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Short-term Performance Limits of MIMO

Systems with Side Information at the Transmitter
Liangbin Li, Hamid Jafarkhani

Center for Pervasive Communications & Computing, University of California, Irvine

Abstract

The fundamental performance limits of space-time block code (STBC) designs when perfect channel

information is available at the transmitter (CSIT) are studied in this report. With CSIT, the transmitter

can perform various techniques such as rate adaption, power allocation, or beamforming. Previously, the

exploration of these fundamental results assumed long-term constraints, for example, channel codes can

have infinite decoding delay, and power or rate is normalized over infinite channel-uses. With long-term

constraints, the transmitter can operate at the rate lower than the instantaneous mutual information and

error-free transmission can be supported. In this report, we focus on the performance limits of short-term

behavior for STBC systems. We assume that the system has block power constraint, block rate constraint,

and finite decoding delay. With these constraints, although the transmitter can perform rate adaption, power

control, or beamforming, we show that decoding-error is unavoidable. In the high SNR regime, the diversity

gain is upperbounded by the product of the number of transmit antennas, receive antennas, and independent

fading block channels that messages spread over. In other words, fading cannot be completely combatted

with short-term constraints. The proof is based on a sphere-packing argument.

I. INTRODUCTION

There are much interest in the research of side information at the transmitter for multi-input multi-

output (MIMO) communication systems in fading channels. Various techniques have been proposed to

improve system performance using channel information at the transmitter (CSIT): e.g., beamforming and

precoder designs, power allocation and rate adaption methods. The fundemental performance limits of these

techniques have been studied extensively. In terms of decoding error probability, the performance limits can

be catergorized as:

1) Full spatial-and-temproal diversity: The receiver observes decoding errors. The error decays as a

polynomial function of the signal-to-noise ratio (SNR) in the high SNR region. The exponent is
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defined as the diversity gain, which is limited by the product of the number of transmit antennas,

receive antennas, and independent fading block channels.

2) Infinite-diversity: The receiver observes decoding errors. The error decays exponentially with SNR,

like the decoding error in an additive white Gaussian noise (AWGN) channel. The diversity gain is

equal to infinite.

3) Error-free transmission: There is no decoding error at the receiver.

Different system constraints result in different performance limits. One of the constraints that will affect the

performance limit is the decoding delay, which is defined as the number of channel-uses that the receiver can

wait before decoding messages. In other words, it is the number of channel-uses where each information bit

spreads. Regarding to decoding delay, there are long-term power and rate constraints as well as short-term

power and rate constraints.

Long-term constraints are determined by averaging over all the channel states. A system employing rate

adaption with long-term rate constraint, fixed power, and finite decoding delay, can achieve infinite diversity

in fading channels [1]. The long-term rate constraint can be written as
∫

R(h)f(h)dh ≤ R,

where the instantaneous transmission rate R(h) depends on the equivalent channel vector h, and f(h) and R

denote the probability density function (PDF) of h and average transmission rate, respectively. When power

allocation with long-term constraint is used for a system with infinite decoding delay, error-free transmission

can be achieved for fixed rate. The notion of delay-limited capacity is defined as the transmission rate that the

system can reliablly support for all channel realizations under long-term power allocation at the transmitter

[2]. The long-term power constraint can be written as
∫

P (h)f(h)dh ≤ P,

where the transmit power P (h) is a function of the equivalent channel vector h, and P denotes the average

power. It is shown that for single-input single-output (SISO) systems, the delay-limited capacity is zero,

while for MIMO systems, there is a nonzero delay-limited capacity.

The long-term constraints are impractical assumptions for real-world implementation. Some applications,

for example, video transmission, are delay sensitive and require finite decoding delays. In addition, infinite-

length codewords can lead to extremely high decoding complexity. A power allocation with the long-term
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constraint may result in an infinite peak power, which is intolerable for electronic devices. Rate adaption with

the long-term constraint usually cuts off systems when the receive SNR is low. Nevertheless, delay-sensitive

applications need a minimum rate even though channels are in deep fading. For these reasons, power or rate

constraint needs to be determined by averaging over a finite number of channel-uses. These constraints define

the short-term behavior of communication systems. A mixture of both short-term and long-term constraints

have been considered in the literature. For example, a system using long-term power allocation, fixed rate,

and finite decoding delay achieves infinite diversity in fading channels [3]. We summarize the diversity

performance with respect to different types of constraints and a finite decoding delay in Table I.

