
UNIVERSITY OF CALIFORNIA
Santa Barbara

Fast Physics-Informed Neural Networks on Edge
Devices

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

by

Zhixiong Chen

Committee in Charge:

Professor Zheng Zhang, Chair

Professor Haewon Jeong

Professor Li-C Wang

June 2024



The Thesis of Zhixiong Chen is approved:

Professor Haewon Jeong

Professor Li-C Wang

Professor Zheng Zhang, Committee Chair

June 2024



Fast Physics-Informed Neural Networks on Edge Devices

Copyright © 2024

by

Zhixiong Chen

iii



Acknowledgements

I would like to express my sincere gratitude to several individuals who have

been instrumental in the completion of this project.

Firstly, I extend my heartfelt thanks to Professor Zheng Zhang, my academic

advisor, for his invaluable guidance and support throughout this endeavor. His

expertise and encouragement have been pivotal in shaping the direction of this

project.

I am also deeply grateful to all the members in Professor Zhang’s research

group, especially Alvin Liu, Xinling Yu, and. Yequan Zhao, for their unwavering

assistance and insightful feedback. Their contributions have greatly enriched the

quality of this work.

I am truly fortunate to have had the opportunity to collaborate with such

talented and supportive individuals. Their contributions have undoubtedly made

a significant difference, and for that, I am profoundly grateful.

iv



Abstract

Fast Physics-Informed Neural Networks on Edge Devices

Zhixiong Chen

Training end-to-end models for solving partial differential equations (PDEs)

using deep learning methods, such as deep neural networks, demands substantial

computing resources, including power supply, memory space, and advanced com-

puting platforms. However, edge devices typically lack these resources, making

such training paradigms unattainable on these devices. Transfer learning, which

involves leveraging pre-trained models on one dataset to perform inference on an-

other dataset by fine-tuning model parameters, offers a solution by extensively

pre-training models on modern GPUs and requiring fewer computing resources

during fine-tuning. By applying transfer learning to solve PDEs with neural net-

works, we address the demand for real-time response from PDE solvers in sci-

entific and engineering problems. In this project, we propose utilizing transfer

learning for Physics-Informed Neural Networks (PINNs) to address problems in

reachability analysis. We first pre-train a modified PINN on standard GPUs and

subsequently fine-tune the model with constrained computing resources. During

fine-tuning, we compute gradients of the loss analytically to reduce dependency

on existing libraries, thereby enhancing the method’s generalizability across other

v



edge devices. Through experimentation with multiple PDE examples and the

reachability problem, our results demonstrate that transfer learning with limited

computing resources achieves comparable accuracy levels to the end-to-end train-

ing paradigm while requiring significantly fewer computing resources.

vi



Contents

Acknowledgements iv

Abstract v

List of Figures ix

1 Introduction 1

2 Background and Related Work 5
2.1 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 ODEs and PDEs . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Solving Differential Equations . . . . . . . . . . . . . . . . 7

2.2 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Train, validation, and testing of neural networks . . . . . . 15
2.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Advanced Optimization Methods . . . . . . . . . . . . . . 19
2.2.5 Backward-Propagation . . . . . . . . . . . . . . . . . . . . 22

2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Physics-Informed Neural Networks . . . . . . . . . . . . . . . . . 27

2.4.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Reachability in High Dimensions . . . . . . . . . . . . . . 33

3 Methodology 40
3.1 Transfer Learning of PINNs . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Reachability Problem . . . . . . . . . . . . . . . . . . . . . 44

3.2 Finetuning Analytic Gradient Computation . . . . . . . . . . . . 45

vii



4 Methodology 50
4.1 Transfer Learning of PINNs . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Reachability Problem . . . . . . . . . . . . . . . . . . . . . 54

4.2 Finetuning Analytic Gradient Computation . . . . . . . . . . . . 55

5 Numerical Results 60
5.1 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . . . . . . 69
5.3 3-D Reachability Problem . . . . . . . . . . . . . . . . . . . . . . 74

6 Discussion and Conlusion 77

viii



List of Figures

2.1 MLP with 2 hidden layers. RAY, Pinti, and Oberai 2024 . . . . . 12
2.2 Different activation functions. RAY, Pinti, and Oberai 2024 . . . 14
2.3 Gradient Descent prefers flatter minimas. RAY, Pinti, and Oberai
2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Computational graph. RAY, Pinti, and Oberai 2024 . . . . . . . . 23
2.5 Computational graph to evaluate derivatives w.r.t network input.
RAY, Pinti, and Oberai 2024 . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Structure of Physics-Informed Neural Networks . . . . . . . . . . 29
2.7 Structure of Transfer Learning of Physics-Informed Neural Net-
works. Hidden layers are fixed during finetuning and only the output
layer can be modified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Pretraining loss values in log scale. y-axis is loss values in log scale,
and x-axis represents iteration . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Finetuning loss values in log scale. y-axis is loss values in log scale,
and x-axis represents iteration . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Predicted and ground truth solution for the Poisson equation at
k = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Error of the predicted result. . . . . . . . . . . . . . . . . . . . . . 65
5.5 Predicted solution for the Poisson equation at k=5 by training a
PINN from scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Error of the predicted solution for the PINN trained from scratch. 66
5.7 Predicted and ground truth solution for the Poisson equation at
k = 6 after finetuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.8 Error of solution for the Poisson equation at k = 6 after finetuning. 67
5.9 Predicted and ground truth solution for the Poisson equation at
k = 3.5 after finetuning. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.10 Error of solution for the Poisson equation at k = 6 after finetuning. 68

ix



5.11 Pretraining training loss. The pretraining loss is calculated over
µ ∈ [1,1.2,1.4,1.6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.12 Finetuning test loss. The testing is performed for µ = 1.33(blue
line), µ = 1.527(yellow line), and µ = 1.423(red line). . . . . . . . . . 72
5.13 Test loss for µ = 1.423 at finetuning stage using analytical gradient
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.14 Test loss for µ = 1.423 at finetuning stage using backward propa-
gation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.15 Ground truth solution for 3-D reachability problem. Left figure
shows the solution space where the blue region denotes the reachable
set. The right figure shows the overlap of this solution with the true
solution. Since this is ground truth, thus it shows a fully overlap. . . . 75
5.16 Predicted solution for 3-D reachability problem (Left). Compari-
son of predicted solution with ground truth (Right) where shaded area
represents the difference. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



Chapter 1

Introduction

Differential equations are fundamental tools in various scientific fields, de-

scribing relationships between variables and their rates of change. In physics, dif-

ferential equations are ubiquitous, modeling the behavior of systems in classical

mechanics, electromagnetism, thermodynamics, and quantum mechanics. For in-

stance, Newton’s second law of motion can be expressed as a second-order ordinary

differential equation. In engineering, differential equations are extensively used to

model and analyze systems across domains such as electrical circuits, fluid dynam-

ics, structural mechanics, control theory, and signal processing. The Navier-Stokes

equations, for example, describe fluid flow, while the heat equation governs the

distribution of heat in a material. In biology, differential equations model popula-

tion dynamics, biochemical reactions, neural networks, and the spread of diseases.

Examples include the Lotka-Volterra equations for predator-prey interactions and

the Hodgkin-Huxley model for action potentials in neurons. In engineering, par-

1



Chapter 1. Introduction

tial differential equations (PDEs) are often used to describe complex systems,

making their solution a primary concern. Simple cases can sometimes be solved

using analytic methods like Fourier series. However, for more complex PDEs

with higher dimensions or intricate boundary conditions, numerical methods are

preferred. Despite their accuracy, numerical methods can be computationally ex-

pensive for solving challenging PDEs. To address this, Physics-Informed Neural

Networks (PINNs) have been proposed Raissi, Perdikaris, and George E Karni-

adakis 2019. Utilizing modern GPUs, PINNs show superior performance in solving

high-dimensional PDEs and various areas where solving PDEs is required, such as

inverse problem in Lu, Pestourie, et al. 2021, Jagtap et al. 2022, and J. Yu et al.

2022, control problems in Bansal and Tomlin 2021 and Mowlavi and Nabi 2023,

and simulation tasks in Liu, X. Yu, and Z. Zhang 2022 and Oldenburg et al. 2022

facilitating further research in areas like inverse design and simulations. Details

of PINNs will be discussed in the Preliminary section. However, PINNs are not

without limitations. They face the curse of dimensionality due to the exponen-

tial growth of the number of forward and backward propagation when solving

high-dimensional PDEs and require significant computing resources for complex

problems. Additionally, their generalizability is limited. A PINN trained on spe-

cific PDE parameters must be retrained from scratch if these parameters change.

This retraining requirement poses challenges in engineering scenarios requiring

2



Chapter 1. Introduction

real-time PDE solutions on edge devices, such as microcontrollers, FPGAs, and

edge GPUs, which have limited computing resources and energy constraints. Ef-

forts have been made to develop models capable of solving different PDEs after a

single training session. One such framework, DeepONet by Lu, Jin, and George

Em Karniadakis 2019, aims to learn linear and nonlinear operators implicitly as

neural networks. Leveraging the Universal Approximation Theorem for Opera-

tors, DeepONet represents various operators, including those from classical and

fractional calculus, through neural networks trained on multi-fidelity data and

heterogeneous sources of experimental and simulation data. This approach effi-

ciently discovers new operators and predicts complex dynamics of multiscale and

multiphysics operators. However, DeepONet’s hardware memory requirements

remain a challenge. Another alternative is applying transfer learning to PINNs.

This approach involves pretraining a PINN on a family of PDEs with different

parameters and fine-tuning the model for new PDEs. This method, described in

Desai et al. 2021, has proven fast and effective for PDEs with a single varying

parameter but is limited when multiple parameters change in real-world scenar-

ios. Additionally, its performance on edge devices has not been tested. Therefore,

this project proposes the following contributions: 1. During the fine-tuning stage,

only the parameters of the last layer are optimized. We implemented an analytic

method to compute the gradients, eliminating dependence on existing gradient

3



Chapter 1. Introduction

computation libraries. 2. We extend the transfer learning method to handle more

complex tasks by pretraining PINNs on PDEs with multiple varying parameters.

3. To our knowledge, this is the first work aiming to solve a real-world opti-

mal control problem on edge devices. We successfully addressed a problem from

Bansal and Tomlin 2021 on edge devices using transfer learning while maintaining

accuracy.

4



Chapter 2

Background and Related Work

2.1 Differential Equations

2.1.1 ODEs and PDEs

Ordinary differential equations (ODEs) refer to differential equations that are

dependent on only a single independent variable. The general form of an ODE is:

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0 (2.1)

where y is the unknown function of the independent variable x; y′, y′′, . . . , y(n)

represent the first, second, . . . , nth derivatives of y with respect to x;F is a given

function relating y and its derivatives. The ODE is said to be linear if it can be

written as a linear combination of the derivatives of y. A classic example of ODE

from physics is the ODE describing the simple harmonic motion. The motion of

5



Chapter 2. Background and Related Work

a mass attached to a spring is governed by a second-order ODE. The equation is

given by:

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (2.2)

This second-order ODE describes the relation between the displacement x(t)

of the mass and its acceleration.

Efforts to find solutions for ODEs have been extensive. To analytically solve

first-order ODEs, one method is the separation of variables, which basically sep-

arates the variables so that x and y will only appear on one side of the equation

and thus reducing the difficulty of solving such an equation.

