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Deep learning has brought remarkable improvement for the performance of image recog-

nition tasks. However, the resource limitation forms a big obstacle for the real application of

deep learning. Two types of resource constraints- limited machine’s computing power and lack of

annotated data are considered in the thesis. Compared to leveraging a large static network formed

by input independent blocks, we try to overcome the issues of resource limitation with a more

effective architecture by proposing a series of dynamic neural networks with input dependent

blocks.

For the tasks with constrained computational resources, we first consider the multi-domain

learning problem, which requires a single framework to perform well on multiple datasets for

xix



image classification. CovNorm is proposed to dynamically project a common feature to different

feature spaces according to the dataset ID by consuming tiny numbers of extra parameters

and computation. Then a large scale image recognition problem under different computational

resources is explored. Dynamic Convolution Decomposition (DCD) is proposed for the machines

with computing power from the order of 100 MFLOPs to 10 GFLOPs while MicroNet is designed

to be applied on the machines with the computational cost far below 100 MFLOPs. Empowered

by the dynamic architecture, both DCD and MicroNet achieve a significant improvement within

their working scope.

For the issue of lacking annotated data, we work on the domain adaptation tasks, where

the dataset is partially labeled and a domain gap exists between the labeled data (source domain)

and the unlabeled data (target domain). We start by considering a relatively simple case with

a single source and single target domain on semantic segmentation. A bidirectional learning

(BDL) framework is designed and it reveals the synergy of several key factors, i.e., adversarial

learning and self-training for domain adaptation. Based on the techniques given by BDL and

the power of dynamic networks, a more complex problem- multi-source domain adaptation is

investigated. Dynamic residual transfer (DRT) is presented and shows tremendous improvement

for the adaptation performance compared to its static version. It confirms the effectiveness of

dynamic networks for the image recognition problem when the amount of annotated data is

limited.
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Chapter 1

Introduction
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1.1 Resource Constrained Image Recognition

Image recognition tasks, e.g., image classification, keypoint detection, object detection

and segmentation segmentation have been widely studied and significantly boosted since the

pioneer deep learning framework [4]. And the deep learning model is still being designed

and trained to be applied on more complex tasks with the target of better performance. As a

result, as long as the model is large enough, the task complexity can be scaled from recognizing

thousands of images to billions of images or from one pure classification task to multi-task

learning. Although the progress of deep learning is quite amazing, its success highly relies on

two types of resources, i.e, the powerful machines and large amount of training (annotated)

data. Hence, the generality of deep learning is impaired in the scenario where the resources are

constrained. In the thesis, we attempt to deal with this issue by working on resource constrained

vision tasks and try to maximize the performance of neural networks under a strict computational

restriction or insufficient annotated data.

For the constraint of computational resources, it is a widely existing issue for vision

problems. For instance, most of the mobile devices only contain CPUs or very weak GPUs that

can only handle the models with millions of FLOPs. For a GPU cluster, although its computing

power is significantly stronger than mobile devices, which allows it to run models that cost tens

of millions of FLOPs or even billions of FLOPs, it still has a ceiling for the computing power,

depending on the number of GPUs it contains. Thus how to maximize the performance given

limited computational resources has become a popular research subject and people have developed

diverse novel techniques from the view of network compression [5, 6] to neural architecture

search [7, 8].

For the shortage of annotated data, there exist different research subjects, e.g., self-

supervised learning, semi-supervised learning and domain adaptation, based on the data styles

and the ratio of annotated data. In the thesis, we mainly focus on the domain adaptation, where the
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dataset is partially labeled and the labeled data (served as source domain) has a clear discrepancy

to the unlabeled data (served as target domain) that people care more about. The hypothesis

of domain adaptation is annotating data is time consuming or has very high requirement on

the labelers for some specific tasks, e.g., semantic segmentation or fine-grained classification.

Besides, even though enough data is labeled for these tasks, the style of the data will change

according to the time or the places it is collected, which makes the labeling work intractable.

The aim of domain adaptation is to fully leverage the existing labeled data and the large scale

of unlabeled data to train a model that can perform equally well on the unlabeled data as the

labeled data. With this clear target, people have developed a series of effective techniques, e.g.,

adversarial learning [9, 10], self-training [11] and data mixup [12, 13].

1.2 Limitations of Existing Methods

The two resource restriction issues have been widely explored and eased by various

methods. For the constraint of computational resources, as mentioned before, network com-

pression and neural architecture search were proposed to overcome this issue from different

aspects. The network compression mainly tries to reduce the computational cost via discarding

some unimportant parts of the network via either matrix decomposition [14] or channel pruning

[15] for the convolution layers. The neural architecture search (NAS) aims to seek the best

aggregation of network blocks with different width and depth under certain computational budget

and reinforcement learning [7] is a quite popular method used for NAS. For domain adaptation,

people care more about the metric design, e.g., maximum mean discrepancy (MMD) [16] or

adversarial learning [9], to force the network to project data from different domains to the shared

feature space. Therefore, so long as the features from the source domain are discriminative, which

is assured through supervision given by labels, the target features will also be discriminative.

For the techniques used to solve both issues, although most of them seem to be irrelevant,
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they share to use a static model, where the model is data independent. The static model forms

two types of weakness that are severely harmful for the image recognition tasks under limited

resources. First, the static model is less efficient. For image recognition tasks, a network is

required to map all data to the feature space that can maximize the inter-class distance while

minimizing the intra-class distance. Hence, so as to achieve this goal, the network has to be

very complex to form a sophisticated function and sometimes the complexity is beyond the

computational ability of some devices. Second, the adaptiveness of static model is limited. In

another word, the static model is not invariant to data styles. For instance, if the model is trained

to classify a bunch of real images, its performance will drop in a cliff manner when it is deployed

to cartoon images, even though all classses are shared. This weak adaptive capacity prevents the

performance of domain adaptation to be further promoted, especially when the data has a large

variation (large domain discrepancy).

1.3 Contributions of the Thesis

In the thesis, we present a series of dynamic networks to overcome the weakness brought

by the aforementioned static models for various image recognition tasks under different types of

resource constraints. The dynamic networks refer to the family of neural networks that contains

input dependent parameters or architectures. Contrary to the static counterpart, the key advantages

of dynamic networks lie on two aspects- efficiency and adaptiveness. In the following parts of

the thesis, we show that these two advantages make the dynamic network a perfect tool for

different resource constrained image recognition problems. Specifically, we first consider the

problem of computational resource restriction for multi-domain learning and large scale image

recognition tasks. We present a domain-wise dynamic framework and two sample-wise dynamic

frameworks that are explained in the first three works respectively. All the dynamic frameworks

show excellent computational efficiency under different circumstances. The rest two works are
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mainly designed for the domain adaptation problem. They first reveal several critical techniques

for domain adaptation and based on these techniques several dynamic modules are investigated.

No matter simple or complex, all the dynamic modules show tremendous improvement for the

adaptation performance and confirm the adaptiveness for dynamic models.

1.3.1 A Domain-Wise Dynamic Framework for Efficient Multi-Domain

Learning

The problem of multi-domain learning of deep networks is considered. The multi-domain

learning asks for a generic framework to do classification job on different datasets (domains).

In order to avoid building a model per dataset, a series of adaptive layers are dynamically

induced according to each target dataset and a novel procedure, denoted covariance normalization

(CovNorm), is proposed to reduce its parameters. CovNorm is applied per convolutional layer to

convert the domain-common feature to the domain-specific feature. It is a data driven method of

fairly simple implementation, requiring two principal component analyzes (PCA) and fine-tuning

of a mini-adaptation layer. Nevertheless, it is shown, both theoretically and experimentally, to

have several advantages over previous approaches, such as batch normalization or geometric

matrix approximations. Furthermore, CovNorm can be deployed both when target datasets are

available sequentially or simultaneously. Experiments show that, in both cases, it has performance

comparable to a fully fine-tuned network, costing as very few parameters and computation per

target domain.

1.3.2 A Sample-Wise Dynamic Framework for Efficient Large-Scale Im-

age Recognition

The domain-wise dynamic framework- CovNorm has been shown to be effective on

multi-domain learning. It reflects that the domain-common features can be easily adapted
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to different domains via tuning only the adaptive layers. We further explore the power of

CovNorm by deploying it on the large-scale image recognition and parametrize it in a sample-wise

manner with an input dependent branch. The new framework is denoted as dynamic convolution

decomposition (DCD). Surprisingly, it not only achieves an excellent performance on large-scale

image classification dataset- ImageNet on different backbones but also successfully addresses the

two issues, i.e., model redundancy and hardness of optimization, existing in the previous dynamic

modules built on convolutional layers. More important, we reveal the fundamental reason that

leads to these drawbacks mathematically for the previous methods, which is the application of

dynamic attention over channel groups in a high dimensional latent space. And the proposed DCD

can perfectly overcome this problem by applying dynamic channel fusion in a low dimensional

space.

1.3.3 Large-Scale Image Recognition with Extremely Low FLOPs

The previously introduced dynamic operator is built on existing backbones, i.e., ResNet

and MobileNet V2. They are mainly leveraged by the devices with computational budget ranging

from the order of 100 MFLOPs to 10 GFLOPs. In order to extend the application of deep learning

to some extreme cases of computational resources, e.g., below 10 MFLOPs, we present MicroNet.

We handle the issue of extremely low FLOPs based upon two design principles: (a) avoiding

the reduction of network width by lowering the node connectivity, and (b) compensating for

the reduction of network depth by introducing more complex non-linearity per layer. First, we

propose Micro-Factorized convolution to factorize both pointwise and depthwise convolutions

into low rank matrices for a good tradeoff between the number of channels and input/output

connectivity. Second, we propose a new activation function, named Dynamic Shift-Max, to

improve the non-linearity via maxing out multiple dynamic fusions between an input feature

map and its circular channel shift. The fusions are dynamic as their parameters are adapted

to the input. Building upon Micro-Factorized convolution and Dynamic Shift-Max, a family
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of MicroNets achieve a significant performance gain over the state-of-the-art in the low FLOP

regime for several recognition tasks, i.e., large scale image classification, object detection and

keypoint detection.

1.3.4 A Bidirectional Learning Framework for Domain Adaptation on Se-

mantic Segmentation

The annotated data is another critical type of resources for deep learning and domain

adaptation is one of the key subjects to deal with the issue when the annotated data is lacking.

Specifically, domain adaptation assumes the annotated data is restricted to some domains which

are different to the domain of the unlabeled data that we care more about. This difference is

denoted as domain discrepancy. In order to tackle the domain discrepancy, we propose a novel

bidirectional learning framework. The framework is mainly designed for segmentation tasks and

it contains two parts- image translation model and segmentation model. Using the bidirectional

learning, the image translation model and the segmentation model can be learned alternatively

and promote to each other. Furthermore, we propose a self-training algorithm to learn a better

segmentation model and in return improve the image translation model. Experiments show that

our method is superior to the state-of-the-art methods in domain adaptation of segmentation with

a big margin. More critical, bidirecctional learning framework reveals that the synergy of image

translation, segmentation model and self-training.

1.3.5 Multi-Source Domain Adaptation with Dynamic Transfer

Motivated by the findings given by the bidirectional learning framework, a more complex

domain adaptation task- multi-source domain adaptation is considered. The multi-source domain

adaptation task considers the source domain as an union of images with various styles (domains).

Recent works focus on learning a domain-agnostic model, of which the parameters are static.
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However, such a static model is difficult to handle conflicts across multiple domains, and suffers

from a performance degradation in both source domains and target domain. Inspired by the

success of dynamic networks for supervised cases, we present dynamic transfer to address domain

conflicts. The key insight is that adapting model across domains is achieved via adapting model

across samples. Thus, it breaks down source domain barriers and turns multi-source domains into

a single-source domain. This also simplifies the alignment between source and target domains,

as it only requires the target domain to be aligned with any part of the union of source domains.

Furthermore, we find dynamic transfer can be simply modeled by aggregating residual matrices

and a static convolution matrix. Experimental results show that, without using domain labels,

our dynamic transfer outperforms the state-of-the-art method by a large margin on the large

multi-source domain adaptation datasets– DomainNet.

1.4 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we introduce the domain-wise dynamic

framework for multi-domain learning, which switches the efficient dynamic module (CovNorm)

according to the dataset (domain) ID. In Chapter 3, we extend the dynamic module from the

manner of domain-wise to sample-wise for the large scale image recognition problem and propose

a new framework named dynamic convolution decompostion (DCD). Chapter 4 further explores

the network design for image recognition problem under extremely low FLOPs and presents

MicroNet that is formed by a novel Micro-Factorized convolution and a dynamic activation

function, i.e., Dynamic Shift-Max. Chapter 5 discusses the domain adaptation problem on

semantic segmentation with a bidirectional learning (BDL) framework that unifies several key

techniques used by domain adaptation. Chapter 6 extends the domain adaptation task from

single-source domain to multi-source domain and presents a novel dynamic module denoted as

dynamic transfer. In the last, Chapter 7 concludes the thesis.
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Chapter 2

Efficient Multi-Domain Learning
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2.1 Introduction

Convolutional nerual networks (CNNs) have enabled transformational advances in classi-

fication, object detection and segmentation, among other tasks. However they have non-trivial

complexity. State-of-the-art models contain millions of parameters and require implementation in

expensive GPUs. This creates problems for applications with computational constraints, such

as mobile devices or consumer electronics. Figure 2.1 illustrates the problem in the context of a

smart home equipped with an ecology of devices such as a camera that monitors package delivery

and theft, a fridge that keeps track of its content, a treadmill that adjusts fitness routines to the

facial expression of the user, or a baby monitor that keeps track of the state of a baby. As devices

are added to the ecology, the GPU server in the house must switch between a larger number

of classification, detection, and segmentation tasks. Similar problems will be faced by mobile

devices, robots, smart cars, etc.

Under the current deep learning paradigm, this task switching is difficult to perform. The

predominant strategy is to use a different CNN to solve each task. Since only a few models can

be cached in the GPU, and moving models in and out of cache adds too much overhead to enable

real-time task switching, there is a need for very efficient parameter sharing across tasks. The

individual networks should share most of their parameters, which would always reside on the

GPU. A remaining small number of task specific parameters would be switched per task. This

problem is known as multi-domain learning (MDL) and has been addressed with the architecture

of Figure 2.1 [17, 18]. This consists of set of fixed layers (denoted as ’F’) shared by all tasks and

a set of task specific adaptation layers (denoted as ’A’) fine-tunned to each task. If the A layers

are much smaller than the F layers, many models can be cached simultaneously. Ideally, the F

layers should be pre-trained, e.g. on ImageNet, and used by all tasks without additional training,

enabling the use of special purpose chips to implement the majority of the computations. While

A layers would still require a processing unit, the small amount of computation could enable the
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Figure 2.1: Multi-domain learning addresses the efficient solution of several tasks, defined
on different domains. Each task is solved by a different network with shared and fixed layers
F, which contain the majority of network parameters. These are complemented by small
task-specific adaptation layers A.

use of a CPU, making it cost-effective to implement each network on the device itself.

In summary, MDL aims to maximize the performance of the network ecology while

minimizing the ratio of task specific (A) to total parameters (both types F and A) per network.

[17, 18] have shown that the architecture of Figure 2.1 can match the performance of fully
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Figure 2.2: Covariance normalization. Each adaptation layer A is approximated by three
transformations: W̃x, which implements a projection onto the PCA space of the input x, W̃y,
which reconstructs the PCA space of the output y, and a mini-adaptation layer Mxy.

fine-tuning each network in the ecology, even when A layers contain as few as 10% of the

total parameters. In this chapter, we show that A layers can be substantially further shrunk,

using a data-driven low-rank approximation. As illustrated in Figure 2.2, this is based on

transformations that match the 2nd-order statistics of the A layer inputs and outputs. Given

principal component analyses (PCAs) of both input and output, the layer is approximated by a

recoloring transformation: a projection into input PCA space, followed by a reconstruction into

the output PCA space. By controlling the intermediate PCA dimensions, the method enables low-

dimensional approximations of different input and output dimensions. To correct the mismatch

(between PCA components) of two PCAs learned independently, a small mini-adaptation layer is

introduced between the two PCA matrices, and fine-tunned on the target target.

Since the overall transformation generalizes batch normalization, the method is denoted

covariance normalization (CovNorm). CovNorm is shown to outperform, with both theoretical
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and experimental arguments, purely geometric methods for matrix approximation, such as the

singular value decomposition (SVD) [19], fine-tuning of the original A layers [17, 18], or

adaptation based on batch normalization [20]. It is also quite simple, requiring two PCAs and the

fine-tuning of a very small mini-adaptation layer per A layer and task. Experimental results show

that it can outperform full network fine-tuning while reducing A layers to as little as 0.53% of

the total parameters. When all tasks can be learned together, A layers can be further reduced to

0.51% of the full model size. This is achieved by combining the individual PCAs into a global

PCA model, of parameters shared by all tasks, and only fine-tunning mini-adaptation layers in a

task specific manner.

2.2 Related Work

MDL is a transfer learning problem, namely the transfer of a model trained on a source

learning problem to an ecology of target problems. This makes it related to different types of

transfer learning problems, which differ mostly in terms of input, or domain, and range space, or

task.

2.2.1 Task Transfer

Task transfer addresses the use of a model trained on a source task to the solution of a

target task. The two tasks can be defined on the same or different domains. Task transfer is

prevalent in deep learning, where a CNN pre-trained on a large source dataset, such as ImageNet,

is usually fine-tunned [21] to a target task. While extremely effective and popular, full network

fine-tunning changes most network parameters, frequently all. MDL addresses this problem by

considering multiple target tasks and extensive parameter sharing between them.
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Figure 2.3: a) original network, b) after fine-tuning, and c) with adaptation layer A. In all cases,
Wi is a weight layer and φ(.) a non-linearity.

2.2.2 Domain Adaptation

In domain adaptation, the source and target tasks are the same, and a model trained

on a source domain is transfered to a target domain. Domain adaptation can be supervised,

in which case labeled data is available for the target domain, or unsupervised, where it is not.

Various strategies have been used to address these problems. Some methods seek the network

parameters that minimize some function of the distance between feature distributions in the two

domains [22, 23, 24]. Others introduce an adversarial loss that maximizes the confusion between

the two domains [25, 9]. A few methods have also proposed to do the transfer at the image level,

e.g. using GANs [26] to map source images into (labeled) target images, then used to learn a

target classifier [27, 28, 29]. All these methods exploit the commonality of source and domain

tasks to align source and target domains. This is unlike MDL, where source and target tasks are

different. Nevertheless, some mechanisms proposed for domain adaptation can be used for MDL.

For example, [30, 31] use a batch normalization layer to match the statistics of source and target

data, in terms of means and standard deviation. This is similar to an early proposal for MDL [20].

We show that these mechanisms underperform covariance normalization.

2.2.3 Multi-Task Learning

Multi-task learning [32, 33] addresses the solution of multiple tasks by the same model.

It assumes that all tasks have the same visual domain. Popular examples include classification

and bounding box regression in object detection [34, 35], joint estimation of surface normals

and depth [36] or segmentation [37], joint representation in terms of attributes and facial land-
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marks [38, 39], among others. Multi-task learning is sometimes also used to solve auxiliary

tasks that strengthen performance of a task of interest, e.g. by accounting for context [40], or

representing objects in terms of classes and attributes [41, 37, 42, 43]. Recently, there have been

attempts to learn models that solve many problems jointly [44, 45, 46].

Most multi-task learning approaches emphasize the learning of the interrelationships

between tasks. This is frequently accomplished by using a single network, combining domain

agnostic lower-level network layers with task specific network heads and loss functions [38, 36,

40, 41, 35, 45], or some more sophisticated forms of network branching [43]. The branching

architecture is incompatible with MDL, where each task has its own input, different from those of

all other tasks. Even when multi-task learning is addressed with multiple tower networks, the

emphasis tends to be on inter-tower connections, e.g. through cross-stitching [37, 47]. In MDL,

such connections are not feasible, because different networks can join the ecology of Figure 2.1

asynchronously, as devices are turned on and off.

2.2.4 Lifelong Learning

Lifelong learning aims to learn multiple tasks sequentially with a shared model. This can

be done by adapting the parameters of a network or adapting the network architecture. Since

training data is discarded upon its use, constraints are needed to force the model to remember

what was previously learned. Methods that only change parameters either use the model output

on previous tasks [48], previous parameters values [49], or previous network activations [50] to

regularize the learning of the target task. They are very effective at parameter sharing, since a

single model solves all tasks. However, this model is not optimal for any specific task, and can

perform poorly on all tasks, depending on the mismatch between source and target domains [51].

We show that they can significantly underperform MDL with CovNorm. Methods that adapt the

network architecture usually add a tower per new task [52, 53]. These methods have much larger

complexity than MDL, since several towers can be needed to solve a single task [52], and there is
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no sharing of fixed layers across tasks.

2.2.5 Multi-Domain Learning

This work builds on previous attempts at MDL, which have investigated different architec-

tures for the adaptation layers of Figure 2.1. [20] used a BN layer [54] of parameters tunned per

task. While performing well on simple datasets, this does not have enough degrees of freedom

to support transfer of large CNNs across different domains. More powerful architectures were

proposed by [18], who used a 1×1 convolutional layer and [17], who proposed a ResNet-style

residual layer, known as a residual adaptation (RA) module. These methods were shown to per-

form surprisingly well in terms of recognition accuracy, equaling or surpassing the performance

of full network fine-tunning, but can still require a substantial number of adaptation parameters,

typically 10% of the network size. [19] addressed this problem by combining adapters of multiple

tasks into a large matrix, which is approximated with an SVD. This is then fine-tuned on each

target dataset. Compressing adaptation layers in this way was shown to reduce adaptive parameter

counts to approximately half of [17]. However, all tasks have to be optimized simultaneously. We

show that CovNorm enables a further ten-fold reduction in adaptation layer parameters, without

this limitation, although some additional gains are possible with joint optimization.

2.3 MDL by Covariance Normalization

In this section, we introduce the CovNorm procedure for MDL with deep networks.

2.3.1 Multi-Domain Learning

Figure 2.3 a) motivates the use of A layers in MDL. The figure depicts two fixed weight

layers, F1 and F2, and a non-linear layer φ(.) in between. Since the fixed layers are pre-trained

on a source dataset S , typically ImageNet, all weights are optimized for the source statistics. For
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standard losses, such as cross entropy, this is a maximum likelihood (ML) procedure that matches

F1 and F2 to the statistics of activations x,y and u in S . However, when the CNN is used on a

different target domain, the statistics of these variables change and F1,F2 are no longer an ML

solution. Hence, the network is sub-optimal and must be fine-tunned on a target dataset T . This

is denoted full network fine-tuning and converts the network into an ML solution for T , with the

outcome of Figure 2.3 b). In the target domain, the intermediate random variables become x′, y′,

and u′ and the weights are changed accordingly, into F′1 and F′2.

