UC Berkeley
SEMM Reports Series

Title
Analysis of Continuous Box Girder Bridges

Permalink
bttgs:géescholarshiQ.orgéucéiteméGzOOw%j
Author

Scordelis, Alex

Publication Date
1967-10-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/6z00w953
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
SESM-67-25

NOVEMBER 1967

STRUCTURES AND MATERIALS RESEARCH

DEPARTMENT OF CIVIL ENGINEERING

BY
A. C. SCORDELIS

Report to the Sponsors: Division of Highways, Depariment
of Public Works, State of California, and the Buregu of
Public Roads, Federal Highway Administration, United Stotes
Depariment of Transportation.

COLLEGE OF EMGINEERING
OFFICE OF RESEARCH SERVICES
UNIVERSITY OF CALIFORNIA
BERKELEY CALIFORNIA



Structures and Materials Research
Department of Civil Engineering
Division of Structural Engineering.
and
Structural Mechanics

ANALYSIS OF CONTINUOUS BOX GIRDER BRIDGES

A Report of an Investigation

by

A. C. Scordelis
Professor of Civil Engineering

to

The Division of Highways
Department of Public Works
State of California
Under Research Technical Agreement
- No. 13945-14039

and

U.S. Department of Transportation
Federal Highway Administration
Bureau of Public Roads

College of Engineering
Office of Research Services
University of California

Berkeley, California

November 1967




TABLE OF CONTENTS

List of Tables
List of Figures
List of Symbols
1. INTRODUCTION

1.1 Objective
1.2 General Remarks
1.3 Previous Studies

1.4 Scope of Present Investigation
2, FOLDED PLATE METHOD OF ANALYSIS

2.1 Introduction
2.2 General Description of the Method
2.3 Computer Program - MUPDI

3. FINITE SEGMENT METHOD OF ANALYSIS

3.1 Introduction
3.2 General Description of the Method
3.3 Derivation of Equations for the Solution of a Single Span

Structure by the Finite Segment Method

3.3.1 Modified Field Matrix for a Beam Segment

3.3.2 Stiffness matrix for a Beam Segment in Relative
Coordinate System

3.3.3 Fixed Joint Forces Due to Actions at Section k-1

ai 3.3.4 Fixed Joint Solution for Actions Zk in Terms of

 } Actions Zk—l

3.3.5 Actions Zk Due to Fimal Joint Displacements at
Center of the Segment

3.3.6 Fixed Coordinate System and Direct Stiffness Method
for One Segment of the Structure

3.3.7 Boundary Conditions at Two Ends of the Structure and
Setup of Actions Vector at the Origin

3.3.8 Sequence of Matrix Operations

3.3.9 Equations of Internal Forces and Displacements at
Center of Each Segment

Page

iv

N T N

11

11
12
15

18

18
20

24

24

28
32

33

34

36
37

43



3.4 Solution for a Continuous Cellular Folded Plate Structure

3.5 Direct Stiffness Method Using Complete Segment Stiffness
Matrix

3.6 Advantages and Disadvantages of the Segment Progression
Solution as Compared to the Band Matrix Solution

3.7 Computer Program -~ SIMPLA
FINITE ELEMENT METHOD OF ANALYSIS

4.1 Introduction

4.2 General Description of the Method ,

4.3 Development of Finite Element Stiffness by Virtual Work

4.4 Element Stiffness for Membrane Action-Plane Stress
Analysis . ., .
4.4.1 Elasticity Equations for the Plane Stress Problem
4.4.2 Types of Finite Element Models

4.4.3 Nodal Point Displacements and Resulting Displacement
Patterns

4.4.4 Derivation of Element Stiffness for Plane Stress
4.5 Element Stiffness Matrix for Slab Action-Plate Bending
Analysis

4.5.1 Elasticity Equations for the Plate Bending
Problem

4.5.2 Nodal Point Displacements and Resulting Displace-
ment Patterns . , ., ., ., .

4.5.3 Derivation of Element Stiffness for Plate Bending
4.6 Computer Program - FINPLA
COMPARISON OF RESULTS

Introduction

Description of Example Bridge and Analytical Models
Vertical Deflections

Longitudinal Stresses

Distribution of Moments to Each Girder

Transverse Slab Moments

(S O S N S )
N o o R W op e

Computer Times

i1
Page
46
50
51
53

57

57
59
65

71

71
73

74
83

20

93
96

104
107

107
107
112
112
123
130
136



6. STUDY OF 3-CELL AND 6-CELL . BRIDGES
6.1 General Remarks
6.2 Description of Example Bridges Analyzed
6.3 Distribution of Moments to Each Girder
6.3.1 Comparison of Results by Different Methods
6.3.2 Longitudinal Division of Total Statical Moment
Between Positive and Negative Moments
6.3.3 Transverse Distribution of Moments to Each Girder
6.4 Midspan Deflections
7. CONCLUSIONS
8. ACKNOWLEDGMENTS
9. REFERENCES
APPENDIX A
Description of IBM 7040/7094 Computer Program
for the Analysis of Folded Plate Structures by
the Finite Segment Method (Ordinary Theory) -~-SIMPLA
APPENDIX B

Description of IBM 7040/7094 Computer Program
for the Analysis of Folded Plate Structures by
the Finite Element Method (Elasticity Theory)---FINPLA

1ii
Page

141
141
142
148

148
148
154
156
158
161

162



Table

LIST OF TABLES

Title

Distribution of Moments to Each Girder for 3-Cell
Bridge under Eccentric Load (Fixed-Simple End
Support Conditions)

Summary of Computer Analyses Performed on
Example Bridges

Distribution of Moments to Each Girder for
3-Cell Bridge under Eccentric Load

Distribution of Moments to Each Girder for
3-Cell Bridge under Center ILoad

Distribution of Moments to Each Girder for
6-Cell Bridge under Eccentric Load

Distribution of Moments to Each Girder for
6-Cell Bridge under Center Load

4
Midspan Vertical Deflections in Ft. x 10 for
Eccentric and Center Loads on 3 and 6-Cell
Bridges

iv

Page

135

147

150

151

153

157



Figure

Sb

10

11

12

13

14

15

16

LIST OF FIGURES

Title

Reinforced Concrete Box Girder Bridges

Cross—~section of a Composite Steel-Concrete Box Girder
Bridge

Folded Plate Method of Analysis of Continuous Box
Girder Bridge

Finite Segment Analytical Model . ,

Positive Directions of Finite Segment Forces and Moments in
the Relative Coordinate System

Positive Directions of Finite Segment Displacements in the
Relative Coordinate System

Finite Segments of a Folded Plate Structure
Positive Directions of Actions for a Beam Segment
Edge Force Patterns for a Beam Segment

Positive Segment Edge Forces and Displacements in the
Relative Coordinate System

Positive Joint Forces and Displacements in the Fixed
Coordinate System

Positive Segment Edge Forces and Displacements in the
Fixed Coordinate System

Folded Plate Structure with One Interior Rigid Diaphragm

Makeup of Structure Stiffness Matrix Using Complete
Segment Stiffness Matrix

Finite Element Analytical Model

Global (Fixed) XYZ and Local (Relative) xyz Coordinate
Systems and Finite Element Dimensions

Positive Internal Forces and Displ acements in a
Finite Element

Page

14

19

23

23
25
25

27

35

35

35

52

52

61

61

61



17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Figure

Title

Positive Directions for Coordinate Axes, External
Forces, Displacements and Internal Stresses

Notation and Positive Directions for Displacements and
Forces at a Typical Nodal Point

Displacement and Damping Functions

Displacement Pattern for Nodal Point Displacement ui
Displacement Pattern for Nodal Point Displacement Vi
Displacement Pattern for Nodal Point Displacement Ozi

Rotations and Shear Distortions in Four Elements Meeting
at a Typical Nodal Point

Positive Directions for Coordinate Axes, External Forces,
Displacements, and Internal Moments and Forces

Notation and Positive Directions for Displacements and
Forces at a Typical Nodal Point

Displacement Pattern for Nodal Point Displacement 9y1
Displacement Pattern for Nodal Point Displacement exi
Displacement Pattern for Nodal Point Displacement wi
Dimensions and Loading for Example Bridge

Folded Plate Analytical Model

Finite Element Analytical Model - Mesh 1

Finite Element Analytical Model - Mesh 2

Mesh 1

Finite Segment Analytical Model
Finite Segment Analytical Model - Mesh 2

Vertical Deflections Along Longitudinal Line at Top of

Girder RZ
Vertical Deflections Along Longitudinal Line at Top of
Girder Rl

Vertical Deflections Along Longitudinal Line at Top of

Girder Ll

‘vi

Page

72

76
76
78
78

79

82

91

95
95
95
95
109
109
111
111
113

113

114

115

116



Figure

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Title

Vertical Deflections Along Longitudinal Line at Top of

Girder L2

Vertical Deflections at Transverse Sections

Longitudinal Distribution of Longitudinal Stress o (PSF)
in Top Slab x

Longitudinal Distribution of Longitudinal Stress ¢ (PSF)
: x
in Bottom Slab

Longitudinal Distribution of Longitudinal Stress GX(PSF)
in External Web

Transverse Distribution of Longitudinal Stress ¢ (PSF)
in Top Slab at Midspan Section x

Transverse Distribution of Longitudinal Stress GX(PSF)
in Bottom Slab at Midspan Section

Transverse Distribution of Longitudinal Stress O (PSF)
. . s X
in Webs at Midspan Section

Transverse Distribution of Longitudinal Stress GX(PSF)
in Top Slab at Fixed End Support

Transverse Distribution of Longitudinal Stress ¢ (PSF)
in Bottom Slab at Fixed End Support x

Transverse Distribution of Longitudinal Stress o (PSF)
in Webs at Fixed End Support x

Longitudinal Distribution of Transverse Moment M
(FT-LB/FT) 1in Top Slab

Longitudinal Distribution of Transverse Moment M
(FT-LB/FT) 1in Bottom Slab . . . . . . . . . . . % . .