Partial differential equations (PDEs) are equations that involve multiple in-

dependent variables and their partial derivatives. They are fundamental in de-

scribing physical phenomena that vary in more than one dimension, such as heat

diffusion, fluid flow, electromagnetic fields, and quantum mechanics. The general

form of a PDE is:

F

(
x1, x2, . . . , xn, u,

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂2u

∂x21
,
∂2u

∂x1x2
, . . . ,

∂iu

∂xin

)
= 0 (2.3)

Approaches for solving PDEs have also been investigated extensively. Meth-

ods like finite difference method, finite volume method, and spectral method can

provide an accurate solution to PDEs.

6



Chapter 2. Background and Related Work

2.1.2 Solving Differential Equations

In many cases, solving differential equations exactly is not a choice for peo-

ple. Some equations are complicated, and numeric approximations are normally

enough. Using the first-order ordinary differential equations as an example. The

reason that we can only consider first-order here is that higher-order ODEs can be

converted to a larger system of first-order ODEs by introducing extra variables.

For example, the second-order equation y′′ = −y can be rewritten as two first-

order equations: y′ = z and z′ = −y. Numerical methods for solving first-order

ODEs often fall into one of two large categories: Linear multistep methods, or

Runge-Kutta methods by Kutta 1901. Each method can be further divided into

those that are explicit as discussed in Verwer 1996 and those that are implicit as

discussed in Ascher, Ruuth, and Wetton 1995. There are some well-known meth-

ods like the Euler method, the backward Euler method, the first-order exponential

integrator method mentioned in Biswas et al. 2013, and so on.

For PDEs, exact solution is also hard to obtain and not necessary in most en-

gineering and science problems. One famous method is finite difference method,

and it represents functions by their values at certain grid points and derivatives

are approximated through differences in these values. The method of lines is also

widely used, and the main idea is that it discretizes all dimensions except one.

The finite element method uses variational methods to minimize an error function,

7



Chapter 2. Background and Related Work

produce a stable solution, and find approximate solutions to boundary value prob-

lems. The finite volume method, similar to the finite difference method or finite

element method, calculates values at discrete places on a meshed geometry. “Fi-

nite volume” refers to the small volume surrounding each node point on a mesh.

Spectral methods are techniques used to solve certain differential equations, often

involving the use of the fast Fourier transform. The idea is to write the solution of

the differential equation as a sum of certain basis functions, and then to choose the

coefficients in the sum that best satisfy the differential equation. There are also

some mesh-free methods that do not require a mesh connecting the data points

of the simulation domain.

There are certain shortcomings associated with these numerical methods. One

obvious point is the curse of dimensionality (CoD). In numerical methods for

PDEs, this phenomenon manifests when higher-dimensional spaces require signif-

icantly more computational effort to achieve accurate solutions. For example, in

a one-dimensional problem, a relatively small number of grid points may suffice

to approximate the solution. However, as the dimensionality increases to two,

three, or higher, the number of grid points, and thus the computational workload,

grows exponentially. This exponential growth results in enormous memory and

processing demands, making high-dimensional problems infeasible to solve with

standard numerical techniques. Additionally, the curse of dimensionality can lead

8



Chapter 2. Background and Related Work

to significant challenges in maintaining numerical stability and accuracy, as errors

can propagate and magnify across the expanded computational grid. Another

constraint associated with numerical methods is the high computation cost de-

manded when solving inverse problems or PDE-constrained optimization methods

in that the PDE needs to be solved many times.

2.2 Deep Neural Networks

A popular approach to solving complicated problems is to use deep neural

networks (DNNs). The simplest network architecture is known as multilayer

perceptron (MLP) mentioned in Rosenblatt 1958 and Rumelhart, Hinton, and

Williams 1986. If we define our objective as the approximation of a function

f : x ∈ Rd 7→ y ∈ RD using an MLP, which we denote as F . Computing units of

an MLP, which are known as neurons, are stacked in several consecutive layers.

The zeroth layer is called the input layer, which is responsible for providing an

input to the network. The last layer is known as the output layer, which outputs

the network’s prediction. Every other layer in between is known as a hidden layer.

A schematic demonstration of such architecture is shown in Figure 1. Here we can

use some notations to help us better understand the operations occurring inside

an MLP. We consider a network with L hidden layers, and the width of each layer

9



Chapter 2. Background and Related Work

is denoted as Hl for l = 0, 1, . . . , L+ 1. To be consistent with the function we try

to approximate in our previous definition, we must have H0 = d and HL+1 = D.

The output vector for l-th layer can be represented by x(l) ∈ RHl , and it will also

serve as the input to the next layer. We can also set x(0) ∈ Rd as the input signal

provided by the input layer. In each layer l, 1 ≤ l ≤ L + 1, the i-th neuron per-

forms an affine transformation on that layer input x(l−1) followed by a non-linear

transformation:

x
(l)
i = σ(W

(l)
ij x

(l−1)
j︸ ︷︷ ︸

Einstein sum

+b
(l)
i ), 1 ≤ i ≤ Hl, 1 ≤ j ≤ Hl−1 (2.4)

where W
(l)
ij and b

(l)
i are known as the weights and bias associated with i-th

neuron of layer l, while the function σ(·) is known as the activation function and

plays an important role in helping the network to represent non-linear complex

functions. If we use W (l) ∈ RHL−1×Hl to be the weight matrix for layer l and

b(l) ∈ RHl to be the bias vector for layer l, then we can re-write the action of the

whole layer as

x(l) = σ
(
A(ℓ)

(
x(l−1)

))
, A(ℓ)

(
x(l−1)

)
= W (l)x(l−1) + b(l) (2.5)

10



Chapter 2. Background and Related Work

where the activation function is applied component-wise. Finally, the com-

putation of the whole network F : Rd 7→ RD can be seen as a composition of

alternating affine transformations and component-wise activations:

F(x) = A(L+1) ◦ σ ◦ A(L) ◦ σ ◦ A(L−1) ◦ · · · ◦ σ ◦ A(1)(x). (2.6)

The parameters of the network is all the weights and biases, which we will

represent as

θ =
{
W (l), b(l)

}L+1

l=1
∈ RNθ (2.7)

where Nθ denotes the total number of parameters of the network. The net-

work F (x;θ) represents a family of parameterized functions, where θ needs to be

suitably chosen such that, the network approximates the target function f(x) at

the input x.

2.2.1 Activation Functions

One component that could be the most important is the activation function

of an MLP. There are various types of activations investigated by literature and

each of them has its own advantages and disadvantages. We will introduce some

of them in the following paragraphs.

11



Chapter 2. Background and Related Work

Figure 2.1: MLP with 2 hidden layers. RAY, Pinti, and Oberai 2024

The simplest activation can be written as σ(ξ) = ξ. This function is infinitely

smooth, ranging from negative infinity to positive infinity, with all derivatives

beyond the second order are zero. Using this linear activation function for all layers

in an MLP will reduce the entire network to a single affine transformation of the

input. Therefore, the network will be nothing more than a linear approximation

of the target function, and it will be totally useless if the target function is highly

non-linear.

One of the most well-known and widely used activation function is called

Rectified Linear Unit (ReLU). This is a piece function and is defined as

σ(ξ) = max{0, ξ} =


ξ, if ξ ≥ 0

0, if ξ < 0

(2.8)

12



Chapter 2. Background and Related Work

The function is continuous, while its derivative will be piecewise constant with

a jump ξ = 0. The second derivative will be a dirac function concentrated at

ξ = 0. Or in other words, the higher-order derivates are not well-defined. The

range of the function is from 0 to positive infinity. To overcome the issue of ReLU

that it can lead to a null output from a neuron if the affine transformation of

the neuron is negative, a leaky version of ReLU mentioned by Xu et al. 2015 was

designed.

σ(ξ;α) = max{0, ξ} =


ξ, if ξ ≥ 0

αξ, if ξ < 0

(2.9)

where α becomes a network hyper-parameter. The derivates of Leaky ReLU

behave the same way as those for ReLU, while its range now is from negative

infinity to positive infinity.

Another famous choice is the logistic function, or Sigmoid function. The Sig-

moid activation function is given by

σ(ξ) =
1

1 + e−ξ
(2.10)

and it has the following properties: The function is infinitely smooth and

monotonic; the range of the function is from 0 to 1; the derivative quickly decays

13



Chapter 2. Background and Related Work

Figure 2.2: Different activation functions. RAY, Pinti, and Oberai 2024

to zero away from ξ = 0, this activation function can lead to slow convergence of

the network when training.

Tanh is also a frequently used activation function, and it can be seen as a

symmetric extension of the sigmoid function

σ(ξ) =
eξ − e−ξ

eξ + e−ξ
(2.11)

This function is also infinitely smooth and monotonic, while its range is from

-1 to 1 . Similar to the logistic function, the derivative of tanh quickly decays to

zero away from ξ = 0 and can also lead to slow convergence for training networks.

14



Chapter 2. Background and Related Work

2.2.2 Train, validation, and testing of neural networks

With all the previous knowledge, we now have a sufficient understanding of the

architecture of MLPs. One question that is left unanswered is how the parameters

of these networks are set to approximate some target function. The discussion here

will be focused on the framework of supervised learning. Let us assume that we

are given a dataset of pairwise samples S = {(xi, yi) : 1 ≤ i ≤ N} corresponding

to a target function f : x 7→ y. We wish to approximate the function using the

neural network F(x;θ,Θ) where θ are the network parameters; Θ corresponds

to the hyperparameters of the network such as depth, width, activation function

type, etc. The method to design a robust network involves three main steps: 1.

Find the optimal values of θ in the training phase; 2. Find the optimal value of Θ

in the validation phase; 3. Test the performance of the network on unseen data on

the testing phase. Correspondingly, the dataset S will also be divided into three

distinct parts corresponding to these three steps. In the following paragraphs,

these three steps will be discussed in detail.

Training the network makes use of the training dataset to solve the following

optimization problem: Find

15



Chapter 2. Background and Related Work

θ∗ = argmin
θ

Πtrain (θ), where Πtrain (θ) =
1

Ntrain

Ntrain∑
(xi,y)∈δtrain

∥yi −F (xi;θ,θ)∥2

(2.12)

for some fixed Θ. The optimal θ∗ is obtained using a proper gradient-based

algorithm. The function Πtrain is referred to as the loss function. In this example,

the mean-squared loss function is used here. There are also other types indeed.

Validation process involves using the validation dataset to solve another opti-

mization problem that

Θ∗ = argmin
Θ

Πval(Θ), where Πval (Θ) =
1

Nval

Nval∑
i=1

(xiyi)∈Sval

∥yi −F (xi;θ
∗,Θ)∥2

(2.13)

Through this process, the optimal Θ∗ is obtained. Once the best network,

characterized by θ∗ and Θ∗, is obtained, it is evaluated on the test dataset to

estimate the networks performance on data not used during the first two phases.

Πtest =
1

Ntest

Ntest∑
i=1

(xiyi)∈Stest

∥yi −F (xi;θ
∗,Θ∗)∥2 (2.14)

This error will be the test error and is also known as the generalizing error of

the network.

16



Chapter 2. Background and Related Work

2.2.3 Optimization

In the previous content, we can conclude that the network is modified to best

approximate a function by solving some minimization problems in different phases.

Practically, this minimization problem can be solved using gradient descent (GD).