While very effective, this procedure has two drawbacks, which follow from updating

all weights. First, it can be computationally expensive, since modern CNNs have large weight

matrices. Second, because the weights F′i are not optimal for S , i.e., the CNN forgets the source

task, there is a need to store and implement two CNNs to solve both tasks. This is expensive in

terms of storage and computation and increases the complexity of managing the network ecology.

A device that solves both tasks must store two CNNs and load them in and out of cache when it

switches between the tasks. These problems are addressed by the MDL architecture of Figure

2.1, which is replicated in greater detail on Figure 2.3 c). It introduces an adaptation layer A and

fine-tunes this layer only, leaving F1 and F2 unchanged. In this case, the statistics of the input are

still those of x′, but the distributions along the network are now those of z′,y′′, and u′′. Since F1 is

fixed, nothing can be done about z′. However, the fine-tuning of A encourages the statistics of y′′

to match those of y′, i.e., y′′ = y′ and thus u′′ = u′. Even if A cannot match statistics exactly, the

mismatch is reduced by repeating the procedure in subsequent layers, e.g. introducing a second A

layer after F2, and optimizing adaptation matrices as a whole.

2.3.2 Adaptation Layer Size

Obviously, MDL has limited interest if A has size similar to F1. In this case, each domain

has as many adaptation parameters as the original network, all networks have twice the size, task

switching is complex, and training complexity is equivalent to full fine-tunning of the original
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network. On the other hand, if A is much smaller than F1, MDL is computationally light and

task-switching much more efficient. In summary, the goal is to introduce an adaptation layer A as

small as possible, but still powerful enough to match the statistics of y′ and y′′. A simple solution

is to make A a batch normalization layer [54]. This was proposed in [20] but, as discussed

below, is not effective. To overcome this problem, [18] proposed a linear transformation A and

[17] adopted the residual structure of [55], i.e., an adaptation layer T = (I+A). To maximize

parameter savings, A was implemented with a 1×1 convolutional layer in both cases.

This can, however, still require a non-trivial number of parameters, especially in upper

network layers. Let F1 convolve a bank of d filters of size k× k× l with l feature maps. Then,

F1 has size dk2l, y is d dimensional, and A a d×d matrix. Since in upper network layers k is

usually small and d > l, A can be only marginally smaller than F1. [19] exploited redundancies

across tasks to address this problem, creating a matrix with the A layer parameters of multiple

tasks and computing a low-rank approximation of this matrix with an SVD. The compression

achieved with this approximation is limited, because the approximation is purely geometric, not

taking into account the statistics of z′ and y′. In this chapter, we propose a more efficient solution,

motivated by the interpretation of A as converting the statistics of z′ into those of y′. It is assumed

that the fine-tuning of A produces an output variable y′′ whose statistics match those of y′. This

could leverage adaptation layers in other layers of the network, but that is not important for the

discussion that follows. The only assumption is that y′′ = y′. The goal is to replace A by a simpler

matrix that maps z′ into y′. For simplicity, we drop the primes and notation of Figure 2.3 in what

follows, considering the problem of matching statistics between input x and output y of a matrix

A.

2.3.3 Geometric Approximations

One possibility is to use a purely geometric solution [19]. Geometrically, the closest

low rank approximation of a matrix A is given by the SVD, A = USVT . More precisely, the

18



x

~
W y

~
Cyx,M

x

~
W y

~
C

Figure 2.4: Top: CovNorm approximates adaptation layer A by a sequence of whitening W̃x,
mini-adaptation Mx,y, and coloring C̃y operations. Bottom: after covnorm, the mini adaptation
layer can be absorbed into W̃x (shown in the figure) or C̃y.

minimum Frobenius norm approximation Ã= argmin{B|rank(B)=r} ||A−B||2F , where r < rank(A),

is Ã = US̃VT where S̃ contains the r largest singular values of A. This can be written as Ã = CW,

where C = U
√

S̃ and W =
√

S̃VT . If A ∈ Rd×d , these matrices have a total of 2rd parameters.

An even simpler solution is to define C ∈ Rd×r and W ∈ Rr×d , replace A by their product in

Figure 2.3 c), and fine-tune the two matrices instead of A. We denote this as the fine-tunned

approximation (FTA). These approaches are limited by their purely geometric nature. Note that

d is determined by the source model (output dimension of F1) and fixed. On the other hand,

the dimension r should depend on the target dataset T . Intuitively, if T is much smaller than

S , or if the target task is much simpler, it should be possible to use a smaller r than otherwise.

There is also no reason to believe that a single r, or even a single ratio r/d, is suitable for all

network layers. While r could be found by cross-validation, this becomes expensive when there

are multiple adaptation layers throughout the CNN. We next introduce an alternative, data driven,

procedure that bypasses these difficulties.

2.3.4 Covariance Matching

Assume that, as illustrated in Figure 2.2, x and y are Gaussian random variables of

means µx,µy and covariances ΣΣΣx, ΣΣΣy, respectively, related by y = Ax. Let the covariances have
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eigendecomposition

ΣΣΣx = PxExPT
x ΣΣΣy = PyEyPT

y (2.1)

where Px,Py contain eigenvectors as columns and Ex,Ey are diagonal eigenvalue matrices. We

refer to the triplet Px = (Px,Ex,µµµx) as the PCA of x. Then, it is well known that the statistics of x

and y are related by

µµµy = Aµµµx ΣΣΣy = AΣΣΣxAT (2.2)

and, combining (2.1) and (2.2), PyEyPT
y = APxExPT

x AT . This holds when Py
√

Ey = APx
√

Ex or,

equivalently,

A = Py
√

Ey

√
E−1

x PT
x . (2.3)

= CyWx (2.4)

where Wx =
√

E−1
x PT

x is the “whitening matrix” of x and Cy = Py
√

Eythe “coloring matrix” of y.

It follows that (2.2) holds if y = Ax is implemented with a sequence of two operations. First, x is

mapped into a variable w of zero mean and identity covariance, by defining

w = Wx(x−µµµx). (2.5)

Second, w is mapped into y with

y = Cyw+µµµy. (2.6)

In summary, for Gaussian x, the effect of A is simply the combination of a whitening of x followed

by a colorization with the statistics of y.
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2.3.5 Covariance Normalization

The interpretation of the adaptation layer as a recoloring operation (whitening + coloring)

sheds light on the number of parameters effectively needed for the adaptation, since the PCAs

Px,Py capture the effective dimensions of x and y. Let kx (ky) be the number of eigenvalues

significantly larger than zero in Ex (Ey). Then, the whitening and coloring matrices can be

approximated by

W̃x =

√
Ẽ−1

x P̃T
x C̃y = P̃y

√
Ẽy (2.7)

where Ẽx ∈ Rkx×kx (Ẽy ∈ Rky×ky) contains the non-zero eigenvalues of ΣΣΣx (ΣΣΣy), and P̃x ∈ Rd×kx

(P̃y ∈Rd×ky) the corresponding eigenvectors. Hence, A is well approximated by a pair of matrices

(W̃x, C̃y) totaling d(kx + ky) parameters.

On the other hand, the PCAs are only defined up to a permutation, which assigns an order-

ing to eigenvalues/eigenvectors. When the input and output PCAs are computed independently,

the principal components may not be aligned. This can be fixed by introducing a permutation

matrix between Cy and Wx in (2.4). The assumption that all distributions are Gaussian also only

holds approximately in real networks. To account for all this, we augment the recoloring operation

with a mini-adaptation layer Mx,y of size kx× ky. This leads to the covariance normalization

(CovNorm) transform

ỹ = C̃yMx,yW̃x(x−µµµx)+µµµy, (2.8)

where Mx,y is learned by fine-tuning on the target dataset T . Beyond improving recognition

performance, this has the advantage of further parameters savings. The direct implementation

of (2.8) increases the parameter count to d(kx + ky)+ kxky. However, after fine-tuning, Mx,y can

be absorbed into one of the two other matrices , as shown in Figure 2.4. When kx > ky, Mx,yW̃x
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has dimension ky×d and replacing the two matrices by their product reduces the total parameter

count to 2dky. In this case, we say that Mx,y is absorbed into W̃x. Conversely, if kx < ky, Mx,y can

be absorbed into C̃y. Hence, the total parameter count is 2d min(kx,ky). CovNorm is summarized

in Algorithm 1.

Algorithm 1: Covariance Normalization

Data: source S and target T
1 Insert an adaptation layer A on a CNN trained on S and fine-tune A on T .
2 Store the layer input and output PCAs Px, Py, select the kx,ky non-zero eigenvalues

and corresponding eigenvectors from each PCA, and compute C̃y,W̃x with (2.7).
3 add mini-adaptation layer Mx,y and replace A by (2.8). Note that, as usual, the

constant C̃yMx,yW̃xµx +µy can be implemented with a vector of biases.
4 fine-tune Mx,y with W̃x and C̃y on T and absorb Mx,y into the larger of W̃x and C̃y.

2.3.6 The Importance of Covariance Normalization

The benefits of covariance matching can be seen by comparison to previously proposed

MDL methods. Assume, first, that x and y consist of independent features. In this case, Px,Py are

identity matrices and (2.5)-(2.6) reduce to

yi =
√

ey,i
xi−µx,i√ex,i

+µy,i, (2.9)

which is the batch normalization equation. Hence, CovNorm is a generalized form of the latter.

There are, however, important differences. First, there is no batch. The normalizing distribution x

is now the distribution of the feature responses of layer F1 on the target dataset T . Second, the

goal is not to facilitate the learning of F2, but produce a feature vector y with statistics matched

to F2. This turns out to make a significant difference. Since, in regular batch normalization, F2 is

allowed to change, it can absorb any initial mismatch with the independence assumption. This is

not the case for MDL, where F2 is fixed. Hence, (2.9) usually fails, significantly underperforming

(2.5)-(2.6).
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Next, consider the geometric solution. Since CovNorm reduces to the product of two tall

matrices, e.g. K = C̃yMx,y and L = W̃x of size d× kx, it should be possible to replace it with the

fine-tuned approximation based on two matrices of this size. Here, there are two difficulties. First,

kx is not known in the absence of the PCA decomposition. Second, in our experience, even when

kx is set to the value used by PCA, the fine-tuned approximation does not work. As shown in

the experimental section, when the matrices are initialized with Gaussian weights, performance

can decrease significantly. This is an interesting observation because A is itself initialized with

Gaussian weights. It appears that a good initialization is more critical for the low-rank matrices.

Finally, CovNorm can be compared to the SVD, A = USVT . From (2.3), this holds

whenever V = Px, S =
√

Ey

√
E−1

x and U = Py. The problem is that the singular value matrix S

conflates the variances of the input and output PCAs. The fact that si = ey,i/ex,i has two important

consequences. First, it is impossible to recover the dimensions kx and ky by inspection of the

singular values. Second, the low-rank criteria of selecting the largest singular values is not

equivalent to CovNorm. For example, the principal components of x with largest eigenvalues ex,i

have the smallest singular values si. Hence, it is impossible to tell if singular vectors vi of small

singular values are the most important (PCA components of large variance for x) or the least

important (noise). Conversely, the largest singular values can simply signal the least important

input dimensions. CovNorm eliminates this problem by explicitly selecting the important input

and output dimensions.

2.3.7 Joint Training

[19] considered a variant of MDL where the different tasks of Figure 2.1 are all optimized

simultaneously. This is the same as assuming that a joint dataset T = ∪iTi is available. For

CovNorm, the only difference with respect to the single dataset setting is that the PCAs Px,Py

are now those of the joint data T . These can be derived from the PCAs Px,i,Py,i of the individual
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target datasets Ti with

µµµT =
1
N ∑

i
Niµµµi

ΣΣΣT = ∑
i

Ni

N
(PiEiPi

T +µµµiµµµi
T ))−µµµT µµµT

T (2.10)

where Ni is the cardinality of Ti. Hence, CovNorm can be implemented by finetuning A to each

Ti, storing the PCAs Px,i,Py,i, using (2.10) to reconstruct the covariance of T , and computing the

global PCA. When tasks are available sequentially, this can be done recursively, combining the

PCA of all previous data with the PCA of the new data. In summary, CovNorm can be extended to

any number of tasks, with constant storage requirements (a single PCA), and no loss of optimality.

This makes it possible to define two CovNorm modes.

• independent: A layers of network i are adapted to target dataset Ti. A PCA is computed

for Ti and the mini-adaptation fine-tuned to Ti. This requires 2d min(kx,ky) task specific

parameters (per layer) per dataset.

• joint: a global PCA is learned from T and C̃y,W̃x shared across tasks. Only a mini-

adaptation layer is fine-tuned per Ti. This requires min(kx,ky) task-specific parameters (per

layer) per dataset. All Ti must be available simultaneously.

The independent model is needed if, for example, the devices of Figure 2.1 are produced by

different manufacturers.

2.4 Experiments

In this section, we present results for both the independent and joint CovNorm modes.
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2.4.1 Experimental Set-up

Dataset: [17] proposed the decathlon dataset for evaluation of MDL. However, this is a

collection of relatively small datasets. While sufficient to train small networks, we found it hard

to use with larger CNNs. Instead, we used a collection of seven popular vision datasets. SUN

397 [56] contains 397 classes of scene images and more than a million images. MITIndoor [57]

is an indoor scene dataset with 67 classes and 80 samples per class. FGVC-Aircraft Bench-

mark [58] is a fine-grained classification dataset of 10,000 images of 100 types of airplanes.

Flowers102 [59] is a fine-grained dataset with 102 flower categories and 40 to 258 images per

class. CIFAR100 [60] contains 60,000 tiny images, from 100 classes. Caltech256 [61] contains

30,607 images of 256 object categories, with at least 80 samples per class. SVHN [62] is a

digit recognition dataset with 10 classes and more than 70,000 samples. In all cases, images are

resized to 224×224 and the training and testing splits defined by the dataset are used, if available.

Otherwise, 75% is used for training and 25% for testing.

Implementation: In all experiments, fixed F layers were extracted from a source VGG16

[63] model trained on ImageNet. This has convolution layers of dimensions ranging from 64 to

4096. In a set of preliminary experiments, we compared the MDL performance of the architecture

of FIgure 2.1 with these F layers and adaptation layers implemented with 1) a convolutional layer

A of kernel size 1×1 [18], 2) the residual adapters T = B2(I+AB1) of [17], where B1 and B2

are batch normalization layers and A as in 1), and 3) the parallel adapters of [19]. Since residual

adapters produced the best results, we adopted this structure in all our experiments. However,

CovNorm can be used with any of the other structures, or any other matrix A. Note that B1 could

be absorbed into A after fine-tuning but we have not done so, for consistency with [17].

In all experiments, fine-tuning used initial learning rate of 0.001, reduced by 10 when the

loss stops decreasing. After fine-tuning the residual layer, features were extracted at the input and

output of A and the PCAs Px,Py computed and used in Algorithm 1. Principal components were

selected by the explained variance criterion. Once the eigenvalues ei were computed and sorted
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Figure 2.5: Ratio of effective dimensions (η) for different network layers. Left: MITIndoor.
Right: CIFAR100.

by decreasing magnitude, i.e., e1 ≥ e2 ≥ . . .≥ ed , the variance explained by the first i eigenvalues

is ri =
∑

i
k=1 ei

∑
d
k=1 ei

. Given a threshold t, the smallest index i∗ such that ri∗ > t was determined, and

only the i∗ first eigenvalues/eigenvectors were kept. This set the dimensions kx,ky (depending

on whether the procedure was used on Px or Py). Unless otherwise noted, we used t = 0.99, i.e.,

99% of the variance was retained.

2.4.2 Benefits of CovNorm

We start with some independent MDL experiments that provide insight on the benefits

of CovNorm over previous MDL procedures. While we only report results for MITIndoor and

CIFAR100, they are typical of all target datasets. Figure 2.5 shows the ratio η = ky/kx of effective

output to input dimensions, as a function of adaptation layer. It shows that the input of A typically

contains more information than the output. Note that η is rarely one, is almost always less than

0.6, frequently smaller than 0.3, and smallest for the top network layers.

We next compared CovNorm to batch normalization (BN) [20], and geometric approxima-

tions based on the fine-tunned approximation (FTA) of Section 2.3.3. We also tested a mix of the

geometric approaches (SVD+FTA), where A was first approximated by the SVD and the matrices
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Figure 2.6: Accuracy vs. % of parameters used for adaptation. Left: MITIndoor. Right:
CIFAR100.

C, W finetuned on T , and a mix of PCA and FTA (PCA+FTA), where the mini-adaptation layer

Mx,y of CovNorm was removed and C̃y,W̃x fine-tuned on T , to minimize the PCA alignment

problem. All geometric approximations were implemented with low-rank parameter values

r = d/2i, where d is the dimension of x or y and i ∈ {2, . . . ,6}. For CovNorm, the explained

variance threshold was varied in [0.8,0.995]. Figure 2.6 shows recognition accuracy vs. the % of

parameters. Here, 100% parameters corresponds the adaptation layers of [17]: a network with

residual adapters whose matrix A is fine-tunned on T . This is denoted RA and shown as an

upper-bound. A second upper-bound is shown for full network fine-tuning (FNFT). This requires

10× more parameters than RA. BN, which requires close to zero parameters, is shown as a lower

bound.

Several observations are possible. First, all geometric approximations underperform

CovNorm. For comparable sizes, the accuracy drop of the best geometric method (SVD+FTA) is

as large as 2%. This is partly due to the use of a constant low rank r throughout the network. This

cannot match the effective, data-dependent, dimensions, which vary across layers (see Figure 2.5).

CovNorm eliminates this problem. We experimented with heuristics for choosing variable ranks

but, as discussed below (Figure 2.7), could not achieve good performance. Among the geometric
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Figure 2.7: Variance explained by eigenvalues of a layer input and output, and similar plot for
singular values. Left: MITIndoor. Right: CIFAR100.

approaches, SVD+FTA outperforms FTA, which has performance drops in most of datasets. It is

interesting that, while A is fine-tuned with random initialization, the process is not effective for

the low-rank matrices of FTA. In several datasets, FTA could not match SVD+FTA.

Even more surprising were the weaker results obtained when the random initialization

was replaced by the two PCAs (PCA+FTA). Note the large difference between PCA+FTA and

CovNorm (up to 4%), which differ by the mini-adaptation layer Mx,y. This is explained by

the alignment problem of Section 2.3.5. Interestingly, while mini-adaptation layers are critical

to overcome this problem, they are as easy to fine-tune as A. In fact, the addition of these

layers (CovNorm) often outperformed the full matrix A (RA). In some datasets, like MITIndoor,

with 4.8% of the parameters, CovNorm matched the performance of RA, Finally, as previously

reported by [17], FNFT frequently underperformed RA. This is likely due to overfitting.

2.4.3 CovNorm vs SVD

Figure 2.7 provides empirical evidence for the vastly different quality of the approxima-

tions produced by CovNorm and the SVD. The figure shows a plot of the variance explained

by the eigenvalues of the input and output distributions of an adaptation layer A and the corre-
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sponding plot for its singular values. Note how the PCA energy is packed into a much smaller

number of coefficients than the singular value energy. This happens because PCA only accounts

for the subspaces populated by data, restricting the low-rank approximation to these subspaces.

Conversely, the geometric approximation must approximate the matrix behavior even outside

of these subspaces. Note that the SVD is not only less efficient in identifying the important

dimensions, but also makes it difficult to determine how many singular values to keep. This

prevents the use of a layer-dependent number of singular values.

2.4.4 Comparison to Previous Methods

Table 2.1 summarizes the recognition accuracy and % of adaptation layer parameters vs.

VGG model size (100% parameters), for various methods. All abbreviations are as above. Beyond

MDL, we compare to learning without forgetting (LwF) [48] a lifelong method to learn a model

that shares all parameters among datasets. The table is split into independent and joint MDL. For

joint learning, CovNorm is implemented with (2.10) and compared to the SVD approach of [19].

Several observations can be made. First, CovNorm adapts the number of parameters to

the task, according to its complexity and how different it is from the source (ImageNet). For

the simplest datasets, such as the 10-digit class SVHN, adaptation can require as few as 0.13%

task-specific parameters. Datasets that are more diverse but ImageNet-like, such as Caltech256,

require around 0.46% parameters. Finally, larger adaptation layers are required by datasets

that are either complex or quite different from ImageNet, e.g. scene (MITIndoor, SUN397)

recognition tasks. Even here, adaptation requires less than 1% parameters. On average, CovNorm

requires 0.53% additional parameters per dataset.

Second, for independent learning, all methods based on residual adapters significantly

outperform BN and LwF. As shown by [17], RA outperforms FNFT. BN is uniformly weak, LwF

performs very well on MITIndoor and Caltech256, but poorly on most other datasets. Third,

CovNorm outperforms even RA, achieving higher recognition accuracy with 20× less parameters.
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Table 2.1: Classification accuracy and % of adaptation parameters (with respect to VGG size)
per target dataset.

FGVC MITIndoor Flowers Caltech256 SVHN SUN397 CIFAR100 average
FNFT 85.73% 71.77% 95.67% 83.73% 96.41% 57.29% 80.45% 81.58%

100% 100%
Independent learning

BN [20] 43.6% 57.6% 83.07% 73.66% 91.1% 47.04% 64.8% 65.83%
0% 0%

LwF[48] 66.25% 73.43% 89.12% 80.02% 44.13% 52.85% 72.94% 68.39%
0% 0%

RA [17] 88.92% 72.4% 96.43% 84.17% 96.13% 57.38% 79.55% 82.16%
10% 10%

SVD+FTA 89.07% 71.66% 95.67% 84.46% 96.04% 57.12% 78.28% 81.75%
5% 5%

FTA 87.31% 70.26% 95.43% 83.82% 95.96% 56.43% 78.23% 81.06%
5% 5%

CovNorm 88.98% 72.51% 96.76% 84.75% 96.23% 57.97% 79.42% 82.37%
0.34% 0.62% 0.35% 0.46% 0.13% 0.71% 1.1% 0.53%

Joint learning
SVD [19] 88.98% 71.7% 96.37% 83.63% 96% 56.58% 78.26% 81.65%

5% 5%
CovNorm 88.99% 73.0% 96.69% 84.77% 96.22% 58.2 79.22% 82.44%

0.51% 0.51%

It also outperforms SVD+FTA and FTA by ≈ 0.6% and ≈ 1.3%, respectively, while reducing

parameter sizes by a factor of ≈ 10. On a per-dataset basis, CovNorm outperforms RA on all

datasets other than CIFAR100, and SVD+FTA and FTA on all of them. In all datasets, the

parameter savings are significant. Fourth, for joint training, CovNorm is substantially superior to

the SVD [19], with higher recognition rates in all datasets, gains of up to 1.62% (SUN397), and

close to 10× less parameters. Finally, comparing independent and joint CovNorm, the latter has

slightly higher recognition for a slightly higher parameter count. Hence, the two approaches are

roughly equivalent.

