is accompanied by a grid map for each pair of elements with colors indicating the highest criteria
satisfied by any material in that pair composition (right). Grid points on the diagonal correspond to elemental compositions. Shaded grid
points correspond to compositions with 0.2 < ∆GPBX < 0.5 eV atom−1. Tick labels on the x- and y- axis are sorted from the cheapest (Fe) to
the most expensive (Rh) element. Compounds passing the third criteria (selectivity) are designated as selecting N2 or both N2 and NH3 with \
and X hatching, respectively. Elements corresponding to each column (row) in the grid represent minority (majority) species in the compound.

composition energy (∆GPBX ), which is a function of the ap-
plied potential (V) and pH of the environment. Materials with
∆GPBX = 0 eV atom−1 are stable under such conditions, while
materials with ∆GPBX > 0 eV atom−1 are metastable with the
likelihood of corrosion increasing with ∆GPBX . It was shown
that metastable materials with ∆GPBX < 0.2 eV atom−1 are
less likely to dissolve or corrode in experiments62. However,
materials with ∆GPBX as high as 0.5 eV atom−1 have also
been shown to be stable, albeit with many developing pas-
sivation layers at the surface, which can inhibit their catalytic
capabilities63. We allow any material with ∆GPBX < 0.2 eV
atom−1 at 0.0V < V < 0.2 V and pH=7 to satisfy this criterion.
Due to the exclusive nature of ∆GPBX , only 3,430 or 5.78% of
the original 59,390 materials (92 out of 338 binary combina-
tions) will satisfy the first criterion with the chemical space
confined to materials with a majority/minority composition of
Rh, Ir, Pd, Au, Pt, Ru, Os, Ag or Cu. If we expand our upper
limit for ∆GPBX to 0.5 eV atom−1, we find 6,971 or 11.74% of
the materials (209 out of 338 binary/unary combinations) will
satisfy the first criterion (transparent grid points in Figure 5),
however, these materials are more likely to be subject to sur-
face passivation63. This criterion will only account for bulk
stability under aqueous conditions instead of surface stability.
A more accurate assessment of surface stability under aqueous
conditions can be performed with the surface Pourbaix dia-
gram which requires extensive DFT calculations of adsorbed
OH, H2O, O, and H at varying degrees of adsorbate concen-
tration. Bulk Pourbaix stability, although not exact, will at

least provide an estimate of aqueous stability across large sets
of materials which to an extent correlates to the relative sta-
bility at the surface without the need for expensive adsorption
calculations.

The second criterion assesses the activity towards
NO – 1

3 RR of the 3,430 materials. A material will satisfy this
criterion if any of its surfaces exhibit a data point that lies
in the region of high activity shown in Figure 3(d). Using the
IS2RE ML model from the OCP framework (see Section II D),
we predicted EO∗

ads and EN∗
ads for 12 randomly selected surfaces

of each of the 3,430 candidates. From the adsorption energies,
we find that 1,060 candidates will satisfy the second criterion
(84 binary combinations). Out of the 1,060 materials, 308
materials exhibited high activity at an applied potential of 0
V only, at which NO –

3 RR competes with HER. Despite this,
we stress that the existence of HER competition does not com-
pletely render NO – 1

3 RR inert. In fact, depending on the ap-
plied potential, H+ can become the dominant product in HER
instead of H2 which can aid in facilitating N2 selectivity15.

Similarly, the third criterion assesses the selectivity towards
N2 of each candidate by plotting the ML values for EO∗

ads and
EN∗

ads over the decision map shown in Figure 4(d). We find
862 candidates (67 binary combinations) with data points that
lie in the area corresponding to N2 selectivity, satisfying this
criterion. Because of its chemical utility, Figure 4 also shows
the region where selectivity toward NH3 is favorable. Of the
862 candidates, 811 can select either N2 or NH3 depending on
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the applied potential and facet, allowing for additional utility
beyond water purification, while the remaining 51 candidates
exclusively select N2.