Consider the Taylor expansion about initial network parameter θ0

Π(θ0 +∆θ) = Π (θ0) +
∂Π

∂θ
(θ0) ·∆θ +

∂2Π

∂θiθj
(θ̂)∆θi∆θj (2.15)

for some θ̂ in a small neighborhood of θ0. When |∆θ| is small and summing

∂2Π
∂θiθj

is bounded, we can neglect the second order term and just consider the

approximation

Π (θ0 +∆θ) ≈ Π(θ0) +
∂Π

∂θ
(θ0) ·∆θ (2.16)

To decrease the value of the loss function to the maximum extent compared

to its evaluation at θ0, we need to choose the step ∆ in the opposite direction of

the gradient. For instance:

∆θ = −η∂Π
∂θ

(θ0)

where η is known as the learning-rate. This is also one of the hyper-parameters

that we would like to tune during the validation phase.

17



Chapter 2. Background and Related Work

Figure 2.3: Gradient Descent prefers flatter minimas. RAY, Pinti, and Oberai
2024

If we assume the loss function Π(θ) is convex and differentiable, and its gradient

is Lipschitz continuous with Lipschitz constant K. Then for a η ≤ 1/K, the

gradient descent updates converge as

∥θ∗ − θk∥2 ≤
C

k

This works for the case where only one minima exists. But what if more than

one minima exist? What kind of minima does gradient descent like to reach? A

direct answer to this question is that gradient descent prefers flatter minimas, as

can be seen in figure 2.3.

18



Chapter 2. Background and Related Work

Starting from the function Π(θ) in the figure, and we assume each value of

Π(θ) can be approximated by a parabola

Π(θ) ≈ 1

2
aθ2

where a > 0 is the curvature of each valley. If we use a constant learning rate

η and start from θ0 in either of the valleys. Then,

∂Π

∂θ
(θ0) = aθ0

and the new point after an update will be θ1 = θ0(1−aη). The subsequent iterates

will be similar to this. To reach convergence, we need

∣∣∣∣θk+1

θk

∣∣∣∣ < 1 ⇒ |1− aη| < 1

Since a > 0 in the valleys, we will need the following condition on the learning rate

such that aη < 2. In other words, the curvature a should satisfy that a < 2/η.

Therefore, larger curvature requires a smaller learning rate, and vice versa. If

we fix the learning rate, the gradient descent will naturally prefer the smaller

curvature, and thus the flatter minimas.

2.2.4 Advanced Optimization Methods

In the previous content, we are mainly focusing on the situation in which the

optimization problem is solved through gradient descent. However, there are also

19



Chapter 2. Background and Related Work

some other optimization techniques that exist, and they are mostly motivated by

gradient descent.

Let us recall the update formula mentioned before, as most optimization algo-

rithms make use of it:

[θk+1]i = [θk]i − [ηk]i [gk]i , 1 ≤ i ≤ Nθ,

where [ηk]i is the component-wise learning rate and the vector-valued function

g approximates the gradient. From the previous section, we can see that the

learning rate can affect the choice of minimas for gradient descent. This can

lead to a problem that if the learning rate is too large and the objective function

landscape has sharp gradients, the update will keep zigzagging its way toward the

minima. Ideally, we want to make sure the update only happens on one side of

the function so that we can reach the minima faster. Zig-zagging will impede us

from reaching the minima or make the convergence slower.

To resolve the issues faced by gradient descent, there are two popular meth-

ods. First category includes the momentum methods. Rather than just using

the gradient at the previous step, these methods make use of the history of the

gradient. The formula for the update is given by

[ηk]i = η, gk = β1gk−1 + (1− β1)
∂Π

∂θ
(θk) , g−1 = 0 (2.17)

20



Chapter 2. Background and Related Work

where gk is a weighted moving average of the gradient, and it is expected

to smoothen out the zig-zagging by canceling out the components of the gradient

along the other side of the function and move more smoothly towards the minima.

Another method that makes use of the history of the gradient is called Adam and

was introduced by Kingma and Ba 2014. What Adam is different is that it also

uses the second moment of the gradient. The updates are given by

gk = β1gk−1 + (1− β1)
∂Π

∂θ
(θk)

[Gk]i = β2 [Gk−1]i + (1− β2)

(
∂Π

∂θi

(θk)

)2

[ηk]i =
η√

[Gk]i + ϵ

(2.18)

where gk and Gk are the weighted running averages of the gradients and

the square of the gradients. Another widely-used optimization method is called

Stochastic optimization. To understand this method, we need to look back to the

form of the training loss:

Π(θ) =
1

Ntrain

Ntrain∑
i=1

Πi(θ),Πi(θ) = ∥yi −F (xi;θ,θ)∥2 (2.19)

Then we can obtain the gradient of loss by

∂Π

∂θ
(θ) =

1

Ntrain

Ntrain∑
i=1

∂Πi

∂θ
(θ) (2.20)

21



Chapter 2. Background and Related Work

However, one issue with this calculation is that Ntrain is typically very large

and this summation could be very expensive. To avoid this problem, we randomly

choose i in Πi for each update step. This is known as stochastic gradient descent.

Stochastic optimization algorithms are still not perfect, as the loss function fluc-

tuates in a chaotic manner and never manages to reach the minima, and handling

only one sample at a time significantly underutilizes the computational and mem-

ory resources. An alternating solution is to use mini-batch optimization, where

the training dataset Ntrain is split into disjoint subsets known as minibatches.

Therefore, the gradient of the loss function then can be approximated by

∂Π

∂θ
(θ) =

1

Ntrain

Ntrain∑
i=1

∂Πi

∂θ
(θ) ≈ 1

N̄train

∑
i∈ batch (j)

∂Πi

∂θ
(θ) (2.21)

2.2.5 Backward-Propagation

In the previous section, one thing that we discussed the most is the gradient.

However, how the gradients are actually evaluated while training the neural net-

work is a crucial point that we need to understand. Let us revisit the output of

an MLP given by

ξ
(l+1)
i = W

(l+1)
ij x

(l)
j + b

(l+1)
i , 1 ≤ i ≤ Hl+1

x
(l+1)
i = σ

(
ξ
(l+1)
i

)
, 1 ≤ i ≤ Hl+1

22



Chapter 2. Background and Related Work

Figure 2.4: Computational graph. RAY, Pinti, and Oberai 2024

Given a training sample (x, y), set x(0) = x. The value of the loss can be

computed using the forward pass, which is basically evaluate the equations above

in order, and then evaluate the loss function for the given sample as

Π(θ) = ∥y −F(x;θ,Θ)∥2

This process will indeed be repeated for all the samples, but here we will just

focus on dealing with a single sample.

To update the network parameters, we need to compute ∂Π
∂θ
, or more precisely,

∂Π
∂W (l) and ∂Π

∂b(l)
. To compute them, we need to first derive the expression for

∂Π
∂ξ(l)

and ∂Π
∂x(l) . This derivation can be easily understood with the help of the

computational graph shown in the figure.

Applying the chain rule repeatedly yields

∂Π

∂ξ(l)
=

∂Π

∂x(L+1)
· ∂x

(L+1)

∂ξ(L+1)
· ∂ξ

(L+1)

∂x(L)
· · · ∂x

(l+1)

∂ξ(l+1)
· ∂ξ

(l+1)

∂x(l)
· ∂x

(l)

∂ξ(l)

23



Chapter 2. Background and Related Work

To further evaluate this expression, we need to evaluate these terms:

∂Π

∂x(L+1)
= −2

(
y − x(L+1)

)T
∂ξ(l+1)

∂x(l)
= W (l+1)

∂x(l)

∂ξ(l)
= S(l) ≡ diag

[
σ′
(
ξ
(l)
1

)
, · · · , σ′

(
ξ
(l)
Hl

)]
Using these terms, we can then represent ∂Π

∂ξ(l)
as

∂Π

∂ξ(l)
=

∂Π

∂x(L+1)
· S(L+1) ·W (L+1) · · ·S(l+1) ·W (l+1) · S(l) (2.22)

Applying transpose and recognizing that Σ(l) is diagonal and therefore sym-

metric, we can have a final representation

∂Π

∂ξ(l)
= S(l)W (l+1)TS(l+1) · · ·W (L+1)TS(L+1)

[
−2

(
y − x(L+1)

)]
(2.23)

Finally, we can have the expression for ∂Π
∂W (2) as

∂Π

∂W (l)
=

∂Π

∂ξ(l)
· ∂ξ(l)

∂W (l)
=

∂Π

∂ξ(l)
⊗ x(l−1) (2.24)

2.3 Transfer Learning

In previous sections, we know how machine learning models, especially neural

networks, approximate a target function based on a given dataset and task. It is

24



Chapter 2. Background and Related Work

certain that the prediction performance will be degraded when the distribution

of the dataset is shifted or changed. This issue in some cases is unavoidable as

obtaining training data that matches the feature space and predicted data distri-

bution characteristics of the test data can be difficult and expensive. Therefore,

there is an urgent demand for a high-quality model to predict a target domain that

is trained from a related, rather the same, source domain. This need summarizes

the motivation for transfer learning.

The above description may sound not feasible, but real-world experiences tell

us that transfer learning happens quite frequently. For example, there are two

people who wish to learn violin. One person has no previous experience play-

ing any musical instrument, while the other knows how to play Erhu, a Chinese

musical instrument which has basically the same mechanism as violin, very well.

Then person who knows how to play Erhu will be able to learn the violin in a

more efficient manner by transferring previously learned knowledge to the task

of learning how to play the violin. In the context of machine learning, there is

also a concrete example about predicting text sentiment of product reviews. If

the training data and the target data are both obtained for digital camera re-

views, then some traditional methods can help to achieve good prediction results.

However, if the case is changed to the situation that training data and target

data is from food quality reviews, then the prediction results are mostly likely to

25



Chapter 2. Background and Related Work

degrade due to domain differences. Still, the reviews for digital cameras provide

valuable information for predicting food quality review sentiments as they share

a considerable number of common characteristics. Thus, transfer learning can be

used to potentially improve the results of a target learner. The advantages of

transfer learning are more than what we have seen. In general, transfer learning

mainly benefits scenarios for edge computing. Training machine learning models

on edge platforms, like Micro-Controller Units, FPGA, etc., face two major con-

straints: Limited data and limited computing resources. Some edge computing

tasks require the platform to collect and store data locally, and thus prohibit the

model from being trained with rich data. Transfer learning, however, can help to

overcome this issue in that it uses knowledge from the pre-trained model that is

trained on a larger dataset, and thus helps the model to adapt to the limited data

case. To resolve the limitation of computing resources, transfer learning can help

us greatly reduce the training time since it allows models to leverage pre-trained

weights. On platforms where low latency models are required, such a reduction

in training time is especially beneficial as it requires much less power to support

the entire training process. Furthermore, training a whole model requires a large

amount of matrix computation, and doing such computation without using GPUs

can be extremely inefficient. Transfer learning helps to reduce the amount of com-

putation we need to perform by order of tens or even more. As edge platforms

26



Chapter 2. Background and Related Work

face various tasks, the better generalizability brought by transfer learning also

benefits the model a lot.