TABLE I
DIVERSITY PERFORMANCE FOR MIMO SYSTEMS WITH FINITE DECODING DELAY

Diversity gain Long-term power constraint Short-term power constraint
Long-term rate constraint infinite infinite [1]
Short-term rate constraint infinite [3] unknown

Note that short-term constraints are special cases of long-term constraints. The performance achievable

under short-term constraints is achievable under long-term constraints as well. In Table I, the results

under both long-term power and rate constraints are straightforward extensions from the results in [1], [3].

Conversely, the results under long-term constraints cannot be used for a system with short-term constraints.

To the best of our knowledge, there is no rigorous results under both short-term power and rate constraints.

This report aims at exploring the performance limits of transmitter controls, for example, beamforming,

power allocation, rate adaption in conjunction with space-time block code (STBC) designs, under the

assumptions of perfect CSIT, finite decoding delay, and short-term power and rate constraints. To allow

power allocation and rate adaption within the scope of short-term constraints, we introduce transmission

delay, the number of channel-uses where power and rate are constrained. The transmission delay is the sum

of all decoding delays for STBCs. Assume that a system needs to transmit RT bits of information using L

block codes, each with a decoding delay constraint of Dl (l = 1, . . . , L), where T =
∑

l=1:L

Dl, denotes the

transmission delay, and R denotes the average rate constraint. The transmission for T channel-uses has a

block power constraint of PT , where P denotes the average power constraint. We assume that the channel

information of all T channel-uses is given noncausually to the transmitter. Then, rate adaption or power

allocation can be conducted within the scope of the transmission delay. For example, the transmitter is aware

that the Frobenius norm of the channel matrix in the first T/2 channel-uses is higher than that in the second
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T/2 channel-uses. Then, a rate adaption and power allocation scheme can send all RT information bits in

the first T/2 channel-uses using a power equal to 2P . In the second T/2 channel-uses, the transmitter keeps

silent.

Note that any transmitter control scheme with short-term constraints on T channel-uses can be viewed

as a realization of concatenated STBC with fixed-rate constraint R bits/channel-use, sum-power constraint

PT , and decoding delay constraint T channel-uses. The performance limits of the concatenated block code

can be applied directly to any transmitter control scheme with short-term constraints. Therefore, we study

the performance limits of fixed-rate STBC designs with sum-power and decoding delay constraints when

CSIT is available.

For fixed-rate and finite decoding-delay designs, there are two approaches in AWGN channels. Gallager

uses the random coding argument to show that the decoding error probability drops exponentially with the

code length [4]. The random codes show an achievable performance of error probability, which implies

the existence of a good code outperforming it. Thus, an upperbound on the achievable error probability is

provided by the random codes. Extension of this approach to MIMO systems can be found in [5]. The other

approach uses sphere-packing argument. It models code-design as a sphere-packing problem. The converse

of Shannon capacity can be shown using this argument [6]. It can be extended to MIMO systems with no

CSIT to provide a lowerbound on the codeword decoding error probability for any STBC design [7].

To find the fundemantal performance limits of MIMO systems with CSIT, we take the sphere-packing

approach to calculate a lowerbound on the codeword decoding error probability given short-term constraints.

The main contribution of this report can be summerized as follows:

1) For M ×N MIMO systems where each message is encoded over K independent fading blocks, we

show that the maximum diversity is MNK under short-term constraints even though the transmitter

has perfect CSIT. The result is the same as the scenario when channel information is not available at

the transmitter.

2) Although [7] assumes a finite decoding delay, the authors assume sphere-hardening at the receiver

[6], which implies that the channel codes have infinite-length. Thus, the proposed bound in [7] is

not a strict lowerbound on decoding error probability. In this report, we avoid using sphere-hardening

arguments. Thus, the results in this report rely completely on finite decoding delays.
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We do not claim that our lowerbound is achievable. However, the resulting diversity can be achieved using

STBCs. The negative result shows what the system cannot achieve, in other words, the performance limits

of STBC design.