Longitudinal Distribution of Transverse Moment M
(FT-LB/FT) at Top of External Web . . . . . . J
Longitudinal Distribution of Transverse Moment M
(FT-LB/FT) at Bottom of External Web Y

Transverse Distribution of Transverse Slab Moment M
(FT-LB/FT) in Top Slab at Midspan ¥

Transverse Distribution of Transverse Slab Moment M
(FT-LB/FT) in Bottom Slab at Midspan Y

Transverse Distribution of Transverse Slab Moment M
(FT-LB/FT) in Webs at Midspan

vii

Page

117

118

120

121

122

124

125

127

128

129

131

132

133

134

137

138

139



Figure

56

57

58

59

60

61

62

63

Al

A2

A3

A4

AS

A6

Iitle

Transverse Section Dimensions and Load Positions for
Example Bridges

End Conditions for Example Bridges

Transverse Element Subdivisions for Analysis of 3-Cell
Bridges

Transverse Element Subdivision of 6-Cell Bridge Under
Eccentric Load for Folded Plate and Finite Segment
Analyses
Transverse Element Subdivision of 6-Cell Bridge Under
Central Load for Folded Plate and Finite Segment
Analyses
Beam Moment Diagram for Simple-Simple Case
Beam Moment Diagram for Fixed-Simple Case
Beam Moment Diagram for Fixed-Fixed Case

APPENDIX A
Longitudinal Elevation and Loading

General View of Structure

Cross-Section Idealization Using Element, Plate Type, and
Joint Numbers

Positive Joint Actions in Fixed Coordinate System
Sign Convention for Element Projection and Corresponding
Positive Direction of Element Relative Coordinate Axes

and Positive Plate Edge Forces

Positive Internal Beam End and Plate Edge Forces and
Displacements . . . , . . . . ,

viii

Page

143

143

145

146

146
149
149

149



Figure

Bl

B2

B3

B4

BS

B6

Title

APPENDIX B
Longitudinal Elevation and Loading

General View of Structure Showing Right Hand Global
Coordinate System

First Interval Cross-Section Idealization Using Element,
Element Type, and Nodal PointNumbers

Positive Direction of All External Loads and Displacements

Sign Convention for Element Projections and Corresponding
Positive Direction of Local Element Coordinate Axes

Positive Internal Element Forces, Moments and Stresses

ix".

Page

B-10



LIST OF SYMBOLS

The alphabetic list of symbols is separated into three parts corresponding

to the different methods of analysis.

[F]

(6]
(6.}
(6],

[a]
{7}
[A]

(b]
{5}
(B]

:y

[c]

[c]

{a}
{a_}

1., FOLDED PLATE METHOD OF ANALYSIS

Flexibility matrix

External loads

Redundant forces

Displacement vector

Displacement vector due to external loads

Displacement vector due to redundant forces

2, FINITE SEGMENT METHOD OF ANALYSIS

Sub-vectors obtained by partitioning [DO]
Sub-vectors obtained by partitioning {DO}
Displacement transformation matrix

Plate thickness

Sub-matrix  obtained by partitioning [DO]
Sub-vectors obtained by partitioning {Bo}

Matrix representing plate edge displacements, v _, in
terms of the unknown actions at origin P

Column vector representing plate edge displacements,
v _, due to known actions at origin and previous

segments,

Matrix relating beam actions {Zk—l} to fixed joint
f S .
orces { p}F

Matrix product of [b] [d]_l
Plate width

. - i T
Sub-vectors obtained by partitioning {ZO }

Displacement actions at section e only due to unknown
actions at origin



xi

Matrix representing plate actions at section i in terms
of the unknown actions at origin

Column vector representing plate actions at section i due
to known actions at origin and previous segments

Modulus of elasticity
Subscript denotes actions at section e

Matrix representing the fixed joint forces in terms of the
unknown actions at origin

Column vector representing the fixed joint forces due to known
actions at origin and previous segments

Sub-vectors obtained by partitioning {ZOT}

Force actions at section e only due to unknown actions
at origin

Force actions at section e due to loads at span I assuming
the structure is fixed at e

Subscript F refers to fixed joint actions
Field matrix of segment k
Shearing modulus

Matrix representing the final joint displacements in terms of
the unknown actions at origin

Column vector representing the final joint displacements due
to known actions at origin and previous segments

Matrix relating joint actions {Zk—l} to fixed joint
actions {ZR}F

3
Moment of inertia =@1/12) bd
3
Moment of inertia of a slab strip of unit width = b~/12

Matrix relating final joint displacements {v } to actions
{z, 3, P

Constant
Plate stiffness matrix
Slab stiffness matrix

Subscript kn refers to known vector



[L]

[,

{r }
{r}
{r},
(R},

(R},

Segment length

Half segment length = 3 L

Coefficient matrix in which each column contains a single 1
and the rest of the elements are zeros

Matrix representing plate actions after an interior rigid
diaphragm, Section e, 1in terms of a new set of unknowns
which contain the diaphragm reactions and the non-restrained
displacements

Column vector representing plate actions after an interior
rigid diaphragm due to loads at previous spans and known
diaphragm restraints

In-plane bending moment, or transverse slab moment about the
longitudinal edge of a segment

Transverse slab moment at i-edge, Jj-edge, per unit width

Matrix product of [CT] [LT]

m

T
M i duct of C Z
atrix product o [c 11 o ]kn

Axial force

) T 1
Matrix product of [A] [M ] or [A]T fﬁl] for plate element 1

Transverse membrane force normal to the edge of a segment
Symmetrical transverse membrane edge force per unit length

Anti-symmetrical transverse membrane edge force per unit
length

Shear force, or shear force normal to the plate at the edge of
a segment

Final joint displacement vector at joint n
Final joint force vector

External applied joint force vector

Vector difference, {R}A - {E}

Fixed joint forces of a whole transverse section

xii



(v}

v,

(7 )

Fixed joint force vector in fixed coordinate: system

at joint =n., L denotes the sum over all elements
connecting to the joint n

Plate force vector

Force vector of slab action

Fixed joint force vector in the fixed coordinate system
Membrane shear force along the edge of a segment
Symmetrical membrane edge shear force per unit length

Anti-symmetrical membrane edge shear force per unit length

Superscript T inside brackets refers to total plate elements
in a cross-section

Superscript T outside of brackets refers to matrix transpose

Axial displacement corresponding to N, or in-plane
displacement corresponding to T along the edge of a
segment

Displacement at center of segment due to T/, or, intermnal
beam displacement at center of segment due to ui and uj

Subscript unk refers to unknown vector

Shear displacement corresponding to @, or transverse displace-
ment corresponding to P normal to the edge of a segment
Displacement at center of segment due to T”, or internal
beam displacement at center of segment due to ui and uj

Transverse extension at segment edge due to P/, or displace-
ment defined as (vi - Vj)

Plate displacement vector, or final joint displacements at
center of the segment, or displacement vector in relative
coordinate system corresponding to plate stiffness

Displacement vector of slab action, or displacement vector
in relative coordinate system corresponding to slab stiffness

Displacement vector defined as the difference between the
final edge displacements and the edge displacements carried
over from the previous (k-1) section

Shear force normal to slab at i-edge, j-edge, per unit
width

xiii



[a]
[a]

[B,]
(B, ]

[D]

Shear displacement normal to the plate at the edge of a
segment

Deflection due to shear force Vi’ Vj

Actions of the beam segment, forces and displacements, at
the end k, k-1

Action at origin of plate m

Coefficient = 6EIK/L2GA

I

Coefficient = 48

Transverse slab rotation corresponding to M about the
longitudinal edge of a segment

Rotation due to slab moment Miy NB

In-plane rotation corresponding to M

Displacement at center of segment due to P”, or internal
beam rotation at center of segment due to ui and u(j

3. FINITE ELEMENT METHOD OF ANALYSIS

Element dimension in x-direction

Displacement transformation matrix

Generalized coordinate transformation matrix

Element dimension in y-direction

Matrix relating generalized coordinates ap to strain ¢

Matrix relating generalized coordinates @S to curvatures
. 3 2

Plate stiffness = Eh /12(1-v7)

Matrix containing material constants

Elastic modulus

K

xiv



xi
yi

zi

F(x,y)

[k]
[k]
3

Nodal point force at i

Nodal point force at i

Nodal point force at i

Displacement functions

Element

Element

Element

Element

thickness

stiffness matrix

stiffness matrix

stiffness matrix

generalized coordinates

corresponding to
corresponding to

corresponding to

in local coordinates
in global coordinates

relating generalized forces

o

Element in-plane stiffness matrix

Element slab stiffness matrix

Structure stiffness matrix

Plate bending moments

Moment at node i corresponding to @
Moment at node i corresponding to ©

Moment at node i <corresponding to 6

Membrane forces

Plate transverse shears

Nodal point displacements corresponding to

coordinates)

External forces and moments (global coordinates)

X1

yi

z1i

Internal forces (local coordinates)

Internal forces (global coordinates)

XV



Y
Xy
xi
yi

zi

Internal in-plane forces

Internal slab forces

Displ acement of node 1 in x-direction

Iﬁternal displacements (local coordinates)

Internal displacements (global coordinates)
Displacement of node i 1in y-direction

Internal in-plane displacements

Internal slab displacements

Displacement of node 1 1in z-direction

External virtual work

Internal virtual work

Displacement functions in x, y-directions (n-order of
polynomial)

Generalized coordinates

Generalized forces corresponding to general coordinates

Strains
Strain components

Rotation of node i about x-axis
Rotation of node i about y-axis
Rotation of node i about z-axis
Curvatures

Poisson's ratio

o

xXvi



A‘r
Xy

Radii of curvatures

Stress components

xvii




1. INTRODUCTION

1.1 Objective

The objective of this investigation was the development of general
methods of analysis for continuous box girder bridges. The study was con-
cerned with the elastic analysis of these structures by methods suited to the
application of digital computers. The ultimate goal of the investigation was
the development of general computer programs capable of accurately determin-
ing displacements and internal forces in prismatic cellular box girder
bridges having arbitrary cross~sections and end support conditions., These
programs were to be designed to require a minimum amount of input information
and be able to meet a variety of loading and boundary conditions,

1.2 General Remarks

The priesent expansion of the highway network, in the State of California
and elsewhere, is largely the result of the great increase in traffic, popula-
tion, and the extensive growth of metropolitan urban areas. This expansion
has led to many changes in the use and development of various kinds of bridges,
In recent years bridges having cellular cross-sections of various types have
been proposed and used as economic and aesthetic solutions for the over
crossings, under crossings, separation structures and viaducts found in
today's modern highway system,

In California, the most widely used cellular type bridge is the rein-
forced concrete box girder bridge, Fig. 1. In recent years, roughly 60% of
California's concrete bridges (computed on the basis of deck area) have
been of this variety. The very large torsional rigidity of the box girder's
closed cellular section provides structural efficiency, while its broad

unbroken soffit, viewed from beneath, provides a pleasing appearance.



These bridges have found wide usage both as simple span and continuous
structures, Figs. la, 1b, primarily in the span ranges between 60 and 100
feet, Transverse diaphragms are placed at the end and interior support
points and in some cases additional interior diaphragms are utilized between
supports, For continuous bridges interior supports are often provided by
single column bents to give a graceful appearance to the structure,

The typical cross-section of a reinforced concrete box girder bridge,
Fig., 1lc, consists of a top and bottom slab connected monolithically by
vertical webs to form a cellular or box-like structure. In some of the more
recent designs, efforts have been directed toward making box girder bridges
even more attractive by incorporating sloping or rounded exterior girder
webs, Fig. lc, This improvement in aesthetic qualities has been accompanied,
however, by some increases in the complexity of construction, and of design
by specifications which were established for simpler configurations of
crogs~sections,

For longer spans up to 160 feet, cast-in-place, simply supported, post-
tensioned box girders have been used extensively. 1In the past few years
this type of bridge has comprised almost half of all the prestressed high~
way structures built in California.