2.4 Physics-Informed Neural Networks

From previous knowledge, we can see that MLPs can be used to approximate

functions. In the context of Partial Differential Equations (PDEs), will MLP still

be able to approximate the solution function? In fact, the idea of using neural

networks to solve PDEs was introduced very early in the 1990-2000s by Lagaris,

Likas, and Fotiadis 1998. Recently, with the improvements in the hardware and

more mature machine learning tools, this idea was rediscovered in 2019 by Raissi,

Perdikaris, and George E Karniadakis 2019, and was the term Physics-Informed

Neural Networks (PINNs). The fundamental idea of PINNs is similar to regression,

except that the loss function contains differential operators arising in the PDE we

are dealing with. The main process for solving a one-dimensional scalar PDE

is described in the following content. One remark is that for multi-dimensional

systems of PDEs, this process can be easily extended. The whole process starts

with selecting a neural network as the representation of the PDE solution function

u = F(x;θ). Then we need to find θ such that the PDE is satisfied in a proper

form. An important distinction between training a PINN from training a normal

27



Chapter 2. Background and Related Work

Figure 2.5: Computational graph to evaluate derivatives w.r.t network input.
RAY, Pinti, and Oberai 2024

MLP is that training a PINN requires us to find the derivatives that is a part of

the loss function. We can use a similar computational graph to show the idea in

figure 2.5.

As we set Π = x(L+1) in the graph, one main difference for this computa-

tional graph with the previous one is that we are computing derivatives through

backward-propagation with respect to different things. Previous it was calculat-

ing over the loss function. Here, the derivative is respecting to the output of the

network. From this graph, we can easily see that

∂x(L+1)

∂x(0)
= W (L+1)S(L+1)W (L)S(L) . . .W (2)S(2)W (1)S(1) (2.25)

As we can see from the computational graph the calculation of du
dx

requires one

backward branch. To evaluate the second-order derivative, we will need another

backward branch that is extended from the first backward branch. The same logic

applies to all higher orders of derivatives. Another schematic demonstration of

28



Chapter 2. Background and Related Work

Figure 2.6: Structure of Physics-Informed Neural Networks

how PINNs work is demonstrated in figure 2.6. We can further understand how

PINNs work for solving PDEs by using a general example.

Consider a PDE that:

L(u(x)) = f(x), x ∈ Ω

B(u(x)) = g(x), x ∈ ∂Ω

where L is the differential operator and B is the boundary operator. f is known

as the forcing term, and g is known as the boundary condition. In this example,

we use the 3-D Navier-Stokes equation solving for the velocity field v = [v1, v2, v3]

and pressure p on Ω = Ωs × [0, T ]. Here Ωs is the spatial domain and [0, T ] is the

time interval we care about. The equation is given as

29



Chapter 2. Background and Related Work

∂v

∂t
+ v · ∇v +∇p− µ∆v = f ,∀(s, t) ∈ Ω

∇ · u = 0, ∀(s, t) ∈ Ω

v = 0,∀(s, t) ∈ ∂ΩS × [0, T ]

v(s, 0) = v0(s),∀s ∈ ΩS.

(2.26)

In this equation, the first one is the balance of linear moment. The second

equation ensures the conservation of mass. The third and fourth one indicates

the boundary and initial condition. To design a PINN for this specific equation,

the input dimension should be the same as the coordinates that are involved

in this equation, and the output will be the solution vector. More specifically,

the input here will just be x = [s1, s2, s3, t] ∈ R4 and the output will be u =

[v1, v2, v3, p] ∈ R4. The next step will be constructing the loss function. The

loss function here will consist of two main parts: interior residual and boundary

residual. Interior residual will just be R(u) = L(u)−f and the boundary residual

is Rb(u) = B(u)− g. Thus, the total loss function is

L(θ) = R(u) + λbRb(θ)

Then, to train the network we just need to solve this optimization problem

θ∗ = arg
θ

minL(θ) using algorithms mentioned before. After extensive training

and hyper-parameter tuning, we will then be confident to say that this PINN is

able to solve this Navier-Stokes equation precisely in the given domain.

30



Chapter 2. Background and Related Work

2.4.1 Applications

Besides solving partial differential equations directly, PINNs can accomplish

a lot of different tasks in both science and engineering domains. Engineering

problems often involve solving complex differential equations that describe phys-

ical phenomena such as fluid dynamics, heat transfer, and structural mechan-

ics. PINNs excel in these areas by integrating the governing equations into the

neural network training process. This integration allows for more accurate and

efficient solutions compared to traditional numerical methods. For instance, in

fluid dynamics, PINNs are used to model fluid flow in various contexts, including

aerodynamics, hydrodynamics, and weather forecasting. They can predict flow

patterns, turbulence, and pressure distribution with high accuracy, which is cru-

cial for designing efficient aircraft, and ships, and predicting natural disasters. In

structural engineering, PINNs help analyze stress and strain in materials under

various loads, essential for designing safe and resilient structures, such as bridges,

buildings, and mechanical components.

PINNs have shown great promise in the healthcare sector by improving the

modeling of biological systems and medical imaging processes. These applications

can lead to better diagnosis, treatment planning, and understanding of complex

biological interactions. In medical imaging, PINNs enhance the accuracy of tech-

niques like MRI shown by X. Yu et al. 2023 and Herten et al. 2022 by incorpo-

31



Chapter 2. Background and Related Work

rating physical principles of image formation, leading to higher-resolution images

and more precise diagnostic capabilities. In cardiovascular modeling, PINNs are

used to model blood flow and pressure in the cardiovascular system, aiding in the

diagnosis and treatment of heart diseases, and simulating the effects of medical

interventions to help in the planning of surgeries and other treatments.

Environmental scientists leverage PINNs to model and predict complex envi-

ronmental systems as shown by Waheed et al. 2021 and Y. Zhang, Zhu, and Gao

2023, which is crucial for addressing climate change, pollution, and natural re-

source management. In climate modeling, PINNs improve models by integrating

physical laws governing atmospheric and oceanic processes, as shown by Lütjens

et al. 2021, leading to more accurate predictions of climate patterns and helping

policymakers make informed decisions to combat climate change. In hydrogeology,

PINNs are used to simulate groundwater flow and contamination spread like the

work by X. Zhang et al. 2022, vital for managing water resources and mitigating

the impact of pollutants on the environment. Understanding and predicting the

behavior of materials under different conditions is essential for developing new

materials and improving existing ones. PINNs play a crucial role in this field by

providing accurate models of material behavior at various scales. In molecular

dynamics shown by J. Li, Chen, and B. Li 2022, PINNs simulate the interactions

between atoms and molecules, helping researchers understand material properties

32



Chapter 2. Background and Related Work

at the atomic level, which is crucial for designing new materials with desired prop-

erties. Additionally, they model phase transitions in materials, such as the melting

of metals or the crystallization of polymers, aiding in optimizing manufacturing

processes and developing materials with specific characteristics.

In the finance sector, PINNs are utilized to model complex financial systems

and processes, as demonstrated by Noguer i Alonso and Maxwell 2023, improving

risk management, investment strategies, and market analysis. They enhance tra-

ditional models for pricing financial derivatives by incorporating the underlying

physical and stochastic processes, leading to more accurate pricing and better risk

management strategies. By modeling the behavior of financial markets, PINNs

help in understanding market trends, volatility, and the impact of external factors,

supporting the development of robust trading strategies and financial regulations.

2.4.2 Reachability in High Dimensions

One engineering problem that is solved by the framework of PINNs is the

high-dimensional reachability problem. In autonomous systems, with the urgent

need for safety guarantees and controllers for these systems, a verification method

that computes both the safe configurations and the corresponding safe controller

for the system is used, which is known as Hamilton-Jacobi reachability analysis.

In this analysis, the Backward Reachable Tube (BRT) of a dynamical system is

33



Chapter 2. Background and Related Work

computed and it will give a set of states. Trajectories that start from this set

will eventually reach some given targets set despite the worst-case disturbance.

An example would be an aerial vehicle under the disturbance of wind or another

adversarial aircraft flying nearby. In this situation, the target set could be the

destination of the vehicle. The BRT, therefore, provides both the set of states from

which the aerial vehicle can safely reach its destination and a robust controller

for the vehicle. To actually solve this problem, the traditional method formulates

a zero-sum dynamic game between the control and the disturbance whose value

function can be used to synthesize the BRT and the safety controller. This process

involves solving a Hamilton-Jacobi PDE on a grid representing a discretization

of the state space. The work DeepReach [cite] solves this problem by using a

modified PINN framework that uses periodic, or sinusoidal activation functions

to solve this problem. The details of this problem will be shown in the following

paragraphs.

Consider an agent in an environment in the presence of external disturbance.

The agane tis modeled as a dynamics system with state x ∈ Rn, control u, and

disturbance d. The state evolves according to the dynamics:

ẋ = f(x, u, d), u ∈ U , d ∈ D.

Here, the disturbance could be either an external input or represent the model

and environment uncertainty. Let ξu,dx,t (τ) denote the state achieved at time τ by

34



Chapter 2. Background and Related Work

starting at initial state and initial time and applying input functions u(·) and

d(·) over [t, τ ]. The target set L that is crucial to the agent is contained in the

environment. This target set can be either a set of goal states or a set of unsafe

states. The work DeepReach mainly concerns about computing the BRT and the

Backward Reach-Avoid Tube (BRAT) of L.

Previously we know the definition of BRT, which is the set of initial states that

will eventually reach the target set with the time horizon [t, T ]. Mathematically,

it can be represented as

V(t) =
{
x : ∀u(·),∃d(·),∃τ ∈ [t, T ], ξu,dx,t (τ) ∈ L

}
The definition of BRAT is slightly different. When the target set represents

the goal states, BRAT is the set of initial states of the agent from which it can

eventually reach the target set while always avoiding some unsafe set of states G.

Mathematically,

V(t) =
{
x : ∀d(·),∃u(·),∀s ∈ [t, T ], ξu,dx,t (s) /∈ G

∃τ ∈ [t, T ], ξu,dx,t (τ) ∈ L
}

If there is no constraint present in the system, the set is then reduced to a BRT.

35



Chapter 2. Background and Related Work

The example that is used in the work is a collision avoidance problem between

two identical vehicles. The dynamics between the two vehicles are:

ẋ1 = −ve + vp cosx3 + ωex2

ẋ2 = vp sinx3 − ωex1

ẋ3 = ωp − ωe

where x1, x2 represent the relative position between vehicles, and x3 represents

the relative heading. ve and vp are the linear velocities of the evader and pursuer

respectively. These two velocities are equal and constant. Similarly, ωp and ωe

denotes the angular velocities of two agents and are the disturbance and input in

the system respectively. The BRT we are interested in computing is

L = {x : ∥(x1, x2)∥ ≤ β}

Computing the BRT or BRAT is through Hamilton-Jacobi reachability. Firstly,

a target function l(x) is defined whose sub-zero level set is the target set L. The

BRT aims to compute all states that could enter L at any time point. This is

accomplished by finding the minimum distance to L over time:

J(x, t, u(·), d(·)) = min
τ∈[t,T ]

l
(
ξu,dx,t (τ)

)
The ultimate goal is to capture this minimum distance for optimal trajectories

of the system. Therefore, we then compute the optimal control that maximizes

36



Chapter 2. Background and Related Work

this distance and the worstcase disturbance signal that minimizes the distance.