The rest of this report is organized as follows. In Section II, we explain the system model. Section III

provides a lower bound on error probability. In Section IV, we show the simulated performance of the

derived lowerbounds. Conclusions are provided in Section V.

Notation: For a matrix A, let A∗, tr (A), and ‖A‖ denote its Hermitian, trace, and Frobenius norm,

respectively. We define CN (0, 1) as circularly symmetrical complex Gaussian distribution with zero mean

and unit variance.

II. SYSTEM MODEL

Consider an M × N MIMO system with M transmit antennas and N receive antennas. The channel

coefficients from the transmitter to the receiver are modeled as an independent and identically distributed

(i. i. d.) CN (0, 1) Gaussian random variable. The channels are assumed to be block fading, i.e., the fading

coefficients remain fixed for a constant number of channel-uses and change independently from one block

to another. We call the interval under which channel coefficients remain unchanged the block length of the

code. We assume that the block length is L channel-uses.

We consider STBC designs with a maximum usage of K independent channel blocks. In other words, the

system has a decoding delay constraint of K blocks, or equivalently T = KL channel-uses. The input-output

relationship can be described by

Yk = HkXk + Nk, k = 0, . . . , K − 1, (1)

where Yk, Hk, Xk, and Nk denote N × L receive signal matrix, N ×M channel matrix, M × L transmit

signal matrix, and N ×L AWGN noise matrix, respectively. Each entry of Nk is i. i. d. CN (0, 1) Gaussian

distributed. The subscript k denotes the index of the block. Let

Y =




Y0

...

YK−1




,X =




X0

...

XK−1




,N =




N0

...

NK−1




,H =




H0 · · · 0
...

. . .
...

0 · · · HK−1




. (2)

The system equation in (1) can be combined as

Y = HX + N. (3)
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The transmitter needs to send a set of 2m messages M = {mi}, where the subscript i is used to represent

the message index. A set of 2m codewords Xc is generated, where each codeword Xi ∈ Xc has dimension

KM × L. For message mi, the codeword Xi is selected to be transmitted over the equivalent system in

(3). Since 2m messages are sent in KL channel-uses, the transmission rate can be computed as R = m
KL

bits/channel-use. We assume that the equivalent channel matrix H is noncausually known at the transmitter

when designing Xc. Note that this CSIT assumption is stronger than the causual CSIT assumption, i.e., the

transmitter can only know the past and current channels, but not the future channels. The negative reuslts

in this report is hence applicable to the scenario of causual CSIT. With CSIT, each codeword Xi can be a

function of H, i.e. Xi(H). For simplicity, we use Xi instead of Xi(H) throughout the rest of this report.

Moreover, we have a block power constraint for each codeword Xi. Mathematically, it can be expressed as

tr {XiX ∗
i } ≤ KLP for i = 1, . . . , 2m.

The receiver is assumed to have perfect channel information, and decodes after receiving the entire block

Y. The maximum-likelihood (ML) method is used to recover transmitted message i as,

î = arg max
i,Xi∈Xc

P (Y|X = X i,H), i = 1, . . . , 2m. (4)

A decoding error occurs when î 6= i. Then, the probability of average codeword decoding error can be

defined as

PE = E
H,X

P (̂i 6= i|X,H), (5)

where the expectation is taken over all channel realizations of H and codewords in Xc. In this report, we

aim at finding a lowerbound on PE for any STBC design with CSIT.

III. A LOWERBOUND ON PE

In this section, we explain the sphere-packing approach to obtain the lowerbound on PE. First, a geomet-

rical interpretation is introduced to provide some notations. Then, we tackle the problem relying on these

notations.