Another type of cellular bridge which has recently received con-
siderable attention is the composite steel-concrete box girder bridge,

Fig., 2. This bridge consists of a concrete deck acting integrally with

cellular steel boxes. The individual steel boxes are spaced uniformly over
the width of the bridge. FEach box consists of two narrow top flange plates
welded to two inclined web plates and a wide bottom flange plate connecting

the two webs to form the steel box.
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Fresent design methods for continuous box girdsr bridges are based
cn taking a typical repsating segmeni of the cross-zection and treating it
as an independent longitudinal beam., For wheel loads placed on the bridge
deck, empirical formulas are used to determine the load distribution to the
independent beam, which is then analyzed as a continuous beam to determine
positive and negative beam moments and thence longitudinal stresses, While
this procedure may provide some measure of accuracy regarding the distribution
of the positive moments across the width of the bridge, it is difficult to
justify the use of this same distribution for the negative moments at the
supports, In addition to the design for overall longitudinal bending of the
bridge, each slab or plate element is designed to carry transverse and longi=-
tudinal slab bending moments, calculated again by empirical formulas,

The true distribution of internal forces and momentsg in a continuous box
girder bridge is obviously a highly indeterminate problem and is dependent
on the geometry of the bridge and the makeup and connection of its various
structural elements. It is highly desirable that accurate and general solu-
tions be developed which can be used to analyze cellular type bridges of
general configurations. Because of the complexity of these analyses, they
must be programmed for solution by a digital computer to be of practical
use. These programs may then be used directly in design or they may be used
to study the effect of various parameters on the distributions of internal
forces and moments in order to develop improved simplified design procedures
similar to those presently being used.

1.3 Previous Studies

The present investigation is a continuation of the research previously
conducted on the analysis of simply supported box girder bridges reported

on by Scordelis [1]. In that research, the box girder bridge was treated



as a series of rectangular plates interconnected along longitudinal joints

to form a cellular structure, simply supported at the end diaphragms. A
folded plate analysis was developed for the structure using elastic plate
theory for loads normal to the plane of the plates and two-dimensional plane~-
stress theory for loads in the plane of the plates, The solution was based
on a direct stifiness method in which a harmonic analysis using Fourier
series was utilized to analyze structures with arbitrary loading and boundary
conditions. Because of the need to use a harmonic analysis, the solution

is restricted to bridges which are simply supported at the ends. Using this
method a general computer program was written for the analysis of simply
supported box girder bridges. Input into the program consists of the span;
geometry and material properties of the plates; the loading conditions:

and the boundary conditions at the longitudinal joints. Both concentrated
and distributed loads can be treated by the program. Final output for the
program includes joint displacements, reactions and all of the internal
forces and moments at selected points in the structure,

The results of two other research investigations dealing with box girder
bridges have also been published during the past year., The first, reported
on by Wright, Abel-Samad and Robinson {27] of the University of I1linois,
discusses three methods of analysis for closed section girder bridges. The
first method, called the "'plate element method' is similar to the folded
plate method described above [1]., The second method, named the ""generalized
coordinate method", is based on Vlasov's [3] theory for thin walled beams.
This theory makes certain simplifying, but reasonable, assumptions regarding
the behavior of the cellular structure, The third method, termed the "B.E.F,
Method", utilizes an analogy to the theory of beams on elastic foundations
to obtain an approximate analysis procedure for cellular structures with or

without diaphragms or cross braces,



A second recent research investigation reported on by Mattock and
Johnston [4] [5] of the University of Washington consists of an analytical
and experimental study of composite steel-concrete box girder bridges, Based
on these studies, formulas are given for determining wheel load distribution
for this type of bridge,

A box girder bridge may be thought of as a cellular folded plate
structure. While a large number of papers have been written on the analysis
of simply supported folded plate structures (see bibliography in [67]), the
extension to continuous structures has only recently received the attention
of several investigators because of the complicating factors introduced by
continuity in the longitudinal direction. Folded plate analyses are usually
based on either the "ordinary theory" or the "elasticity theory'" [7]. The
ordinary theory assumes that the membrane stresses in each plate can be
calculated by elementary bean theory and that slab bending is defined by
means of transverse one-way slab action only, The elasticity theory utilizes
plane stress elasticity theory and classical two-way thin plate bending
theory to determine the membrane stresses and slab moments in each plate,

The analysis of continuous folded plate roofs has been studied by
Gruber [8] based on a simplified theory. Yitzhaki [9] presented an approxi-
mate solution based on the ordinary theory for certain special cases of end
conditions. Beaufait [10] used the same theory in an attempt to extend the
solution to arbitrary end conditions. The general validity of several of
the assumptions used by Beaufait appears questionable. Recently Pultar [11]
and Lee [12] have developed solutions for continuous folded plate roofs based
on the elasticity theory. Pultar's solution, which is applicable only to
structures with simply supported ends, uses a harmonic analysis together

with a force method in which the reactions at the interior supports are



taken as redundants, A finite difference technique was used by Lee to analyze
structures with arbitrary end conditions in whick an extrapolation procedure
was utilized to improve the accuracy of the solution,

During the past year, the application of a finite element analysis to
an open section folded plate was presented by Rockey and Evans [17] in which
they used a rectangular element possessing 8 degrees of freedom for in-plane
stresses and 12 degrees of freedom for plate bending to develop an element
stiffness matrix for the folded plate problem,

Two recent Ph.D. dissertations by Abu Ghazaleh [13] and Lo [147], written
under the direction of Scordelis, form the basis for the methods used in the
present investigation for the analysis of continuous box girder bridges and
certain parts of these dissertations will be described in detail in this
report,

1.4 Scope of Present Investigation

This investigation was concerned with the elastic analysis of continuous
box girder bridges under concentrated and distributed loads. Three analytical
approaches were used in the investigation. The first approach; designated
the "folded plate method', utilized the folded plate analysis developed for
simply supported box girder bridges as a starting point., A combination of
a displacement {(stiffness) and a force {flexibility) method is used in the
solution, A primary structure is selected consisting of the loaded structure
simply supported at its ends with a large number of unknown redundant forces
existing at the interior supports. Displacements due to each effect are
evaluated by a direct stiffness solution and then compatibility equations are
used to evaluate the unknown redundants, The original structure is then
analyzed subjected to the known loading and known redundants to determine

the final stresses and displacements in the continuous box girder system.



In this analysis the basic structural element used is a single plate having

a width equal to the distance between longitudinal joints and a length equal
to the overall length of the bridge, This method, which has already been
described in the initial report [1], is briefly reviewed in Chapter 2, The
method is based on the elasticity theory and is applicable to a box girder,
continuous over several supports, but simply supported at its extreme ends,
While each of the plates, which are interconnected at the longitudinal joints
to make up the bridge, may have different geometric and material properties,
there can be no variation in these properties, longitudinally or transversely
within a single plate,

The second approach, hereafter called the "finite segment method', is
based on the ordinary theory for folded plates and will be described in
detail in Chapter 3. 1In this analysis the basic structural element used is
formed by dividing each plate element into a finite number of segments
longitudinally., Compatibility and equilibrium conditions are then satisfied
at selected points along the four edges of each segment in the structure.
Each segment is assumed to have 14 degrees of freedom, A matrix progression
procedure is used in solving the problem. Unlike the folded plate method,
the finite segment method has the advantage that it can be applied to a
structure with arbitrary boundary conditions at its extreme ends. The finite
segment lengths may be varied along the span as desired, Imposed loadings
or displacements may be specified at any point and interior diaphragm supports
may be used at sections between the two ends of the bridge. The method has
the disadvantage that it is necessary in its application to use the approxi-
mations of the ordinary theory as opposed to the more exact elasticity

theory used in the folded plate method,



The third approach, hereafter specified as the "finite element method",
ig based on satisfying as closely as possible the assumptions of the elastic-
ity theory for folded plates. This approach will be described in detail in
Chapter 4. The basic structural element used is obtained by dividing each
plate element transversely as well as longitudinally into an assemblage of
smaller rectangular finite elements. Element stiffness matrices are developed
based on 24 degrees of freedom for each element. These degrees of freedom
are related to six nodal point displacements, three translational and three
rotational, at each of the four corners of the rectangular finite element.

A direct stiffness solution is used in which the initial objective is to find
all of the unknown nodal point displacements and forces. Once these are known
the internal element forces and moments may then be determined. This method
is perhaps the most versatile of those presently available, It can be used
for arbitrary loadings and boundary conditions. It also can treat the cases
of varying dimensional and material properties throughout the structure, as
well as the cases of cutouts in the plates. It has the disadvantage that the
sizes of the matrices involved in the solution are much larger than by the
finite segment method which uses the width of the plate as the width of the
segment., Thus computer storage capacity and times required for solution
become limiting criteria with respect to the size of the problem that can

be treated, In addition; while both the folded plate method and the finite
element method are based on elasticity theory, the first approach treats

the structure as a continuum while the latter approximates it as an assemblage
of finite elements and its accuracy is dependent on the fineness of mesh used
in subdividing the structure.

Each of the three methods of analysis described above were used to

write general computer programs for continuous box girder bridges. Basic
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input consists of the overall length of the structure; boundary conditions

at the ends and ail interior support points: geometry and material properties
of the structural elements and their interconnections; and the loading condi-
tions. Final output from the programs includes joint displacements, reac-
tions and the internal forces, moments and displacements at selected points
in the structure. A detailed comparison of the results obtained by the

three methods for the general case of a 3-cell box girder bridge under an
eccentric concentrated load is given in Chapter 5,

In order to evaluate the effect of continuity on the load distribution
in box girder bridges a total of 23 cases were studied using the computer
programs developed, The results of these parameter studies are presented
in Chapter 6. A 3-cell and a 6-cell cross-section were selected as the two
basic bridge types for the parameter study. A single span of 60 feet was
analyzed with three different sets of end conditions assumed to bracket the
variations found in spans of a continuocus bridge. End conditions treated
were simple-simple, fixed-fixed, and fixed-simple. Two loading conditions
were used involving a single unit load placed at midspan first, at a central
lateral position and second, at an extreme eccentric lateral position over

an exterior web.



2. FOLDED PLATE METHOD OF ANALYSIS

2.1 Introduction

{a)

(b)

(e)

{f)

Scordelis [1] and by Lo [14] and will only be briefly reviewed here

loads. For these support conditions it permits an

This method has been described in detail in the initial report by

respect to its application to continuous box girder bridges.

The basic assumptions used are as follows:

Each plate of the box girder is rectangular, of uniform
thickness and is made of an elastic isotropic and homo-
geneous material,

The relation between forces and deformations is linear,
so that superposition is valid.

The structure is simply supported at its extreme ends.
Transverse diaphragms at the end and interior supports
are infinitely rigid in their own plane, but perfectly
flexible normal to their own plane.

fhe stresses and displacements in each plate element due
to loads normal to the plate (slab action} are determined
by means of the classical thin plate bending theory
applied to plates supported along all four edges.