The value function corresponding to this control problem is:

V (x, t) = inf
d(·)

sup
u(·)

{J(x, t, u(·), d(·))}

Computing through dynamic programming, we end with a final value Hamilton-

Jacobi-Isaacs Variational Inequality:

min {DtV (x, t) +H(x, t), l(x)− V (x, t)} = 0

V (x, T ) = l(x)

Here Dt represents the time gradients of the value function. H is the Hamil-

tonian and can be written as:

H(x, t) = max
u

min
d
⟨∇V (x, t), f(x, u, d)⟩

Once we compute the value function, the BRT is then given as the sub-zero

level set of the value function:

V(t) = {x : V (x, t) ≤ 0}

The corresponding safety control can be written as

u∗(x, t) = argmax
u

min
d
⟨∇V (x, t), f(x, u, d)⟩

Applying this optimal control at the BRT boundary and make sure the starting

point is outside the BRT can ensure the system maintaining safety with any control

applied.

37



Chapter 2. Background and Related Work

Another main problem here is how to solve HJI VI. Typically, solving this

involves computing value function over a grid representing a discretization of state

space and time. However, this will result in an exponential scaling complexity both

in computation and memory and limits its direct use to low-dimensional systems.

Therefore, using the framework of PINNs can help to combat this challenge.

Recall that in a common PINN, the network’s output is the predicted solution

for the PDE we are solving, and we need to have a residual function for that PDE

to represent the loss function. In this reachability problem, the situation is quite

different. The input is a state vector x and a time point t, which is the same

as the common case. The output here is the corresponding value Vθ(x, t), and

θ represents the parameters of the neural network. Specifically, given an input

(xi, ti), the loss function h (xi, ti; θ) for training the neural network is given as:

h (xi, ti; θ) = h1 (xi, ti; θ) + λh2 (xi, ti; θ)

h1 (xi, ti; θ) = ∥Vθ (xi, ti)− l (xi)∥⊮ (ti = T )

h2 (xi, ti; θ) = ∥min {DtVθ (xi, ti) +H (xi, ti)

l (xi)− Vθ (xi, ti)} ∥.

From the equation, we can see that the loss function depends on the time and

spatial gradients of the value function. Therefore, we expect the network to not

only represent the value function accurately but also its gradients. In practice,

the ReLU-based network fails to represent the gradients well, thus leading to

38



Chapter 2. Background and Related Work

Figure 2.7: Structure of Transfer Learning of Physics-Informed Neural Networks.
Hidden layers are fixed during finetuning and only the output layer can be modified

poor estimation of the value function. The solution used is to adopt a sinusoidal

activation function. Therefore, the network is then able to learn a highly accurate

approximation of the value function.

39



Chapter 3

Methodology

3.1 Transfer Learning of PINNs

Problem Formulation With our knowledge about the solving reachability

problem in autonomous systems using the framework of PINNs from previous

sections, we can conclude that this solution is promising and bearing with many

advantages over traditional methods. One point that is worth noticing is that this

solution trains a network from scratch. To solve a problem involving three or more

agents, the training time can take up to more than one day. Furthermore, the so-

lution that can be obtained from this well-trained network is for a particular HJI

PDE. If the condition that influences this autonomous system changes, some pa-

rameters in the PDE will also be changed, causing the network to fail in predicting

a correct solution for the new PDE, and thus being unable to solve the reachability

problem. Therefore, we consider a solution that pre-trains a model with multiple

40



Chapter 3. Methodology

conditions as training objectives, and only finetune the model when it is actually

used by the autonomous system. Therefore, the problem here becomes applying

transfer learning to PINNs.

We start introducing the method by defining a neural network that approxi-

mate network solution ψ(x, t) at time points t is ψ(x, t) = H(x, t)θHWθW + BθB ,

where H ∈ R(x,t)×h. To be more straightforward, the neural network is parameter-

ized by θ = [θH , θW , θB]. To train this network, the final weight layer is designed

to have multiple outputs such that WθW ∈ Rh×q. The network is designed such

that multiple (q) solutions, ψ(x, t) ∈ R(x,t)×q, can be estimated and simultane-

ously trained to satisfy equations that have different linear operators defined by

different coefficients as well as different initial conditions. This training paradigm

is like putting multiple equations into one bundle. Such bundle training allows us

to achieve two goals: 1 . We can integrate the training of multiple equations into

a single network; 2. We can encourage the hidden networks H(x, t) to be versatile

across equations. Optimization of this network involves using a special form of

loss function. For an original PINN, the loss function is formulated by:

L = Ldiffeq + LIC + LBC

Ldiffeq = Dt [uε(x, t)] +N [uε(x, t)]

41



Chapter 3. Methodology

where εϵ {ε1, ε2, . . . , εq} is the one element from a parameter set A of this PDE.

The number of this parameter set is the same as the number of solutions that this

network can give.

After this network is trained to a certain convergence condition, we will then

proceed to finetune. At the finetuning stage, the weights for the hidden layers, or

fixed layers, are frozen and the hidden layer’s output is computed at specific input

t̂. The solution is then ψ(t̂) = H(x̂, t̂)Wout where the Wout of the output layer is

trainable and H(x̂, t̂) ∈ R(x,t)×1. A schematic demonstration of this framework is

shown in Figure 3. To finetune Wout , we will still use the same form of loss func-

tions as before, but the parameter set here, denoted as B, satisfies the condition

that A∩B = ∅. In this case, we are only transferring knowledge we learned from

PDEs that has only one parameter being altered. To enhance the capability of

this method, we propose to include multiple sets for each parameter in a PDE.

Given a PDE’s residual function:

ωut(x, t) + εux(x, t) = 0

Here the parameters that could be changed for this family of PDEs are ω and

ε. By formulating these two parameters’ set as vectors and plug directly into the

PDE residual function, we will be able to have a loss function that can train over

a family of PDEs with multiple varying parameters.

42



Chapter 3. Methodology

3.1.1 Poisson Equation

Here we will first use a widely used PDE, Poisson equation, to demonstrate

the most fundamental idea of this method. The Poisson equation is typically used

to identify an electrostatic potential ψ given a charge distribution ρ. In 2−D, it

is described by:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ρ(x, y)

This PDE is defined in the domain x ∈ [xL, xR] and y ∈ [yB, yT ] with BCs:

ψ (xL, y) = ψ (xR, y) = ψ (x, yB) = ψ (x, yT ) = 0

The charge distribution is given by:

ρ(x, y) = sin(kπx) sin(kπy)

For different Poisson equations, the parameter that could be changed is k.

Therefore, applying the idea of bundle training to this PDE, we can train the

network on four different charge distributions for k ∈ 1, 2, 3, 4. Then we can

evaluate the performance of the network on a harder testing force function of the

form:

ρtest =
1

4

4∑
k=1

(−1)k+12k sin(kπx) sin(kπy)

The result will be shown in the next section, and from the result we can see

the bundle pretraining and finetuning can successfully make the network to solve

PDEs that it has never seen before.

43



Chapter 3. Methodology

3.1.2 Reachability Problem

Now I will discuss how this method is applied to the reachability problem we

have already seen. Recall that the loss function h (xi, ti; θ) is described by:

h (xi, ti; θ) = h1 (xi, ti; θ) + λh2 (xi, ti; θ) ,

h1 (xi, ti; θ) = ∥Vθ (xi, ti)− l (xi)∥⊮ (ti = T ) ,

h2 (xi, ti; θ) = ∥min {DtVθ (xi, ti) +H (xi, ti) ,

l (xi)− Vθ (xi, ti)} ∥.

To let the autonomous system to be able to find the optimal control and also

ensure its safety under various influences, we need to include different Hamilto-

nian H (xi, ti) into this loss function and perform bundle training to the network.

Previously, we only knew the dynamics between two vehicles. The Hamiltonian

can be derived from the dynamics as

H(x, t) = p1 (−ve + vp cosx3) + p2 (vp sinx3)

− ω̄ ∥p1x2 − p2x1 − p3∥+ ω̄p3

Similar to the previous example, we want to create a set of parameters so

that we can then have multiple loss functions for us to perform bundle training.

However, in this Hamiltonian, there are two parameter that could describe the

influence on the vehicles: ve (or vp, since they are always equal), and ω̄. In

this case, creating one set of parameters, though could help the model to handle

44



Chapter 3. Methodology

more cases, is not sufficiently generalizable because we cannot assume the other

influence will not change in real cases. Therefore, the approach we adopted here

is we create two set of parameters ve ∈ ve1, ve2, ve3, ve4 and ω̄ ∈ ω̄1, ω̄2, ω̄3, ω̄4.

Here we only create a set with four different parameters just for demonstration.

In practice, the number of parameters in the set can be more. The influence of

including more parameters will be discussed in the result section. Finally, the loss

function becomes:

h (xi, ti; θ) = h1 (xi, ti; θ) + λh2 (xi, ti; θ) ,

h1 (xi, ti; θ) = ∥Vθ (xi, ti)− l (xi)∥⊮ (ti = T ) ,

h2 (xi, ti; θ) = ∥min
{
DtVθ (xi, ti) + [H1 (xi, ti) , H2 (xi, ti) , H3 (xi, ti) , H4 (xi, ti)]

T ,

l (xi)− Vθ (xi, ti)} ∥

After the model is pre-trained on this bundle of loss functions, we can leverage

this model to perform finetuning and solve more cases in much less time than

training a model from scratch.

3.2 Finetuning Analytic Gradient Computation

Computing hardware deployed in most autonomous systems has a lot of limi-

tations compared with modern GPUs. For instance, the edge hardware does not

possess enough memory space to store large amount of data. This fact makes

45



Chapter 3. Methodology

the normal training of a deep neural network on such hardware infeasible as the

backward propagation requires the hardware to store all the intermediate result.

Besides, most edge hardware does not have strong computing units like GPU and

can be extremely slow in handling large scale high dimensional matrix compu-

tation. Another limitation is that existing compliers and libraries used in deep

learning like PyTorch, TensorFlow, etc., are not supported on a lot of edge hard-

ware. To overcome these limitations, we propose to leverage the second phase of

transfer learning we discussed before: Finetuning. Same as the techniques men-

tioned in previous section, at finetuning stage, only the output layer’s parameters

are allowed to be optimized, which means we only need to perform backward

propagation for one layer, and this process does not require the hardware to store

any intermediate result at all. Meanwhile, the matrix computation associated

with optimizing only one layer will not bring too much computation overhead for

the hardware, and thus will not decrease the efficiency significantly. By using the

analytical gradient computation method, we also can get rid of our dependency on

existing libraries for performing computations related to backward propagation.

We show this process by using an example PDE.

Consider a Hamilton-Jacobi-Bellman equation that:

∂tuθ(x, t) + ∆u(x, t)− µ ∥∇xuθ(x, t)∥2 = a

46



Chapter 3. Methodology

For simplicity, we are considering a case where boundary conditions are not

involved, and only the terminal condition is considered. Here ∥ · ∥p denotes an lp

norm. This PDE’s residual function can be written as

R(θ) = ∂tuθ(x, t) + ∆u(x, t)− µ ∥∇xuθ(x, t)∥2 − a

By writing out each part of the partial derivatives in the finite difference form,

we can the have the expressions:

∂tuθ(x, t) =
uθ(x, t+∆t) + uθ(x, t−∆t)

2∆t

∆uθ =
uθ (x+∆x1, t) + uθ (x−∆x1, t)− 2uθ(x, t)

∆x21
+ · · ·

+
uθ(x, t+∆t) + uθ(x, t−∆t)− 2uθ(x, t)

∆t2
, · · ·

)
∇xuθ(x, t) =

(
uθ (x+∆x1t)− uθ (x−∆x1, t)

2∆x1

These three equations give us the expression for computing each part of the

residual function without the need of using any differential operations and we only

need to evaluate the model’s output. We can then update the model’s parameter

by computing the gradient of loss with respect to the model’s current parameter.