The fourth criterion assesses the material cost of each com-
pound in $/kg/mol. To satisfy this criteria, the cost of a com-
pound must be less than $500 /kg/mol. All metal prices in this
study are taken from March 202121,64,65. We note here that the
catalytic properties (selectivity and activity), which requires
expensive DFT calculations of E∗Nads and E∗Oads, are assessed
prior to our cost criterion. The computational efficiency of our
selection criteria should therefore account for the cost prior
to catalytic properties. However, since our machine learning
model allows us to assess E∗Nads and E∗Oads with negligible com-
putational cost, we elected to assess catalytic properties prior
to cost in order to identify potential candidates regardless of
material cost. As such, we find that an overwhelming ma-
jority of viable candidates will have varying concentrations of
the top 7 most expensive metals. By confining materials based
on cost, we significantly reduce the number of viable candi-
dates from 862 to 29 (4 binary combinations). The remaining
binary compounds are Cu-based intermetallics containing Zn,
Ni, Co, or Ag. Cu-Fe based components and elemental Zn, Ni,
and Co are also viable candidates when the limit for aqueous
stability is defined as ∆GPBX < 0.5 eV atom−1.

The fifth and final criterion assesses the thermodynamic
stability of the candidate material via the energy above hull
(Ehull) or the formation energy of a material relative to the
ground state. Similar to ∆GPBX , materials with Ehull = 0 eV
atom−1 are at the thermodynamic ground state while materials
with Ehull > 0 eV atom−1 are metastable with the likelihood
of experimental synthesizability decreasing as Ehull increases.
Materials with a calculated Ehull < 0.1 eV atom−1 have been
shown to have reasonable rates of demonstrated synthesis in
experiment66. We will use this criterion as our final condition
for viable catalyst candidates. Of our original 59,390 materi-
als, 20 candidates listed in Table I have passed all five crite-
ria. These candidates, from cheapest to most expensive, are
ZnCu8, 6 Cu-Ni alloys, CoCu7, and 12 Cu-Ag alloys. The
majority of materials exhibit high activity at an applied po-
tential of 0 V only. All Cu-Ni compounds and two Cu-Ag
compounds demonstrate high activity in an applied potential
range from 0 V to 0.1 V. However, none of the 20 candidates
are active at 0.2 V. All candidates can select either N2 or NH3
as a by-product depending on the applied potential and facet
except for and C2/m Cu2Ag which exclusively selects N2.

Unsurprisingly, a large majority of compounds predicted to
exhibit high turnover frequencies contain noble metals (Rh, Ir,
Pd, Au, Pt, Ru, Os, Ag or Cu) which are known for their resis-
tance to chemical erosion (low ∆GPBX ) and excellent catalytic
properties (high TOF)48,57,58,67. AgPd, in particular, is known
to have the highest reported experimental turnover frequency
found so far68. From their volcano maps, Liu et al. 32 pre-
viously predicted RuPt3 alloys as having excellent catalytic
activity, the results of which were subsequently validated in
Pt-doped Ru experiments in a separate study69. We indeed
observed high activity in our ML framework when investigat-
ing both Ag-Pd and Ru-Pt alloys (see Figure 3). However,
these components are far too expensive to be commercial-

ized for NO –
3 RR. Under a spot price for Pd at $68,643/kg

(accessed from https://www.apmex.com as of 06/26/2020)65,
the cost of Pd catalysts in a trickle reactor will range from
$0.08 to $1.53 under a catalyst lifespan of 20 to 1 year re-
spectively. These prices make electrocatalysis economically
comparable with ion exchange15. With recent price increases
in precious metals, the price of Pd has risen to $79,855/kg (as
of 04/30/2021), thus providing no economic advantage over
ion exchange. Although Pt and Ru are cheaper than Pd, the
volatility of precious metal prices and risk of price increases
exceeding $68,643/kg in the future makes the long-term eco-
nomic viability of precious metals unreliable.