A geometrical interpretation of the system is described in Fig. 1. Each transmit codeword Xi can be

interpreted as a point in CMLK . With block power constraint, each codeword can only locate inside a

hypersphere. The equivalent channel H transforms X into a point in the receive signal space V , which has

dimension CNLK . The transformation includes rotation and scale of the transmit signal space. To illustrate

the effect of transformation, the hypersphere in the transmit signal space is transformed into a hyper-ellipsoid
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Fig. 1. Geometric interpretation. The transmitter designs a set of four codewords with block power constraint (Left diagram). The
receiver decodes by partitioning space into disjoint Voronoi Regions (Right diagram).

in the receive signal space in Fig. 1. The ML decoding method can be equivalently described by partitioning

the receive signal space V into disjoint Voronoi regions. Let the Voronoi partition be V =
⋃

i=1,...,2m

Vi(H),

where Vi(H) denotes the Voronoi region corresponding to Xi. A Voronoi region Vi(H) is defined based on

distance metrics. For any point Y ∈ Vi(H), the distance ‖Y −HXi‖ is smaller than that of ‖Y −HXj‖
for all j 6= i. Then, an event of decoding error can be equivalently interpreted as Y outside the Voronoi

region, i.e., Y /∈ Vi(H) given Xi is sent. Therefore, using the geometrical interpretation, PE in (5) can be

equivalently written as

PE = E
H

PE|H = E
H

∑

i

P (Y /∈ Vi(H)|X = X i,H)P (X = Xi), (6)

where PE|H denotes decoding error probability given the channel matrix H.

We define some regions in the receive signal space V to lowerbound PE. A hypersphere is defined as

B(H, δ) =
{

tr (YY∗) ≤
(√

PLKtr (HH∗) +
√

NLKδ
)2

}
, (7)

where δ is any positive parameter to control the radius of the hypersphere. The choice of δ will be discussed

later. The hypersphere defines a region that the receive signal resides with a high probability due to block

power constraint. Further, we denote B(H, δ) as the region outside the hypersphere B(H, δ). Thus, the whole

receive signal space can be partitioned into the part inside hypersphere and the part outside hypersphere, i.e.,

V = B(H, δ)
⋃

B(H, δ). Since the volume of Vi(H) may be unbounded, we further partition each Vi(H)
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into two parts with reference to B(H, δ). We define

V̂i(H) = Vi(H)
⋂

B(H, δ), Ṽi(H) = Vi(H)
⋂

B(H, δ), (8)

where V̂i(H) is the part of Vi(H) inside the hypersphere B(H, δ) and Ṽi(H) is the part outside of the

hypersphere. Fig. 1 illustrates the partition of receive signal space for a set of four codewords, i.e., m = 2.

In what follows, we obtain a lowerbound on (6). For simplicity, we can omit H in the notations used in

(6), (7), and (8). It follows

PE|H =
∑

i

P (Y /∈ Vi|X = Xi)P (X = Xi)

=
∑

i

P (Y /∈ V̂i|X = Xi)P (X = Xi)−
∑

i

P (Y ∈ Ṽi|X = Xi)P (X = Xi)

>
∑

i

P (Y /∈ V̂i|X = Xi)P (X = Xi)−
∑

i

P (Y ∈ B(δ)|X = Xi)P (X = Xi)

=
∑

i

P (Y /∈ V̂i|X = Xi)

︸ ︷︷ ︸
A

P (X = Xi)− P (Y ∈ B(δ)), (9)

where we have Line 2 since Ṽi and V̂i are disjoint sets and Ṽi
⋃

V̂i = Vi; the inequality in Line 3 is true

since Ṽi is included in B(δ). The following two lemmas are needed to provide a lowerbound on PE.

Lemma 1: Let S(ri) be an (nLK)-hypersphere centered at HXi with a radius of ri. The radius ri is

selected such that S(ri) and V̂i have the same volume. Substituting V̂i with S(ri) in P (Y /∈ V̂i|X = Xi),

we have

P (Y /∈ V̂i|X = Xi) ≥ P (Y /∈ S(ri)|X = Xi)

Proof: See [8].