In practical training of PINNs, the loss function is typically given by:

L(θ) = 1

N

N∑
i=0

∥R(θ)∥2

Therefore, the gradient of loss with respect to model’s parameters can be

computed as:

∂L
∂θ

= 2R(θ)
∂R(θ)

∂θ

47



Chapter 3. Methodology

From the previous section, we know that in this framework, the network is

divided into hidden layers and output layer. Therefore, we can rewrite the output

of the entire network as:

uθ(x, t) = wθN(x, t) + bθ

where N(x, t) denotes the hidden layers’ output, wθ and bθ represent parameters

in the hidden layer. Combining the equation for gradient of loss with respect to

the parameters with the equation for each term in the residual function, we can

then have a new expression for the first term as:

∂

∂θ
(∂tuθ(x, t)) =

∂

∂θ

(
uθ(x, t+∆t) + uθ(x, t−∆t)

2∆t

)
∂

∂θ
(∂tuθ(x, t)) =

∂uθ(x,t+∆t)
∂θ

+ ∂uθ(x,t−∆t)
∂θ

2∆t

According to the equation for the output of the entire network, we can easily

rewrite the equation as:

∂uθ(x, t+∆t)

∂θ
= N(x, t+∆t)

And this same form can be applied to all other terms as well. Finally, we will end

up with the final equation for the gradient of loss with respect to the parameters

as

48



Chapter 3. Methodology

∂R

∂θ
= 2R(θ)(

N(x, t+∆t) +N(x, t−∆t)

2∆t
+

d∑
i=0

(
N (x+∆xi, t)− 2N(x, t)

∆x2i

)
+
N(x, t+∆t)

∆t2
−

2µ∥w
(
N (x+∆x1, t)−N (x−∆x1, t)

2∆x1
+

· · ·+ N (x+∆xd, t)−N (x−∆xd, t)

2∆xd

)
+ b∥·(

N (x+∆x1, t)−N (x−∆x1, t)

2∆x1
, . . . ,

N(x, t+∆t)−N(x, t−∆t)

2∆t

)
)

(3.1)

After calculating the gradients, the parameters can be updated by:

θ∗ = θ + ηg

where η denotes a tunable learning rate. Iteratively computing will enable us to

have a loss value that is smaller than a predefined threshold, where we consider to

be a sufficiently accurate stopping point. From the experimental results shown in

the next section, we can see that this process reaches the same level of accuracy

compared with training from scratch, while saving more than 10 times of training

time.

49



Chapter 4

Methodology

4.1 Transfer Learning of PINNs

Problem Formulation With our knowledge about the solving reachability

problem in autonomous systems using the framework of PINNs from previous

sections, we can conclude that this solution is promising and bearing with many

advantages over traditional methods. One point that is worth noticing is that this

solution trains a network from scratch. To solve a problem involving three or more

agents, the training time can take up to more than one day. Furthermore, the so-

lution that can be obtained from this well-trained network is for a particular HJI

PDE. If the condition that influences this autonomous system changes, some pa-

rameters in the PDE will also be changed, causing the network to fail in predicting

a correct solution for the new PDE, and thus being unable to solve the reachability

problem. Therefore, we consider a solution that pre-trains a model with multiple

50



Chapter 4. Methodology

conditions as training objectives, and only finetune the model when it is actually

used by the autonomous system. Therefore, the problem here becomes applying

transfer learning to PINNs.

We start introducing the method by defining a neural network that approxi-

mate network solution ψ(x, t) at time points t is ψ(x, t) = H(x, t)θHWθW + BθB ,

where H ∈ R(x,t)×h. To be more straightforward, the neural network is parameter-

ized by θ = [θH , θW , θB]. To train this network, the final weight layer is designed

to have multiple outputs such that WθW ∈ Rh×q. The network is designed such

that multiple (q) solutions, ψ(x, t) ∈ R(x,t)×q, can be estimated and simultane-

ously trained to satisfy equations that have different linear operators defined by

different coefficients as well as different initial conditions. This training paradigm

is like putting multiple equations into one bundle. Such bundle training allows us

to achieve two goals: 1 . We can integrate the training of multiple equations into

a single network; 2. We can encourage the hidden networks H(x, t) to be versatile

across equations. Optimization of this network involves using a special form of

loss function. For an original PINN, the loss function is formulated by:

L = Ldiffeq + LIC + LBC

Ldiffeq = Dt [uε(x, t)] +N [uε(x, t)]

51



Chapter 4. Methodology

where εϵ {ε1, ε2, . . . , εq} is the one element from a parameter set A of this PDE.

The number of this parameter set is the same as the number of solutions that this

network can give.

After this network is trained to a certain convergence condition, we will then

proceed to finetune. At the finetuning stage, the weights for the hidden layers, or

fixed layers, are frozen and the hidden layer’s output is computed at specific input

t̂. The solution is then ψ(t̂) = H(x̂, t̂)Wout where the Wout of the output layer is

trainable and H(x̂, t̂) ∈ R(x,t)×1. A schematic demonstration of this framework is

shown in Figure 3. To finetune Wout , we will still use the same form of loss func-

tions as before, but the parameter set here, denoted as B, satisfies the condition

that A∩B = ∅. In this case, we are only transferring knowledge we learned from

PDEs that has only one parameter being altered. To enhance the capability of

this method, we propose to include multiple sets for each parameter in a PDE.

Given a PDE’s residual function:

ωut(x, t) + εux(x, t) = 0

Here the parameters that could be changed for this family of PDEs are ω and

ε. By formulating these two parameters’ set as vectors and plug directly into the

PDE residual function, we will be able to have a loss function that can train over

a family of PDEs with multiple varying parameters.

52



Chapter 4. Methodology

4.1.1 Poisson Equation

Here we will first use a widely used PDE, Poisson equation, to demonstrate

the most fundamental idea of this method. The Poisson equation is typically used

to identify an electrostatic potential ψ given a charge distribution ρ. In 2−D, it

is described by:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ρ(x, y)

This PDE is defined in the domain x ∈ [xL, xR] and y ∈ [yB, yT ] with BCs:

ψ (xL, y) = ψ (xR, y) = ψ (x, yB) = ψ (x, yT ) = 0

The charge distribution is given by:

ρ(x, y) = sin(kπx) sin(kπy)

For different Poisson equations, the parameter that could be changed is k.

Therefore, applying the idea of bundle training to this PDE, we can train the

network on four different charge distributions for k ∈ 1, 2, 3, 4. Then we can

evaluate the performance of the network on a harder testing force function of the

form:

ρtest =
1

4

4∑
k=1

(−1)k+12k sin(kπx) sin(kπy)

The result will be shown in the next section, and from the result we can see

the bundle pretraining and finetuning can successfully make the network to solve

PDEs that it has never seen before.

53



Chapter 4. Methodology

4.1.2 Reachability Problem

Now I will discuss how this method is applied to the reachability problem we

have already seen. Recall that the loss function h (xi, ti; θ) is described by:

h (xi, ti; θ) = h1 (xi, ti; θ) + λh2 (xi, ti; θ) ,

h1 (xi, ti; θ) = ∥Vθ (xi, ti)− l (xi)∥⊮ (ti = T ) ,

h2 (xi, ti; θ) = ∥min {DtVθ (xi, ti) +H (xi, ti) ,

l (xi)− Vθ (xi, ti)} ∥.

To let the autonomous system to be able to find the optimal control and also

ensure its safety under various influences, we need to include different Hamilto-

nian H (xi, ti) into this loss function and perform bundle training to the network.

Previously, we only knew the dynamics between two vehicles. The Hamiltonian

can be derived from the dynamics as

H(x, t) = p1 (−ve + vp cosx3) + p2 (vp sinx3)

− ω̄ ∥p1x2 − p2x1 − p3∥+ ω̄p3

Similar to the previous example, we want to create a set of parameters so

that we can then have multiple loss functions for us to perform bundle training.

However, in this Hamiltonian, there are two parameter that could describe the

influence on the vehicles: ve (or vp, since they are always equal), and ω̄. In

this case, creating one set of parameters, though could help the model to handle

54



Chapter 4. Methodology

more cases, is not sufficiently generalizable because we cannot assume the other

influence will not change in real cases. Therefore, the approach we adopted here

is we create two set of parameters ve ∈ ve1, ve2, ve3, ve4 and ω̄ ∈ ω̄1, ω̄2, ω̄3, ω̄4.

Here we only create a set with four different parameters just for demonstration.

In practice, the number of parameters in the set can be more. The influence of

including more parameters will be discussed in the result section. Finally, the loss

function becomes:

h (xi, ti; θ) = h1 (xi, ti; θ) + λh2 (xi, ti; θ) ,

h1 (xi, ti; θ) = ∥Vθ (xi, ti)− l (xi)∥⊮ (ti = T ) ,

h2 (xi, ti; θ) = ∥min
{
DtVθ (xi, ti) + [H1 (xi, ti) , H2 (xi, ti) , H3 (xi, ti) , H4 (xi, ti)]

T ,

l (xi)− Vθ (xi, ti)} ∥

After the model is pre-trained on this bundle of loss functions, we can leverage

this model to perform finetuning and solve more cases in much less time than

training a model from scratch.

4.2 Finetuning Analytic Gradient Computation

Computing hardware deployed in most autonomous systems has a lot of limi-

tations compared with modern GPUs. For instance, the edge hardware does not

possess enough memory space to store large amount of data. This fact makes

55



Chapter 4. Methodology

the normal training of a deep neural network on such hardware infeasible as the

backward propagation requires the hardware to store all the intermediate result.

Besides, most edge hardware does not have strong computing units like GPU and

can be extremely slow in handling large scale high dimensional matrix compu-

tation. Another limitation is that existing compliers and libraries used in deep

learning like PyTorch, TensorFlow, etc., are not supported on a lot of edge hard-

ware. To overcome these limitations, we propose to leverage the second phase of

transfer learning we discussed before: Finetuning. Same as the techniques men-

tioned in previous section, at finetuning stage, only the output layer’s parameters

are allowed to be optimized, which means we only need to perform backward

propagation for one layer, and this process does not require the hardware to store

any intermediate result at all. Meanwhile, the matrix computation associated

with optimizing only one layer will not bring too much computation overhead for

the hardware, and thus will not decrease the efficiency significantly. By using the

analytical gradient computation method, we also can get rid of our dependency on

existing libraries for performing computations related to backward propagation.

We show this process by using an example PDE.