The stresses and displacements in each plate element due
to loads in the plane of the plate (membrane action) are

determined by means of elasticity equations defining the

plane stress problem,

This method is ideally suited to continuous box girder bridges which
have simple supports at the two ends since a harmonic analysis using Fourier

series can be used to analyze bridges under both concentrated and distributed

with

"exact solution' within
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the assumptions of the elasticity theory and thus it may be used as a
standard of comparison for other more general methods based on simplifying,

but reasonable assumptions.

2,2 General Description of the Method

A force method of analysis is used which is similar in concept to that
used to analyze a continuous beam, Fig. 3. A primary structure is selected,
Fig. 3a, in which the redundants X are taken as the reaction forces at the
interior supports. Since a rigid transverse diaphragm is assumed to exist
at the interior support, the displacements and rotations in the plane of the
diaphragm of all points on this cross section of the bridge should be zero
under the influence of the external load P and the redundant forces X,

The redundant forces X are represented by a set of three joint forces
at each longitudinal joint, Fig, 3e, consisting of vertical, horizontal and
rotational components in the plane of the transverse diaphragm and a set of
four plate forces for each plate, Fig. 3f, consisting of distributed normal
and tangential forces having triangular variations between the two longi~
tudinal edges of the plate, The 3-cell box girder continuous over one interior
support which is shown in Fig., 3 has 8 longitudinal joints and 10 plate ele-
ments and thus would have a total of (8 x 3) + (10 x 4) = 64 redundants. TFor
two interior supports, therefore a 3-span continuous bridge, the number of
redundants would double., All of the redundant forces are assumed to be
uniformly distributed in the longitudinal span direction over a length
equal to the transverse diaphragm thickness specified at the interior support,
The condition of zero displacement of the entire cross—section at the interior
support is closely approximated by requiring that the displacements be zeroc
on this cross—-section at each of the longitudinal joints in the vertical,
horizontal, and rotational directions and at the third points between joints

in directions normal and tangential to the plane of each plate,



The analysis is carried out in the following sequence of steps:
1., With the redundants set equal to zero, Fig, 3b, the structure is
analyzed under the given external loading P. Because of the
simple supports at the two ends a harmonic analysis using a
direct stiffness solution of the folded plate method by the
elasticity theory [1] [147] may be used to determine displace-
ments at any desired points on the bridge. A displacement
vector is found for this case which defines the displacements

at the points where the redundants are to act.

/51ﬁ

{61 = ¢

kéc S

For the bridge shown in Fig. 3, there would be 64 displacement

components to evaluate for this vector.

2. The structure is then analyzed for unit values of each of the
| redundant forces X, Fig. 3c, and the corresponding flexibility

matrix is formed,

N\ : F X
,61 Fll F12 1c 1
62 FZl F22 FZC XZ
4 =
F X
6@ % cl c2 Fccd . C

or simply:

(2.1

(2,2)

13
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{81 = [F] {x] (2. 2a)

For the bridge shown in Fig. 3 the flexibility matrix would have
a size of 64 x 64,

3. The total displacement under the superposition of the external
loading P and the redundants X must be zero at each of the

points where the redundants exist,
(67 = {83, + 8] =0 (2.3)
4. Substituting Eq, (2.2a) into (2,3) the redundants may be found,

fol, + [FI1 {x} =0
(2.4)
(x} = - [F17 {6}

5. The simply supported structure can now be analyzed, subjected
to the known loading and the known redundant forces, to deter-
mine the final stresses and displacements in the continuous
box girder bridge,

The above description merely outlines the basic conceptual steps in the
solution. The detailed analysis is quite complex [1] [147] and requires a
large amount of computation which can only be carried out with the aid of a
digital computer,.

2,3 Computer Program - MUPDI

A general computer program has been written to perform the analysis by
the folded plate method described above, The program, entitled MUPDI, was

written in FORTRAN IV language for the IBM 7094 computer. Detailed



deScriptions* of the input, output, sign conventions, and limitations and
restrictions of this program are given in the initial report [17.
A brief description of the program is given below
(a) Input Data

1. Geometry and dimensions of the structure in terms of
the span, number of plates, joints, and interior
supports.

2. Dimensions and material properties of each plate
element,

3. Magnitudes and locations of externally applied loads.

4. Location and thickness of each interior support
diaphragm and indices defining restraints correspond-
ing to redundants selected forveach joint or plate
element,

5. Desired locations for final results 1in output,

(b) Output Data

1. The complete input data is properly labelled and
printed as a check.

2, The calculated redundant forces at the interior
support for each joint and plate element are printed.

3. Resulting horizontal, vertical, rotational and
logitudinal joint displacements are given at

specified locations along the span.

*These detailed descriptions together with the FORTRAN listing for the pro-
gram have been placed on file with the American Concrete Institute and may
be obtained at the cost of reproduction and handling by writing to the
American Concrete Institute, P.0., Box 4754, Redford Station, Detroit,
Michigan 48219,

16



(c)

17

4. TFor each plate element all internal forces, moments
and displacements are printed for each transverse
section specified across the plate width and at the
x~coordinates along the plate length,

Limitations, Restrictions and Remarks

1. The maximum number of plate elements and longitudinal
Joints are 30 and 20 respectively,

2, Up to 100 non-zero terms of the appropriate Fourier
series may be used to express the loads,

3. The maximum absolute difference between the two
longitudinal joint numbers of any plate element
is 4,

4. The maximum number of interior diaphragm supports along
the span is 4,

5. The total number of redundant forces existing at the

support points must not exceed 120,
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3. FINITE SEGMENT METHOD OF ANALYSIS

3.1 Introduction

The approach described in the preceding chapter is limited to box
girder bridges simply supported at the two ends., For a system with other
end conditions the analysis is not applicable., In this chapter a finite
segment method of analysis will be developed and described which can be appl ied
to gtructures with arbitrary boundary conditions at the two ends, The basic
structural element used in this method is a finite segment which is formed by
dividing each plate element into a finite number of segments longitudinally
(Fig. 4). These finite segments each have a width equal to the transverse
distance between the longitudinal joints of the plate., In the analysis, the
finlite segments are first interconnected transversely at one end of the
bridge to form a full transverse segment of the entire bridge cross-section
(Fig. 4b). The solution proceeds by a segment progression method along the
span to connect one transverse segment to the next until the far end of the
bridge is reached., The boundary conditions at the two ends of the bridge
provide sufficient equations to determine all the unknowns needed in the
solution of the problem,

The basic assumptions used are as follows:

(a) Each finite segment is rectangular, of uniform thickness
and is made of an elastic, isotropic and homogeneous
material,

(b) The relation between forces and deformations is linear,

so that superposition is valid.
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(c) The stresses and displacements in each finite segment
due to loads normal to the plate (slab action) are
determined by the behavior of transverse one way slab
strips spanning between longitudinal joints. Thus,
torsional and longitudinal slab moments are neglected.

(d) The stresses and displacements in each finite segment
due to loads in the plane of the plate {(membrane
action) are calculated by elementary beam theory
applied to individual finite segments., Thus, the
longitudinal stresses vary linearly over the width of
each segment between joints,

(e) Poisson's ratio is zero.

Assumptions ¢, d and e above are those of the ordinary theory for folded

plates. The approximations involved in these assumptions should be accurate
plate

enough for most box girder bridges since each/generally has a large longi-

tudinal span to transverse width ratio, In the immediate vicinity of a

concentrated load, however, the stresses obtained can only be considered to

be approximate.

3.2 General Description of the Method

The problem to be solved may be stated simply as: given a continuous box
girder bridge subjected to distributed line loads at the longitudinal joints;
find the resulting internal forces, moments and stresses and the joint dis-
placements. Of particular interest are the longitudinal stress distribution
at any transverse section, the membrane shears in each plate and the trans-
verse slab bending moments. It should be noted that only joint loads are
considered and they are assumed to be uniformly distributed over the length

of each segment,



21

If a single finite segment is taken as a free body it is similar to a
rectangular plate on elastic supports along its four sides. The boundary
conditions at the two longitudinal ends of the segment require that continuity
and equilibrium with the next segment along the span or with a support con-~
dition must be satisfied. Along the two longitudinal edges of the segment,
line loads are acting on the edges, These line loads produce both transverse
one way slab bending and also in-plane membrane stresses. At each longi=-
tudinal joint, equilibrium requires that the sum of all the line loads on the
segments connected to the joint must be equal to the externally applied line
load acting on the joint. 1In addition these segments must all have the same
joint displacements to satisfy compatibility.

A typical finite segment taken from the structure is shown in Figs, 5S5a
and 5b with the positive directions of the forces and corresponding displace~
ments shown, At each longitudinal end of the segment, therefore at sections
k-1 and k, there exist three stress resultants: an axial force N, a shear
force Q, and an in-plane bending moment M, The three corresponding dis-
placements at each end are u, v. and V¥ . It is assumed that plane sections
remain plane at each end of the segment when satisfying continuity. Along
the longitudinal edges i and j, plate edge forces, uniformly distributed
along the length of the segment, are assumed to exist. These forces per unit
length of edge are: a membrane shear force T along the edge, a transverse
membrane force P mnormal to the edge, a shear force V normal to the plate,
and a transverse slab moment M about the longitudinal edge (shown as a
vector using the right hand rule), The four corresponding displacements u,

v, w and © are taken at the midpoint of the two ends of the segments. Thus

?

in the solution compatibility conditions with regspect to these displacements
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on the longitudinal joints are satisfied only at the center points of each
segment .,

An inspection of Figs. 5a and 5b indicates that each finite segment has
14 degrees of displacement freedom and 14 corresponding forces. A segment
progression solution based on the transfer matrix method [157] is adopted in
the analysis. This has certain advantages over a direct stiffness solution
for this type of problem which will be discussed in a later section,

A folded plate structure simply supported at the left end, fixed at the
right end, and with one interior support is shown in Fig, 6, To describe
the segment progression solution, consider a segment k between sections k-1
and k taken as a free body from a plate element, This free body is subjected
to the actions, forces and displacements, shown in Figs, 5;‘and 5b., The
actions at section k depend on the actions at sections k-1 and the uni-
formly distributed line loads at the two longitudinal edges i and Jj of
the segment. The magnitudes of the edge line loads are determined so as to
satisfy compatibility and equilibrium conditions of a whole transverse crosg-
section, They can be expressed in terms of the actions of all plate elements
at section k-1 and the externally applied joint loads on segment k, After
the edge line loads are found in these terms, the actions at section k can
then be expressed in terms of the actions at section k-1 and the externally
applied joint loads on this segment. Repeating this procedure for the first
segment at the origin to the last segment at the far end of the structure,
the relation between the actions at the two ends of the structure is obtained,
Where an interior support condition is encountered at a particular section,
proper account is taken of the boundary conditions imposed when passing from
one segment to the next, By satisfying the boundary conditions at the two

ends, sufficient equations are available to determine the unknown actions at
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the two ends and then the final internal forces and displacements can be
found by progressing along the structure once again,

3.3 Derivation of Equations for the Solution of a Single Span Structure

by the Finite Segment Method

A detailed development of the equations necessary for the analysis of a
single span and then a continuous structure are presented in the remainder of
this chapter. The development of these equations is taken from the Ph.D,
dissertation by Lo [14].