Intuitively, this lemma can be explained using Fig. 2. The PDF of Y given Xi depends only on the radius

ri. For any point in Region III, its PDF is higher than that of any point in Region II. Then, the probability

of the receive signal in Region III is higher than that in Region II. As a result, the probability of Y being

inside the sphere S(ri) is higher than that inside V̂i. Conversely, it is less likely for Y to be outside S(ri)

than V̂i.

Lemma 2: The probability of Y to be outside of the hypersphere B(δ) is upperbounded by

P
(
Y ∈ B(δ)

)
≤ Γ(NLK, NLKδ)

Γ(NLK)
,

where Γ(n, x) denotes the incomplete Gamma function, i.e., Γ(n, x) =
∫ +∞
x tn−1e−tdt.
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Fig. 2. Lemma 1: Lowerbounds using sphere as Voronoi Region.

Proof: From (3), Y is the sum of HX and N. With a block power constraint, the Frobenius norm of

the first term can be bounded as tr (X∗H∗HX) ≤ tr (X∗X)tr (H∗H) = KLP tr (H∗H). Then, we have

P
(
tr (X∗H∗HX) ≤ KLP tr (H∗H)

)
= 1.

From (2), since N is the equivalent NK × L noise matrix and each entry is i. i. d. CN (0, 1) distributed,

tr (NN∗) is Chi-square distributed with 2NLK degrees of freedom. Then, we can compute

P
(
tr (NN∗) ≤ NLKδ

)
= 1− Γ(NLK,NLKδ)

Γ(NLK)
.

Since the norm of the sum of two matrices can be upperbounded by the sum of the norms of each matrix,

we have
√

tr (Y∗Y) ≤
√

tr (X∗H∗HX) +
√

tr (NN∗). The probability of Y falling into the hypersphere

B(δ) can be bounded as

P (Y ∈ B(δ)) =P
(
tr (Y∗Y) ≤

(√
KLP tr (H∗H) +

√
NLKδ

)2 )

=P
(√

tr (Y∗Y) ≤
√

KLP tr (H∗H) +
√

NLKδ
)

≥P
(√

tr (X∗H∗HX) +
√

tr (NN∗) ≤
√

KLP tr (H∗H) +
√

NLKδ
)

≥P
(
tr (X∗H∗HX) ≤ KLP tr (H∗H)

)
P

(
tr (NN∗) ≤ NLKδ

)
= 1− Γ(NLK,NLKδ)

Γ(NLK)
.

Therefore, the probability that Y is outside the hypersphere B(δ) is upperbounded by Γ(NLK,NLKδ)
Γ(NLK) .

Lemma 2 says that with a block power constraint, the receive signal Y is constrained in the hypersphere

B(δ) with a high probability. Proving Lemmas 1 and 2, we are ready for the following theorem.
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Theorem 1: When the messages are equiprobable, i.e., P (X = Xi) = 1
2m , a lowerbound on PE can be

obtained as1

PE ≥ PNLKΓ(NLK + MNK)
Γ(NLK)Γ(MNK)

∫ b

a

XNLK−1

(1 + PX )MNK+NLK
dX , (10)

where the bounds of the integral are a = LK2−R/N
( √

2
2R/(2N)−1 + 1

)2
, b = 2LK

(2R/(2N)−1)2
.

Proof: When messages are equiprobable, from Lemma 1, we can further lowerbound the term A in

(9) as

A =
1

2m

∑

i

P
(
Y /∈ V̂i|X = Xi

)

≥ 1
2m

∑

i

P
(
Y /∈ S(ri)|X = Xi

)
=

1
2m

∑

i

Γ(NLK, r2
i )

Γ(NLK)
. (11)

Substituting (11) and the result of Lemma 2 into (9), we can lowerbound PE|H as

PE|H ≥ 1
2m

∑

i

Γ(NLK, r2
i )

Γ(NLK)
− Γ(NLK, NLKδ)

Γ(NLK)
. (12)

In what follows, we further lowerbound the RHS of (12) to help analyze diversity. Note that V̂i is inside the

hypersphere B(δ) and V̂i has the same volume as S(ri). There is an additional constraint on the sum of the

volumes of S(ri), i.e., Vol
(
B(δ)

)
=

∑
i
Vol

(
S(ri)