Beyond precious metals, we predicted many inexpensive
Cu-based compounds to have high activity. Among mono-
metallic catalysts, Cu is widely explored in the literature for
its relatively high activity for NO –

3 RR and has been shown to
outperform Pt-group precious metals in regards to activity un-
der acidic conditions19,28,70. The activity of Cu surface sites is
further enhanced when alloyed with precious metals such as
Pt, Ir, Pd, and Rh71–73 as well as common 3d metals such as
Fe, Zn, and Ni69,74–77, which is consistent with our predictions
(albeit Fe-Cu is shown to have a relatively high aqueous de-
composition energy). This stems from the shift in the d-band
center of Cu surface sites which enhances NO3 adsorption.
When alloyed with Ni, Cu sites adsorb NO –

3 anions while Ni
sites adsorb H+ to facilitate the successive deoxygenation of
NO *3 to N*78.

Although many of the intermetallic alloys screened con-
sidered in this study were not stable under an aqueous en-
vironment, it is reasonable that these synergistic effects can
be achieved when alloying Cu with other inexpensive metals
via surface doping as has been shown in many experimental
studies to produce an effective and economical electrocata-
lyst. Our findings also demonstrate that the catalytic viability
of Cu-Ag and Cu-Ni candidates are insensitive to composition
and structure as shown by the diversity of such materials re-
ported in Table I, which makes surface doping of Cu with Ag
or Ni a possible approach to create an electrocatalyst.

As far as the authors are aware, Cu-Co, and Cu-Ag com-
pounds have yet to be explored as electrocatalysts for
NO –

3 RR in the literature.
Given that the purpose of our work was to identify promis-

ing catalysts based on criteria that could be rapidly assessed
for thousands of candidate materials, we have naturally had to
neglect several factors that will be critical to the further de-
velopment of a practical nitrate reduction electrocatalyst for
water purification. First, our screening assumed that all reac-
tions occurred under a neutral pH as N2 production became
more favorable at pH > 479–82. Furthermore, in the context
of water purification, many groundwater sources have near-
neutral pH (e.g., 6 - 8), and it is generally desirable to mini-
mize pH adjustment since it entails costly additional chemical
handling15,83. Hence, evaluating catalyst performance at neu-
tral pH is a sensible starting point.

Second, our computational methods did not capture the ef-
fects of solvation or competition by ubiquitous environmental
ions nor did it account for the effect of the electrolyte. Com-
mon ions such as Cl−, Br−, SO−2

4 , and PO−3
4 have been shown
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TABLE I. Table of the formula, space group, cost, Pourbaix decomposition energy (at 0.0 V and 0.1 V vs. RHE), and selectivity of the 20
candidate materials that have satisfied all criteria of our screening process.

Formula Space group Cost ∆Gaq(0.0 V) ∆Gaq(0.1 V) Active N2 NH3
($/kg mol−1) (eV/atom) (eV/atom) at 0.1 V

ZnCu8 I4/mmm 8.78 0.18 0.29 No
Cu5Ni Cm 10.93 0.15 0.27 Yes
Cu5Ni Amm2 10.93 0.15 0.27 Yes
Cu4Ni I4/m 11.22 0.17 0.29 Yes
Cu3Ni R3̄m 11.65 0.20 0.33 Yes
Cu3Ni I4/mmm 11.65 0.21 0.33 Yes
Cu3Ni Cmmm 11.65 0.21 0.33 Yes
CoCu7 Fm3̄m 14.52 0.19 0.30 No
Cu4Ag I4/m 261.58 0.08 0.16 No
Cu3Ag P4/mmm 315.24 0.08 0.15 Yes
Cu3Ag Pmmm 315.24 0.09 0.16 No
Cu3Ag Pmmn 315.24 0.10 0.18 No
Cu3Ag C2/m 315.24 0.10 0.18 Yes
Cu3Ag I4/mmm 315.24 0.10 0.17 No
Cu3Ag Pmmn 315.24 0.10 0.17 No
Cu2Ag P63/mmc 397.92 0.07 0.14 No
Cu2Ag C2/m 397.92 0.09 0.15 No
Cu2Ag P63/mmc 397.92 0.07 0.14 No
Cu2Ag C2/m 397.92 0.10 0.17 No
Cu5Ag4 I4/mmm 496.75 0.10 0.15 No