Consider a Hamilton-Jacobi-Bellman equation that:

∂tuθ(x, t) + ∆u(x, t)− µ ∥∇xuθ(x, t)∥2 = a

56



Chapter 4. Methodology

For simplicity, we are considering a case where boundary conditions are not

involved, and only the terminal condition is considered. Here ∥ · ∥p denotes an lp

norm. This PDE’s residual function can be written as

R(θ) = ∂tuθ(x, t) + ∆u(x, t)− µ ∥∇xuθ(x, t)∥2 − a

By writing out each part of the partial derivatives in the finite difference form,

we can the have the expressions:

∂tuθ(x, t) =
uθ(x, t+∆t) + uθ(x, t−∆t)

2∆t

∆uθ =
uθ (x+∆x1, t) + uθ (x−∆x1, t)− 2uθ(x, t)

∆x21
+ · · ·

+
uθ(x, t+∆t) + uθ(x, t−∆t)− 2uθ(x, t)

∆t2
, · · ·

)
∇xuθ(x, t) =

(
uθ (x+∆x1t)− uθ (x−∆x1, t)

2∆x1

These three equations give us the expression for computing each part of the

residual function without the need of using any differential operations and we only

need to evaluate the model’s output. We can then update the model’s parameter

by computing the gradient of loss with respect to the model’s current parameter.

In practical training of PINNs, the loss function is typically given by:

L(θ) = 1

N

N∑
i=0

∥R(θ)∥2

Therefore, the gradient of loss with respect to model’s parameters can be

computed as:

∂L
∂θ

= 2R(θ)
∂R(θ)

∂θ

57



Chapter 4. Methodology

From the previous section, we know that in this framework, the network is

divided into hidden layers and output layer. Therefore, we can rewrite the output

of the entire network as:

uθ(x, t) = wθN(x, t) + bθ

where N(x, t) denotes the hidden layers’ output, wθ and bθ represent parameters

in the hidden layer. Combining the equation for gradient of loss with respect to

the parameters with the equation for each term in the residual function, we can

then have a new expression for the first term as:

∂

∂θ
(∂tuθ(x, t)) =

∂

∂θ

(
uθ(x, t+∆t) + uθ(x, t−∆t)

2∆t

)
∂

∂θ
(∂tuθ(x, t)) =

∂uθ(x,t+∆t)
∂θ

+ ∂uθ(x,t−∆t)
∂θ

2∆t

According to the equation for the output of the entire network, we can easily

rewrite the equation as:

∂uθ(x, t+∆t)

∂θ
= N(x, t+∆t)

And this same form can be applied to all other terms as well. Finally, we will end

up with the final equation for the gradient of loss with respect to the parameters

as

58



Chapter 4. Methodology

∂R

∂θ
= 2R(θ)(

N(x, t+∆t) +N(x, t−∆t)

2∆t
+

d∑
i=0

(
N (x+∆xi, t)− 2N(x, t)

∆x2i

)
+
N(x, t+∆t)

∆t2
−

2µ∥w
(
N (x+∆x1, t)−N (x−∆x1, t)

2∆x1
+

· · ·+ N (x+∆xd, t)−N (x−∆xd, t)

2∆xd

)
+ b∥·(

N (x+∆x1, t)−N (x−∆x1, t)

2∆x1
, . . . ,

N(x, t+∆t)−N(x, t−∆t)

2∆t

)
)

(4.1)

After calculating the gradients, the parameters can be updated by:

θ∗ = θ + ηg

where η denotes a tunable learning rate. Iteratively computing will enable us to

have a loss value that is smaller than a predefined threshold, where we consider to

be a sufficiently accurate stopping point. From the experimental results shown in

the next section, we can see that this process reaches the same level of accuracy

compared with training from scratch, while saving more than 10 times of training

time.

59



Chapter 5

Numerical Results

In this section, we will demonstrate our experiment and result for solving

different PDEs and problems. We use the same hardware for both the pretraining

and finetuning stage, and we record the computing time and memory usage in

both stages to illustrate the effectiveness of this framework on edge devices. The

GPU we used in all our experiment is NVIDIA GeForce RTX 3090, with 24 GB

memory.

5.1 Poisson Equation

We firstly demonstrate our proposed method by solving the Poisson equation

demonstrated before. The network we used here is an MLP that has five hidden

layers with two input dimensions representing two spatial dimensions. The di-

mensions of the output for the pretraining and finetuning stage are different and

will be discussed in detail. The width of each layer is 128. The activation function

60



Chapter 5. Numerical Results

we used in the network is the sinusoidal activation function. The PDE is defined

as:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ρ(x, y) (5.1)

with x ∈ [0, 1] and y ∈ [0, 1]. The charge distribution ρ(x, y) is given by:

ρ(x, y) = sin(kπx) sin(kπy)

And the boundary condition is described by:

ψ(x, y) = 0, (x, y) ∈ ∂Ω

Then, we can write the residual function as ∇2Ψ − sin(kπx) sin(kπy) = 0. Now

let uθ(x, y) be the network, to ensure the network’s prediction not only is accu-

rate, but also satisfies the boundary condition, we use a transformation to let the

network meet the Dirichlet boundary condition:

ψθ(x, y) = x(x− 1)y(y − 1)uθ(x, y).

In the pretraining stage, we set the output dimension to be four, representing the

predicted solution for Poisson equations with different values of k in the charge

distribution. Specifically, we let the values for k to be [1, 2, 3, 4]. For each value

of k, we can formulate a residual function. Therefore, we will have four residual

functions corresponding to four different values of k in the PDE. By substituting

61



Chapter 5. Numerical Results

the output value from each output dimension of the network into each residual

function and compute an averaged loss value across these four residual functions,

we can then train the network based on its ability to approximate all four PDEs.

We fed 1,000 two dimensional coordinates into the network and they are sampled

randomly in the square domain bounded by (0, 0) and (1, 1).

For the pretraining stage, we used 10,000 iterations to train the model, and

the optimizer we used is Adam [cite] from the PyTorch library. The learning rate

at the beginning of the training is 1e − 3 and will decay every 1,000 iterations

by a factor of 0.9. After we finish with the pretraining stage, we then move

to the finetuning stage where we load the model from the last iteration in the

pretraining stage and replace the last layer with a single output layer that has

randomly initialized parameters. While most of the settings are unchanged, we

required only the last layer of the network to be trainable and frozen all other

layers. Then we performed finetuning for 1000 iterations. In the finetuning stage,

we set the value of k in the residual function to be 5, which is a number that has

never been seen by the network. The loss performance for the pretraining stage

and the finetuning stage are shown in figure 4.1 and figure 4.2 respectively.

To better visualize the performance of the transfer learning, we plot the heat

map for the ground truth with k = 5, and the ground truth is given by the analytic

62



Chapter 5. Numerical Results

Figure 5.1: Pretraining loss values in log scale. y-axis is loss values in log scale,
and x-axis represents iteration

63



Chapter 5. Numerical Results

Figure 5.2: Finetuning loss values in log scale. y-axis is loss values in log scale,
and x-axis represents iteration

64



Chapter 5. Numerical Results

Figure 5.3: Predicted and ground truth solution for the Poisson equation at
k = 5

Figure 5.4: Error of the predicted result.

solution in this form:

ψ(x, y) =
−1

2(kπ)2
sin(kπx) sin(kπy)

We also include the heatmap for the predicted solution as well. The plot is

shown in figure 4.3.

And the error between these two is also visualized by figure 4.4.

65



Chapter 5. Numerical Results

Figure 5.5: Predicted solution for the Poisson equation at k=5 by training a
PINN from scratch.

Figure 5.6: Error of the predicted solution for the PINN trained from scratch.

The mean value of the error in the whole field is 0.000280962 . If we train

a PINN from scratch for k = 5, we will end up with a prediction heat map and

error heat map shown in figure 4.5 and figure 4.6.

The average error of the field for training a PINN from scratch for 10,000

iterations is 0.0001916107 , which is at the same level and slightly lower compared

with our transfer learning method. We also tried finetuning for other values of k

66



Chapter 5. Numerical Results

Figure 5.7: Predicted and ground truth solution for the Poisson equation at
k = 6 after finetuning.

Figure 5.8: Error of solution for the Poisson equation at k = 6 after finetuning.

to evaluate the generalizability of this framework. The results are shown in figure

4.7 to 4.10

From all these results, we can see that the transfer learning framework can

effectively learn the PDE given a pretrained model even though this PDE has some

other parameters. Another advantage of finetuning is that it can be significantly

faster when solving some new cases. In experiment, the time used for Finetuning a

67



Chapter 5. Numerical Results

Figure 5.9: Predicted and ground truth solution for the Poisson equation at
k = 3.5 after finetuning.

Figure 5.10: Error of solution for the Poisson equation at k = 6 after finetuning.

68



Chapter 5. Numerical Results

model for 1,000 iterations is 22.92 seconds, while training a PINN from scratch for

10,000 iterations to solve this Poisson equation requires more than five minutes.

Overall, this framework is able to predict the solution for Poisson equations with

different parameters fast and accurately.

5.2 Hamilton-Jacobi-Bellman Equation

Another example to demonstrate the capability of the proposed method is a

Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation is a cornerstone of

modern control theory. It describes the condition of optimality for a control prob-

lem, offering a precise mathematical formulation to determine optimal strategies

in systems that evolve over time. The HJB equation relates the value of an opti-

mal policy at any given state to the maximum return achievable from that state.

Typically, the HJB equations can be challenging to solve due to its complexity

and the high dimensionality in practical applications. In different scenarios, the

number of state variables, each represents an aspect of the system that can change

over time and needs to be controlled, can be different and potentially high. Here

the HJB equation we considered is a 21-dimensional one given as:

∂tu(x, t) + ∆u(x, t)− µ ∥∇xu(x, t)∥22 = −2,x ∈ [0, 1]20, t ∈ [0, 1] (5.2)

69



Chapter 5. Numerical Results

with final condition and domain given as:

u(x, 1) = ∥x∥1, x ∈ [0, 1]20

Here ∥ · ∥p denotes the Lp norm for p = 1, 2. The exact solution is u(x, t) =

∥x∥1 + 1 − t if µ = 0.01. Training a traditional PINN for solving this equation

can be time consuming as it involves computations for all the 21 dimensions. To

make the PINN more efficient for solving the same equation with other values of

µ, we then leverage the idea of transfer learning for this equation. Same as the

previous example, we firstly choose multiple values for µ as µ ∈ [1, 1.2, 1.4, 1.6].

As the equation has 21 dimensions, the mesh grids we create as the input to the

network will also have 21 dimensions, and we have 1024 points in total. As the

input dimension of the PINN should be equal to the dimension of the PDE itself,

the PINN we used for the pretraining has input size as 21 , where the first 20

inputs denoting all the spatial coordinates and the last one denoting the temporal

coordinate. The width and depth of the network is the same as before, which

is 128 and 4 respectively. The output dimension, as we discussed before, should

correspond to the number of parameters we choose to pretraining over, which will

be 4 . The other hyper-parameters such as optimizer, learning rate, etc., are the

same as the last example.

In the pretraining stage, we trained the model for 7,000 iterations and it takes

about 5 hours. After that, we choose some other values for µ and finetune the

70



Chapter 5. Numerical Results

Figure 5.11: Pretraining training loss. The pretraining loss is calculated over
µ ∈ [1,1.2,1.4,1.6]

model with only 1,000 iterations. We use the vanilla PINN as a benchmark to

demonstrate the effectiveness of the transfer learning. The performance of both

stages is shown in figure 4.11 and 4.12.

By looking at the test loss of different tested values, we can see that it can

reach the same accuracy level as the vanilla PINN, while saving more than 10x

training time, and we can conclude that the transfer learning method can indeed

solve various HJB equations efficiently and accurately than training a PINN from

scratch.