3.3.1 Modified Field Matrix for a Beam Segment

From a plate element in Fig. 6, consider a typical segment k, between
sections k-1 and k, which is subjected to the actions at its two ends
shown in Fig. 7. The relation between the actions at the two ends of a beam
segment can be written by a matrix which is called the field matrix [15].
Including the shear effect on the deflection of the beam, the field matrix

is given as.

B - L PR
1 0 0 0 =
[ 0 L "
2 3
-1 -1,
Y -L  =m— === (1~ 0
v Lo 55T gEr R v
2
L L
0 I
! O 1§57 ZET 0 ¥
- (3.1)
M 0 0 0 1 1 0 M
Q 0 0 0 0 1 0 Q
N 00 0 o© 0 1
o Sk L . N k-1
where
1 3 ‘
I =<5 bd, A=bd, L = length of the segment and - SEIK

L2GA
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With Poisson's ratio equal to zero and K = 6/5 for a rectangular section,
L . s 2 2) o

the coefficient R can be simplified to B =(6/5d /L") . The positive

directions of the actions are shown in Fig., 5. The rotation V 1is positive

as the beam rotates counterclockwise., Equation 3.1 can be written in

symbolic form as

Z, =F 7 (3.1a)

The actions Zk at section Kk must be modified if the beam segmeﬁt
is subjected to uniform edge forces, Three force patterns are considered.
They are:

1., Symmetrical longitudinal membrane edge shear forces which will pro-
duce longitudinal extension of the plate,

2, Antisymmetrical transverse membrane edge forces which will produce
both flexural and shear deformations,

3. Antisymmetrical longitudinal membrane edge shear forces which will
produce pure flexural deformation.

These three force patterns and their positive directions are shown
in Figs. .8b, 8c and 8d:. Assuming all the actions (forces and displacements)
at section k-1 are zero, the actions at section k due to these distributed
edge forces can be determined using ordinary beam theory. They are summarized

in the following matrix equations

o2
N -1,
= 9 0
(u I
3 4
1.°d L
0 =2 — (1~
v ET Torr (1728
P
T i
% ®
et O _—_“"" - g 3°2
¥ oE1  3EI T (3.2)
14
M o -Ld 1.2
]
Q 0 0 -1,
N, 2L 0 0 |
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Note that the forces

Combining Egs,

actions at section

following form:

u 1 0 0
v 0 1 -1
; v 0 0 1
/ >._
N
M 0 0 0
Q 0 0 0
N 0 0 0
LUk L
3.3.2

T,

k-1

"

T

and P’

(3.1) and (3.2),
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are forces per unit length.

the actiong at section

k due to

and segment edge forces may be written in the

N

-L
AE

-2L

0 0

3 4
Ld L
6EL 1215:1(l 2p)

2 3
-L°d -L ﬁTT)
2EI 3EI

"

1a -1.? p’
0 -2L

0 0 B

(3.3)

Stiffness Matrix for a Beam Segment in Relative Coordinate System:

Considering the transverse action of a finite segment,

stiffness and the plate stiffness are independent of each other.

to Fig. 9,

tion equations,

N
M, 4
1
M, 2
¢ 7
v. | |era
1
v.| |6/
\.J/

or symbolically,

6/d

6/d

6/d

6/d

12/d°

12/d°

(s} =

6/d

6/d

12/a°

12/4° ]

k1 fv_}

—

I jea)
joN —
n

the slab

Referring

the slab stiffness matrix may be determined from the slope deflec-

(3.4)

(3.4a)
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In Eq. (8.4), IS is the moment inertia of a slab strip of unit width and
is equal to b3/12. M and V are the transverse moment and normal shear
per unit width,

The plate stiffness matrix of a beam segment is defined by the rela-
tion of the uniform edge forces to the edge displacements at center of the
edges under the condition that the actions Zk—l at section k-1 are zero.
The stiffness matrix can be found by first referring to the symmetrical and

antisymmetrical force patterns, From Eq. (3.2) the displacements at center

of segment due to edge forces are given as

- -2
0 L ()
AE
-3 -4
- L d L — p
<v = |0 EH B ({1 > (3.5)
-2 -3
? 0 ~-L d -1 P//
~ 2EI 3EI J N7

in which

- 1 -
LZEL’ and B = 4B

The bar refers to quantities at center of the segment., An additional force
pattern which corresponds to the transverse extension of the plate segment
must be included. This force pattern is shown in Fig. 8a . The relation
7

of the transverse extension v’ (at each edge) to the symmetrical force P

is given by the following equation:
(3.6)

Now, Egs. (3.5) and (3.6) can be combined as
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=) ;2 ,
—_— 0 0 T "
= 0
/ d /
el 0 P P
v 0 SED 0 j |
- - a = _ - i "
v 0 O &Er  TmTd® % T
=2 -3 |
- -Ld -1 "
0 0 —— e P
Y i 2E1 3EI )
The inversion of the matrix gives,
ST -—'A2E 0 0 0 C
L
p’ 0 2EDb 0 0 v’
d
- ) ¢ (3.8)
" 0 o 24?1 — 6(1—?5)1:3; s
(1+6B)dL (1+6B) dL
P’ 0 0 ’B?Eil 'lefS .7
(L+68)L (1+6B)L"

-

Eq. (3.8) can be transformed to yield the plate stiffness matrix corresponding
to the segment edge forces and displacements as defined in Figs. 5 and 9,

Note that the sign convention is such that the longitudinal membrane forces

T and the corresponding longitudinal edge displacements u are chosen
positive in opposite directions., This is done in order to obtain a symmetric

plate stiffness matrix. The two transformation matrix equations will be

g ) Nl 1 07 T
v 2 32 0 Yy
v’ 0 0 —12- —12— u.
- < J (3.9)
- 1 -1
v 0 0 E 5 vi
- 1 -1




Substitute Eq.

4
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P

The plate stiffness matrix may be obtained by substituting Eq.

Eq.

or in symbolic

Egs.

matrix,
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(3.10),

(3.4) and

ST -1 0 -1 oM 1’
LT, -1 0 1 0 p’
S
/ = (3.10)
I p. 0 1 0 1 7"
; 1
I
[\pj ) e 1 0 -1 ] LP
(3.9) into Eq. (3.8),
AE AE h
;——é —:-2— 0 0 LN
oL oL *
0 0 ég é% u .
d d < J
6(1-—2@)212 —6(1—28)2E; 12E1 _ -12E1 _ v (3.11)
(1+6B)d“L (1+6R)d"L (1+68)dL (1+6R)dL
-12E1 12E1 -18EI 18EI
; V.
= -3 - -3 = =4 = =4 I
(1+6B)dL (1+6R) dL (1+68)L (1+6Q)L

(3.11) into

r 48 AE I .
(1+68) I 1)
(1428 aB\/ 48 aE
\(1565) -2/\(1+68) —2> Sym. b
[ -AEd AEd AE _ 18EI y >
\( — = -3 2 = -4 i

1+68)L (l+GB)L d (1+68)L

/ AEd -AEd AE 18EI AE 18EI

= PN | - Sy | RN
k1+6B)L (1+GB)L d (1+6B)L /\d (1+6B) L
8 g
(3.12)
form,
{5} = [k, tv,] (3.12a)

(3.12) can be combined to give the total segment stiffness
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= [. w\ (3.13)
S 0 k v
p P P

It should again be emphasized that Eq. (3.13) relates the uniformly distri-

buted force quantities M, V, P and T at each longitudinal edge, Fig. 5a,
to the corresponding displacement quantities 9, w, v and u at the center
point of each longitudinal edge, Fig. 5b, under the special condition that

the actions (forces and displacements) Zk—l at section k-1 are zero,

3.3.3 Fixed Joint Forces due to Actions at Section k-1

The fixed joint forces represent the uniform joint forces required to
restrain the longitudinal edges of a segment against any displacements at
the center point. The fixed joint forces of a beam segment due to actions
at section k-1 can be obtained as the following. From Eq. (3.3) the dis-

placements at center of the segment are given as

— any i

5 0 L 4’ 0 0 )
u 1 0 0 O B AR i

-9 -3 -3
- e -L = L d

o - e L —— - 0 Z 0 ——

v 0 1 L v HFrte {Z, 41+ 6EI

_ -9 -2
— L L -L,d

L L 0 0 —
¥ 00 1 EI 2RI 2EI

J s

(3;14)

The displacements are set to zero, and the joint forces are solved in terms

of the actions Zk-l’ then

[-AE -1 |
(T/\ —-—-—2—- 0 0 0 =

i L
4 T ? = =10 24%1 — '6(3f26321 628 {kal} (3.15)
(1+6B)dL"  (1468)dL (1+68)dL

\PﬁzF o —36%1_4 24?1~3 6~ — 0

_ (1+68)L (1+6B)L (1+6R)L -



33

The subscript F refers to fixed joint forces. Substitute the above equa-

tion with P’ = 0 into Eq. (3.10),

r-' — —
AF ~24EI 6 (3+2B)EI 6(1+28) (1+28) 1
(T3 -2 - 3 - D - = i
L (1+6R)dL (1+68)dL (L+6B)dL  (1L+68)d
AE 24E1 -6 (3+2B)EI  -6(1+28) -(1+28) 1
T -2 - -3 = <2 _ = L {Zk—l}
J (1+68)dL”  (1+6B)dL (1+6B)dL  (1+6B)d
< = _ (3.16)
- 0 -3?EE4 .24131”3 %.~2 —6? o
* (1+6B)L (1+6B)L (1+6B)L"  (1+6B)L
y o 36?1_4 —24?1_3 —6_ - 68_ _
JF (1+6B)L-  (1+6B)L (1+6BL° (L+6B)L |
or symbolically,
{sp}F = [C] {zk_l} (3.16a)

3.3.4 Fixed Joint Solution for Actions Zk in Terms of Actions Zk—l

Substituting Eq. (3.15) into Eq. (3.3) with the identities L = 1/2 L

and é = 48, the fixed joint solution for actions % is given by the follow-

Kk
ing equation:
{23y = 1] {2} (3.17)
in which
_.L"
[~ =
-3 0 0 0 0 T
. - . -2 = = 3
17-188 (-5+10@)L  (-1+4®L° B(3-2B)L o
o (1+68) (1+68) 2(1+6B)EI 8(1+6B)EI
-96  29-188 (3-6B) L - 28L° 5
O T+6BT (1+68) (1+6MEI  (16P)EL
-384EI 24 (5-28)EI (13-18B) -8BL
[H] = 0 — = , 0 (3.17a)
(1+6B)L2 (1+6B)L (1+68) (1+68)
o CLl152EI 384E1 48 _ (1-18) o
1L epr?  (1HEPL (1+68)
“8AE 0 0 0 0 -3
L L
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3.3.5 Actions Zk due to Final Joint Displacements at Center of the Segment