2.4.5 Results on Visual Decathlon

Final, we apply the CovNorm on the Decathlon challenge [17], composed of ten different

datasets- ImageNet, Aircraft, Cifar100, Daimler Pedestrians, Describable Textures, German
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Traffic Signs, VGG-Flowers, OmniGlot, SVHN and UCF101 Dynamic Images. The resolution

for images from all the datasets is 72×72. Following [17], ResNet-26 [55] is adopted as backbone

and is trained with a combination of training and validation set. The results are based on the test

set and obtained online. Table 2.2 presents the result for each dataset and CovNorm is evaluated

in terms of classification accuracy, parameter size and decatholon score S. It clearly shows

that CovNorm achieves state-of-the-art performance from the view of accuracy and parameter

efficiency.

2.5 Conclusion

In this chapter, we proposed CovNorm, which is an multi-domain learning technique

of very simple implementation. When compared to previous methods, it dramatically reduces

the number of adaptation parameters without loss of recognition performance. It was used to

show that large CNNs can be “recycled” across problems as diverse as digit, object, scene, or

fine-grained classes, with no loss, by simply tuning 0.5% of their parameters. Except the good

performance on multi-domain learning task, its domain-wise dynamic architecture also sheds

light on the power of dynamic network for complex vision tasks. It reveals that the representation

capacity of the network can be significantly boosted even though the dynamic module is very tiny,

which will be further discussed in the following chapters on large scale image recognition tasks.

Chapter 2 is, in full, based on the material as it appears in the publication of “Efficient

Multi-Domain Learning by Covariance Normalization”, Yunsheng Li and Nuno Vasconcelos, in

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

The dissertation author was the primary investigator and author of this material.
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Chapter 3

Dynamic Convolution Decomposition for

Efficient Large Scale Image Recognition
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3.1 Introduction

CovNorm has been shown to be effective in terms of both accuracy and efficiency for

multi-domain learning task, due to its architecture design and more critical its dynamic property.

In this chapter, we will further explore this property by extending the task domain from multi-

domain learning to large scale image recognition and change the dynamic module from the

domain-wise manner to sample-wise manner.

Actually, the design of dynamic network has be studied recently and dynamic convolution

[1, 2] is one of the most successful dynamic framework for the implementation of light-weight

networks [66, 67]. Its ability to achieve significant performance gains with negligible computa-

tional cost has motivated its adoption for multiple vision tasks [68, 69, 70, 71]. The basic idea is

to aggregate multiple convolution kernels dynamically, according to an input dependent attention

mechanism, into a convolution weight matrix

WWW (xxx) =
K

∑
k=1

πk(xxx)WWW k s.t. 0≤ πk(xxx)≤ 1,
K

∑
k=1

πk(xxx) = 1, (3.1)

where K convolution kernels {WWW k} are aggregated linearly with attention scores {πk(xxx)}.

Dynamic convolution has two main limitations: (a) lack of compactness, due to the use of

K kernels, and (b) a challenging joint optimization of attention scores {πk(xxx)} and static kernels

{WWW k}. [1] proposed the use of a sigmoid layer to generate attention scores {πk(xxx)}, leading to

a significantly large space for the convolution kernel WWW (xxx) that makes the learning of attention

scores {πk(xxx)} difficult. [2] replaced the sigmoid layer with a softmax function to compress the

kernel space. However, small attention scores πk output by the softmax make the corresponding

kernels WWW k difficult to learn, especially in early training epochs, slowing training convergence.

To mitigate these limitations, these two methods require additional constraints. For instance, [2]

uses a large temperature in the softmax function to encourage near-uniform attention.

In this chapter, inspired by CovNorm, we revisit the two limitations via matrix decomposi-
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Figure 3.1: Dynamic convolution via matrix decomposition. Top: the vanilla dynamic con-
volution. It applies dynamic attention ΠΠΠ(xxx) in a high dimensional space. Bottom: proposed
dynamic convolution decomposition, which applies dynamic channel fusion ΦΦΦ(xxx) in a low
dimensional space.

tion. To expose the limitations, we reformulate dynamic convolution in terms of a set of residuals,

re-defining the static kernels as

WWW k =WWW 0 +∆WWW k, k ∈ {1, . . . ,K} (3.2)

where WWW 0 = 1
K ∑

K
k=1WWW k is the average kernel and ∆WWW k = WWW k−WWW 0 a residual weight matrix.

Further decomposing the latter with an SVD, ∆WWW k =UUUkSSSkVVV T
k , leads to

WWW (xxx) =
K

∑
k=1

πk(xxx)WWW 0 +
K

∑
k=1

πk(xxx)UUUkSSSkVVV T
k =WWW 0 +UUUΠΠΠ(xxx)SSSVVV T , (3.3)

where UUU = [UUU1, . . . ,UUUK], SSS = diag(SSS1, . . . ,SSSK), VVV = [VVV 1, . . . ,VVV K], and ΠΠΠ(xxx) stacks attention

scores diagonally as ΠΠΠ(xxx) = diag(π1(xxx)III, . . . ,πK(xxx)III), where III is an identity matrix. This decom-

position, illustrated in Figure 3.1-(Top), shows that the dynamic behavior of WWW (xxx) is implemented
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by the dynamic residual UUUΠΠΠ(xxx)SSSVVV T , which projects the input xxx to a higher dimensional space

SSSVVV T xxx (from C to KC channels), applies dynamic attention ΠΠΠ(xxx) over channel groups, and reduces

the dimension back to C channels, through multiplication by UUU . This suggests that the limitations

of vanilla dynamic convolution are due to the use of attention over channel groups, which induces

a high dimensional latent space, leading to small attention values that may suppress the learning

of the corresponding channels.

To address this issue, we propose a dynamic convolution decomposition (DCD), that

replaces dynamic attention over channel groups with dynamic channel fusion. The latter is based

on a full dynamic matrix ΦΦΦ(xxx), of which each element φi, j(xxx) is a function of input xxx. As shown

in Figure 3.1-(bottom), the dynamic residual is implemented as the product PPPΦΦΦ(xxx)QQQT of ΦΦΦ(xxx)

and two static matrices PPP,QQQ, such that QQQ compresses the input into a low dimensional latent space,

ΦΦΦ(xxx) dynamically fuses the channels in this space, and PPP expands the number of channels to the

output space. The key innovation is that dynamic channel fusion with ΦΦΦ(xxx) enables a significant

dimensionality reduction of the latent space (QQQT xxx∈RL, L�C). Hence the number of parameters

in PPP,QQQ is significantly reduced, when compared to UUU ,VVV of Eq. 3.3, resulting in a more compact

model. Dynamic channel fusion also mitigates the joint optimization challenge of vanilla dynamic

convolution, as each column of PPP,QQQ is associated with multiple dynamic coefficients of ΦΦΦ(xxx).

Hence, a few dynamic coefficients of small value are not sufficient to suppress the learning of

static matrices PPP,QQQ. Experimental results show that DCD both significantly reduces the number

of parameters and achieves higher accuracy than vanilla dynamic convolution, without requiring

the additional constraints of [1, 2].
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3.2 Related Work

3.2.1 Efficient CNNs

MobileNet [66, 72, 73] decomposes k× k convolution into a depthwise and a pointwise

convolution. ShuffleNet [67, 74] uses group convolution and channel shuffle to further simplify

pointwise convolution. Further improvements of these architectures have been investigated

recently. EfficientNet [75, 76] finds a proper relationship between input resolution and width/depth

of the network. [77] mix up multiple kernel sizes in a single convolution. [78] trades massive

multiplications for much cheaper additions. [79] applies a series of cheap linear transformations

to generate ghost feature maps. [80] flips the structure of inverted residual blocks to alleviate

information loss. [81] and [82] train one network that supports multiple sub-networks of different

complexities.

3.2.2 Matrix Decomposition

[83] and [84] use Canonical Polyadic decomposition (CPD) of convolution kernels to

speed up networks, while [14] investigates Tucker decompositions for the same purpose. More

recently, [85] combines tensor decompositions with MobileNet to design efficient higher-order

networks for video tasks, while [86] proposes a stable CPD to deal with degeneracies of tensor

decompositions during network training. Unlike DCD, which decomposes a convolutional kernel

dynamically by adapting the core matrix to the input, these works all rely on static decompositions.

3.2.3 Dynamic Neural Networks

Dynamic networks boost representation power by adapting parameters or activation

functions to the input. [87] uses a secondary network to generate parameters for the main network.

[88] reweights channels by squeezing global context. [89] adapts attention over kernels of
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different sizes. Dynamic convolution [1, 2] aggregates multiple convolution kernels based on

attention. [70] uses grouped fully connected layer to generate convolutional weights directly. [69]

extends dynamic convolution from spatial agnostic to spatial specific. [68] proposes dynamic

group convolution that adaptively selects input channels to form groups. [71] applies dynamic

convolution to instance segmentation. [90] adapts slopes and intercepts of two linear functions in

ReLU [91, 92].

3.3 Dynamic Convolution Decomposition

In this section, we introduce the dynamic convolution decomposition proposed to address

the limitations of vanilla dynamic convolution. For conciseness, we assume a kernel WWW with the

same number of input and output channels (Cin = Cout = C) and ignore bias terms. We focus

on 1× 1 convolution in this section and generalize the procedure to k× k convolution in the

following section.

3.3.1 Revisiting Vanilla Dynamic Convolution

Vanilla dynamic convolution aggregates K convolution kennels {WWW k} with attention

scores {πk(xxx)} (see Eq. 3.1). It can be reformulated as adding a dynamic residual to a static

kernel, and the dynamic residual can be further decomposed by SVD (see Eq. 3.3), as shown

in Figure 3.1-(Top). This has two limitations. First, the model is not compact. Essentially, it

expands the number of channels by a factor of K and applies dynamic attention over K channel

groups. The dynamic residual UUUΠΠΠ(xxx)SSSVVV T is a C×C matrix, of maximum rank C, but sums KC

rank-1 matrices, since

WWW (xxx) =WWW 0 +UUUΠΠΠ(xxx)SSSVVV T =WWW 0 +
KC

∑
i=1

πdi/Ce(xxx)uuuisi,ivvvT
i , (3.4)
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where uuui is the ith column vector of matrix UUU , vvvi is the ith column vector of matrix VVV , si,i is the

ith diagonal entry of matrix SSS and d·e is ceiling operator. The static basis vectors uuui and vvvi are

not shared across different rank-1 matrices (πdi/Ce(xxx)uuuisi,ivvvT
i ). This results in model redundancy.

Second, it is difficult to jointly optimize static matrices UUU , VVV and dynamic attention ΠΠΠ(xxx). This is

because a small attention score πdi/Ce may suppress the learning of corresponding columns uuui, vvvi

in UUU and VVV , especially in early training epochs (as shown in [2]).

3.3.2 Dynamic Channel Fusion

We propose to address the limitations of the vanilla dynamic convolution with a dynamic

channel fusion mechanism, implemented with a full matrix ΦΦΦ(xxx), where each element φi, j(xxx) is a

function of input xxx. ΦΦΦ(xxx) is a L×L matrix, dynamically fusing channels in the latent space RL.

The key idea is to significantly reduce dimensionality in the latent space, L�C, to enable a more

compact model. Dynamic convolution is implemented with dynamic channel fusion using

WWW (xxx) =WWW 0 +PPPΦΦΦ(xxx)QQQT =WWW 0 +
L

∑
i=1

L

∑
j=1

pppiφi, j(xxx)qqqT
j , (3.5)

where QQQ ∈ RC×L compresses the input into a low dimensional space (QQQT xxx ∈ RL), the resulting L

channels are fused dynamically by ΦΦΦ(xxx) ∈ RL×L and expanded to the number of output channels

by PPP ∈ RC×L. This is denoted as dynamic convolution decomposition (DCD). The dimension

L of the latent space is constrained by L2 <C. The default value of L in this chapter is empirically

set to b C
2blog2

√
Cc c, which means dividing C by 2 repeatedly until it is less than

√
C.

With this new design, the number of static parameters is significantly reduced (i.e., LC

parameters in PPP or QQQ v.s. KC2 parameters in UUU or VVV , L <
√

C), resulting in a more compact

model. Mathematically, the dynamic residual PPPΦΦΦ(xxx)QQQT sums L2 rank-1 matrices pppiφi, j(xxx)qqqT
j ,

where pppi is the ith column vector of PPP, and qqq j is the jth column vector of QQQ. The constraint

L2 <C, guarantees that this number (L2) is much smaller than the counterpart (KC) of vanilla
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dynamic convolution (see Eq. 3.4). Nevertheless, due to the use of a full matrix, dynamic channel

fusion ΦΦΦ(xxx) retains the representation power needed to achieve good classification performance.

DCD also mitigates the joint optimization difficulty. Since each column of PPP (or QQQ) is

associated with multiple dynamic coefficients (e.g. pppi is related to φi,1, . . . ,φi,L), it is unlikely that

the learning of pppi is suppressed by a few dynamic coefficients of small value.

In summary, DCD performs dynamic aggregation differently from vanilla dynamic convo-

lution. Vanilla dynamic convolution uses a shared dynamic attention mechanism to aggregate

unshared static basis vectors in a high dimensional latent space. In contrast, DCD uses an

unshared dynamic channel fusion mechanism to aggregate shared static basis vectors in a low

dimensional latent space.

3.3.3 More General Formulation

So far, we have focused on the dynamic residual and shown that dynamic channel fusion

enables a compact implementation of dynamic convolution. We next discuss the static kernel WWW 0.

Originally, it is multiplied by a dynamic scalar ∑k πk(xxx), which is canceled in Eq. 3.3 as attention

scores sum to one. Relaxing the constraint ∑k πk(xxx) = 1 results in the more general form

WWW (xxx) = ΛΛΛ(((xxx)))WWW 0 +PPPΦΦΦ(xxx)QQQT , (3.6)

where ΛΛΛ(xxx) is a C×C diagonal matrix and λi,i(xxx) a function of xxx. In this way, ΛΛΛ(xxx) implements

channel-wise attention after the static kernel WWW 0, generalizing Eq. 3.5 where ΛΛΛ(((xxx))) is an identity

matrix. Later, we will see that this generalization enables additional performance gains.

Relation to Squeeze-and-Excitation (SE) [88]: The dynamic channel-wise attention

mechanism implemented by ΛΛΛ(xxx) is related to but different from SE. It is parallel to a convolution

and shares the input with the convolution. It can be thought of as either a dynamic convolution ker-

nel yyy = (ΛΛΛ(xxx)WWW 0)xxx or an input-dependent attention mechanism applied to the output feature map
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Figure 3.2: Dynamic convolution decomposition layer. The input xxx first goes through a
dynamic branch to generate ΛΛΛ(xxx) and ΦΦΦ(xxx), and then to generate the convolution matrix WWW (xxx)
using Eq. 3.6.

of the convolution yyy = ΛΛΛ(xxx)(WWW 0xxx). Thus, its computational complexity is min(O(C2),O(HWC)),

where H and W are height and width of the feature map.

In contrast, SE is placed after a convolution and uses the output of the convolution as

input. It can only apply channel attention on the output feature map of the convolution as

yyy = ΛΛΛ(zzz)zzz, where zzz =WWW 0xxx. Its computational complexity is O(HWC). Clearly, SE requires more

computation than dynamic channel-wise attention ΛΛΛ(xxx) when the resolution of the feature map

(H×W ) is high.

3.3.4 Dynamic Convolution Decomposition Layer

Implementation: Figure 3.2 shows the diagram of a dynamic convolution decomposition

(DCD) layer. It uses a light-weight dynamic branch to generate coefficients for both dynamic

channel-wise attention ΛΛΛ(xxx) and dynamic channel fusion ΦΦΦ(xxx). Similar to Squeeze-and-Excitation

[88], the dynamic branch first applies average pooling to the input xxx. This is followed by two

fully connected (FC) layers with an activation layer between them. The first FC layer reduces the

number of channels by r and the second expands them into C+L2 outputs (C for ΛΛΛ and L2 for ΦΦΦ).
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Figure 3.3: Sparse dynamic residual, which is represented as a diagonal block matrix. Each
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b . Note that the static kernel WWW 0 is still a
full size matrix.

Eq. 3.6 is finally used to generate convolutional weights WWW (xxx). Similarly to a static convolution,

a DCD layer also includes a batch normalization and an activation (e.g. ReLU) layer.

Parameter Complexity: DCD has similar FLOPs to the vanilla dynamic convolution.

Here, we focus on parameter complexity. Static convolution and vanilla dynamic convolution

require C2 and KC2 parameters, respectively. DCD requires C2, CL, and CL parameters for static

matrices WWW 0, PPP and QQQ, respectively. An additional (2C+L2)C
r parameters are required by the

dynamic branch to generate ΛΛΛ(xxx) and ΦΦΦ(xxx), where r is the reduction rate of the first FC layer.

The total complexity is C2+2CL+(2C+L2)C
r . Since L is constrained as L2 <C, the complexity

upper bound is (1+ 3
r )C

2 +2C
√

C. When choosing r = 16, the complexity is about 1 3
16C2. This

is much less than what is typical for vanilla dynamic convolution (4C2 in [2] and 8C2 in [1]).

3.4 Extensions of Dynamic Convolution Decomposition

In this section, we extend the dynamic decomposition of 1×1 convolution (Eq. 3.6) in

three ways: (a) sparse dynamic residual where PPPΦΦΦ(xxx)QQQT is a diagonal block matrix, (b) k× k

depthwise convolution, and (c) k× k convolution. Here, k refers to the kernel size.
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3.4.1 DCD with Sparse Dynamic Residual

The dynamic residual PPPΦΦΦ(xxx)QQQT can be further simplified into a block-diagonal matrix of

blocks PPPbΦΦΦb(xxx)QQQT
b ,b ∈ {1, . . . ,B}, leading to

WWW (xxx) = ΛΛΛ(((xxx)))WWW 0 +
B⊕

b=1

PPPbΦΦΦb(xxx)QQQT
b , (3.7)

where
⊕n

i=1 Ai = diag(A1, . . . ,An). This form has Eq. 3.6 as a special case, where B = 1. Note

that the static kernel WWW 0 is still a full matrix and only the dynamic residual is sparse (see Figure

3.3). We will show later that keeping as few as 1
8 of the entries of the dynamic residual non-zero

(B = 8) has a minimal performance degradation, still significantly outperforming a static kernel.

3.4.2 DCD of k× k Depthwise Convolution

The weights of a k× k depthwise convolution kernel form a C× k2 matrix. DCD can be

generalized to such matrices by replacing in Eq. 3.6 the matrix QQQ (which squeezes the number of

channels) with a matrix RRR (which squeezes the number of kernel elements)

WWW (xxx) = ΛΛΛ(((xxx)))WWW 0 +PPPΦΦΦ(xxx)RRRT , (3.8)

where WWW (xxx) and WWW 000 are C× k2 matrices, ΛΛΛ(((xxx))) is a diagonal C×C matrix that implements

channel-wise attention, RRR is a k2×Lk matrix that reduces the number of kernel elements from k2

to Lk, ΦΦΦ(((xxx))) is a Lk×Lk matrix that performs dynamic fusion along Lk latent kernel elements and

PPP is a C×Lk weight matrix for depthwise convolution over Lk kernel elements. The default value

of Lk is bk2/2c. Since depthwise convolution is channel separable, ΦΦΦ(((xxx))) does not fuse channels,

fusing instead Lk latent kernel elements.
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Figure 3.4: The dynamic convolution decomposition for k× k convolution.
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3.4.3 DCD of k× k Convolution

Joint fusion of channels and kernel elements: A k× k convolution kernel forms a

C×C× k2 tensor. DCD can be generalized to such tensors by extending Eq. 3.6 into a tensor

form (see Figure 3.4)

WWW (xxx) =WWW 000×2 ΛΛΛ(((xxx)))+Φ(xxx)×1 QQQ×2 PPP×3 RRR, (3.9)

where ×n refers to n-mode multiplication [93], WWW 000 is a C×C× k2 tensor, ΛΛΛ(((xxx))) is a diagonal

C×C matrix that implements channel-wise attention, QQQ is a C×L matrix that reduces the number

of input channels from C to L, RRR is a k2×Lk matrix that reduces the number of kernel elements

from k2 to Lk, ΦΦΦ(((xxx))) is a L×L×Lk tensor that performs joint fusion of L channels over Lk latent

kernel elements, and PPP is a C× L matrix that expands the number of channels from L to C.

The numbers of latent channels L and latent kernel elements Lk are constrained by Lk < k2 and

L2Lk ≤C. Their default values are set empirically to Lk = bk2/2c, L = b C/Lk

2blog2
√

C/Lkc
c.

Channel fusion alone: We found that the fusion of channels Φ(xxx)×1 QQQ is more important

than the fusion of kernel elements Φ(xxx)×3 RRR. Therefore, we reduce Lk to 1 and increase L

accordingly. RRR is simplified into a one-hot vector [0, . . . ,0,1,0, . . . ,0]T , where the ‘1’ is located

at the center (assuming that k is an odd number). As illustrated in Figure 3.4-(b), the tensor of

dynamic residual Φ(xxx)×1 QQQ×2 PPP×3 RRR only has one non-zero slice, which is equivalent to a 1×1

convolution. Therefore, the DCD of a k× k convolution is essentially adding a 1×1 dynamic

residual to a static k× k kernel.

3.5 Experiments

In this section, we present the results of DCD on ImageNet classification [3]. ImageNet

has 1,000 classes with 1,281,167 training and 50,000 validation images. We also report ablation
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studies on different components of the approach.

3.5.1 Experimental Set-up

All experiments are based on two network architectures: ResNet [55] and MobileNetV2

[72]. DCD is implemented on all convolutional layers of ResNet and all 1× 1 convolutional

layers of MobileNetV2. The reduction ratio r is set to 16 for ResNet and MobileNetV2 ×1.0, and

to 8 for smaller models (MobileNetV2 ×0.5 and ×0.35). All models are trained by SGD with

momentum 0.9. The batch size is 256 and remaining training parameters are as follows.

ResNet: The learning rate starts at 0.1 and is divided by 10 every 30 epochs. The model is trained

with 100 epochs. Dropout [94] 0.1 is used only for ResNet-50.

MobileNetV2: The initial learning rate is 0.05 and decays to 0 in 300 epochs, according to a

cosine function. Weight decay of 2e-5 and a dropout rate of 0.1 are also used. For MobileNetV2

×1.0, Mixup [95] and label smoothing are further added to avoid overfitting.

3.5.2 Inspecting Different DCD Formulations

Table 3.1 summarizes the influence of different components (e.g. dynamic channel fusion

ΦΦΦ(xxx), dynamic channel-wise attention ΛΛΛ(xxx)) of DCD on MobileNet V2 ×0.5 and ResNet-18

performance. The table shows that both dynamic components, ΛΛΛ(xxx) and ΦΦΦ(xxx) of Eq. 3.6. enhance

accuracy substantially (+2.8% and +3.8% for MobileNetV2 ×0.5, +1.1% and +2.4% for ResNet-

18), when compared to the static baseline. Using dynamic channel fusion only (WWW 0+PPPΦΦΦQQQT ) has

slightly more parameters, FLOPs, and accuracy than using dynamic channel-wise attention only

(ΛΛΛWWW 0). The combination of the two mechanisms provides additional improvement.
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Table 3.1: Different formulations of dynamic convolution decomposition on ImageNet classi-
fication.