to affect the activity and selectivity of NO –
3 RR in both pas-

sive reduction on zero-valent iron and electroreduction.79,84

This is especially important in the context of water purifica-
tion where nitrate runoff may enter natural waters containing
background electrolytes such as NaCl and Na2SO4. Chloride
and sulfate anions in particular have been shown to decrease
catalytic activity by poisoning and dissolving the catalyst85.

Despite this, both Liu et al. 32 and this study (see Figure 2)
have been able approximate past experimental trends in activ-
ity using the microkinetic models. Furthermore, scaling rela-
tionships used to develop volcano maps are known to gener-
alize to models beyond single adsorbates on slabs including
solid-liquid interfaces which shift the adsorption energy by a
constant value86,87. Lastly, microkinetic simulations of adsor-
bate coverage demonstrate H* and NO –

3 * to be the dominant
competing species under negative and positive potentials re-
spectively, however, additional simulations of adsorption for
common solvents and electrolytes are required to gauge their
competitiveness with H* and NO –

3 *. Furthermore, accu-
rately modeling electrolyte and solvation effects would re-
quire substantial additional computational effort. At a mini-
mum, it would be necessary to perform DFT calculations of
co-adsorption of NO –

3 RR intermediates with the aforemen-
tioned anions at varying concentrations of an implicit solvent.
Higher accuracy could be obtained by calculating a liquid in-
terface with the catalyst surface which can be used to model
an electrolyte interface or an explicit solvent, but requires
costly ab-initio molecular dynamics simulations. However,
both the OC20 framework and the microkinetic models devel-
oped by Liu et al. 32 used in this study are limited to single
intermediate adsorption on a catalyst surface under a vacuum
interface.

Finally, since our screening criteria were based on thermo-
dynamics, we did not estimate the overpotentials of our pro-
posed materials or directly determine their turnover frequen-
cies via, e.g., transition state calculations. Both factors will
have an important impact on the ultimate economic viability
of the electrocatalyst.

Despite the simplifications required by the scale of our
screening (50,000+ materials), by identifying a small number
of promising candidates, this work will facilitate more sophis-
ticated simulations and experiments that can further evaluate
the factors discussed above.

IV. CONCLUSION

By coupling machine learning with previous scaling rela-
tionships for NO –

3 RR, we developed an efficient and compu-
tationally inexpensive screening strategy that revealed 20 eco-
nomically viable electrocatalysts out of an initial pool of more
than 50,000 candidates. The majority of candidate materials
are Cu-based intermetallics owing to the excellent activity of
Cu and its synergistic effect with other transition metals. Most
of the candidates can select either N2 or NH3, depending on
the applied potential and facet, giving it utility in water purifi-
cation as well as NH3 production. We performed DFT calcu-
lations to verify the ML adsorption energies of a select number
of viable catalytic materials, most of which demonstrated ad-
sorption energies within or adjacent to the areas of high activ-
ity. The catalytically active compounds exhibited in our grid
map of binary intermetallics (Figure 5) contain precious met-
als as well as Cu, which is in agreement with previous stud-
ies. Future studies will explicitly calculate the reaction path-
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ways and transition states of the materials proposed herein as
well as experimentally validate their catalytic activity towards
NO –

3 RR.
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V. APPENDIX

Appendix A: Pourbaix decomposition

All candidates identified are metastable under aqueous con-
ditions with a ∆GPBX < 0.2 eV/atom. The candidate catalyst
can either dissolve into ionic components or the surface can be
passivated into a solid listed in Table II depending on factors
such as temperature, solvation, or pressure.

TABLE II. Table showing the ground state components that the 4
binary compositions can decompose into under pH=7 and an applied
potential of 0.0 V and 0.1 V.