Letting v be the final joint displacements at center of the segment ,
1Y

Eq. (3.11) gives the corresponding edge forces. Substituting Eq. (3.11) with

P’ =0 into Eg. (3.2) and simplifying, the following equation is found:

ruY 2 2 0 0 -
y -4 (1+8)L 4(1+B)L -8+1 28 8-128
(1+68)d (1+6B)d (1+6B) (1+6R) 7a )
i
v (20+248)  -(204+24B) 48 -48
(1+68)d (1+68)d (1+6B)L  (1+6R)L U,
< >= - - < ? (3.18)
v (72+448B)EI -(72+48B)ET _192EI ~192E1 v
(1+6B)dL (1L+68)dL (1+6E)L2 (1+65)L2 i
9 192E1 ~192E1 576EI -576E1 LVJ*
(1+68)aL?  (146B)an> (1+6B)L° (1+66)L3
4AF, 4AE
N U T 0 o J
or in symbolic form,
(2,3, = 91 (v} (3.182)

3.3.8 Fixed Coordinate System and Direct Stiffness Method for One Segment

of the Structure:

A fixed coordinate system for the joint and segment edge forces and
displacements is defined and shown in Figs. 10 and 11,

A displacement transformation matrix A which relates the segment
edge displacements in the relative coordinate system to those in the fixed
coordinate system may be readily written in terms of the geometry of cross-
section. The matrix equations for the solutions of the Jjoint displacements
due to joint loads for one transverse segment of the structure are essentially

the same as those used in the folded plate method described in Chapter 2 and
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a) EDGE FORCES b) EDGE DISPLACEMENTS

FIG.©  POSITIVE SEGMENT EDGE FORCES AND DISPLACEMENTS IN
THE RELATIVE COORDINATE SYSTEM

T T T 2"

a) POSITIVE JOINT FORCES b) POSITIVE JOINT DISPLACEMENTS

FIG. 10  POSITIVE JOINT FORCES AND DISPLACEMENTS IN THE
FIXED COORDINATE SYSTEM

Shl —% ' Vhi 0“
Sy Vui
a) EDGE FORCES b) EDGE DISPLACEMENTS
FIG. 11 POSITIVE SEGMENT EDGE FORCES AND DISPLACEMENTS

IN THE FIXED COORDINATE SYSTEM
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the initial report [1], and thus they will not be repeated here. However,
it must be pointed out that in finding the joint displacements in the pre-
sent finite segment method the actions at section k-1 are assumed to be
zero,

3.3.7 Boundary Conditions at Two Ends of the Structure and Set Up of Actions

Vector at the Origin.

There are 6 actions at each end of a plate element. They are 3 dis-
placements and 3 forces as shown in Eq. (3.1) and for each plate end 3
actions are known while the other 3 are unknowns, Whenever a force is known ,
the corresponding displacement is unknown and vice versa. In matrix form,

this can be written as

Z} =
(z} = (L3 {2}, + (2}, (3.19)
6x1 6x3 3x1 6x1
where {Z}unk has the three unknown actions and {Z}kn has three known
actions (can be zeros) and three zeros for the unknown actions. [L] 1is a

coefficient matrix in which each column contains a single 1 and the rest of
the elements are zeros,
If there are m plate elements in the structure, the actions of the

structure at the origin can be written as

10 B ) F 1Y £ 1Y
Zl Ll Zl Zl
O o] O
2 2
Zi L2 ZO Z
< - B < > + J © > (3.20)
m m m m
Z L Z Z
\"o ./ i ] N e Lo/knu

or

{Zz} = [1'] {Zz}un + {ZZ}knn (3.20a)

k.,
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The superscripts, 1 . . . m, refer to element numbers.

3.3.8 Sequence of Matrix Operations

1. The actions of the structure at the origin are formed as given in
Eq. (3.20a).

2. The fixed joint forces for segment one are established. Equation
(3.16a) gives the fixed joint forces for one element, and for the whole

structure the equation can be enlarged to

r s 7
oY) .l C1 Y
0]
2 2 2
S C Z

<:p Y = 3 <:O ) (3.21)

m m m

S C Z
\\p JF - - Co
The superscripts, 1 . . . m, refer to the element numbers of the structure,

Substitute Eq. (3.20) into the above equation and carry out the matrix

multiplication, the following matrix equation is obtained:

rst M TN
P
S e N
() ; )
. - . . 3.22
? {Zo}unk. * < ( )
) ) 3mx1 ’
m m ~m
S M
\p)F _MJ . J
4dmx1 4mx 3m 4mx1

For each element the joint forces have to be transformed into the fixed
coordinate system and the joint forces corresponding to the same joint must
be summed up. Using the transpose of the displacement transformation matrix

A, the fixed joint forces SF in the fixed coordinate system for an ele-

ment can be written as
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(5, = agt {51, (3.23)

Assuming no normal slab loads exist between two joints of the element then,

i1
o

{s 1q (3.24)

and Eq. (3.23) becomes

= [A]T (3.25)

where 1 and j are the two joint numbers of the element. Equation (3.22)

can be separated into m submatrix equations of the form

1 1 T ~1
{Sp} = [M ] {Zo}unk. + MY, etc. (3.26)
4x1 4x3m 3mxl 4x1

Substituting Eq. (3,26) into Eq. (3.25),

5t
' 1 T ~1
= Z . .
. (N7 o}unk, + V1, etc (3.27)
S,
JJF
8x1 8x3m 3mxl 8x1

The fixed joint forces RF of the whole transverse segment are obtained by

the summation of all joint forces from each element,

(™ =5
Rl Sl
-7
R S (3.28)
2 2
(Rl = <, > = < . >
4dnx1
R st

\.n_Jp N n oS
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here n represents the total number of joints and the T sign means the
sum over all elements connecting the same joint. Since the fixed joint
forces are in terms of the unknown actions at origin, Eq. (3.28) finally

will be written in the following form:

(Rl = (8] {2}, + (F]

4nxl 4nx3m 3mx1l 4dnxl

(3.29)

3. Let RA be the external applied joint forces, then the final

joint forces R are given as
fr} = {r}, - (R}, (3.30)

or using Eq. (3,29),

~

{R} = - [E] {2z} + [H)

o'unk, (3.31)

A

where
Ry, = fr}, - (B

4, Joint displacements at center of the transverse segment are found
using a recursive procedure to solve the equations similar to that used in
the folded plate method,  However, the joint forces are not just a vector
now but are given by Eq. (3.31) and the final joint displacements are in

terms of the actions at origin and given as

G
T %7 1Y
r G G2
2 > 2 T
. = . 3.3
< {Zo3unk. * ( 2)
) 3mx1
L».rn./ L,_Gn...l \Gn./
4dnx1 4dnx 3m 4nxl

or
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T
o}unk.

fr} = [6] {z + {§} (3.32a)

5. After the joint displacements are solved, the actions at the next
section can be determined by two contributions: a) the fixed joint solution
and b) solution due to final joint displacements,

Referring to Eq. (3.17), the fixed joint solution can be written

as
1N 1 7
le H FZ0N
2
Zf H2 ZO
: > = < . > (3.33)
m m K m'
k.leF L H B Zo

Equation (3.18) gives the actions due to final Jjoint displacements
in relative coordinate system, In order to calculate the actions at next
section, the joilnt displacements given in Eq, (3.32) must be transformed into
the relative coordinate system. From Eq. (3.32), a submatrix equation for

the two joint displacements of an element can be rewritten as

o — o~

v r, G, G,

1 1 1 T 1
) = = z ) " (3.34)
v r G o"unk, G

J J J J

These joint displacements can be transformed to the relative coordinate sys-

tem by the displacement transformation matrix A,

= [A] (3.35)

Substituting Eq. (3.34) into Eq. (3.35) the joint displacements vp can be

represented by
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v )= [B] (7)), + @ (3.36)

4x1 4x3m 3mxl 3mx1

For all elements Eq. (3.36) becomes

oot ™

fvl\ F'Bl"} Bl

p

V2 B2 ,}\3,2

P T

= 7 3.3

< . > . { o}unk. +< . ( 7)

m 1 ~M

v B B

From Eq. (3.18), the actions due to joint displacements are

—
f”zi'\ 1 T ~

J (v

Do
]
C oo T

<:1 > = 3 <: > (3.38)

m " m m
Z J v
1y _ B \.pJ

The final actions at section 1 are obtained by the combination of Eqs. (3.33)

and (3, 38),

~N /Z

el S

m m
\Zy 20 \B g
— — — =
Hl Jl Fvl\
P
2 2 2
H T J
= {ZO} + < vp > (3.39)
- 4o o
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Substituting Eqs. (3.20) and (3.37) into the above equation and simplifying,

r l\
Zl
ZZ
1 T ~.
. = D .
< ? (o, ] {Zo}unk. + {p1 (3,40)
) 6mx3m 3mxl 6mx1
m
KZ:LJ

6. Repeat steps 2 through 5 for the second segment and then for all
segments until the last one. The following changes have to be made for

segment number k:

T
(a) ZZ and ZI are changed to Zk-l and ZE respectively.

(b) From the preceding segment, Eq. (3.40) should be written as

+ D

T , T
(71} = D1 12 k-

o’unk, l} (3.40a)

This equation, (3.40a), is used for substitution into Egs. (3.21)
and (3,39) instead of Eq, (3.20).

7, For the last segment e, Eq. (3,40) becomes

T T ~
7 = Z
{ e} [De] { o}unk. *+ {De} (3.41)
6mx1 6mx3m 3mxl 6mx1
The actions Z: at end of the structure have 3m known and 3m unknown

actions, Considering the known actions of Zg, Eq. (3,41) can be con-

densed to

T Yl
Z = D Z D 3.42
{ e}kn. [ ] { o}unk, + {D1 (3.42)
3mx1 Smx3m  3mxl 3mx1

Solving Eq. (3.42) for the unknown actions at the origin,

{zZ}unk' - 17* <{Ze}kn. - {B’}> (3.43)
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8. TFinal internal forces and displacements at the center of each
segment are calculated by progressing over the structure once again after
T
the actions at the origin are known as ZO

3.3.9 Equations for Internal Forces and Displacements at Center of Each

Segment
After the unknown actions at the origin are found from Eq. (3.43), the

actions at section k-1 are calculated by Eq. (3.40a),
T T ~
Zy Y= 10z} + B} (3.44)

and the final joint displacements at center of segment k can be obtained

using Eq. (3.32a),
T
{r}, = [6], {2} + (@, (3.45)

For any particular element between joints i and Jj, the joint dis-
placements ;i and ;j can be taken out from the displacement vector r

and the edge displacements in the relative coordinate system are given by

Eq. (3.35),

= [A] (3.35)
p J

From Eq. (3.9) the internal beam displacements at center of segment are

- Fl 1 b ST
= = 0 o0
v 2 32 Yy
- 1 -1 u,
v = §] 0 3 = < J > (3.486)
A
Y % e L
. d - v

A displacement vector ;d defined as the difference between the

final edge displacements and the edge displacements carried over from the

actions at section k-1 can be calculated by



e 'l - _I;‘_‘-'
ud\ 1 0 O 0 0 NG
£? I*a )
v .1 = = v - L = - - 0
gt =(vy < M 01 2E1  BEIL
- -2
- L L
— —_— 0
Ya ¥ N 2E1 .
From Eq. (3.8) the final edge forces are.
() r§?§~ 0 0 ()
L o
" > _ 0 24EI~3 6(1-?6)?; v
< (1+6B)dL (1+6R)dL <
4 ~36E1 -12E1
P 0 -1 = =3 Ya
(1+6B8)L (1+6 L™ _ <

(z, )
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(3.47)

(3.48)

The internal beam forces at center of the segment can be determined by two

contributions:

obtained by Eq. (3.,48).
M 1 L
Q =|0 1
center of 0
segment
Substituting Eq. (3.48)
() B
Q = 0
\N /center of °

segment

(3.49)

1) actions at section k-1 and 2) the final edge forces
Therefore, referring to Eq. (3.3),
. - ~2 ’
0 M 0 -Ld -L T
0 Q +] 0 0 -2L T
— - P//
1 W, 2L 0 0
into Eq., (3.49),
P S i 12E1 (6+12B)EI)
L0 M 0 - -2 (1+6B)L
(1+6R)L
7 24E1
1 0 < Q + 0 2?1_3 —
(1+6R)L~ (1+6B)L
0 1 N E 0 0
N | E%u
- J

(3.50)
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The edge forces corresponding to one-way slab bending are given by

Eq. (3.4a),

Equation (3.48) can be extended to include

of the plate,

14

P J

in which.