Model Params MAdds Top-1
WWW 0 (static) 2.0M 97.0M 65.4
ΛΛΛWWW 0 2.4M 97.4M 68.2
WWW 0 +PPPΦΦΦQQQT 2.7M 104.4M 69.2
ΛΛΛWWW 0 +PPPΦΦΦQQQT 2.9M 104.6M 69.8

(a) MobileNet V2 ×0.5

Model Params MAdds Top-1
WWW 0 (static) 11.1M 1.81G 70.4
ΛΛΛWWW 0 11.7M 1.81G 71.5
WWW 0 +PPPΦΦΦQQQT 13.6M 1.83G 72.8
ΛΛΛWWW 0 +PPPΦΦΦQQQT 14.0M 1.83G 73.1

(b) ResNet-18

Table 3.2: Dimension of the latent space L evaluated on ImageNet classification (MobileNetV2
×0.5 is used).

Model L Params MAdds Top-1
static - 2.0M 97.0M 65.4

DCD

×0.25 2.4M 99.8M 68.7
×0.50 2.5M 101.3M 69.0
×0.75 2.6M 102.9M 69.6
×1.0 2.9M 104.6M 69.8

3.5.3 Ablations

A number of ablations were performed on MobileNet V2 ×0.5 to analyze DCD perfor-

mance in terms of two questions.

1. How does the dimension (L) of the latent space affect performance?

2. How do three DCD variants perform?

The default configuration is the general form of DCD (Eq. 3.6) with a full size dynamic residual

(B = 1) for all pointwise convolution layers. The default latent space dimension is L = b C
2blog2

√
Cc c.

Latent Space Dimension L: The dynamic channel fusion matrix ΦΦΦ(xxx) has size L×L.

Thus, L controls both the representation and the parameter complexity of DCD. We adjust

it by applying different multipliers to the default value of L. Table 3.2 shows the results of

MobileNetV2×0.5 for four multiplier values ranging from×1.0 to×0.25. As L decreases, fewer

parameters are required and the performance degrades slowly. Even with a very low dimensional
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latent space (L×0.25), DCD still outperforms the static baseline by 3.3% top-1 accuracy.

Number of Diagonal Blocks B in the Dynamic Residual: Table 3.3-(a) shows classi-

fication results for four values of B. The dynamic residual is a full matrix when B = 1, while

only 1
8 of its entries are non-zero for B = 8. Accuracy degrades slowly as the dynamic residual

becomes sparser (increasing B). The largest performance drop happens when B is changed from 1

to 2, as half of the weight matrix WWW (xxx) becomes static. However, performance is still significantly

better than that of the static baseline. The fact that even the sparsest B = 8 outperforms the static

baseline by 2.9% (from 65.4% to 68.3%) demonstrates the representation power of the dynamic

residual. In all cases, dynamic channel-wise attention ΛΛΛ(xxx) enables additional performance gains.

Table 3.3: Extensions of dynamic convolution decompostion (DCD) evaluated on ImageNet
classification (MobileNetV2 ×0.5 is used).

Network B Params MAdds Top-1
WWW 0 (static) - 2.0M 97.0M 65.4

WWW 0 +PPPΦΦΦQQQT

1 2.7M 104.4M 69.2
2 2.6M 101.0M 68.5
4 2.5M 99.1M 68.4
8 2.5M 98.5M 68.3

ΛΛΛWWW 0 +PPPΦΦΦQQQT

1 2.9M 104.6M 69.8
2 2.8M 101.3M 68.9
4 2.7M 99.4M 68.8
8 2.7M 98.8M 68.5

(a) Number of diagonal blocks B in the dynamic
residual.

DW PW CLS Params MAdds Top-1
2.0M 97.0M 65.4

X 2.4M 97.5M 68.3
X 2.9M 104.6M 69.8

X 2.2M 97.2M 66.6
X X 2.6M 97.7M 69.0
X X 3.3M 105.1M 69.6

X X 3.1M 104.8M 70.2
X X X 3.5M 105.3M 70.0

(b) DCD at different layers. DW, PW, and CLS
indicate depthwise convolution, pointwise conv-
olution and classifier respectively.

DCD at Different Layers: Table 3.3-(b) shows the results of implementing DCD for three

different types of layers (a) DW: depthwise convolution (Eq. 3.8), (b) PW: pointwise convolution

(Eq. 3.6), and (c) CLS: fully connected classifier, which is a special case of pointwise convolution

(the input resolution is 1× 1). Using DCD in any type of layer improves on the performance

of the static baseline (+2.9% for depthwise convolution, +4.4% for pointwise convolution, and

+1.2% for classifier). Combining DCD for both pointwise convolution and classifier achieves the

best performance (+4.8%). We notice a performance drop (from 70.2% to 70.0%) when using

DCD in all three types of layers. We believe this is due to overfitting, as it has higher training
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Table 3.4: Comparing DCD with the vanilla dynamic convolution CondConv [1] and DY-Conv
[2]. Vindicates the dynamic model with the fewest parameters (static model is not included).
CondConv contains K = 8 kernels and DY-Conv contains K = 4 kernels.

Width Model Params MAdds Top-1

×1.0

static 3.5M 300.0M 72.0
DY-Conv 11.1M 312.9M 75.2
CondConv 27.5M 329.0M 74.6
DCD (ours) V5.5M 326.0M 75.2

×0.5
static 2.0M 97.0M 65.4
DY-Conv 4.0M 101.4M 69.9
CondConv 15.5M 113.0M 68.4
DCD (ours) V3.1M 104.8M 70.2

×0.35
static 1.7M 59.2M 60.3
DY-Conv 2.8M 62.0M 65.9
DCD (ours) V2.3M 63.1M 66.6

(a) MobileNetV2.

Depth Model Params MAdds Top-1

ResNet-50 static 23.5M 3.8G 76.2
DCD (ours) 30.7M 3.9G 77.9

ResNet-18
static 11.1M 1.81G 70.4
DY-Conv 42.7M 1.85G 72.7
DCD (ours) V14.0M 1.83G 73.1

ResNet-10
static 5.2M 0.89G 63.5
DY-Conv 18.6M 0.91G 67.7
DCD (ours) V6.5M 0.90G 68.8

(b) ResNet.

accuracy.

Extension to 3× 3 Convolution: We use ResNet-18, which stacks 16 layers of 3× 3

convolution, to study the 3× 3 extension of DCD (see Section 3.4.3). Compared to the static

baseline (70.4% top-1 accuracy), DCD with joint fusion of channels and kernel elements (Eq.

3.9) improves top-1 accuracy (71.3%) by 0.9%. The top-1 accuracy is further improved by 1.8%

(73.1%), when using DCD with channel fusion alone, which transforms the dynamic residual as

a 1×1 convolution matrix (see Figure 3.4-(b)). This demonstrates that dynamic fusion is more

effective across channels than across kernel elements.

Summary: Based on the ablations above, DCD should be implemented with both dynamic

channel fusion ΦΦΦ and dynamic channel-wise attention ΛΛΛ, the default latent space dimension L,

and a full size residual B = 1. DCD is recommended for pointwise convolution and classifier

layers in MobileNetV2. For 3×3 convolutions in ResNet, DCD should be implemented with

channel fusion alone. The model can be made more compact, for a slight performance drop,

by (a) removing dynamic channel-wise attention ΛΛΛ, (b) reducing the latent space dimension L,

(c) using a sparser dynamic residual (increasing B), and (d) implementing DCD in depthwise

convolution alone.
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Figure 3.5: The comparison of training and validation error between DCD and DY-Conv on
MobileNetV2 ×0.5. τ is the temperature in softmax. Best viewed in color.

3.5.4 Main Results

DCD was compared to the vanilla dynamic convolution [1, 2] for MobileNetV2 and

ResNet, using the settings recommended above, with the results of Table 3.41. DCD significantly

reduces the number of parameters while improving the performance of both network architectures.

For MobileNetV2 ×1.0, DCD only requires 50% of the parameters of [2] and 25% of the

parameters of [1]. For ResNet-18, it only requires 33% of the parameters of [2], while achieving

a 0.4% gain in top-1 accuracy. Although DCD requires slightly more MAdds than [2], the

increment is negligible. These results demonstate that DCD is more compact and effective.

Figure 3.5 compares DCD to DY-Conv [2] in terms of training convergence. DY-Conv

uses a large temperature in its softmax to alleviate the joint optimization difficulty and make

training more efficient. Without any additional parameter tuning, DCD converges even faster than

DY-Conv with a large temperature and achieves higher accuracy.

1The baseline results are from the original papers. Our implementation, under the setup used for DCD, has
either similar or slightly lower results, e.g. for MobileNetV2×1.0 the original paper reports 72.0%, while our
implementation achieves 71.8%.
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Figure 3.6: Normalized variance of dynamic coefficients σΦ across layers in MobileNetV2
×0.5 and ×1.0.

3.5.5 Analysis of Dynamic Channel Fusion

To validate the dynamic property, ΦΦΦ(xxx) should have different values over different images.

We measure this by averaging the variance of each entry σΦ = ∑i, j σi, j/L2, where σi, j is the

variance of φi, j(xxx), over all validation images. To compare σΦ across layers, we normalize it by

the variance of the corresponding input feature map. Figure 3.6 shows the normalized variance

σΦ across layers in MobileNetV2. Clearly, the dynamic coefficients vary more in the higher

layers. We believe this is because the higher layers encode more context information, providing

more clues to adapt convolution weights.

3.5.6 Inference Time

We use a single-threaded core AMD EPYC CPU 7551P (2.0 GHz) to measure running time

(in milliseconds) on MobileNetV2 ×0.5 and ×1.0. Running time is calculated by averaging the

inference time of 5,000 images with batch size 1. Both static baseline and DCD are implemented
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in PyTorch. Compared with the static baseline, DCD consumes about 8% more MAdds (97.0M vs

104.8M) and 14% more running time (91ms vs 104ms) for MobileNetV2×0.5. For MobileNetV2

×1.0, DCD consumes 9% more MAdds (300.0M vs 326.0M) and 12% more running time (146ms

vs 163ms). The overhead is higher in running time than MAdds. We believe this is because

the optimizations of global average pooling and fully connected layers are not as efficient as

convolution. This small penalty in inference time is justified by the DCD gains of 4.8% and 3.2%

top-1 accuracy over MobileNetV2 ×0.5 and ×1.0 respectively.

3.6 Conclusion

In this chapter, we discussed the dynamic network used on large scale image recognition

tasks by revisiting dynamic convolution from the view of matrix decomposition and demonstrated

the limitations of dynamic attention over channel groups: it multiplies the number of parameters

by K and increases the difficulty of joint optimization. We proposed a dynamic convolution

decomposition to address these issues. This applies dynamic channel fusion to significantly

reduce the dimensionality of the latent space, resulting in a more compact model that is easier

to learn with often improved accuracy. We hope that our work provides a deeper understanding

of the gains recently observed for dynamic convolution. And in the following chapter, we will

further explore how the dynamic architecture can help design networks that requires extremely

low computational cost.

Chapter 3 is, in full, based on the material as it appears in the publication of “Revisiting

Dynamic Convolution via Matrix Decomposition”, Yunsheng Li, Yinpeng Chen, Xiyang Dai,

Mengchen Liu, Dongdong Chen, Ye Yue, Lu Yuan, Zicheng Liu, Mei Chen and Nuno Vascon-

celos, in The Ninth International Conference on Learning Representations (ICLR), 2021. The

dissertation author was the primary investigator and author of this material.
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Chapter 4

Large Scale Image Recognition with

Extremely Low FLOPs
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4.1 Introduction

In this chapter, we further work on the problem of large scale image recognition but with

much less computational resources. We start by designing a novel efficient convolution operator.

Then motivated by the success of dynamic network, we extend it from being applied on the

convolution layers to the activation functions and demonstrate the power of dynamic network

under the extremely strict limitation of computational resources.

Recent progress in efficient CNN architectures [96, 66, 72, 97, 67, 74, 75] successfully

decreases the computational cost of ImageNet classification from 3.8G FLOPs (ResNet-50

[55]) by two orders of magnitude to about 40M FLOPs (e.g. MobileNet, ShuffleNet), with a

reasonable performance drop. However, they suffer from a significant performance degradation

when reducing computational cost further. For example, the top-1 accuracy of MobileNetV3

degrades substantially from 65.4% to 58.0% and 49.8% when the computational cost drops from

44M to 21M and 12M MAdds, respectively. In this chapter, we aim at improving accuracy at

the extremely low FLOP regime from 21M to 4M MAdds, which marks the computational cost

decrease of another order of magnitude (from 40M).

The problem of dealing with extremely low computational cost (4M–21M FLOPs) is

very challenging, considering that 2.7M MAdds are consumed by a thin stem layer that contains

a single 3× 3 convolution with 3 input channels and 8 output channels over a 112× 112 grid

(stride=2). The remaining resources are too limited to design the convolution layers and 1,000

class classifier required for effective classification. As shown in Figure 4.1, a common strategy to

reduce the width or depth of existing efficient CNNs (e.g. MobileNet [66, 72, 97] and ShuffleNet

[67, 74]) results in a severe performance degradation. Note that we focus on new operator design

while fixing the input resolution to 224×224 even for the budget of 4M FLOPs.

In this chapter, we handle the extremely low FLOPs from two perspectives: node con-

nectivity and non-linearity, which are related to the network width and depth. First, we show
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Figure 4.1: Computational Cost (MAdds) vs. ImageNet Accuracy. MicroNet significantly
outperforms the state-of-the-art efficient networks at very low FLOPs (from 4M to 21M MAdds).

that lowering node connectivity to enlarge network width provides a good trade-off for a given

computational budget. Second, we rely on improved layer non-linearities to compensate for

reduced network depth, which determines the non-linearity of the network. These two factors

motivate the design of more efficient convolution and activation functions.

Regarding convolutions, we propose a Micro-Factorized convolution (MF-Conv) to factor-

ize a pointwise convolution into two group convolution layers, where the group number G adapts

to the number of channels C as:

G =
√

C/R,

where R is the channel reduction ratio in between. As analyzed in Section 4.2.1, this equation

achieves a good trade-off between the number of channels and node connectivity for a given

computational cost. Mathematically, the pointwise convolution matrix is approximated by a block
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matrix (G×G blocks), whose blocks have rank-1. This guarantees minimal path redundancy (with

only one path between any input-output pair) and maximum input coverage (per output channel),

enabling more channels implementable by the network for a given computational budget.

With regards to non-linearities, we propose a new activation function, named Dynamic

Shift-Max (DY-Shift-Max), which non-linearly fuses channels with dynamic coefficients. In

particular, the new activation forces the network to learn to fuse different circular channel shifts

of the input feature maps, using coefficients that adapt to the input, and to select the best among

these fusions. This is shown to enhance the representation power of the group factorization with

little computational cost.

Based upon the two new operators (MF-Conv and DY-Shift-Max), we obtain a family of

models, called MicroNets. Figure 4.1 summarizes the ImageNet performance, where MicroNets

outperform the state-of-the-art by a large margin. In particular, our MicroNet models of 12M and

21M FLOPs outperform MobileNetV3 by 9.6% and 4.5% in terms of top-1 accuracy, respectively.

For the extremely challenging regime of 6M FLOPs, MicroNet achieves 51.4% top-1 accuracy,

outperforming by 1.6% over MobileNetV3, which is twice as complex (12M FLOPs).

Even though MicroNet is manually designed for theoretical FLOPs, it outperforms Mo-

bileNetV3 (which is searched over inference latency) with fast inference on edge devices. Fur-

thermore, our MicroNet surpasses MobileNetV3 on object detection and keypoint detection, but

uses substantially less computational cost.

4.2 Micro-Factorized Convolution

The goal of Micro-Factorized convolution is to optimize the trade-off between the number

of channels and node connectivity. Here, the connectivity E of a layer is defined as the number of

paths per output node, where a path connects an input node and an output node.
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4.2.1 Micro-Factorized Pointwise Convolution

𝑘×𝑘𝑘×1 1×𝑘

Micro-Factorized Depthwise Convolution
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Micro-Factorized Pointwise Convolution
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Flow Chart Matrix Multiplication

× ×
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Depthwise
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Figure 4.2: Micro-Factorized pointwise and depthwise convolutions. Top: factorizing a
pointwise convolution into two group-adaptive convolutions. Middle: factorizing a k× k
depthwise convolution into a k×1 and a 1×k depthwise convolutions. Bottom: lite combination
of Top and Middle.
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We propose the use of group-adaptive convolution to factorize a pointwise convolution.

For conciseness, we assume the convolution kernel WWW has the same number of input and output

channels (Cin = Cout = C) and ignore bias terms. The kernel matrix WWW is factorized into two

group-adaptive convolutions, where the number of groups G depends on the number of channels

C, according to

WWW = PPPΦΦΦQQQT , (4.1)

where WWW is a C×C matrix, QQQ is a C× C
R matrix that compresses the number of channels by a factor

of R, and PPP is a C× C
R matrix that expands the number of channels back to C. PPP and QQQ are diagonal

block matrices with G blocks, each implementing the convolution of a group of channels. ΦΦΦ is a

C
R ×

C
R permutation matrix, shuffling channels similarly to [67]. The computational complexity of

the factorized layer is O = 2C2

RG . Figure 4.2-Top shows an example of the factorization, for C = 18,

R = 2 and G = 3.

The C
R channels of matrix ΦΦΦ are denoted hidden channels. The grouping structure limits the

number of these channels that are affected by (affect) each input (output) of the layer. Specifically,

each hidden channel connects to C
G input channels and each output channel connects to C

RG hidden

channels. The number E = C2

RG2 of input-output connections per output channel denotes the

connectivity E of the layer. When the computational budget O = 2C2

RG and the compression factor

R are fixed, the number of channels C and connectivity E change with G in opposite directions,

C =

√
ORG

2
, E =

O
2G

. (4.2)

This is illustrated in Figure 4.3. As the number of groups G increases, C increases but E decreases.

58



𝐶 = 𝒪"#/%

𝐺

𝐸 = 𝒪
%#

𝐺∗ = " #⁄

𝐶 𝐸

Number of Groups

N
um

be
r o

f C
ha

nn
el

s
Connectivity

Figure 4.3: Number of Channels C vs. Connectivity E over number of groups G. We assume
that the computational cost O and the reduction ratio R are fixed. Best viewed in color.

The two curves intersect (C = E) when

G =
√

C/R, (4.3)

in which case each output channel connects to all input channels exactly once (E =C). This guar-

antees that no redundant paths exist between any input-output pair (minimum path redundancy)

while guaranteeing the existence of a path between each pair (maximum input coverage). Eq. 4.3

is a defining property of micro-factorized pointwise convolution. It implies that the number of

groups G is not fixed, but defined by the number of channels C and the compression factor R,

according to a square root law that optimally balances the number of channels C and input/output

connectivity. Mathematically, the resulting convolution matrix WWW is divided into G×G rank-1

blocks, as shown in Figure 4.2-Top.
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4.2.2 Micro-Factorized Depthwise Convolution

Figure 4.2-Middle shows how micro-factorization can be applied to a k× k depthwise

convolution. The convolution kernel is factorized into a k×1 and a 1× k kernel. This follows

Eq. 4.1, with per channel k× k kernel matrix WWW , k×1 vector PPP, 1× k vector QQQTTT and ΦΦΦ a scalar

of value 1. This low rank approximation reduces the computational complexity from O(k2C) to

O(kC).

4.2.3 Combining Micro-Factorized Pointwise and Depthwise Convolutions

Micro-Factorized pointwise and depthwise convolutions can be combined in two different

ways: (a) regular combination, and (b) lite combination. The former simply concatenates the

two convolutions. The lite combination, shown in Figure 4.2-Bottom, uses Micro-Factorized

depthwise convolutions to expand the number of channels, by applying multiple spatial filters

per channel. It then applies one group-adaptive convolution to fuse and squeeze the number of

channels. Compared to its regular counterpart, it spends more resources on learning spatial filters

(depthwise) by saving channel fusion (pointwise) computations, which is empirically validated to

be more effective for implementation of lower network layers.

4.3 Dynamic Shift-Max

So far, we have discussed the design of efficient static networks, which do not change

their weights according to the input. We now introduce dynamic Shift-Max (DY-Shift-Max), a

new dynamic non-linearity that strengthens connections between the groups created by micro-

factorization. This is complementary to Micro-Factorized pointwise convolution, which focuses

on connections within a group.

Let xxx = {xi} (i = 1, . . . ,C) denote an input vector (or tensor) with C channels that are

divided into G groups of C
G channels each. The j-group circular shift (shifting j C

G channels) of
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xxx is the vector x̂xx j such that x̂ j
i = x(i+ j C

G ) mod C. Dynamic Shift-Max outputs the maximum of K

fusions, each of which combines multiple (J) group shifts as:

yi = max
1≤k≤K

{
J−1

∑
j=0

ak
i, j(xxx)x(i+ j C

G ) mod C}, (4.4)

where ak
i, j(xxx) is a dynamic weight, i.e., a weight that depends on the input xxx. It is implemented as

a hyper-function (with CJK output dimension) that consists of a sequence of average pooling,

two fully connected layers, and a sigmoid layer, as in Squeeze-and-Excitation [96].

In this way, DY-Shift-Max implements two forms of non-linearity: it (a) outputs the

maximum of K fusions of J groups, and (b) weighs each fusion by a dynamic parameter ak
i, j(xxx).

The first non-linearity is complementary to Micro-Factorized pointwise convolution, which

focuses on connectivity within each group, strengthening the connections between groups. The

second enables the network to tailor this strengthening to the input xxx. The two operations increase

the representation power of the network, compensating for the loss inherent to the reduced number

of layers.

DY-Shift-Max synthesizes CJK weights ak
i, j(xxx) from input xxx. Its computational complexity

is a sum of (a) average pooling O(HWC), (b) generation of the ak
i, j(xxx) weights O(C2JK), and (c)

application of dynamic Shift-Max per channel and spatial location O(HWCJK). This leads to a

light-weight model when J and K are small. Empirically, a good trade-off between classification

performance and complexity is achieved when J = 2 and K = 2.

4.4 MicroNet

Below we describe in detail the design of MicroNet, using Micro-Factorized convolution

and dynamic Shift-Max.
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Micro-Block-CMicro-Block-A Micro-Block-B

Dynamic Shift-Max

Micro-Factorized 
Depthwise Convolution

Micro-Factorized 
Pointwise Convolution

(a) (b) (c)

Figure 4.4: Diagram of three Micro-Blocks. (a) Micro-Block-A: the lite combination of
Micro-Factorized pointwise (PW) and depthwise (DW) Conv. (b) Micro-Block-B: combination
of Micro-Block-A and Micro-Block-C. (c) Micro-Block-C: the regular combination of Micro-
Factorized PW and DW Conv.