As the current model relies heavily on existing tool libraries such as PyTorch to

compute the gradient, and these libraries are commonly not available on some edge

devices, we further demonstrate our proposed analytic computation of gradients

71



Chapter 5. Numerical Results

Figure 5.12: Finetuning test loss. The testing is performed for µ = 1.33(blue
line), µ = 1.527(yellow line), and µ = 1.423(red line).

so that we can perform finetuning on edge devices easily. To achieve this goal, we

mainly solved two issues: 1. The calculation of the gradients of loss with respect

to the model parameters requires existing libraries; 2. The differential operators

involved in the PDE itself also requires tools from existing libraries. The first

one can be solved with the previously mentioned analytic gradient computation.

The solution to the second issue is using the central finite difference instead of

backward propagation to compute the gradients associated with the differential

operators. With the performance of the test loss shown in figure 4.13 and 4.14, we

can see that we can still achieve the same finetuning performance without using

existing libraries to compute the gradients.

72



Chapter 5. Numerical Results

Figure 5.13: Test loss for µ = 1.423 at finetuning stage using analytical gradient
computation

Figure 5.14: Test loss for µ = 1.423 at finetuning stage using backward
propagation

73



Chapter 5. Numerical Results

From the result, we can see that using analytic gradient computation method,

we can still finetuning the model to the same accuracy level. This makes the model

friendly to hardware that have limited access to existing deep learning libraries.

5.3 3-D Reachability Problem

With the demonstration from previous examples, we now investigate a more

realistic problem that we introduced at the beginning: The 3-D reachability prob-

lem. Recall that the Hamiltonian for the 3-D reachability problem can be written

as:

H(x, t) = p1 (−ve + vp cosx3) + p2 (vp sinx3)

− ω̄ ∥p1x2 − p2x1 − p3∥+ ω̄p3

(5.3)

To solve this equation, we will need to select values for the velocity and ω̄. For

the situation where velocity equals to 0.75 and ω̄ equals to 3.0 , we can visualize

the reachability using figure 4.15.

To validate the effectiveness of transfer learning for solving this problem, we de-

sign the experiment as follows. Firstly, we pretrain the model by choosing multiple

parameters. We chose four values for velocity as ve ∈ [0.735, 0.745, 0.755, 0.765],

and four values for ω̄ that ω̄ ∈ [2.85, 2.95, 3.05, 3.15]. The purpose of choosing

these values is that we can bypass using the values for the ground truth case. It

74



Chapter 5. Numerical Results

Figure 5.15: Ground truth solution for 3-D reachability problem. Left figure
shows the solution space where the blue region denotes the reachable set. The
right figure shows the overlap of this solution with the true solution. Since this is
ground truth, thus it shows a fully overlap.

is obviously that our model will have 4 output dimensions. The input dimension

for this problem is four as well since it includes three spatial dimensions and one

temporal dimension. We perform 120,000 iterations of pretraining with 65,000

points. The optimizer we use for this case is Stochastic Gradient Descent (SGD).

After pretraining, we leverage the saved model from last epoch of the pretraining

stage and replace its last layer with a single output layer. Then we finetune the

model for 10,000 iterations. The resulting solution from the model is shown in

figure 4.16.

75



Chapter 5. Numerical Results

Figure 5.16: Predicted solution for 3-D reachability problem (Left). Comparison
of predicted solution with ground truth (Right) where shaded area represents the
difference.

From this result, we can conclude that the transfer learning meets our expec-

tation that it can saves more than 10x training time for solving a new case, while

the prediction accuracy is comparable with training from scratch.

76



Chapter 6

Discussion and Conlusion

Through the experiment, we validate using multiple examples that the trans-

fer learning can work as desired for efficiently solving new PDEs given some prior

knowledge about that PDE through pretraining. There are some points worth

discussing from the experiment. The number of parameters that we used for pre-

training will have a crucial influence on the entire framework. In the pretraining

case, we typically select four different parameters as a pretraining bundle. In fact,

the number of parameters we choose for pretraining bundle can have respective

advantages and limitations. Choosing more parameters will require us to have

more output dimensions at the last layer and will results in larger model size and

more computation. The benefit of doing so is also obvious: as we feed more cases

for pretraining, we can expect the network to be more generalizable since wider

range of data can improve the performance of transfer learning [cite: Do Better

ImageNet Models Transfer Better?]. From the other side, reducing the number of

77



Chapter 6. Discussion and Conlusion

parameters in the pretraining bundle can help to save a lot of memory and com-

puting time, but the performance of transfer learning will be limited if the target

data distribution deviates much from the pretraining bundle. As a conclusion,

we demonstrated the main idea and the capability of transfer learning using a

relatively simple Poisson equation. The model after finetuning successfully solved

a new Poisson equation with the same level of accuracy compared to training from

scratch, and the finetuning also helps to save a significant amount of time as only

1/10 iterations is needed for finetuning. We further demonstrated the capability

of transfer learning in solving more complicated PDEs like a 20-dimensional HJB

equation. In this experiment, we also demonstrated the effectiveness of the an-

alytic gradient computation method, which enables us to deploy this framework

onto devices where common Python libraries are not available. In the last ex-

periment, where we solved the 3-D reachability problem, we demonstrated that

we could solve real world optimal control problems efficiently and accurately us-

ing this transfer learning framework. This work also leaves a lot of spaces for

future work. This current hardware-friendly framework can only solve a single

family of PDEs. Therefore, its usage could be very limited if the situation is more

complicated. A more generalized framework is needed. This issue is especially

important for the analytical gradient computation part. To analytically compute

the gradients, we need to derive the expression according to the residual function.

78



Chapter 6. Discussion and Conlusion

Deriving such expression for a single family of PDEs can be easy, but to have a

more generalized and automated system, we need to improve the way we find the

exact gradient to make the framework more generalizable.

79



Bibliography

Ascher, Uri M, Steven J Ruuth, and Brian TR Wetton (1995). “Implicit-explicit
methods for time-dependent partial differential equations”. In: SIAM Journal
on Numerical Analysis 32.3, pp. 797–823.

Bansal, Somil and Claire J Tomlin (2021). “Deepreach: A deep learning approach
to high-dimensional reachability”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 1817–1824.

Biswas, BN et al. (2013). “A discussion on Euler method: A review”. In: Electronic
Journal of Mathematical Analysis and Applications 1.2, pp. 2090–2792.

Desai, Shaan et al. (2021). “One-shot transfer learning of physics-informed neural
networks”. In: arXiv preprint arXiv:2110.11286.

Herten, Rudolf LM van et al. (2022). “Physics-informed neural networks for my-
ocardial perfusion MRI quantification”. In:Medical Image Analysis 78, p. 102399.

Jagtap, Ameya D et al. (2022). “Physics-informed neural networks for inverse
problems in supersonic flows”. In: Journal of Computational Physics 466,
p. 111402.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980.

Kutta, Wilhelm (1901). Beitrag zur näherungsweisen Integration totaler Differen-
tialgleichungen. Teubner.

Lagaris, Isaac E, Aristidis Likas, and Dimitrios I Fotiadis (1998). “Artificial neural
networks for solving ordinary and partial differential equations”. In: IEEE
transactions on neural networks 9.5, pp. 987–1000.

Li, Jiaheng, Junchao Chen, and Biao Li (2022). “Gradient-optimized physics-
informed neural networks (GOPINNs): a deep learning method for solving the
complex modified KdV equation”. In: Nonlinear Dynamics 107, pp. 781–792.

Liu, Ziyue, Xinling Yu, and Zheng Zhang (2022). “TT-PINN: a tensor-compressed
neural PDE solver for edge computing”. In: arXiv preprint arXiv:2207.01751.

Lu, Lu, Pengzhan Jin, and George Em Karniadakis (2019). “Deeponet: Learning
nonlinear operators for identifying differential equations based on the universal
approximation theorem of operators”. In: arXiv preprint arXiv:1910.03193.

80



BIBLIOGRAPHY

Lu, Lu, Raphael Pestourie, et al. (2021). “Physics-informed neural networks with
hard constraints for inverse design”. In: SIAM Journal on Scientific Computing
43.6, B1105–B1132.

Lütjens, Björn et al. (2021). “Pce-pinns: Physics-informed neural networks for un-
certainty propagation in ocean modeling”. In: arXiv preprint arXiv:2105.02939.

Mowlavi, Saviz and Saleh Nabi (2023). “Optimal control of PDEs using physics-
informed neural networks”. In: Journal of Computational Physics 473, p. 111731.

Noguer i Alonso, Miquel and Daniel Maxwell (2023). “Physics-Informed Neural
Networks (PINNs) in Finance”. In: Daniel, Physics-Informed Neural Networks
(PINNs) in Finance (October 10, 2023).

Oldenburg, Jan et al. (2022). “Geometry aware physics informed neural network
surrogate for solving Navier–Stokes equation (GAPINN)”. In: Advanced Mod-
eling and Simulation in Engineering Sciences 9.1, p. 8.

Raissi, Maziar, Paris Perdikaris, and George E Karniadakis (2019). “Physics-
informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations”. In: Journal
of Computational physics 378, pp. 686–707.

RAY, DEEP PINTI, Orazio Pinti, and Assad A Oberai (2024). DEEP LEARN-
ING AND COMPUTATIONAL PHYSICS. Springer.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6, p. 386.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors”. In: nature 323.6088, pp. 533–536.

Verwer, Jan G (1996). “Explicit Runge-Kutta methods for parabolic partial dif-
ferential equations”. In: Applied Numerical Mathematics 22.1-3, pp. 359–379.

Waheed, Umair bin et al. (2021). “PINNtomo: Seismic tomography using physics-
informed neural networks”. In: arXiv preprint arXiv:2104.01588.

Xu, Bing et al. (2015). “Empirical evaluation of rectified activations in convolu-
tional network”. In: arXiv preprint arXiv:1505.00853.

Yu, Jeremy et al. (2022). “Gradient-enhanced physics-informed neural networks
for forward and inverse PDE problems”. In: Computer Methods in Applied
Mechanics and Engineering 393, p. 114823.

Yu, Xinling et al. (2023). “Pifon-ept: Mr-based electrical property tomography
using physics-informed fourier networks”. In: IEEE Journal on Multiscale and
Multiphysics Computational Techniques.

Zhang, Xiaoping et al. (2022). “GW-PINN: A deep learning algorithm for solving
groundwater flow equations”. In: Advances in Water Resources 165, p. 104243.

81



BIBLIOGRAPHY

Zhang, Yijie, Xueyu Zhu, and Jinghuai Gao (2023). “Seismic inversion based on
acoustic wave equations using physics-informed neural network”. In: IEEE
transactions on geoscience and remote sensing 61, pp. 1–11.

82


	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Background and Related Work
	Differential Equations
	ODEs and PDEs
	Solving Differential Equations

	Deep Neural Networks
	Activation Functions
	Train, validation, and testing of neural networks
	Optimization
	Advanced Optimization Methods
	Backward-Propagation

	Transfer Learning
	Physics-Informed Neural Networks
	Applications
	Reachability in High Dimensions


	Methodology
	Transfer Learning of PINNs
	Poisson Equation 
	Reachability Problem

	Finetuning Analytic Gradient Computation

	Methodology
	Transfer Learning of PINNs
	Poisson Equation 
	Reachability Problem

	Finetuning Analytic Gradient Computation

	Numerical Results
	Poisson Equation
	Hamilton-Jacobi-Bellman Equation
	3-D Reachability Problem

	Discussion and Conlusion