(s} = k1 (v }

-
0 0
0 0
24E1 6 (1-2B)EI
- -3 - -
(1+6B)dL”>  (146B)dL>
-36E1 ~-12E1
= -4 = -3
(1+6B)L (1+6B8)L
/ 1
vi= g (v, + VJ)

(3.42)

the transverse extension

Y

(3.51)

d~

The edge forces corresponding to ih-plane stress problem can be obtained by

substituting Eq.

(T
1

(3.51) into Eq. (3.10),
— i
-24F1 -6 (1-2B)EI
0 I -
(1+6B)dL (1+68)dL
24E1 6(1-2B)EI
0 —. -3 - =2
(1+68)dL (1+6R)dL
2Eb  -36EI -12ET
4 awmit s
2ED 36E1 12ET
4 sepit (1+68)L°

> (3.52)
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3.4 Solution for a Continuous Cellular Folded Plate Structure

If the folded plate structure is continuous over interior rigid columns
connected at the joints only, the matrix equations listed in preceding section
can be used directly with the following assumptions. First of all, the
column reactions are idealized as uniformly distributed over the column length
in longitudinal direction and restraint displacements are considered at the
center point only. A segment whose length in longitudinal direction equals
the length of the column support is chosen. The problem is solved if the
restrained zero displacements are specified when solving the unknown joint
displacements of that segment under step 4 described earlier in Section 3.3.8,

For the case in which interior rigid diaphragms exist, the following
assumptions are made:

1. Since each plate element is treated as a longitudinal beam, the
restraint conditions for each plate element are in terms of 3 displace~-
ments: longitudinal axial displacement, transverse beam displacement,
and longitudinal beam rotation,

2, The restraint forces are concentrated line forces at the section
of the diaphragm. Corresponding to the 3 beam displacements the 3 forces
are: longitudinal axial force, transverse beam shear, and longitudinal

beam moment,

3. There are no restraints assumed at the longitudinal joints of the
folded plate structure for this case.

For the interior rigid diaphragm, some plate elements are restrained
against displacement. If a displacement action is zero at the diaphragm, a
reaction must exist and the corresponding force action is discontinuous,
After the interior diaphragm a new set of unknown actions is chosen instead
of the unknowns at the origin of the structure. The new set of unknowns
contains the diaphragm reactions with those displacement actions which are
not restrained by the diaphragm.

A structure with one interior rigid diaphragm is used as illustration
(Fig. 12). Using equations developed in last section, the actions at section

e (interior diaphragm) of span I are given by Eq. (3.41).
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T T
{z,}=1[p 3 {z} .+ {5} (3.41)

The complete action vector Zz can be rearranged into displacement and

force sub-vectors d and f, so Eq., (3.41) can be written as

d T 2

or,

{a} = [a] {2z}, + 1%) (3.532)
£} = [b] {2} + B} (3.53Db)

o’unk.

in which d and f @represent all the displacement and force actions at
section e, vrespectively,
The force actions corresponding to zero displacements at the interior

diaphragm are first calculated. Setting Eq. (3.53a) to zero,

T -1 ~
{Zo}unk. = - [a] a3 (3.54)
and substitute into Eq. (3.53b),
M}, = - [b] [a] (T} + (%) (3.55)

~

fd-O represent the force actions at section e due to loads at span I assum-—

ing the structure is fixed at e,
Neglecting the surface loading the relation between the displacement and
force actions, dO and fo, at section e and the unknown actions at origin

is given by (refer to Eq. (3.53)),

(3.56)

or
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fagt = [a] {szunk, (3.56a)
T
fE =11 {20 0 (3.56b)

Based on Eq. (3.56), do and fo are not independent of each other, they

are related by the following equation:

{£} = [b] [a] " {a ) (3.57)

(e}

or

(r.} = [e] {a_) (3.572)
where
[c] = [b] [a] "

Let {d}

funk be the unknown displacement actions at section e, then

the complete actions at section e can be represented by the following

matrix equation:

41 = 37 fal,, - (2] (3.58)
' fd:O

Due to the restraint conditions at the diaphragm, Eq. (3.58) must be

modified in the following way. If a displacement action di in {d}unk

is zero, the corresponding reaction, defined as Ri’ is an unknown and di

. th

in the vector {d} will be replaced by Ri' The corresponding 1 (i

unk,

. th . . . . .
row, i column) in the unit matrix will become zero, and the corresponding
. th . . . . . .
i column vector in matrix ¢ is substituted by a vector containing 1 in

. th . o .

the i row and zeros in the other elements, After all modifications due to
restraints have been performed, the equation can be rearranged into the order

corresponding to the actions of each plate element. It can be represented

as .
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T T, ¢ T ~T
2y = L1z} 0+ (T (3.59)

which is similar to Eq. (3.20a) and the equations developed in the last
section can be used for calculations while progressing along the segments in

T
} now contains the unknown displacements of the

I. that VA
span I Note tha { e unk.

plate elements and unknown reactions from the rigid diaphragm at the section
of the support,
Due to the given boundary conditions at the far end of the folded plate

structure, {ZT} is first solved following the equations in the preced-

e unk,

ing section., In order to obtain the solution for {ZT} the displace-

o'unk,’
ment vector d at section e 1is formed and {Zz}unk is determined from
the solution of Eq. (3.53a). Therefore,
T -1 ~ ‘
{z_} = [a] " ({a} - {ZD (3.60)

o’unk,

and the problem is solved,

It should be mentioned that for a large folded plate system, the coeffi-
cients relating the actions at the two ends of the structure become very
sensitive and the solution is not accurate. To avoid this sensitivity, the
displacement actions at certain sections within the structure are used as
intermediate unknowns while progressing along the system. Such a section is
termed as a stopover., At each stopover, Eq. (3.58) is formed and then the
rows of the matrices are rearranged in an order according to the actions of

each element as

(2" = ' a1, + @0 (3.61)

So the displacements at the stopover are used as unknown actions for the
next group of segments until another stopover, interior diaphragm, or the

far end of the structure is reached. A back substitution procedure using



equations such as Eq. (3.60) is needed to solve for all the unknown displace-
ments at a stopover, as well as the unknowns at any interior diaphragm and

finally the unknown actions at the origin,

3.5 Direct Stiffness Method Using Complete Segment Stiffness Matrix

Based on the assumptions and simplifications mentioned in Section 3.1,
each segment may be treated as a finite element of the folded plate structure
and direct stiffness method can be used. The direct stiffness method for
structural analysis is well known, and in fact it has been utilized in the
folded plate method described in Chapter 2, Only a brief description of
the procedure is given here,

1. The structure is divided longitudinally into a finite number of
segments.

2, The segment stiffness matrix based on relative or segment coordinate
system is calcul ated.

3. The segment stiffness matrix is transformed from the relative
coordinate system to a fixed coordinate system of the structure.

4. The total stiffness matrix of the structure is obtained by assembling
the segment stiffness matrices. This stiffness matrix relates the external
forces to the corresponding displacements of the entire structure.

5. The unknown displacements of the structure are solved.

6. The segment internal forces and displacements are calculated.

The most important step is the determination of the segment stiffness
matrix., There are 14 degrees of freedom for each segment: 4 at each edge of
the two longitudinal edges and 3 at each end of the segment. Ten out of the
14 correspond to the in-plane stiffness while the other 4 correspond to
transverse one-way slab bending. The complete 14 x 14 segment stiffness
matrix has been derived by Lo [14], but will not be presented here,

The total stiffness matrix of the structure is symmetrical and it can

be arranged into a band matrix form. For a structure of m elements and
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Jjoints, the maximum band width will be 6m + 4n as shown in Fig, 13,
Since the stiffness coefficients at upper right triangle of the sub-matrix
relating quantities at sections k-1 and k are zeros, the band width
becomes 3(m+l) + 4n (Fig, 13). The unknown displacements of the system

can be determined by solving this band stiffness matrix,

3.6 Advantages and Disadvantages of the Segment Progression Solution as

Compared to the Band Matrix Solution

The advantages of the segment progression solution are:

1. It requires less storage. The computer program (discussed in the next
section) needs two big coefficient matrices of the sizes 6m x (3m+l) and
4n x (3m+l) for a structure of m elements and n joints., The storage of
these two matrices will be 18m2 + 6m + 12nm + 4n, or approximately 30m2 +
10m if m = n,

When the direct stiffness method, as presented in Section 3.5, is
used, the storage of a band matrix with band width of 3(m+l) + 4n and
(3m + 4n) rows will be 9m? + 16n2 + 24mn + 9m + 12n or approximately
49m? + 2lm if m = n,

-2, In progressing from one section to the next one, the calculation of
the element actions requires approximately (288 mZ2 + 150m) multiplications
in the computer program. Here n is assumed to be equal to m and only
the non-zero terms in the matrix equations are programmed. This corresponds
to the steps including Eq. (3.21) through Eq, (3,40).

In the band matrix solution (Fig. 13) of the direct stiffness method,

in order to eliminate the unknowns of one section and one segment (3m + 4n
unknowns) , the number of multiplication or division will be approximately
equal to 7m x (7m + 3)2 x 1/2 ~ 172m3 + 150m. Here n is again assumed
to be equal to m,

It is believed that the above steps take into account most of the com-
putation times for each of the two different methods, and from these estimates
the segment progression solution should involve less computation time than

the band matrix solution. However, this comparison can only give a rough

idea because the back substitution procedure and the calculation of segment
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forces and displacements are not included. Only the segment progression
solution is presently programmed for solution, therefore no accurate time
comparisons can be made.