4.4.1 Micro-Blocks

MicroNet models consist of three Micro-Blocks of Figure 4.4, which combine Micro-

Factorized pointwise and depthwise convolutions in different ways. All of the Micro-Blocks use

the dynamic Shift-Max activation function.

Micro-Block-A: The Micro-Block-A of Figure 4.4a, uses the lite combination of Micro-

Factorized pointwise and depthwise convolutions of Figure 4.2-Right. It expands the number

of channels with Micro-Factorized depthwise convolution, and compresses them with a group-

adaptive convolution. It is best suited to implement lower network layers of higher resolution

(e.g. 112×112 or 56×56).

Micro-Block-B: The Micro-Block-B of Figure 4.4b is used to connect Micro-Block-A

and Micro-Block-C. Different from Micro-Block-A, it uses a full Micro-Factorized pointwise

convolution, which includes two group-adaptive convolutions. Hence, it both compresses and

expands the number of channels. All MicroNet models have a single Micro-Block-B (see Table

4.1).

Micro-Block-C: The Micro-Block-C of Figure 4.4c implements the regular combination

62



of Micro-Factorized depthwise and pointwise convolutions. It is best suited for the higher network

layers (see Table 4.1) since it assigns more computation to channel fusion (pointwise) than the lite

combination. The skip connection is used when the input and output have the same dimension.

Each micro-block has three hyper-parameters: kernel size k, number of output channels

C, compression factor R of the bottleneck of Micro-Factorized pointwise convolution. Note that

the number of groups in the two group-adaptive convolutions is determined by Eq. 4.3.

4.4.2 Architectures

All models are manually designed to optimize for FLOPs, which is a theoretical and device

independent metric. We hope this can be leveraged by new hardware design and optimization for

edge devices. We aware that FLOPs is not equivalent to inference latency at existing hardware

and will show in experiment that MicroNet also improves accuracy and latency. We propose

four models (M0, M1, M2, M3) of different computational cost (4M, 6M, 12M, 21M MAdds)

based on the Micro-Blocks above. Table 4.1 presents their full specification. These networks

follow the same pattern from low to high layers: stem layer→Micro-Block-A→Micro-Block-B

→ Micro-Block-C. All models are handcrafted, without network architecture search (NAS).

The network hyper-parameters are selected based on simple rules: R is fixed (4 for M0, 6 for

MicroNet-M1,M2,M3), C increases from low to high levels, depth increases from M0 to M3. For

the deepest model (M3), we only use one dynamic Shift-Max layer per block after the depthwise

convolution. The stem layer includes a 3×1 convolution and a 1×3 group convolution, and is

followed by a ReLU. The second convolution expands the number of channels.
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4.4.3 Relation to Prior Work

MicroNet has various connections to the recent deep learning literature. It is related

to the popular MobileNet [66, 72, 97] and ShuffleNet [67, 74] models. It shares the inverted

bottleneck structure with MobileNet and the use of group convolution with ShuffleNet. In contrast,

MicroNet differs from these models in both its convolutions and activation functions. First, it

factorizes pointwise convolutions into group-adaptive convolutions, with the number of groups

G =
√

C/R that is channel adaptive and guarantees minimum path redundancy. Second, it

factorizes depthwise convolution. Third, it relies on a novel activation function, dynamic Shift-

Max, to strengthen group connectivity in a non-linear and input dependent manner. Dynamic

Shift-Max itself generalizes the recently proposed dynamic ReLU [90] (i.e., dynamic ReLU is a

special case where J = 1 and each channel is activated alone).

4.5 Experiments on ImageNet Classification

We start by evaluating the four MicroNet models (M0–M3) on the task of ImageNet [3]

classification. ImageNet has 1000 classes, including 1,281,167 images for training and 50,000

images for validation. In this and the following sections, the baseline MobileNetV3-Small in [97]

is denoted as MobileNetV3, for conciseness.

4.5.1 Experimental Set-up

All models are trained using an SGD optimizer with 0.9 momentum. The image resolution

is 224×224. Data augmentation of standard random cropping and flipping is used. We use

a mini-batch size of 512, and a learning rate of 0.02. Each model is trained for 600 epochs

with cosine learning rate decay. The weight decay is 3e-5 and dropout rate is 0.05 for smaller

MicroNets (M0, M1, M2). For the largest model M3, the weight decay is 4e-5 and dropout rate is

0.1.
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Table 4.2: The path from MobileNet to MicroNet evaluated on ImageNet classification.
Under similar FLOPs, MobileNet is compared to three Micro-Factorized convolution options:
depthwise (DW), pointwise (PW), lite combination at low levels (Lite) and dynamic Shift-Max
with static coefficient ak

i, j in Eq. 4.4.

Micro-Fac Conv Shift-Max
DW PW Lite static dynamic Param MAdds Top-1

Mobile 1.3M 10.6M 44.9
X 1.7M 10.6M 46.4
X X 1.7M 10.6M 50.0

Micro X X X 1.8M 10.5M 51.7
X X X X 1.9M 11.8M 54.4
X X X X 2.4M 12.4M 58.5

4.5.2 Ablation Studies

Several ablations were performed using MicroNet-M2. All models are trained for 300

epochs. The default hyper parameters of DY-Shift-Max were set as J=2, K=2.

From MobileNet to MicroNet: Table 4.2 shows the path from MobileNet to MicroNet.

Both share the inverted bottleneck structure. Here, we modify MobileNetV2 (without SE [88])

such that it has complexity (10.6M MAdds) similar to the static Micro-Factorized convolution

variants of row 2–4. The introduction of Micro-Factorized depthwise convolutions improves

performance by 1.5%. Micro-Factorized pointwise convolutions adds another 3.6% and the lite

combination at lower layers adds a final gain of 1.7%. Altogether the three factorizations boost

the top-1 accuracy of the static network from 44.9% to 51.7%. The addition of static and dynamic

Shift-Max further increases this gain by 2.7% and 6.8% respectively, for a small increase in

computation. This demonstrates that both Micro-Factorized Convolutions and Dynamic Shift-Max

are effective and complementary mechanisms for the implementation of networks with extremely

low computational cost.

Number of Groups G: Micro-Factorized pointwise convolution includes two group-

adaptive convolutions, with a number of groups equal to the integer closest to G =
√

C/R. Table

4.3a compares this to networks of similar structure and FLOPs (about 10.5M MAdds), but using a
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Table 4.3: Ablations of Micro-Factorized convolution on ImageNet classification. V indi-
cates the default choice for the rest of the experiments.

G Param MAdds Top-1

1 1.3M 10.6M 48.8
2 1.5M 10.5M 50.2
4 1.7M 10.6M 50.7
8 1.7M 10.6M 50.8

G =
√

C/R 1.8M 10.5M 51.7

(a) Fixed group number G.

λ = G√
C/R

Param MAdds Top-1

0.25 1.5M 10.5M 50.2
0.5 1.7M 10.6M 51.6

V 1.0 1.8M 10.5M 51.7
2.0 2.1M 10.5M 50.6
4.0 2.2M 10.7M 47.6

(b) Adaptive group number G.

Levels
low high Param MAdds Top-1

1.7M 10.6M 50.0
V X 1.8M 10.5M 51.7

X X 2.0M 10.6M 51.2

(c) Lite combination at different levels

fixed group cardinality. Group-adaptive convolution achieves higher accuracy, demonstrating the

importance of its optimal trade-off between input/output connectivity and the number of channels.

This is further confirmed by Table 4.3b, which compares different options for the adaptive

number of groups. This is controlled by a multiplier λ such that G = λ
√

C/R. Larger λ

corresponds to more channels but less input/output connectivity (see Figure 4.3). The optimal

balance is achieved when λ is between 0.5 and 1. Top-1 accuracy drops when λ either increases

(more channels but less connectivity) or decreases (fewer channels but more connectivity) from

this optimal point. The value λ = 1 is used in the remainder of the chapter. Note that all models

in Table 4.3b have similar computational cost (about 10.5M MAdds).

Lite combination: Table 4.3c compares using the lite combination of Micro-Factorized

pointwise and depthwise convolutions (Figure 4.2-Right) at different layers. The lite combination

is more effective for lower layers. Compared to the regular combination, it saves computations

from channel fusion (pointwise) to allow more spatial filters (depthwise).

Activation functions: Dynamic Shift-Max is compared to three previous activation
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Table 4.4: Dynamic Shift-Max vs. other activation functions on ImageNet classification.
MicroNet-M2 is used.

Activation Param MAdds Top-1 Top-5
ReLU[91] 1.8M 10.5M 51.7 74.3
SE[88]+ReLU 2.1M 10.9M 54.4 76.8
Dynamic ReLU [90] 2.4M 11.8M 56.0 78.0
Dynamic Shift-Max 2.4M 12.4M 58.5 80.1

Table 4.5: Dynamic Shift-Max at different layers evaluated on ImageNet. MicroNet-M2 is
used. A1,A2,A3 indicate three activation layers sequentially in Micro-Block-B and Micro-Block-
C (see Figure 4.4). Micro-Block-A only includes A1 and A2.

A1 A2 A3 Param MAdds Top-1 Top-5
ReLU – – – 1.8M 10.5M 51.7 74.3

X – – 2.1M 11.3M 55.9 77.9
– X – 2.0M 10.6M 53.3 76.0

Dynamic – – X 2.1M 11.2M 54.8 77.2
Shift-Max X X – 2.2M 11.5M 56.6 78.3

X – X 2.3M 12.2M 57.9 79.6
– X X 2.2M 11.4M 55.5 77.8
X X X 2.4M 12.4M 58.5 80.1

functions: ReLU [91], SE+ReLU [88], and dynamic ReLU [90]. Table 4.4 shows that dynamic

Shift-Max outperforms all three by a clear margin (at least 2.5%). Note that dynamic ReLU is the

special case of dynamic Shift-Max with J = 1 (see Eq. 4.4).

Location of DY-Shift-Max: Table 4.5 shows the top-1 accuracy when dynamic Shift-

Max is implemented in different combinations of the three layers of the micro-blocks of Figure

4.4. When used in a single layer, dynamic Shift-Max should be placed after the depthwise

convolution. This improves the top-1 accuracy over a network with ReLU activations by 4.2%.

Adding a Dynamic Shift-Max activation at the Micro-Block output further improves performance

by 2%. Finally, using three layers of Dynamic Shift-Max further increases the gain over the

ReLU network to 6.8%.

Hyper-parameters in DY-Shift-Max: Table 4.6 shows the results of using different

combinations of K and J in Eq. 4.4. We add a ReLU when K = 1 as only one element is left in

the max operator. The baseline of the first row (J = 1, K = 1) is equivalent to SE+ReLU [88]. For
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Table 4.6: Ablations of two hyper parameters in dynamic Shift-Max (J, K in Eq. 4.4) on
ImageNet classification. V indicates the default choice for the rest of the experiments.

J K Param MAdds Top-1 Top-5
1 1 2.1M 10.9M 54.4 76.8
2 1 2.2M 11.8M 55.9 78.2

V 2 2 2.4M 12.4M 58.5 80.1
2 3 2.6M 13.8M 58.1 79.7
1 2 2.2M 11.2M 55.5 77.6

V 2 2 2.4M 12.4M 58.5 80.1
3 2 2.6M 14.2M 59.0 80.3
3 3 2.8M 15.3M 59.1 80.3

fixed J = 2 (fusion of two groups), the best of two fusions (K = 2) is better than a single fusion

(K = 1), but adding a third fusion does not help, since it only adds path redundancy. When K

is fixed at K = 2 (best of two fusions), fusing more groups J is consistently better but requires

more FLOPs. A good tradeoff is achieved with J = 2 and K = 2, enabling a gain of 4.1% over

the baseline, for an additional 1.5M MAdds.

4.5.3 Comparison to Prior Networks

Table 4.7 compares MicroNet to the state-of-the-art models, which have complexity less

than 24M FLOPs. As the prior works lack of reported results within 10M FLOPs budget, we

extend the popular MobileNetV3 to 6M and 4M FLOPs as baseline, by using width multiplier 0.2

and 0.15 respectively. They share the same training setup with MicroNet.

To make comparison fair, two variations of M1–M3 (e.g. M3# and M3) are used. The

former (M3#) requires similar model size to but fewer FLOPs than the baseline (MobileNetV3

0.5×). The latter (M3) requires similar FLOPs but allows more parameters (up to 1M), best

serving scenarios that FLOPs is more critical than memory. This is due to the difficulty to match

both model size and FLOPs, except for the smallest model (M0). Note that M3# has similar

structure to M3, only shrinking the model size by reducing network width and parameters in

dynamic Shift-Max.
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Table 4.7: ImageNet [3] classification results. # stands for the MicroNet variation with
similar model size to but fewer MAdds than the MobileNetV3-Small baseline. † indicates our
implementation. “–”: not available in the original paper. Note that input resolution 224×224 is
used other than HBONet/TinyNet.

Model #Param MAdds Top-1 Top-5
MobileNetV3 0.15×† 1.0M 4M 33.7 57.2
MicroNet-M0 1.0M 4M 46.6 70.6
MobileNetV3 0.2×† 1.2M 6M 41.1 65.2
MicroNet-M1# 1.2M 5M 49.4 72.9
MicroNet-M1 1.8M 6M 51.4 74.5
ShuffleNetV1 0.25× [67] – 13M 47.3 –
MobileNetV3 0.35× [97] 1.4M 12M 49.8 –
HBONet (96×96) [100] – 12M 50.3 73.8
MobileNetV3+BFT 0.5× [98] – 15M 55.2 –
MicroNet-M2# 1.4M 11M 58.2 80.1
MicroNet-M2 2.4M 12M 59.4 80.9
HBONet (128×128) [100] – 21M 55.2 78.0
ShuffleNetV2+BFT [98] – 21M 57.8 –
MobileNetV3 0.5× [97] 1.6M 21M 58.0 –
TinyNet-E (106×106) [99] 2.0M 24M 59.9 81.8
MicroNet-M3# 1.6M 20M 61.3 82.9
MicroNet-M3 2.6M 21M 62.5 83.1

In all cases, MicroNet outperforms all prior networks by a clear margin. For instance,

MicroNet-M1#, M2#, M3# outperform their MobileNetV3 counterpart by 8.3%, 8.4%, and 3.3%,

respectively. Given another 1M budget on model size, MicroNet-M1, M2, M3 increase these

gains by 2.0%, 1.2% and 1.2%, respectively. MicroNet-M0 outperforms MobileNetV3 0.15× by

12.9% (46.6% vs. 33.7%), demonstrating its better handle of cutting computational cost from

6M to 4M MAdds. In particular, the top-1 accuracy drops by 4.8% from MicroNet-M1 to M0,

while the accuracy degrades by 7.4% from MobileNetV3 ×0.2 to ×0.15. When compared to

recent MobileNet and ShuffleNet improvements, such as ButterflyTransforms [98] and TinyNet

[99], MicroNet models have gains of more than 2.6% top-1 accuracy but use less FLOPs. This

demonstrates the effectiveness of MicroNet at extremely low FLOPs.

70



2 4 6 8 10 12 14
Latency (ms)

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

MicroNet
MicroNet#

MobileNetV3

0 5 10 15 20 25
FLOPs (M)

30

35

40

45

50

55

60

65
Ac

cu
ra

cy
 (%

)

MicroNet
MicroNet#

MobileNetV3

M0

M1

M2
M3

M0

M1

M2
M3

0.2x

0.35x

0.5x

0.2x

0.35x

0.5x

0.75x

0.15x 0.15x

Figure 4.5: Evaluation on ImageNet classification. Left: top-1 accuracy vs. FLOPs. Right:
top-1 accuracy vs. latency. MicroNet outperforms MobileNetV3, especially at extremely low
computational cost (more than 5% gain on top-1 accuracy when FLOPs is less than 15M or
latency is less than 9ms).

4.5.4 Inference Latency

We also measure the inference latency of MicroNet on an Intel(R) Xeon(R) CPU E5-2620

v4 (2.10GHz). Following the common settings in [72, 97], we test under single-threaded mode

with batch size 1. The average inference latency of 5,000 images (with resolution 224×224) is

reported. Figure 4.5-Right shows the comparison between MicroNet and MobileNetV3-Small.

To achieve similar performance, MicroNet clearly consumes less runtime than MobileNetV3.

For example, MicroNet with 55% accuracy has a latency less than 7ms, while MobileNetV3

requires about 9.5ms. The accuracy-latency curve is slightly degraded when using MicroNet

with fewer parameters (M1#, M2#, M3#), but it still outperforms MicroNetV3. Although the

largest MicroNet model (M3) only slightly outperforms MobileNetV3 for the same latency,

MicroNet gains significantly more improvement over MobileNetV3 when the latency decreases.

In particular, at a latency of 4ms, MicroNet improves over MobileNetV3 by 10%, demonstrating

its strength at low computational cost.

71



4.5.5 Discussion

As shown in Figure 4.5, MicroNet clearly outperforms MobileNetV3 under the same

FLOPs, but the gap shrinks under the same latency. This is due to two reasons. First, different

from MobileNetV3 that is optimized for latency by search, MicroNet is manually designed

based on theoretical FLOPs. Second, the implementation of group convolution and dynamic

Shift-Max are not optimized (we use PyTorch for implementation). We observe that the latency of

group convolution is not proportionally reduced as the number of groups increases, and dynamic

Shift-Max is significantly slower than convolution with the same FLOPs.

We believe that the runtime performance of MicroNet can be further improved by using

hardware-aware architecture search to find latency friendly combination of Micro-Factorized

convolution and dynamic Shift-Max. MicroNet can also leverage the improvement of optimization

in group convolution [101] and dynamic Shift-Max to speed up. We will investigate these in the

future work.

4.6 Experiments on Object Detection

In this section, we evaluate the generalization ability of MicroNet on COCO object

detection [102]. All models are trained on train2017 and evaluated in mean Average Precision

(mAP) on val2017. Following [79], MicroNet is used as a drop-in replacement for the backbone

feature extractor in both the two-stage Faster R-CNN [103] with Feature Pyramid Networks (FPN)

[104] and the one-stage RetinaNet [105]. All models are trained using SGD for 36 epochs (3×)

from ImageNet pretrained weights with the hyper-parameters and data augmentation suggested in

[106].

The detection results are shown in Table 4.8, where the backbone FLOPs are calculated

using image size 224×224 as common practice. With significantly lower backbone FLOPs (21M

vs 56M), MicroNet-M3 achieves higher mAP than MobileNetV3-Small ×1.0 both on Faster
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Table 4.8: COCO object detection results. All models are trained on train2017 for 36
epochs (3×) and tested on val2017. MAdds is computed on image size 224×224.

Backbone DET Framework MAdds mAP
MobileNetV3 ×1.0 56M 25.9

MicroNet-M3 R-CNN 21M 26.2
MicroNet-M2 12M 22.7

MobileNetV3 ×1.0 56M 24.0
MicroNet-M3 RetinaNet 21M 25.4
MicroNet-M2 12M 22.6

R-CNN and RetinaNet frameworks, demonstrating its capability to transfer to detection task.

4.7 Experiments on Human Pose Estimation

We also evaluate MicroNet on COCO single person keypoint detection. All models

are trained on train2017 that includes 57K images and 150K person instances labeled with

17 keypoints, and evaluated on val2017 that contains 5000 images, using the mean average

precision (AP) over 10 object key point similarity (OKS) thresholds.

Similar to object detection, two MicroNet models (M2, M3) are considered. The models

are modified for the keypoint detection task, by increasing the resolution (×2) of a select set of

blocks (all blocks with stride of 32). Each model contains a head with three micro-blocks (one of

stride 8 and two of stride 4) and a pointwise convolution that generates heatmaps for 17 keypoints.

Bilinear upsampling is used to increase the head resolution, and the spatial attention mechanism

of [90] is used. Both models are trained from scratch for 250 epochs using Adam optimizer [107].

The human detection boxes are cropped and resized to 256×192. The training and testing follow

the setup of [108, 109].

Table 4.9 compares MicroNet-M3 and M2 with a strong efficient baseline, which only

requires 726.9M MAdds and 2.1M parameters. The baseline applies MobileNetV3-Small×1.0 as

backbone and mobile blocks (inverted residual bottleneck blocks) in the head (see [2] for details).

Our MicroNet-M3 only consumes 22% (163.2M/726.9M) of the FLOPs used by the baseline
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Table 4.9: COCO keypoint detection results. All models are trained on train2017 and tested
on val2017 with input resolution 256×192. The head structure in [2] is used for all models.
MicroNet-M3 has similar model size, consumes significantly less MAdds, but achieves higher
accuracy than MobileNetV3.

Backbone Head Param MAdds AP AP0.5 AP0.75 APM APL

MobileNetV3 ×1.0 Mobile-Blocks 2.1M 726.9M 57.1 83.8 63.7 55.0 62.2
MicroNet-M3 Micro-Blocks 2.2M 163.2M 58.7 84.0 65.5 56.0 64.2
MicroNet-M2 Micro-Blocks 1.8M 116.8M 54.9 82.0 60.3 53.2 59.6

but achieves higher performance, demonstrating its effectiveness for low-complexity keypoint

detection. MicroNet-M2 provides a good handle for even lower complexity (116.8M FLOPs).

4.8 Conclusion

In this chapter, we presented MicroNet to handle extremely low computational cost on

image recognition tasks. It is built on two proposed operators: Micro-Factorized convolution

and Dynamic Shift-Max. The former balances between the number of channels and input/output

connectivity via low rank approximations on both pointwise and depthwise convolutions. The

latter fuses consecutive channel groups dynamically, enhancing both node connectivity and

non-linearity to compensate the loss caused by the depth reduction. Experimental results show

that a family of MicroNets achieve solid improvement for three tasks (image classification, object

detection and human pose estimation) under extremely low FLOPs. We hope this work provides

good baselines for efficient CNNs on multiple vision tasks.

Chapter 4 is, in full, based on the material as it appears in the submission of “MicroNet:

Improving Image Recognition with Extremely Low FLOPs”, Yunsheng Li, Yinpeng Chen, Xiyang

Dai, Dongdong Chen, Mengchen Liu, Lu Yuan, Zicheng Liu, Lei Zhang, Nuno Vasconcelos,

in Proceedings of IEEE International Conference on Computer Vision (ICCV), 2021. The

dissertation author was the primary investigator and author of this material.
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Chapter 5

Domain Adaptation on Semantic

Segmentation
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5.1 Introduction

In the previous chapters, we discussed the design of dynamic networks for different

constraints of computational resources from efficient multi-domain learning to the design of

extremely efficient networks. In this and the following chapters, we will move on to another type

of resource constrained problem where the data annotation is lacking. Due to the large varieties of

research subjects about dealing with the issue of lack of data annotation, in the thesis we mainly

discuss one of the critical subjects- domain adaptation and show how the dynamic network can be

applied in this scenario. As a start point, in this chapter, we will explore a series of key techniques

that are widely used for domain adaptation on semantic segmentation.