)
. Thus, an optimization problem can be formulated as

min
ri

1
2m

∑

i

Γ(NLK, r2
i )

Γ(NLK)
− Γ(NLK, NLKδ)

Γ(NLK)

s.t.
∑

i

Vol
(
S(ri)

)
= Vol

(
B(δ)

)
,

δ > 0. (13)

Since δ is a constant, the second term in the objective function can be ignored. This minimization problem

is known as sphere-packing. The solution is obtained when each hypersphere S(ri) has equal radius, i.e.,

ri = ro(δ) for i = 1, . . . , 2m [7]. Since the volume of a hypersphere in Cn is Vol = Rnr2n where Rn is a

constant depending on dimensions and r is the radius, from the constraint, we have

2mRnro(δ)2NLK = Rn

(√
PLKtr (HH∗) +

√
NLKδ

)2NLK
.

After dividing both sides of the above equation by 2mRn and taking NLKth root, we have

ro(δ)2 = NLK2−
R

N

(√
δ +

√
P

N
tr (HH∗)

)2

, (14)

1When messages are not uniformly distributed, we can use mini P (X = Xi) to lowerbound P (X = Xi). It is straightforward to

extend the results to the case of non-uniform messages.
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where R = m
LK , denoting the bit-rate per channel-uses of the STBC designs. Replacing (14) into (12), we

have a lowerbound on PE|H as

PE|H ≥ Γ(NLK, ro(δ)2)
Γ(NLK)

− Γ(NLK,NLKδ)
Γ(NLK)

. (15)

In what follows, we discuss the choice of δ. In [7], δ is chosen to be one, and the probability of Y to

be outside the hypersphere, i.e., the second term in Line 4 of (9), is not taken into account. Therefore, the

lowerbound obtained in [7] is not a tight lowerbound. In this report, we formulate the lowerbound considering

both the events when Y is inside and outside the hypersphere. From (14), the radius of each hypershpere

ro depends on δ, and for any positive δ, the RHS of (15) provides a new lowerbound. To find an explicit

lowerbound on PE, we choose a δ that results in a positive number on the RHS of (15)2. Note that the first

and second terms in (15) are both incomplete Gamma functions with NLK degrees of freedom. To have a

positive lowerbound, we need

ro(δ)2 < NLKδ. (16)

Substituting (14) into (16), we have

2−
R

N

(√
δ +

√
P

N
tr (HH∗)

)2

< δ

δ
P
N tr (HH∗)

>
1(

2
R

2N − 1
)2 .

Then, we let δ = 2P

N(2
R
2N −1)2

tr (HH∗). We can expand the RHS of (15) into an integral as

PE|H ≥ 1
Γ(NLK)

∫ NLKδ

r2
o

xNLK−1e−xdx

=
1

Γ(NLK)

∫ 2P LK

(2R/(2N)−1)2
tr (HH∗)

PLK2−R/N

“ √
2

2R/(2N)−1
+1
”2

tr (HH∗)
xNLK−1e−xdx. (17)

Further let a = LK2−R/N
( √

2
2R/(2N)−1 + 1

)2
, b = 2LK

(2R/(2N)−1)2
, and h = tr (HH∗) to simplify the notations,

and integrate (17) over h. From (2), since tr (HH∗) is Chi-square distributed with 2MNK degrees of

2Note that the best lowerbound can be found by futher maximizing (15) with respect to δ. The optimal δ can be obtained by

calculating the derivative of (15) and set the derivative to zero. The resulting equality is nonlinear in δ, and cannot be solved

explicitely. Therefore, we cannot find an explicit lowerbound on PE using the optimal δ.
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freedoms, we obtain a lowerbound on PE as

PE ≥ 1
Γ(NLK)Γ(MNK)

∫ +∞

0
hMNK−1e−h

∫ bPh

aPh
xNLK−1e−xdxdh

=
1

Γ(NLK)Γ(MNK)

∫ +∞

0
hMNK+NLK−1PNLKe−h

∫ b

a
XNLK−1e−PhXdXdh

=
PNLK

Γ(NLK)Γ(MNK)

∫ b

a
XNLK−1dX

∫ +∞

0
hMNK+NLK−1e−h(1+PX )dh

=
PNLKΓ(NLK + MNK)

Γ(NLK)Γ(MNK)

∫ b

a

XNLK−1

(1 + PX )MNK+NLK
dX (18)

In Line 2, we have replaced the variable x with XPh. This concludes the proof.