0.0 V 0.1 V

Zn-Cu Zn+2 +Cu+1 CuO(s)+Zn+2

Ni-Cu Ni+2 +Cu+1 Ni+2 +CuO(s)
Ag-Cu Ag(s)+Cu+1 Ag(s)+CuO(s)
Co-Cu Cu+1 +Co+2 Co+2 +CuO(s)

Appendix B: Activity and selectivity decision maps

To determine the area on the maps corresponding to high
activity (log(TOF) > -3), we approximated a line of high ac-
tivity for each heat map that lies on the center of the warmest
region of the map (see Figures 3(a)-3(c)) given by:

EN∗
ads = 2.27EO∗

ads +6.95,{EO∗
ads :−5.90 < EO∗

ads <−5.13}
(B1)

EN∗
ads = 2.44EO∗

ads +7.21,{EO∗
ads :−5.30 < EO∗

ads <−4.85}
(B2)

EN∗
ads = 2.27EO∗

ads +5.17,{EO∗
ads :−5.10 < EO∗

ads <−4.39}
(B3)

with Equations S1, S2, and S3 corresponding to 0.0, 0.1
and 0.2 V vs RHE respectively. The MAE of the ML model
developed by Chanussot et al. 34 is approximately 0.3 eV. As
such, we consider a buffer distance of 0.3 eV from Equations
S1-S3 as potential regions of high activity which yields an el-
lipse around the corresponding line. The areas within the three
ellipsis (red) are considered regions of high activity whereas
areas outside the ellipsis will have low activity.
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Appendix C: Facets of candidate materials

TABLE III. Table of the formula, space group and facet Miller in-
dices of the 20 candidate materials that have satisfied all criteria of
our screening process. The Miller indices listed in the third column
correspond to the facets with high activity and N2 selectivity. The
tabulated data for price, Pourbaix decomposition energy, activity and
selectivity can be found in Table 1 in the main manuscript.

Formula Space group Miller indices (hkl)
ZnCu8 I4/mmm (443),(334),(331)
Cu5Ni Cm (243̄),(212̄),(213̄),(403̄),(203̄),(301̄)

(103),(214̄),(234̄),(234),(401̄),(302̄)
Cu5Ni Amm2 (334),(233),(041),(032),(031),(012)

(023),(013),(124),(114),(104)
Cu4Ni I4/m (221),(320),(310),(223),(430)

(212),(410),(201),(334),(331)
Cu3Ni R3̄m (103̄),(104̄),(103),(104),(41̄0),(41̄4)

(21̄2),(323̄),(320),(41̄4̄),(102̄),(102)
Cu3Ni I4/mmm (103),(430),(211),(210),(414),(410)

(320),(313),(310),(112),(102),(113)
Cu3Ni Cmmm (120),(221),(124),(201),(243),(320)

(121),(140),(210),(233),(341),(441)
CoCu7 Fm3̄m (221),(332),(331)
Cu4Ag I4/m (221),(212),(423),(334),(223),(213)
Cu3Ag P4/mmm (210),(213),(114)
Cu3Ag Pmmm (120),(223),(124),(113)
Cu3Ag Pmmn (143),(132),(124),(123)

(113),(243),(423)
Cu3Ag C2/m (114),(123̄),(113),(123),(223),(124̄)

(134̄),(134),(214),(234̄),(234),(334̄)
Cu3Ag I4/mmm (334),(324),(223),(213)
Cu3Ag Pmmn (124),(123),(203)
Cu2Ag P63/mmc (336̄4),(303̄4),(101̄2),(202̄3),(101̄3)
Cu2Ag C2/m (323),(234̄),(112̄),(214̄)

(423),(211),(212̄),(114)
Cu2Ag P63/mmc (101̄2),(101̄4),(101̄3)
Cu2Ag C2/m (112̄),(113̄),(313̄),(114̄),(114),(123̄)

(123),(214̄),(223̄),(223),(323),(234̄)
Cu5Ag4 I4/mmm (331),(443)
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