Recent progress on image semantic segmentation [110] has been driven by deep neural

networks trained on large datasets. Unfortunately, collecting and manually annotating large

datasets with dense pixel-level labels has been extremely costly due to the amount of human effort

requires. Recent advances in computer graphics make it possible to train CNNs on photo-realistic

synthetic imagery with computer-generated annotations [111, 112]. Despite this, the domain

mismatch between the real images (target) and the synthetic data (source) cripples the models’

performance. Domain adaptation helps address this domain shift problem. Specifically, we focus

on the hard case of the problem where no labels from the target domain are available. This class

of techniques is commonly referred to as Unsupervised Domain Adaptation.

Traditional methods for domain adaptation involve minimizing some measure of distance

between the source and the target distributions. Two commonly used measures are the first and

second order moment [30], and learning the distance metrics using Adversarial approaches [9,

113]. Both approaches have had good success in the classification problems (e.g., MNIST [114],

USPS [115] and SVHN [62]); however, as pointed out in [116],their performance improvement

are quite limited on the semantic segmentation problem.

Recently, domain adaptation for semantic segmentation has made good progress by
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separating it into two sequential steps. First, it translates images from the source domain to the

target domain with an image-to-image translation model (e.g., CycleGAN [117]). And then it

adds a discriminator on top of the features of the segmentation model to further decrease the

domain gap [29, 118]. When the domain gap is reduced by the former step, the latter one is

easy to learn and can further decreases the domain shift. Unfortunately, the segmentation model

heavily relies on the quality of image-to-image translation. Once the image-to-image translation

fails, nothing can be done to make it up in the following stages.

In this chapter, we propose a new bidirectional learning framework for domain adaptation

of semantic segmentation. The system involves two separated modules: image-to-image trans-

lation model and segmentation adaptation model similar to [29, 118], but the learning process

involves two directions (i.e., “translation-to-segmentation” and “segmentation-to-translation”).

The whole system forms a closed-loop learning. Both models will be motivated to promote each

other alternatively, causing the domain gap to be gradually reduced. Thus, how to allow one of

both modules providing positive feedback to the other is the key to success.

On the forward direction (i.e., “translation-to-segmentation”, similar to [29, 118]), we

propose a self-training (ST) approach in training our segmentation adaptation model. Different

from segmentation models trained on real data, the segmentation adaptation model is trained on

both synthetic and real datasets, but the real data have no annotations. At every time, we may

regard the predicted labels for real data with high confidence as the approximate to the ground

truth labels, and then use them only to update the segmentation adaptation model by excluding

predicted labels with low confidence. This process is referred as self-training, which aligns two

domains better than one-trial learning that are widely used in existing approaches. Furthermore,

better segmentation adaptation model would contribute to better translation model through our

reverse direction learning.

On the reverse direction (i.e., “segmentation-to-translation”), our translation model would

be iteratively improved by the segmentation adaptation model, which is different from [29, 118]
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where the image-to-image translation is not updated once the model is trained. For the purpose,

we propose a new perceptual loss, which forces the semantic consistency between every image

pixel and its translated version, to build the bridge between translation model and segmentation

adaptation model. With the constraint in the translation model, the gap in visual appearance

(e.g., lighting, object textures), between the translated images and real datasets (target) can be

further decreased. Thus, the segmentation model can be further improved accordingly through

our forward direction learning.

From the above two directions, both the translation model and the segmentation adapta-

tion model complement each other, which helps achieve state-of-the-art performance for adapt-

ing large-scale rendered image dataset SYNTHIA [112]/GTA5 [111], to real image dataset,

Cityscapes [119], and outperform other methods by a large margin. Moreover, the proposed

method is generic to different kinds of backbone networks.

In summary, our key contributions are:

1. We present a bidirectional learning system for semantic segmentation, which is a closed

loop to learning the segmentation adaptation model and the image translation model

alternatively.

2. We propose a self-training algorithm for the segmentation adaptation model, which incre-

mentally align the source domain and the target domain at the feature level, based on the

translated results.

3. We introduce a new perceptual loss to the image-to-image translation, which supervises

the translation by the updated segmentation adaptation model.
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5.2 Related Work

5.2.1 Domain Adaptation

When transferring knowledge from virtual images to real photos, it is often the case that

there exists some discrepancy from the training to the test stage. Domain adaptation aims to rectify

this mismatch and tune the models toward better generalization at testing [120]. The existing

work on domain adaptation have largely focused on image classification [121]. A lot of work aims

to learn domain-invariant representations through minimizing the domain distribution discrepancy.

Maximum Mean Discrepancy (MMD) loss [122], computing the mean of representations, is a

common distance metric between two domains. As the extension to MMD, some statistics of

feature distributions such as mean and covariance [30, 31] are used to match two different domains.

Unfortunately, when the distribution is not Gaussian, solely matching mean and covariance is not

enough to align the two different domains well.

Adversarial learning [26] recently becomes popular, and another kind of domain adapta-

tion methods. It reduces the domain shift by forcing the features from different domains to fool

the discriminator. [9] would be the pioneer work, which introduces an adversarial loss on top

of the high-level features of the two domains with the classification loss for the source dataset

and achieves a better performance than the statistical matching methods. Expect for adversar-

ial loss, some work proposed some extra loss functions to further decrease the domain shift,

such as reweighted function for each class [123], and disentangled representations for separated

matching [113]. All of these methods work on simple and small classification datasets (e.g.,

MNIST [114] and SVHN [62]), and may have quite limited performance in more challenging

tasks, like segmentation.
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5.2.2 Domain Adaptation for Semantic Segmentation

Recently, more domain adaptation techniques are proposed for semantic segmentation

models, since an enormous amount of labor-intensive work is required to annotate so many

images that are needed to train high-quality segmentation networks. A possible solution to

alleviate the human efforts is to train networks on virtual data which is labeled automatically. For

example, GTA5 [111] and SYHTHIA [112] are two popular synthetic datasets of city streets with

overlapped categories, similar views to the real datasets (e.g., CITYSCAPE [119], CamVid [124]).

Domain adaptation can be used to align the synthetic and the real datasets.

The first work to introduce domain adaptation for semantic segmentation is [10], which

does the global and local alignments between two domains in the feature level. Curriculum

domain adaptation [116] estimates the global distribution and the labels for the superpixel, and

then learns a segmentation model for the finer pixel. In [125], multiple discriminators are used

for different level features to reduce domain discrepancy. In [126], foreground and background

classes are separately treated for decreasing the domain shift respectively. All these methods

target to directly align features between two domains. Unfortunately, the visual (e.g., appearance,

scale, etc.) domain gap between synthetic and real data usually makes it difficult for the network

to learn transferable knowledge.

Motivated by the recent progress of unpaired image-to-image translation work (e.g.,

CycleGAN [117], UNIT [127], MUNIT [128]), the mapping from virtual to realistic data is

regarded as the image synthesis problem. It can help reduce the domain discrepancy before

training the segmentation models. Based on the translated results, Cycada [29] and DCAN [118]

further align features between two domains in feature level. By separately reducing the domain

shift in learning, these approaches obtained the state-of-the-art performance. However, the

performance is limited by the quality of image-to-image translation. Once it fails, nothing can

be done in the following step. To address this problem, we introduce a bidirectional learning

framework where both translation and segmentation adaption models can promote each other in a
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closed loop.

There are two most related work. In [129], the segmentation model is also used to improve

the image translation, but not to adapt the source domain to the target domain since it is only

trained on source data. [11] also proposed a self-training method for training the segmentation

model iteratively. However, the segmentation model is only trained on source data and uses none

of image translation techniques.

5.2.3 Bidirectional Learning

The kind of techniques were first proposed to solve the neural machine translation problem,

such as [130, 131], which train a language translation model for both directions of a language

pair. It improves the performance compared with the uni-direction learning and reduces the

dependency on large amount of data. Bidirectional learning techniques were also extended

to image generation problem [132], which trains a single network for both classification and

image generation problem from both top-to-down and down-to-top directions. A more related

work [133] proposed bidirectional image translation (i.e., source-to-target, and target-to-source),

then trained two classifiers on both domains respectively and finally fuses the classification

results. By contrast, our bidirectional learning refers to translation boosting the performance of

segmentation and vise verse. The proposed method is used to deal with the semantic segmentation

task.

5.3 Method

Given the source dataset S with segmentation labels YS (e.g., synthetic data generated by

computer graphics) and the target dataset T with no labels (i.e., real data), we want to train a

network for semantic segmentation, which is finally tested on the target dataset T . Our goal is

to make its performance to be as close as possible to the model trained on T with ground truth
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(a): Sequential Learning

ℓ𝐅 ℓ𝐌 F M

(b):Bidirectional Learning

ℓ𝐅 ℓ𝐌

Figure 5.1: Sequential Learning vs Bidirectional Learning

labels YT . The task is unsupervised domain adaptation for semantic segmentation. The task is not

easy since the visual (e.g., lighting, scale, object textures, etc.) domain gap between S and T

makes it difficult for the network to learn transferable knowledge at once.

To address this problem, the recent work [29] proposed two separated subnetworks. One

is image-to-image translation subnetwork F which learn to translate an image from S to T in

absence of paired examples. The another is segmentation adaptation subnetwork M that is trained

on translated results F(S), which have the same labels YS to S , and the target images T with no

labels. Both subnetworks are learnt in a sequential way shown in Figure 5.1(a). Such a two-stage

solution has two advantages: 1) F helps decrease the visual domain gap; 2) when domain gap

is reduced, M is easy to learn, causing better performance. However, the solution has some

limitations. Once F is learnt, it is fixed. There is no feedback from M to boost the performance

of F. Besides, one-trial learning for M seems to just learn limited transferable knowledge.

In this section, we propose a new learning framework which can address the above

two issues well. We inherit the way of separated subnetworks, but employ a bidirectional

learning instead (in Section 5.3.1), which uses a closed-loop to iteratively update both F and

M. Furthermore, we introduce a self-training to allow M being self-motivated in training (in

Section 5.3.2). The network architecture and loss functions are presented in Section 5.3.3.
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5.3.1 Bidirectional Learning

Our learning consists of two directions shown in Figure 5.1(b).

The forward direction (i.e., F→M) is similar to the behavior of previous sequential

learning [29]. We first train the image-to-image translation model F using images from T and S .

Then, we get the translated results S ′ = F(S). Note that F won’t change the labels of S ′, which

are the same to YS (labels of S ). Next, we train the segmentation adaptation model M using S ′

with YS and T . The loss function to learn M can be defined as:

`M = λadv`adv(M(S ′),M(T ))+ `seg(M(S ′),YS ), (5.1)

where `adv is adversarial loss that enforces the distance between the feature representations of S ′

and the feature representations of T (obtained after S ′, T are fed into M) as small as possible.

`seg measures the loss of semantic segmentation. Since only S ′ have the labels, we solely measure

the accuracy for the translated source images S ′.

The backward direction (i.e., M→ F) is newly added. The motivation is to promote

F using updated M. In [113, 128], a perceptual loss, which measures the distance of features

obtained from a pre-trained network on object recognition, is used in the image translation network

to improve the quality of translated result. Here, we use M to compute features for measuring the

perceptual loss. By adding the other two losses: GAN loss and image reconstruction loss, the loss

function for learning F can be defined as:

`F = λGAN [`GAN(S ′,T )+ `GAN(S ,T ′)]

+λrecon[`recon(S ,F−1(S ′))+ `recon(T ,F(T ′)]

+ `per(M(S),M(S ′))+ `per(M(T ),M(T ′),

(5.2)

where three losses are computed symmetrically, i.e., S → T and T → S , to ensure the image-

to-image translation consistent. The GAN loss `GAN enforces two distributions between S ′
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and T similar to each other. T ′ = F−1(T ), where F−1 is the reverse function of F that maps

the image from T to S . The loss `recon measures the reconstruction error when the image

from S ′ is translated back to S . `per is the perceptual loss that we propose to maintain the

semantic consistency between S and S ′ or between T and T ′. That is, once we obtained an ideal

segmentation adaptation model M, whether S and S ′, or T and T ′ should have the same labels,

even although there is the visual gap between S and S ′, or between T and T ′.

5.3.2 Self-Training

In the forward direction (i.e., F→M), if the label is available for both the source domain

S and the target domain T , the fully supervised segmentation loss `seg is always the best choice

to reduce the domain discrepancy. But in our case, the label for the target dataset is missing. As

we known, self-training (ST) has been used in semi-supervised learning before, especially when

the labels of dataset are insufficient or noisy. Here, we use ST to help promote the segmentation

adaptation model M.

Based on the prediction probability of T , we can obtain some pseudo labels ŶT with high

confidence. Once we have the pseudo labels, the corresponding pixels can be aligned directly

with S according to the segmentation loss. Thus, we modify the overall loss function used to

learn M (in Equation 5.1) as:

`M = λadv`adv(M(S ′),M(T ))

+ `seg(M(S ′),YS )+ `seg(M(Tst),ŶT ),

(5.3)

where Tst ⊂ T is a subset of the target dataset in which the pixels have the pseudo labels ŶT . It

can be empty at the beginning. When a better segmentation adaptation model M is achieved, we

can use M to predict more high-confident labels for T , causing the size of Tst to grow. The recent

work [11] also use ST for segmentation adaptation. By contrast, ST used in our work is combined
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s
T

(a): step 1 (b): step 2
Tst

Figure 5.2: Self-training process. (a) Step 1: adversarial learning only. This process will leave
some samples in the target domain unaligned with source domain. (b) Step 2: self-training with
adversarial learning. Aided by adversarial learning, self-training achieves a better performance
on sample alignments

with adversarial learning, which can work much better for the segmentation adaptation model.

We use the illustration (shown in Figure 5.2) to explain the principle of this process. When

we learn the segmentation adaptation model for the first time, Tst is empty and the domain gap

between S and T can be reduced with the loss shown in Equation 5.1. This process is shown in

Figure 5.2 (a). Then we pick up the points in the target domain T that have been well aligned

with S to construct the subset Tst . In the second step, we can easily shift Tst to S and keep them

being aligned with the help of the segmentation loss provided by the pseudo labels. This process

is shown in the middle of Figure 5.2 (b). Therefore, the amount of data in T that needs to be

aligned with S is decreased. We can continue to shift the remaining data to S same as step 1, as

shown the right side of Figure 5.2 (b). It worth noting that ST helps adversarial learning process

focus on the rest data that is not fully aligned at each step, since `adv can hardly change the data

from S and Tst that has been aligned well.

5.3.3 Network and Loss Function

In this section, we introduce the network architecture (shown in Figure 5.3), details of

loss functions and the training process (shown in Algorithm 2). The network is mainly composed

with two components – the image translation model and segmentation adaptation model.
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Algorithm 2: Training process of the BDL framework

Input: (S , YS ), (T , Tst = /0), M(0).
Output: M(K)

N (F(K)).

1 for k← 1 to K do
2 train F(k) with Equation 5.2

3 train M(k)
0 with Equation 5.1

4 for i← 1 to N do
5 update Tst with M(k)

i−1

6 train M(k)
i again with Equation 5.3

7 end
8 end

While the translation model is learned, the loss `GAN and loss `recon (shown in Figure 5.3

and Equation 5.2) can be defined as:

`GAN(S ′,T ) = EIT ∼T [DF(IT )]+EIS∼S [1−DF((I′S ))], (5.4)

`recon(S ,F−1(S ′)) = EIS∼S [||F−1((I′S ))− IS ||1], (5.5)

where IS and IT are the input images from source and target dataset. I′S is the translated image

given by F. DF is the discriminator added to reduce the difference between IT and I′S . For

the reconstruction loss, L1 norm is used to keep the cycle consistency between IS and F−1(I′S )

when F−1 is the reverse function of F. Here, we only show two losses for one direction, and

`GAN(S ,T ′), `recon(T ,F(T ′)) can be defined similarly.

As shown in Figure 5.3, the perceptual loss `per connects the translation model and

segmentation adaptation model. When we learn the perceptual loss `per for the translation model,

instead of only keeping the semantic consistency between IS and its translated result I′S , we

add another term weighted by λper recon, to keep the semantic consistency between IS and its

corresponding reconstruction F−1(I′S ). With the new term, the translation model can be more
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stable especially for the reconstruction part. `per is defined as:

`per(M(S),M(S ′)) = λperEIS∼S ||M(IS )−M((I′S ))||1+

λper reconEIS∼S [||M(F−1((I′S )))−M(IS )||1]
(5.6)

Due to the symmetry, `per(M(T ),M(T ′)) (shown in Equation 5.2) can be defined similarly.

When the segmentation adaptation model is trained, it requires the adversarial learning

with the loss `adv and the self-training with the loss `seg (shown in Equation 5.3). For adversarial

learning, we add a discriminator DM to decrease the difference between the source and target

probabilities shown in Figure 5.3. `adv can be defined as:

`adv(M(S ′),M(T )) = EIT ∼T [DM(M(IT ))]

+EIS∼S [1−DM(M(I′S ))].
(5.7)

The segmentation loss `seg uses the cross-entropy loss. For the source image IS , `seg can be

defined as:

`seg(M(S ′),YS ) =−
1

HW ∑
H,W

C

∑
c=1

1[c=yhw
S ] logPhwc

S , (5.8)

where yS is the label map for IS , C is the number of classes, H and W are the height and width of

the output probability map. PS is the source probability of the segmentation adaptation model

which can be defined as PS = M(I′S ). For the target image IT , we need to define how to choose

the pseudo label map ŷT for it. We choose to use a common method we call as ”max probability

threshold(MPT)” to filter the pixels with high prediction confidence in IT . Thus we can define

ŷT as ŷT = argmaxM(IT ) and the mask map for ŷT as mT = 1[argmaxM(IT )>threshold]. Thus the

segmentation loss for IT can be expressed as:

`seg(M(Tst),ŶT ) =−
1

HW ∑
H,W

mhw
T

C

∑
c=1

1[c=yhw
T ] logPhwc

T , (5.9)
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where PT is the target output of M.

We present the training processing in Algorithm 2. The training process consists of two

loops. The outer loop is mainly to learn the translation model and the segmentation adaptation

model through the forward direction and the backward direction. The inner loop is mainly used to

implement the ST process. In the following section, we will introduce how to choose the number

of iteration for learning F, M, and how to estimate the MPT for ST.

5.4 Ablation

To know the effectiveness of bidirectional learning and self-training for improving M, we

conduct some ablation studies. We use GTA5 [111] as the source dataset and Cityscapes [119] as

the target dataset. The translation model is CycleGAN [117] and the segmentation adaptation

model is DeepLab V2 [134] with the backbone ResNet101 [55]. All the following experiments

use the same model, unless it is specified.

Here, we first provide the description of notations used in the following ablation study

and tables. M(0) is the initial model to start the bidirectional learning and is trained only with

source data. M(1) is trained with source and target data with adversarial learning. For M(0)(F(1)),

a translation model F(1) is used to translate the source data and then a segmentation model M(0)

is learned based on the translated source data. M(k)
i (F(k)) for k = 1,2 and i = 0,1,2 refers to the

model of k-th iteration for the outer loop and i-th iteration for the inner loop in Algorithm 2.

5.4.1 Bidirectional Learning

We show the results obtained by the model trained in a bidirectional learning system

without ST. In Table 5.1, M(0) is our baseline model that gives the lowerbound for mIoU. We find

a similar performance between the model M(1) and M(0)(F(1)) both of which achieve more than

7% improvement compared to M(0) and about 1.6% further improvement is given by M(1)(F(1)).
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It means segmentation adaptation model and the translation model can work independently and

when combined together which is basically one iteration of the bidirectional learning they can be

complementary to each other. We further show that through continue training the bidirectional

learning system, in which case M(1)(F(1)) is used to replace M(0) for the backward direction, a

better performance can be given by the new model M(2)
0 (F(2)).

Table 5.1: Performance of bidirectinal learning

GTA5→ Cityscapes
model mIoU
M(0) 33.6
M(1) 40.9

M(0)(F(1)) 41.1
M(1)

0 (F(1)) 42.7
M(2)

0 (F(2)) 43.3

5.4.2 Bidirectional Learning with Self-Training

In this section, we show how the ST can further improve the ability of segmentation

adaption model and in return influence the bidirectional learning process. In Table 5.2, we show

results given by two iterations(k = 1,2) based on Algorithm 2. In Figure 5.4, we show the

segmentation results and the corresponding mask map given by the max probability threshold

(MPT) which is 0.9. In Figure 5.4, the white pixels are the ones with prediction confidence higher

than MPT and the black pixels are the low confident pixels.

target image

M0
(1)(F(1)) M2

(1)(F(1)) M0
(2)(F(2)) M2

(2)(F(2))ground truth

Figure 5.4: Visualization of segmentation results for each step in bidirectional learning
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While k = 1, when model M(1)
0 (F(1)) is updated to M(1)

2 (F(1)) with self-training, the

mIoU can be improved by 4.5%. We can find for each category when the IoU is below 50, a big

improvement can be obtained from M(1)
0 (F(1)) to M(1)

2 (F(1)). It can prove our previous analysis

in section 5.3.2 that with self-training the well aligned data from source and target domain can be

kept and the rest data can be further aligned through the adversarial learning process.

While k = 2, we first replace M(0) with M(1)
2 (F(1)) to start the backward direction. Without

self-training the mIoU is 44.3 which is a larger improvement (44.3% vs. 42.7%) compared to the

results (43.3% vs. 42.7%) shown in Table 5.1. It can further prove our discussion in section 5.4.1

about the important role played by the segmentation adaptation model in the backward direction.

Furthermore, we can find from Table 5.2, although in the beginning of the second iteration the

mIoU drops from 47.2 to 44.3, while the self-training technique is induced, the mIoU can be

promoted to 48.5 which outperforms the results in the first iteration. From the segmentation

results shown in Figure 5.4, we can obverse that the segmentation maps given by M(1)
2 (F(1))

and M(2)
2 (F(2)) are better than those generated by M(1)

0 (F(1)) and M(2)
0 (F(2)) respectively which

further confirms the effectiveness of self-training. By comparing M(2)
2 (F(2)) to M(1)

2 (F(1)), we

can also find some improvements, e.g., the smoother segmentation prediction given by M(2)
2 (F(2))

on the sidewalk and it demonstrates the benefits brought by the proposed bidirectional learning

framework. Besides, as we improve the segmentation performance, the segmentation adaptation

model can give more confident prediction which can be observed by the increasing white area in

the mask map. It gives us the motivation to use the mask map to choose the threshold and number

of iterations for the self-training process in Algorithm 2.
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Figure 5.5: Relationship between pixel ratio and the prediction confidence

5.4.3 Hyper Parameter Learning

We will describe how to choose the threshold to filter out data with high confidence and

the iteration number N in Algorithm 2.