The proof of Theorem 1 uses the sphere-packing argument. The diversity performance is given in the

following corollary.

Corollary 1: With short-term decoding delay, block power, and block rate constraints, the diversity of any

STBC design is upperbounded by MNK. It is independent of whether CSI is available at the transmitter

or not.

Proof: The diversity gain is defined as

d = − lim
P→∞

log PE

log P
. (19)

Replacing the lowerbound obtained in Theorem 1 into (19) results in an upperbound on diversity gain. Thus,

we have

d ≤ − lim
P→∞

log
(

P NLKΓ(NLK+MNK)
Γ(NLK)Γ(MNK)

∫ b
a

XNLK−1

(1+PX )MNK+NLK dX
)

log P

= −NLK − lim
P→∞

log
(∫ b

a
XNLK−1

(1+PX )MNK+NLK dX
)

log P

≤ −NLK − lim
P→∞

log
(

1
(1+Pb)MNK+NLK

∫ b
a XNLK−1dX

)

log P

= −NLK − lim
P→∞

log
(

1
(1+Pb)MNK+NLK

)

log P
= MNK.

In Line 3, we lowerbound the integrand XNLK−1

(1+PX )MNK+NLK by XNLK−1

(1+Pb)MNK+NLK ; In Line 4, we ignore the

integral because for a fixed-rate R, the bounds a and b are independent of power P .

Note that in all previous lowerbounding steps, the inequalities are independent of CSIT. Therefore, the

derived lowerbound is independent of CSIT and is applicable to both CSIT and no CSIT scenarios.

The lowerbounding techniques used in the proof of Corollary 1 motivate two explicit lowerbounds where
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no integral is involved. From (18), we have the following two bounds.

Bound 1 :PE >
Γ(NLK + MNK)
Γ(NLK)Γ(MNK)

PNLK

(1 + Pb)MNK+NLK

∫ b

a
XNLK−1dX

=
Γ(NLK + MNK)

Γ(NLK + 1)Γ(MNK)
PNLK

(1 + Pb)MNK+NLK

(
bNLK − aMLK

)
. (20)

Bound 2 :PE >
Γ(NLK + MNK)
Γ(NLK)Γ(MNK)

aNLK−1PNLK

∫ b

a

1
(1 + PX )MNK+NLK

dX

=
Γ(NLK + MNK − 1)

Γ(NLK)Γ(MNK)
aNLK−1PNLK

(
(1 + Pa)−NLK−MNK+1 − (1 + Pb)−NLK−MLK+1

)
.

(21)

IV. NUMERICAL RESULTS

In this section, we demonstrate the results of our analysis and compare it with the results of beamforming

schemes using singular-value decomposition (SVD). We consider two systems: System A with parameters

M = 2, N = 1; System B with parameters M = 2, N = 2; L = 1,K = 1 for both Systems A and B. For

these two simple cases, we assume no channel coding, and the decoding error probability in (5) is equivalent

to the symbol error rate (SER). We apply BPSK, QPSK, 8QAM modulation for the SVD schemes, whose

corresponding rates are R = 1, 2, 3 bits per channel-uses, respectively. We plot the two strict lowerbounds

in (20) and (21).

Figs. 3 and 4 compare the SER of SVD schemes with derived lowerbounds in Systems A and B,

respectively. Although the lowerbounds are loose in terms of array gain, the diversity gain can be observed

to be tight.

V. CONCLUSION

We have obtained a negative result for STBC systems using transmitter control with short-term constraints

on decoding delay, block power, and block rates. The analysis shows that fading cannot be completely

combatted with short-term constraints. The diversity is upperbounded by the product of the numbers of

transmit antennas, receive antennas, and the independent fading block channels that messages span over.
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