When we choose the threshold, we have to balance between two folds. On one hand, we

desire the predicted labels with high confidence as many as possible (presented as white areas in

Figure 5.4). On the other hand, we want to avoid inducing too much noise caused by the incorrect

prediction, namely, the threshold should be as high as possible. We present the relationship of the

prediction confidence (maximum class probability of per pixel from M) and the ratio between

selected pixels and all pixels (i.e., percentage of all white areas shown in Figure 5.4) on the

left side of Figure 5.5, then show the slope in the right side of Figure 5.5. We can find when

the prediction confidence increases from 0.5 to 0.9, the ratio decreases almost linearly and the

slope stays almost unchanged. But from 0.9 to 0.99, the ratio decreases much faster. Based on

the observation, we choose the inflection point 0.9 as the threshold as the trade-off between the

number and the quality of selected labels.

In order to further prove our choice, in Table 5.3-(a), we show segmentation results using

different thresholds to the self-training of MK
N when K = 1 and N = 1 in Algorithm 2. As another
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Table 5.3: Influence of the threshold and number of iterations (N) on the self-training

GTA5→ Cityscapes
model threshold mIoU

M(1)
1 (F(1)) 0.95 45.7

M(1)
1 (F(1)) 0.9 46.8

M(1)
1 (F(1)) 0.8 46.4

M(1)
1 (F(1)) 0.7 45.9

M(1)
1 (F(1)) − 44.9

(a) Influence of threshold

GTA5→ Cityscapes
model pixel ratio mIoU
M(1)

0 66% 40.9
M(1)

0 (F(1)) 69% 42.7
M(1)

1 (F(1)) 79% 46.8
M(1)

2 (F(1)) 81% 47.2
M(1)

3 (F(1)) 81% 47.1

(b) Influence of N

option, we also consider soft threshold instead of hard one, namely, every pixel being weighted

by its maximum class probability. We show the result on the bottom row. All the results confirm

our analysis. When the threshold is lower than 0.9, the uncorrected prediction becomes the key

issue to influence the performance of ST. While we increase the threshold to 0.95, the ST process

is more sensitive to the number of pixels that can be used. When we use soft threshold, the result

is still worse. It is probably because an amount of labeling noise are involved and the bad impact

cannot be well alleviated by assigning a lower weight to the noise label. Thus, 0.9 seems to be a

good choice for the threshold in the following experiments.

For the iteration number N, we select a proper value according to the predicted labels as

well. When N increases, the segmentation adaptation model becomes much stronger, causing

more labels to be used for ST. Once the pixel ratio for ST stops increasing, it means that the

learning for the segmentation adaptation model is converged and nearly no improved. We

definitely increase the value of K to start another iteration. In Table 5.3-(b), we show some

segmentation results with the theshold 0.9 as we increase the value of N. We can find the mIoU

becomes better with the increasing of N. When N = 2 or 3, the mIoU almost stopped increasing,

and the pixel ratio stay around the same. It may suggest that N = 2 is a good choice, and we use

it in our work.
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5.5 Experiments

In this section, we compare the results obtained between our method and the state-of-the-

art methods.

5.5.1 Network Architecture

In our experiments, we choose to use DeepLab V2 [134] with ResNet101 [55] and FCN-

8s [110] with VGG16 [63] as our segmentation model. They are initialized with the network

pre-trained with ImageNet [4]. The discriminator we choose for segmentation adaptation model is

similar to [135] which has 5 convolution layers with kernel 4×4 with channel numbers {64, 128,

256, 512, 1} and stride of 2. For each convolutional layer except the last one, a leaky ReLU [136]

parameterized by 0.2 is followed. For the image translation model, we follow the architecture of

CycleGAN [117] with 9 blocks and add the segmentation adaptation model as the perceptual loss.

5.5.2 Implementation Details

When training CycleGAN [117], the image is randomly cropped to the size 452×452

and it is trained for 20 epochs. For the first 10 epochs, the learning rate is 0.0002 and decreases

to 0 linearly after 10 epochs. We set λGAN = 1, λrecon = 10 in Equation 5.3 and set λper = 0.1,

λper recon = 10 for the perceptual loss. When training the segmentation adaptation model, images

are resized with the long side to be 1,024 and the ratio is kept. Different parameters are used for

DeepLab V2 [134] and FCN-8s [110]. For DeepLab V2 with ResNet 101, we use SGD as the

optimizer. The initial learning rate is 2.5×10−4 and decreased with ‘poly’ learning rate policy

with power as 0.9. For FCN-8s with VGG16, we use Adam as the optimizer with momentum

as 0.9 and 0.99. The initial learning rate is 1× 10−5 and decreased with ‘step’ learning rate

policy with step size as 5000 and γ = 0.1. For both DeepLab V2 and FCN-8s, we use the

same discriminator that is trained with Adam optimizer with initial learning rate as 1× 10−4
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for DeepLab V2 and 1× 10−6 for FCN-8s. The momentum is set as 0.9 and 0.99. We set

λadv = 0.001 for ResNet101 and 1×10−4 for FCN-8s in Equation 5.1.

5.5.3 Dataset

As we have mentioned before, two synthetic datasets – GTA5 [111] and SYNTHIA [112]

are used as the source dataset and Cityscapes [119] is used as the target dataset. For GTA5

[111], it contains 24,966 images with the resolution of 1914×1052 and we use the 19 common

categories between GTA5 and Cityscapes dataset. For SYNTHIA [112], we use the SYNTHIA-

RAND-CITYSCAPES set which contains 9,400 images with the resolution 1280× 760 and

16 common categories with Cityscapes [119]. For Cityscapes [119], it is splited into training

set, validation set and testing set. The training set contains 2,975 images with the resolution

2048×1024. We use the training set as the target dataset only. Since the ground truth labels for

the testing set are missing, we have to use the validation set which contains 500 images as the

testing set in our experiments.

5.5.4 Comparison with State-of-the-Art

We compare the results between our method and the state-of-the-art method with two

different backbone networks: ResNet101 and VGG16 respectively. We perform the comparison

on two tasks: “GTA5 to Cityscapes” and “SYNTHIA to Cityscapes”. In Table 5.4, we present

the adaptation result on the task “GTA5 to Cityscapes” with ResNet101 and VGG16. We can

observe the role of backbone in all domain adaptation methods, namely ResNet101 achieves a

much better result than VGG16. In [116, 125, 137], they mainly focus on feature-level alignment

with different adversarial loss functions. But working only on the feature level is not enough, even

though the best result [118] among them is still about 5% worse than our results. Cycada [29]

(we run their codes with ResNet101) and DCAN [118] used the translation model followed by the
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segmentation adaptation model to further reduce the visual domain gap, and both achieved very

similar performance. Ours uses similar loss function compared to Cycada [29], but with a new

proposed bidirectional learning method, 6% improvement can be achieved. CBST [11] proposed

a self-training method, and further improved the performance with space prior information. For a

fair comparison, we show the results that only use self-training. With VGG16, we can get 10.4%

improvement. Therefore, we can find without bidirectional learning, the self-training method is

not enough to achieve a good performance.

In Table 5.5, we present the adaptation result on the task “SYNTHIA to Cityscapes” for

both ResNet101 and VGG16. The domain gap between SYNTHIA and Cityscapes is much larger

than that of GTA5 and Cityscapes, and their categories are not fully overlapped. As the baseline

results [125, 137] chosen for ResNet101 only use 13 categories, we also list results for the 13

categories for a fair comparison. We can find from Table 5.5, as the domain gap increases, the

adaptation result for Cityscapes is much worse compared to the result in Table 5.4. For example,

the category like ‘road’, ‘sidewalk’ and ‘car’ are more than 10% worse. And this problem will

have a bad impact on the ST because of the lower prediction confidence. But we can still achieve

at least 4% better than most of other results given by [116, 11, 118, 125].

5.5.5 Performance Gap to Upper-Bound.

We use the target dataset with ground truth labels to train a segmentation model, which

shares the same backbone as we used, to get the upper-bound result. For “GTA5 to Cityscapes”

with 19 categories, the upper bounds are 65.1 and 60.3 for ResNet101 and VGG16 respectively.

For “SYNTHIA to Cityscapes” with 13 categories for ResNet101 and 16 categories for VGG16,

the upper bounds are 71.7 and 59.5. For our method, although the performance gap is 16.6 at

least, it has been reduced significantly compared to other methods. However, it means there is

still big room to improve the performance.
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5.6 Conclusion

In this chapter, we proposed a bidirectional learning method with self-training for segmen-

tation adaptation problem. Extensive experiments show that the adaptation performance can be

promoted when the model is trained in a bidirectional manner. The BDL framework demonstrates

that the image translation model, segmentation model with feature adversarial alignment and

self-training are synergetic. We hope this work can shed lights on future research of domain

adaptation and in the next chapter we will further show the power of adversarial learning and

self-training on multi-source domain adaptation aided by dynamic networks.

Chapter 5 is, in full, based on the material as it appears in the publication of “Bidirectional

Learning for Domain Adaptation of Semantic Segmentation”, Yunsheng Li, Lu Yuan and Nuno

Vasconcelos, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. The dissertation author was the primary investigator and author of this material.
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Chapter 6

Dynamic Transfer for Multi-Source

Domain Adaptation
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6.1 Introduction

The bidirectional learning framework shows tremendous improvement on the domain

adaptation task. Moreover, it reveals the adversarial learning and self-training can boost to each

other. Based on this finding, in this chapter, we further explore a novel domain adaptation problem,

i.e., multi-source domain adaptation and discuss the application of dynamic networks on this new

research subject.

Multi-source domain adaptation addresses the adaptation from multiple source domains

to a target domain. It is challenging because a clear domain discrepancy exists not only between

source and target domains, but also among multiple source domains (see exemplar images in

Figure 6.2). This suggests that successful adaptation requires significant elasticity of the model

to adapt. A nature way to achieve this elasticity is to make model dynamic, i.e., the mapping

implemented by the model should vary with the input sample.

This hypothesis has not been explored by existing work, e.g. [138, 139], which instead

aims to learn a domain agnostic model fθθθc , of static parameters θθθc, that works well for all source

{S1,S2, ...,SN} and target T domains. We refer to this approach as static transfer. As illustrated

in Figure 6.1 (a), the model implements a fixed mapping across all domains. However, learning a

domain agnostic model is difficult, since different domains can give rise to very different image

distributions. When forcing a model to be domain agnostic, it essentially averages the domain

conflict. Thus the performance drops on each source domain. This is validated by our preliminary

study. As shown in Figure 6.2, compared to the optimal model per domain, the static transfer

model consistently degrades in each source domain.

In this chapter, we propose dynamic transfer to address this issue. As shown in Fig-

ure 6.1(b), it contains a parameter predictor that changes the model parameters on a per-sample

basis, i.e., implements mapping fθθθ(xxx). It has the advantage of not requiring the definition of

domains or the collection of domain labels. In fact, it unifies the problems of single-source and
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Figure 6.1: Static Transfer vs. Dynamic Transfer. (a) ‘Static Transfer’ implements domain
adaptation via a static model fθθθc with fixed parameters θθθc. (b) ‘Dynamic Transfer’ ( fθθθ(xxx)) adapts
the model parameters θθθ(xxx) according to samples, which generates a different model per sample.

multi-source domain adaptation. By breaking down source domain barriers, it turns multiple

source domain adaptation into a single-source domain problem. The only difference is the

complexity of this domain.

The key insight is that adapting model according to domains is achieved statistically by

adapting model per sample, since each domain is viewed as a distribution of image samples. The

dynamic transfer learns how to adapt the model’s parameters and fit to the union of source domains.

Thus the alignment between source domains and target domain is significantly simplified, as it is

no longer necessary to pull all source domains together with the target domain. In this case, as

long as the target domain is aligned to any part of the source domains, the model can be easily

adapted to the target samples.
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Figure 6.2: Static Transfer vs. Dynamic Transfer on the performance degradation of
source domains compared to the oracle results. Both transfer models are tested across source
domains.

When compared to the domain adaption literature, dynamic transfer introduces a signif-

icant paradigm shift. In the literature, most works assume the static network of Figure 6.1(a)

and focus on loss functions. The goal is to define losses that somehow “pull all the domains”

together into a shared latent representation. The problem is that the domains are usually very

different at the network input. Hence, the force introduced by the loss at the output, to bring

them together, is counter-balanced by an input force to keep them apart. This usually leads to a

difficult optimization and compromises adaptation performance. The introduction of a dynamic

network, as in Figure 6.1(b), enables a more elastic mapping. In this case, it is not necessary to

pull all domains together. The model adaptation given by the dynamic transfer can be generalized

to target domain easily when the target domain is shifted to the space formed by entire source

domain. In this way, dynamic transfer shifts the focus of the domain adaptation problem from the

design of good loss functions to the design of good network architectures for dynamic transfer.

An immediate difficulty is that the architecture of Figure 6.1(b) can be very hard to train,

104



since the parameter predictor cannot generate all parameters for a large model. The question

is whether it is possible to perform the model adaptation by only modifying a small subset of

parameters on a sample basis. In this chapter, we show that this is indeed possible by the addition

of dynamic residuals to the convolution kernels of a static network. Since the residual blocks

can be much smaller than the static ones, this has both very low additional computational cost

(less than 0.1%) to aggregate dynamic residuals with static kernel and little tendency to overfit.

However, it is shown to significantly enhance the domain adaptation performance. Experimental

results show that the proposed dynamic residual transfer (DRT) can model domain variation

in source domains (see Figure 6.2) and outperform its static counterpart (MCD [140] method)

by a large margin (11.2% on DomainNet). Compared to state-of-the-art multi-source domain

adaptation methods [139], it achieves a sizeable gain (3.9%) with a much simpler loss function

and training algorithm.

6.2 Related Work

6.2.1 Domain Adaptation

Domain adaptation with purely single source domain approaches adapt a model from

a source to a target domain. A common method is to minimize the distance between the two

domains. While some methods [141, 24] minimize distance functions defined in terms of first

and second order data statistics, others learn a latent space shared across domains by adversarial

learning [9, 140, 142, 143]. Although these methods are effective for single-source domain

distributions and relatively simple datasets (such as VisDA [144] or Office-31 [121]), they are

not competitive for the multi-source domain adaptation problem, due to a more complex data

distribution.
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6.2.2 Multi-Source Domain Adaptation

Multi-source domain adaptation considers the domain adaptation problem when the source

contains domains with a variety of styles. [145] pioneered this problem by adaptively picking

the best among a set of hypothesis learned for different source domains. [146] derived an upper

bound on the classification error achievable in the target domain, based on the H ∆H divergence.

Several methods have been proposed after the introduction of deep learning. Some of these align

domains pair-wise. [147] uses a discriminator to align each source domain with the target domain,

while [138] matches moments across all pairs of source and target domains. These methods learn

one classifier per domain and use their weighted combination to predict the class of target samples.

[148] uses mutual learning techniques to align feature distributions among pairs of source and

target domains. Other methods focus on the joint alignment of the feature distributions of all

domains. [139] models interactions between domains with a knowledge graph. Target sample

predictions are based on both their features and relationship to different domains. [149] proposes

a meta-learning technique to search the best initial conditions for multi-source domain adaptation.

[150] uses an auxiliary network to predict the transferability of each source sample and use it as a

weight to learn a domain discriminator. All these works use a static transfer model. In this work,

we propose that the model should instead be dynamic, i.e., a function that changes with samples,

and show that this can significantly enhance multi-source domain adaptation.

6.2.3 Dynamic Networks

Dynamic Networks have architectures based on blocks [151, 152, 153, 154] or channels

[155, 156, 157, 90] that change depending on the input sample. [151, 152] proposed an input

dependent block path that decides whether a network block should be kept or dropped. [153, 154]

widen the network by adding new parallel blocks and train an attention module to choose the

best combination of features dynamically. [155, 156, 157, 90] rely on feature based attention
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modules that reweigh features depending on the input example. [158] unified the two approaches

by combining a paralleled dynamic block and a channel attention module. In this work, we

propose a dynamic convolution residual branch, which adds an input-dependent residual matrix

to a static kernel, to implement dynamic multi-source domain adaptation.

6.3 Method

In this section, we introduce dynamic transfer for multi-source domain adaptation, in

which the model is adaptive to the domain implicitly, but adaptive to the input explicitly. It not

only has better performance, but also turns multi-source domains into a single-source domain.

6.3.1 Multi-Source Domain Adaptation

Multi-source domain adaptation (MSDA) aims to transfer a model learned on a source

data distribution drawn from several domains S = {S1, ...,SN} to a target domain T . While

the following ideas can be applied to various tasks, we consider a classification model fθθθ, of

parameters θθθ, which maps images xxx ∈ X to class predictions y ∈ Y = {1, . . . ,C}, where C is

the number of classes and X is some image space. The goal is to adapt the parameters θθθ of a

model learned from a dataset DS = {(xxxS
i ,yi)}

NS
i=1 of examples from the source distribution S

(yi is the one-hot encoding of the label of example xxxS
i ) to a dataset DT = {xxxT

i }
NT
i=1 of unlabeled

examples from the target distribution. Note that, in the most general formulation of the problem,

the domain of origin of each source example, (xxxS
i ,yi) is unknown. This is ignored by many

approaches e.g. [138, 148], that assume a source dataset DS = {(xxxS
i ,yi,zi)}

NS
i=1 contains domain

labels zi ∈ {1, . . . ,N} and aligning pairs of domains. We refer to this a domain supervised

multi-source domain adaptation.
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6.3.2 Static vs. Dynamic Transfer

The model fθθθ is denoted static or dynamic depending on whether the model parameters

θθθ vary with samples xxx. Static models have constant parameters θθθ = θθθc, while dynamic models

have parameters θθθ = θθθ(xxx) that depend on xxx. In the case of deep networks, this implies that layer

transfer functions depend on the input xxx. Figure 6.1 illustrates the static transfer and dynamic

transfer model built for multi-source domain adaptation.

Static Transfer. Static transfer, shown on Figure 6.1(a), consists of learning of a single model

fθθθc that is applied to all examples from source and target domains. The model might, for instance,

map images into a latent space where all the distributions are aligned. Since the big variation

among the input samples, this is a difficult problem and the model fθθθc usually has sub-optimal

performance on all domains.

Dynamic Transfer. In this case the model parameters are a function of the input example xxx

directly, i.e., the model has the form fθθθ(xxx) where xxx ∈ S1
⋃
· · ·

⋃
SN

⋃
T . This is illustrated in

Figure 6.1(b), where there exists a model per sample. Compared to the static transfer, dynamic

transfer varies the model according to sample explicitly and chooses domains implicitly, relying

on the distribution of samples xxx. Dynamic transfer learns to adapt the parameters to fit the model

to the distribution formed by the union of source domains. The target domain is not required to

be aligned with any specific domains Si and there are no rigid domain boundaries. The model

parameters θθθ(xxx) can be similar for examples from different domains and different for examples

from the same domain.

The key insight is that adapting model per domain is achieved statistically by adapting

model per sample, as each domain can be considered as a distribution of image samples. The

dynamic transfer learns to adapt model parameters over samples in the union of all source domains.

This simplifies the alignment between source and target domains, as it is not necessary to pull all

source domains and target domain together. As long as the target domain is aligned with any part

of the union of source domains, the model can be easily adapted to the target samples.
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Dynamic transfer has two advantages over static transfer. First, it turns multi-source

domains into a single-source domain, voiding the need for domain labels. Second, it simplifies

learning, since domain labels can be arbitrary. In practice, any “domain” can contain a mixture

of unlabeled sub-domains and some of these can be shared by multiple “domains”. Due to this,

explicit assignment of data to domains can be difficult, and models learned over single domain

can loose access to shared sub-domain data.

6.3.3 Dynamic Residual Transfer

The main difficulty of dynamic transfer is the model fθθθ(xxx) can be difficult to learn. Given

the large number of parameters of modern networks, it is impossible to simply predict all

parameter values at inference time. The key is to restrict the model’s dependence on input xxx

to a small number of parameters. To guarantee this, we propose a model composed by a static

network and dynamic residual blocks

fθθθ(xxx) = f0 +∆ fθθθ(xxx), (6.1)

where f0 represents the static component and ∆ fθθθ(xxx) the dynamic residual that depends on the

input sample xxx. As usual, the residual is implemented by adding residual blocks to the various

network layers. Since the static component f0 is shared by all samples, static transfer is a special

case of the proposed approach, where ∆ fθθθ(xxx) = 0. This approach is denoted as dynamic residual

transfer (DRT).

To implement DRT in convolution neural networks (CNNs), we represent a k× k con-

volution kernel as a Cout ×Cink2 weight matrix, where Cin and Cout are the number of input

and output channels. We ignore bias terms in this discussion for the sake of brevity. DRT is

implemented by applying Equation 6.1 to each convolution kernel in a CNN, i.e., defining the

109



network convolutions as

WWW (xxx) =WWW 0 +∆WWW (xxx), (6.2)

where WWW 0 is a static convolution kernel matrix, and ∆WWW (xxx) a dynamic residual matrix. We next

discuss several possibilities for the latter.

Channel Attention: in this case, the residual only rescales the output channels of WWW 0.

This is implemented as

∆WWW (xxx) = ΛΛΛ(xxx)WWW 0, (6.3)

where ΛΛΛ(xxx) is a diagonal Cout×Cout matrix, whose entries are functions of xxx. This can be seen as

a dynamic feature-based attention mechanism.

Subspace Routing: as shown in Figure 6.3, the dynamic residual is a linear combination

of K static matrices ΦΦΦi

∆WWW (xxx) =
K

∑
i=1

πi(xxx)ΦΦΦi, (6.4)

whose weights depend on xxx. The matrices ΦΦΦi can be seen as a basis for CNN weight space,

although they are not necessarily linearly independent. And the dynamic coefficients πi(xxx) can be

seen as the projections of the residual matrix in the corresponding weight subspaces. By choosing

these projections in an input dependent manner, the network chooses different feature subspaces

to route different xxx.

To reduce the number of parameters and computation, the matrices can be further simpli-

fied into 1×1 convolution kernels and applied to the narrowest layer of the bottleneck architecture

in ResNet [55]. In this case, only Cin rows of ΦΦΦi are non-zero.
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Combination: the two mechanisms are combined into

∆WWW (xxx) = ΛΛΛ(xxx)WWW 0 +
K

∑
i=1

πi(xxx)ΦΦΦi. (6.5)

Similar to squeeze-and-excitation block [96], the dynamic coefficients ΛΛΛ(xxx) and {πi(xxx)} are

implemented by a light-weight attention branch that includes average pooling and two fully

connected layers (See Figure 6.3). A sigmoid is used to normalize ΛΛΛ(xxx) and a softmax to

normalize {πi(xxx)}. As explained by [154, 153], the extra FLOPs caused by dynamic coefficient

generation and residual aggregation of dynamic transfer is negligible (less than 0.1% in our

implementation) compared to the static model.

6.3.4 Learning

As usual for domain adaptation problems, the DRT network is learned with a combination

of two losses,

L = Lce +λLd, (6.6)
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where λ is a hyperparameter that controls the trade-off between the loss components. The first

loss

Lce =
1

NS

NS

∑
i=1

yT
i log f

θθθ(xxxS
i )
(xxxS

i ), (6.7)

is the cross entropy loss over the source data DS . The second is a domain alignment loss that

encourages the minimization of the distance between source and target domains

Ld = H
(

fθθθ(DS )(D
S ), f

θθθ(DT )(D
T )
)
, (6.8)

where DT is the target data and H a measure of discrepancy between feature distributions of

the source and target domains. H can be any distance function previously proposed for domain

adaptation, e.g. the MMD [22] or adversarial learning [9]. Note that the two losses above operate

on the entire source dataset DS , i.e., there is no need for domain labels and not even a difference

between the single domain and multiple domains adaptation problems. For the domain alignment

losses commonly used in multi-source domain adaptation, Equation 6.8 also does require the

evaluation of pairwise distances between all source domains and target domain, which is not

necessary in dynamic transfer.

6.4 Experiments

In this section, adaptation performance of DRT is evaluated on the tasks of multi-source

domain adaptation.

6.4.1 Datasets and Experimental Settings

Following [138], we consider two datasets, Digit-five and DomainNet [138], which

contain images from several domains but shared classes. Each domain is alternatively used as the
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target domain and the remaining ones as the source domain. All experiments are repeated with 5

times and mean and variance are reported.

Digit-five. Digit-five contains digit images from 5 domains: MNIST [114] (mt), Synthetic

[25] (sy), MNIST-M [25] (mm), SVHN [62] (sv) and USPS [25] (up). These domains contribute

25,000 images for training and 9000 for validation, with the exception of USPS which uses

29752 and 1860, respectively. Since these datasets are relatively small, LeNet [114] is used as the

backbone model. A dynamic residual is added on each convolutional layer. The model is trained

from scratch with initial learning rate 0.002 and SGD optimizer. The learning rate is decayed by

0.1 every 100 epochs and decreased to 2e−5 in 300 epochs.

DomainNet. DomainNet [138] is a dataset with 0.6 million images of 345 classes from 6

domains of different image styles: clipart (clp), infograph (inf), painting (pnt), quickdraw (qdr),

real (rel) and sketch (skt). Results are obtained with ImageNet [3] pretrained ResNet-101 [55].

The dynamic residual is only added on the 3×3 kernel of each bottleneck block. The networks

are trained with SGD for 15 epochs with initial learning rate of 0.001 and batch size as 64. The

learning rate is decayed by 0.1 every 5 epochs.

6.4.2 Ablation Study

An ablation study was performed on DomainNet to evaluate the three key components

of DRT: (a) the three implementations of the dynamic transfer, (b) the number of basis used for

subspace routing (Equation 6.4), and (c) different alignment losses Ld . The default model uses

subspace routing with K = 4 and is trained with the MCD [140] loss.

DRT Implementations. Table 6.1 shows that all implementations of DRT have signifi-

cantly better adaptation performance than the static model. The average gains are of 9.3% for

channel attention, 10.8% for combined and 11.2% for subspace routing. The weaker performance

of channel attention suggests that it is not enough to re-scale the features of the static model.

Routing the input xxx through different subspaces appears to be more effective, although the differ-
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Table 6.1: Comparison of different implementations for dynamic residual transfer: Channel
Attention (Equation 6.3), Subspace Routing (Equation 6.4) and Combination (Equation 6.5).

Models
inf,pnt,qdr

rel,skt→ clp
clp,pnt,qdr

rel,skt→ inf
clp,inf,qdr

rel,skt→ pnt
clp,inf,pnt

rel,skt→ qdr
clp,inf,pnt

qdr,skt→ rel
clp,inf,pnt

qdr,rel→ skt Avg

static 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61
Channel Attention 67.8±0.46 30.9±0.85 57.1±0.36 6.9±1.12 66.7±0.42 57.4±0.33 47.8±0.59
Subspace Routing 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7±0.46

Combination 69.1±0.35 31.6±0.61 58.2±0.25 11.9±0.96 67.8±0.36 58.8±0.44 49.6±0.50

ences are not staggering. While combining the two approaches has no additional overall benefit,

the combination was beneficial for specific transfer problems. When ‘infograph’ and ‘quickdraw’

were used as target domains, the combination model outperformed subspace routing. Since these

are the hardest transfer problems, this suggests that the enhanced dynamics of the combined im-

plementation can be beneficial as the domain gap increases. It is because the enhanced dynamics

make the model more elastic. Therefore, it is more likely to adapt models to target domain with

larger gap. On the other hand, for the problems of smaller domain gap, stronger dynamics can

cause the model to overfit to the source domain, as is the case for the remaining target domains.

More experiments on datasets with more domains will likely be needed to resolve this question.

In any case, subspace routing and the combination model have similar performance.

Number of Residual Basis. The impact of the number of basis K used in Equation 6.4 for

subspace routing is ablated. For different values of K ∈ {2,4,6,8}, DRT achieves the adaptation

performance by {48.8,49.7,49.5,49.3}, all of which improve the adaptation performance of

static transfer (38.5%) by a large margin (more than 10%). Best performance is achieved with

K = 4, although the results are not highly sensitive to this parameter.

Alignment Loss Function. Three different domain alignment losses with different forms

of H (see Equation 6.8) were compared: ADDA [9], MCD [140] and M3SDA [138]. They are

representative of previously proposed losses for reducing single-source domain shift at the domain

level and class level, and multi-source domain shift, respectively.

Table 6.2 shows that dynamic residual transfer (DRT) outperforms static transfer for all
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Table 6.2: Static transfer vs. Dynamic transfer evaluated on DomainNet with different
domain alignment loss functions (‘Src Only’ refers to ‘Source Only’).

Ld
inf,pnt,qdr

rel,skt→ clp
clp,pnt,qdr

rel,skt→ inf
clp,inf,qdr

rel,skt→ pnt
clp,inf,pnt

rel,skt→ qdr
clp,inf,pnt

qdr,skt→ rel
clp,inf,pnt

qdr,rel→ skt Avg

Src Only 52.1±0.51 23.4±0.28 47.7±0.96 13.0±0.72 60.7±0.23 46.5±0.56 40.6±0.56
Src Only + DRT 63.1±0.62 25.9±0.84 48.4±1.02 6.4±0.98 66.4±0.54 46.8±0.44 42.8±0.74
ADDA [9] 47.5±0.76 11.4±0.67 36.7±0.53 14.7±0.50 49.1±0.82 33.5±0.49 32.2±0.63
ADDA+DRT 63.6±0.52 27.6±0.43 52.3±0.68 8.2±1.44 67.9±0.42 49.6±0.33 44.9±0.64
MCD [140] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61
MCD+DRT 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7±0.46
M3SDA-β [138] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64
M3SDA-β+DRT 67.4±0.52 31.3±0.83 56.5±0.67 13.6±0.34 66.9±0.42 56.8±0.49 48.8±0.55

loss functions, by a large margin (12.7%, 11.2%, 6.2% respectively). Its improved performance is

in part, due to the fact that DRT takes a much larger advantage of the domain alignment losses. It

confirms our claim that DRT simplifies the domain alignment by unifying all source domains

into a single domain. Thus the target samples are more likely to be aligned with the union of

source domains and the same alignment loss will give more benefits to the dynamic model than

the static one. However, the gains over the ‘source only’ case, where no alignment loss Ld is used

in Equation 6.6, is only 2%. It means alignment loss is very critical for dynamic transfer. Without

alignment loss, even though the model can adapt to the entire source domain very well, it can

hardly adapt to target samples due to a large domain gap.

These conclusions also apply to the individual transfer problems, except when ‘quickdraw’

is the target domain. In this case, DRT is only effective with the M3SDA-β [138] loss. It is

because when ‘quickdraw’ is the target domain, the domain discrepancy is much larger and makes

it harder for DRT to adapt model to this domain. Thus, M3SDA-β [138] which proposed a more

powerful alignment loss, can shift ‘quickdraw’ closer to source domains and works better with

DRT. However, the strong alignment loss will cause ‘over-alignment’ for the domains e.g. ‘clipart’

that have much smaller gap. The ‘over-alignment’ reduces the adaptability of the dynamic model,

which causes performance degradation compared to that given by simpler alignment losses e.g.

MCD.
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Table 6.3: Comparison between dynamic residual transfer (DRT) with the state-of-the-art
models on Digit-five dataset. The source domains and target domain are shown at the top of
each column.

Models
mm,up,sv
sy→ mt

mt,up,sv
sy→ mm

mt,mm,sv
sy→ up

mt,mm,up
sy→ sv

mt,mm,up
sv→ sy Avg

Source Only 63.37±0.74 90.50±0.83 88.71±0.89 63.54±0.93 82.44±0.65 77.71±0.81
DANN [159] 71.30±0.56 97.60±0.75 92.33±0.85 63.48±0.79 85.34±0.84 82.01±0.76

ADDA [9] 71.57±0.52 97.89±0.84 92.83±0.74 75.48±0.48 86.45±0.62 84.84±0.64
MCD [140] 72.50±0.67 96.21±0.81 95.33±0.74 78.89±0.78 87.47±0.65 86.10±0.73
DCTN [147] 70.53±1.24 96.23±0.82 92.81±0.27 77.61±0.41 86.77±0.78 84.79±0.72

M3SDA-β [138] 72.82±1.13 98.43±0.68 96.14±0.81 81.32±0.86 89.58±0.56 87.65±0.75
CMSS [150] 75.3±0.57 99.0±0.08 97.7±0.13 88.4±0.54 93.7±0.21 90.8±0.31

DRT 81.03±0.34 99.31±0.05 98.40±0.12 86.67±0.38 93.89±0.34 91.86±0.25

6.4.3 Comparisons to the State-of-the-Art

DRT was compared to the results in the literature for Digit Five and DomainNet dataset.

In these experiments, DRT is implemented with subspace routing (4 basis), using the MCD loss

[140], and λ = 50 in Equation 6.6.

Evaluation on Digit Five Dataset. Table 6.3 shows a comparison to 6 baselines on Digit

Five. DRT outperforms all other methods, beating the state of the art (CMSS) by more than

1%, despite a much simpler implementation. Comparing performance in individual adaptation

problems, DRT has the best performance on four of the five problems considered. The only

exception occurs when SVHN is the target domain, where DRT achieves the second best perfor-

mance of all methods. Beyond this, the smallest gains occur when MNIST is the target domain.

This was expected, since MNIST is easier to transfer to and somewhat saturated. In general, the

gains of DRT increase with domain discrepancy, reaching 5.7% for the hardest transfer problem

(MNIST-M as target domain).

Evaluation on DomainNet Dataset. For DomainNet [138], a ResNet-101 [55] was used

as backbone and DRT was compared to 11 baselines. Among these, ADDA [9], DANN [159]

and MCD [140] were developed for traditional unsupervised domain adaptation (UDA), where a

single-source domain is assumed. The remaining are multi-source domain adaptation methods
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Table 6.4: Comparison between dynamic residual transfer (DRT) with the state-of-the-art
models on DomainNet. (‘DRT+ST’ represents the combination between dynamic residual
transfer and self-training for domain adaptation)

Models
inf,pnt,qdr

rel,skt→ clp
clp,pnt,qdr

rel,skt→ inf
clp,inf,qdr

rel,skt→ pnt
clp,inf,pnt

rel,skt→ qdr
clp,inf,pnt

qdr,skt→ rel
clp,inf,pnt

qdr,rel→ skt Avg

Source Only 52.1±0.51 23.4±0.28 47.7±0.96 13.0±0.72 60.7±0.23 46.5±0.56 40.6±0.56
ADDA [9] 47.5±0.76 11.4±0.67 36.7±0.53 14.7±0.50 49.1±0.82 33.5±0.49 32.2±0.63
MCD [140] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61

DANN [159] 60.6±0.42 25.8±0.43 50.4±0.51 7.7±0.68 62.0±0.66 51.7±0.19 43.0±0.46
DCTN [147] 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.2±0.57

M3SDA-β [138] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64
ML-MSDA [148] 61.4±0.79 26.2±0.41 51.9±0.20 19.1±0.31 57.0±1.04 50.3±0.67 44.3±0.24
Meta-MCD [149] 62.8±0.22 21.4±0.07 50.5±0.08 15.5±0.22 64.6±0.16 50.4±0.12 44.2±0.07
LtC-MSDA [139] 63.1±0.5 28.7±0.7 56.1±0.5 16.3±0.5 66.1±0.6 53.8±0.6 47.4±0.6

CMSS [150] 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5±0.24
DRT 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7±0.46

DRT+ST 71.0±0.21 31.6±0.44 61.0±0.32 12.3±0.38 71.4±0.23 60.7±0.31 51.3±0.32

that require domain labels.

Table 6.4 shows that DRT improves on the state-of-the-art method- CMSS by more than

3% (49.7% vs 46.5%). When DRT is combined with a naive self-training method (DRT+ST), it

achieves gains of 3.9% over LtC-MSDA [139], a methods that generates pseudo-labels for the

target samples (during self-training, pseudo-labels for target samples with confidence greater than

0.8 are used to train DRT again with source samples). Compared to the adaptation methods that

use no domain labels (single-source), DRT improves the best average adaptation results (DANN)

by 6.7% (49.7% vs. 43%).

Regarding individual adaptation problems, DRT achieves the best performance for all

target domains other than ‘quickdraw’. This can be explained by the large domain gap between

‘quickdraw’ and the other domains, and the fact that the MCD loss does not fare well in this

problem. Better results would likely be possible by using the M3SDA loss, as was the case in

Table 6.2.
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Table 6.5: Single source domain adaptation performance on DomainNet. Each column,
shows the average/best classification accuracy for transfer from all source to the specified target
domain.

Models
inf,pnt,qdr

rel,skt→ clp
clp,pnt,qdr

rel,skt→ inf
clp,inf,qdr

rel,skt→ pnt
clp,inf,pnt

rel,skt→ qdr
clp,inf,pnt

qdr,skt→ rel
clp,inf,pnt

qdr,rel→ skt Avg

ADDA [9] 28.2/39.5 9.3/14.5 20.1/29.1 8.4/14.9 31.1/41.9 21.7/30.7 19.8/28.4
MCD [140] 31.4/42.6 13.1/19.6 24.9/42.6 2.2/3.8 35.7/50.5 23.9/33.8 21.9/32.2

DRT 41.9/56.2 19.6/26.6 35.3/53.4 8.0/12.2 44.5/55.5 35.0/44.8 30.7/41.5

6.4.4 Single-Source to Single-Target Adaptation

The performance of DRT on the traditional domain adaptation problem (single-source

domain) was also evaluated on DomainNet [138]. In this case, for each target domain, adaptation

was performed from each of the other five domains (sources). The average and best performance

among these adaptations is shown in Table 6.5, for each target domain. DRT again significantly

outperforms the previous domain adaptation methods. For example, when ‘clipart’ is the target

domain, its average adaptation performance is 10.5% better than that of the MCD method. On

average, over all pairs of source and target domains, it outperforms MCD by more than 8%. These

results show that, for problems with hundreds of classes, dynamic residual transfer can lead to

very large adaptation gains even in the traditional domain adaptation setting. This confirms the

claim that even these problems tend to have many sub-domains. When this is the case, the ability

of dynamic residual transfer to adapt the model on a per-example basis can be a significant asset.

Finally, comparing the results of Tables 6.4 and 6.5 shows that DRT trained on multi-

source domains performs 8.2% better (49.7% vs. 41.5%) than the average of the best single-source

domain transfers. This improvement is about 2% better than that given by MCD (8.2% vs. 6.3%).

This shows that considering a variety of source domains improves domain adaptation performance,

especially when dynamic residual transfer is used. A main advantage of DRT is that it can be

applied to all settings, since it does not require domain labels. Its universal nature makes it

irrelevant if the problem is single-source or multi-source. It suffices to collect training data and

DRT will automatically figure out how to adapt the network to all settings. There is no need to
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even define “source domains.”

6.4.5 Visualization

To obtain further insight about dynamic residual transfer (DRT), we visualized the dynamic

coefficients of Equation 6.4 with t-SNE [160]. For each sample, we created a vector Π =

{πl
i(xxx)}, i ∈ {1,2, ...K}, l ∈ {1,2, ...L} by concatenating the dynamic coefficients from the L

network layers. The vectors Π from different target domains are visualized in Figure 6.4. A more

detailed visualization is given in Figure 6.5, by splitting Π into Πlow and Πhigh, which include the

coefficients from lower and higher network layers. For brevity, Figure 6.5, only visualizes the

model trained with ‘clipart’ and ‘real’ as target domain and the other domains show similar trend.

Figure 6.4 first shows that domain information is embedded into the dynamic coefficients

{πl
i(xxx)}. This can be observed by samples from same domains tend to group in identifiable

clusters, which confirms our claim that adapting model across domains can be achieved through

adapting model to samples. Secondly, the distance among clusters reflects domain shifts that

explain how adaptation performance varies with target domain. For example, the fact that

the dynamic coefficients of ‘quickdraw’ are always quite different from others, explains why

adaptation performance is weaker when this is the target domain. Thus for ‘quickdraw’, either a

more powerful alignment loss is needed to shift the samples close enough to the source domains

to enable the dynamic model adapted to this domain or a more complex dynamic model e.g.

combination of ‘channel attention’ and ‘subspace routing’ is required. Figure 6.5 further shows

that the dynamic coefficients from lower layers (Figure 6.5(a)) form much more clear domain

clusters than the coefficients of the higher layers (Figure 6.5(b)). This shows that the network

features become more domain agnostic in the higher layers, confirming the effectiveness of DRT

to reduce domain discrepancies.
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Figure 6.4: The t-SNE visualization of dynamic coefficients Π = {πl
i(xxx)} when DRT is

trained with target domain- ‘clipart’, ‘infograph’, ‘painting’, ‘quickdraw’, ‘real’ and ‘sketch’.
(Best view in color)
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Figure 6.5: The t-SNE visualization of first half (Πlow) and second half (Πhigh) dynamic
coefficients when DRT is trained with target domain- ‘clpart’ and ‘real’. (Best view in color)

6.5 Conclusion

In this chapter, we discussed a novel domain adaptation task, i.e., multi-source domain

adaptation. We introduced dynamic transfer for multi-source domain adaptation, in which the

model parameters are not static but adaptive to input samples. Dynamic transfer mitigates

conflicts across domains and unifies multiple source domains into a single source domain, thereby

simplifying the alignment between source and target domains. Experimental results show that
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aided by adversarial training, dynamic transfer achieves a better adaptation performance compared

to the state-of-the-art methods for multi-source domain adaptation and the performance can be

further promoted with self-training. We hope this work can give a new understanding about the

role played by dynamic networks on multi-source domain adaptation.

Chapter 6 is, in full, based on the material as it appears in the publication of “Dynamic

Transfer for Multi-Source Domain Adaptation”, Yunsheng Li, Lu Yuan, Yinpeng Chen, Pei Wang

and Nuno Vasconcelos, in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2021. The dissertation author was the primary investigator and author of

this material.
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Chapter 7

Discussion and Conclusion
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In the thesis, we studied a series of computer vision tasks under two types of resource

restriction, i.e., the limitation of computing power for machines and the lack of data annotation.

In order to overcome these issues, we mainly focused on the design of efficient neural networks

and the development of novel adaptive frameworks via exploring variants of the dynamic network

based on its two key features, i.e., efficiency and adaptiveness.

First, we discussed the design of dynamic networks for efficient networks. We start by

introducing a domain-wise dynamic adapter- CovNorm that is associated with each convolution

layer to convert the convolution operation from static to dynamic. We found, by only replacing the

dynamic adapter according to each dataset, the whole framework can be fitted to different datasets

efficiently by consuming tiny amount of extra computation and parameters. Then we extended the

proposed CovNorm to the large scale image recognition task. By changing CovNorm from the

manner of domain-wise to sample-wise via inducing some sample-dependent parameters, a new

method, i.e., dynamic convolution decomposition (DCD) was derived. It follows the architecture

of CovNorm but making the mini-adaptation layer dynamic to samples. With DCD, samples no

longer share the same feature extractor as well as the classifier but are able to choose the most

appropriate network parameters. Therefore the models’ representation capacity is significantly

improved, especially for the ones under low FLOPs. Extensive experiments on large scale image

recognition tasks demonstrated the effectiveness of the proposed DCD and further confirmed the

power of dynamic blocks built on the convolution layers. In the last, we investigated the network

design with extremely low FLOPs by reducing the availability of computational resources to a

new regime of 4-20 MFLOPs and proposed a new framework, i.e., MicroNet. We first redesigned

the convolution layer by proposing an efficient Micro-Factorized convolution. Compared to

the Micro-Factorized convolution, the dynamic blocks, i.e., CovNorm and DCD that have been

applied on convolution layers are no longer efficient. Therefore, we proposed a novel dynamic

block- Dynamic Shift-Max, which is an activation function to improve the non-linearity of the

network. By combining Micro-Factorized convolution and Dynamic Shift-Max, MicroNet shows

124



huge success from the view of accuracy, FLOPs and latency on various image recognition tasks.

Second, we studied the domain adaptation tasks and further discussed the role played

by dynamic networks in this new scenario. We first worked on the domain adaptive semantic

segmentation problem and proposed a novel framework, i.e., Bidirection Learning (BDL). BDL

achieved a good performance on the target dataset even though no annotation is available and it

revealed several key techniques, i.e., adversarial learning and self-training, that can be leveraged

on the path to the success of domain adaptation. Then based on BDL, we moved forward to a

novel multi-source domain adaptation problem, where the source domain is a mixture of several

sub-domains. In order to align the domain discrepancy existing both among source domains

and between source domains and the target domain, we modified DCD and proposed a novel

dynamic module, i.e., Dynamic Residual Transfer (DRT). Experiments showed that DRT was a

very generic method that can be added to diverse domain alignment frameworks and outperformed

its corresponding baseline by a large margin.

In summary, the success of deep learning has enabled an excellent performance on

extensive computer vision tasks and the performance is being promoted as long as enough

computational resources and data annotation are assumed. However, this hypothesis is not always

true due to the shortage of resources is a common issue and this resource shortage has formed

a big challenge to prevent the real application of deep learning. In the thesis, we worked on

this challenge and tried to overcome it via inducing several novel designs of dynamic networks

from the forms of domain-wise to sample-wise and from acting as a convolution operator to an

activation function. We demonstrated, through a series of experiments, the dynamic network

can boost the neural network’s representation capacity efficiently even though it is trained with

limited annotated data. We hope our work can motivate people to further explore the power of the

dynamic network and scale it to more vision tasks, e.g., 3D or temporal-spatial computer vision,

or even beyond the field of computer vision, e.g., natural language processing.
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