The disadvantages of the segment progression solution are:

1. As discussed in the last paragraph of Section 3.4, for a big system
stopovers are needed because of sensitivity problem. For each stopover
this requires an inversion of a 3m x 3m wmatrix and a number of additional
computations. Therefore, as the number of stopovers increases, the com-
putation time will increase,

2, In writing the computer program, it has been found that double pre-

cision is advisable., Thus both the computation time and required storage
will increase,

3.7 Computer Program - SIMPLA

A general computer program based on the segment progression solution,
entitled SIMPLA, has been written in FORTRAN IV language for the IBM 7094
digital computer. It provides a solution for a folded plate structure with
arbitrary conditions (with respect to the end conditions of a beam for each
element) at the two ends and with or without interior rigid column or diaphragm
supports., Only joint loads may be applied to the structure. The resulting
Joint displacements of the structure together with the edge forces and dis-
placements and internal forces and displacements for each segment are deter-
mined. A detailed description of the input, output, sign conventions and
limitations and restrictions of the program are given in Appendix A, A brief
description of the program is given below

a. Input Data:

(1) The geometry and dimensions of the structure in terms of the
number of plates, joints, segments, etc.
(2) Dimensions and material properties for each plate (beam)

element,
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(3) Boundary conditions at the two ends of the structure. The
boundary conditions may consist of any combination of known forces and dis-
placements referred to the plate elements which are treated as longitudinal
beams,

(4) Applied uniform joint loads and/or given zero displacements
at the joints of each segment of the structure,

(5) Indicators for restraint conditions on each plate element if
a rigid diaphragm exists.,

b. Computer Output:

(1) The complete input data is properly labelled and printed for a
check,

(2) Final plate actions (forces and displacements) for each plate
element at the two ends of the structure as well as at the stopovers and
interior rigid diaphragms are printed.

(3) For each segment final joint and plate forces and displacements
at the center of the segment are printed,.

c. Limitations, Remarks and Restrictions:

(1) The maximum number of plate elements and joints for a cross-
section is 15 and 16, respectively.

(2) The longitudinal span can be divided into any arbitrary number
of segment lengths,

(3) The joint loads are uniformly distributed over each segment length,
however, each segment of the structure can have different loading conditions.

(4) Each interior rigid diaphragm can have its own restraint con-
ditions on the structure,

(5) The number and locations of the stopovers are arbitrary. The

minimum number required to give an accurate result depends on the size of

the structure and for a suitable choice, experience is needed.



d. Logical Steps:
(1) Read and print input data.
(2) Set up total actions in terms of the boundary conditions at
the origin of the structure.
(3) For each segment of the structure,

(a) Compute stiffness and coefficient matrices for
each type of plate segment.

(b) Assemble the stiffness matrix for one transverse
segment of the folded plate structure. If the
segment length is the same as a previous one,
the total stiffness matrix will be read from a
tape,

(c) Calculate fixed joint forces due to actions at
preceding section. Add external applied joint
forces.

(d) Solve for the joint displacements,

(e) Calculate actions at the end of this segment .

(4) If there is a stopover or interior rigid diaphragm,

(a) The actions of the structure are changed to be
in terms of a new set of unknowns which contain
the unknown displacements and/or diaphragm
reactions at this section,

(b) Progress to next segment of the structure.

(8) After progression to the last segment, set up the boundary

conditions at the end of the structure,

55
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(6) Calculate and print final plate forces and displacements at
the end, stopovers, rigid diaphragms and the origin of the structure.
(7) For each segment the joint (edge) forces and displacements

and the final internal plate forces and displacements are calculated and

printed.
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4, FINITE ELEMENT METHOD OF ANALYSIS

4,1 Introduction

The finite element method can be thought of as a numerical procedure by
means of which the solution of a problem in continuum mechanics may be
approximated by analyzing a structure consisting of an assemblage of finite
elements interconnected at a finite number of nodal points, in which selected
internal stress or displacement patterns are assumed in the elements to
satisfy certain required conditions. During the past decade this method has
been applied successfully to a variety of problems involving plates subjected
to in—pléne or normal loadings, axi-symmetric solids and axi-symmetric shells,
More recently attention has been focused on applying the method to general
thin shell problems and to the general three dimensional analysis of solids.
No attempt will be made here to review the extensive literature on this sub-
Jject. An excellent book by Zienkiewicz [16] has been recently published
(1967) which gives a comprehensive discussion of the theory and application
of the finite element method to the problems mentioned above. It also con-
tains an extensive set of references.

Of particular interest in the present investigation is the application
of the finite element method to the analysis of prismatic cellular folded
plate structures such as the box girder bridge. The basic structural element
used in this method is a finite element which is formed by dividing each
rectangular plate element transversely as well as longitudinally into an
assemblage of smaller rectangular finite elements, Fig. 14, The size, thick-
ness and material properties of these rectangular finite elements can be
varied as desired throughout the structure, Thus in zones near concentrated

loads, Fig. 14, a finer mesh can be used to more accurately determine the
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stresses and moments which are rapidly changing in this vicinity. Arbitrary
loading or boundary conditions may be selected at each nodal point. In the
development to be described it is assumed that each nodal point has six
degrees of freedom. For each of these, a known external force or a known
displacement may exist, If a certain force is known, the corresponding dis-
placement is unknown, and vice versa, A direct stiffness solution can be
used to find all of the unknown nodal point displacements and forces, Once
these are known, the internal forces and stresses for each finite element
can be determined. The key step in this approach is the development of ele-
ment stiffness matrices for the individual finite elements which can accurately
approximate the behavior of the continuum when they are assembled to form the
structure stiffness matrix needed in the direct stiffness solution. This step
will be discussed in detail in the 1 ater sections of this chapter,
The basic assumptions used are as follows:
() Each finite element is rectangular, of uniform thickness and
is made of an elastic, isotropic and homogeneous material.
(b) The relation between forces and deformations is linear, so
that superposition is wvalid,
© The in-plane displacements within each rectangular finite ele-
ment (membrane action) are obtained by the superposition of
12 displacement patterns. These patterns can be uniquely
defined by three nodal point displacement components at each
corner of the element, which are taken as two in-plane trans-
lations and one rotation about a normal to the plane of the

element,
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(d) In-plane stresses within each finite element are determined
from the in-plane displacements by means of the elasticity
equations defining the plane stress problem,

(e) The normal displacements within each rectangular finite
element (slab action) are obtained by the superposition of
12 displacement patterns. These patterns can be uniquely
defined by three nodal point displacement components at
each corner of the element, which are taken as two rotations
about in-plane axes and a displacement normal to the plane
of the plate,

(f) The plate bending and torsional moments within each finite
element are determined from the normal displacements by

means of the classical thin plate bending theory.

The assumptions of () and () above for each element are those of the
elasticity theory for folded plates, however, it should be remembered that
the complete structure assembled from the finite elements only approximates
the true continuum since equilibrium and compatibility are satisfied only
at the nodal points and not along the entire interfaces of adjacent elements.
In general the independent displacement patterns chosen for the individual
elements are selected so as to closely as possible satisfy compatibility
across these interfaces. In addition, to achieve accuracy in the solution,
the displacement patterns should include all possible rigid body modes and
uniform straining modes of displacement for the element.

4.2 General Description of the Method

Consider the structure shown in Fig. 14, subjected to a given loading
and set of boundary conditions as shown., It is desired to find the resulting

nodal point displacements and the internal forces and moments in each finite
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element. Reference is made to two right coordinate systems shown in Figs. 14
and 15, the global (fixed) system XYZ and the local (relative) system xyz.
The global system is the same for all elements with the XY plane being
horizontal and the Z axis vertical down. The local system varies from ele-
ment to element and depends on the angle @ defining the inclination of the
element with the horizontal plane.

All external loads and nodal point displacements are referred to the
global system. Each nodal point has six degrees of displacement freedom,
three translational and three rotational. The positive directions of the
external forces or moments R and corresponding nodal point displacements
r are defined by the positive directions of the global XY7 axes. The
right hand vector rule should be used for moments and rotations, Similarly
the internal element nodal point forces and displacements, six at each
corner of the rectangular element shown in Fig. 15, may be defined in either
a local system as S8 and v or in a global system as S and v. A simple
transformation matrix involving the angle @ shown in Fig. 15 relates the
two systems. Positive directions of these quantities are defined by the
positive directions of the local axes xyz or the global axes XV%. Each
finite element has 24 degrees of freedom.

The positive directions of the final desired internal forces and moments
at any point in the structure are shown in Fig., 16. These consist of the
membrane forces Nx’ Ny’ ny and the slab forces Mx’ My’ Mxy’ Qx’ and Qy,

The analysis of the structure is carried out by means of a direct stiff-
ness solution and involves the following steps.

(1) External distributed surface loadings on the structure are

converted to equivalent nodal point forces by a simple

tributary area concept and they are added to the other

existing nodal point loads to form the known loads on
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(2)

(3)

the structure. Specified known displacements will also
exist at some joints. For each degree of freedom, if a
known force exists, a corresponding unknown displacement
will exist and vice-versa. An external load vector R
and a displacement vector r are formed containing these
known and unknown quantities.

Stiffness matrices based on carefully selected displace-
ment patterns are derived in the local coordinate system
for membrane action kp and for slab action ks in a

typical finite element,

S k 0 \%
P {‘p ‘ p
S 0 k v
s 8 S
24x1 24x24 24x1
or simply
{s} = [k] {v}

Since membrane action and slab action in an element are
uncoupled, the 12 x 12 matrix kp and the 12 x 12 matrix
kS may be derived independently of each other by con-
sidering independently the plane stress problem and the
plate bending problem. Each of these will be considered
in detail in subsequent sections in this chapter.

The element nodal point forces 8 and displacements v
in the local coordinate system are transformed into a

global coordinate system S and ;, by means of a dis-

placement transformation matrix a and its transpose a
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The element stiffness matrix in the global coordinate

system is determined by substituting Eqs,

(4,3) into (4.1a).
{8) = [a]" [k] [a] {¥)

or

where

k] = [a] [k] [a]

The matrix k is a 24 x 24 element stiffness matrix and

one such matrix is evaluated for each finite element in

the structure,

Equation (4.4b) is partitioned as follows

/é;\ r—.Eii Eij 1—;ik Eiﬂ
< 5 \ e K5 Rk Byg

ék 1;ki 1_{kj Ekk Ekﬂ
Sy fz; ko R By

where 1i,j,k and { vrepresent the four nodal points at
the corners of the rectangular finite element shown in

Fig. 15. Each of the resulting 6 x 6 submatrices

relate the six nodal point forces

corner m by a set of unit nodal point displacements

v at a corner n.

v )

(4.2) and

.V ,@J

S produced at a
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(4.2)

(4.3)

(4.42)

(4.4b)

(4.5)

(4.6)
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(7)

(8)

Static equilibrium at any nodal point requires that

the external nodal point forces at a joint must equal
the sum of the element forces acting on the same

Jjoint. For example assuming four elements are connected

to joint i,
(R} = {51+ (871 + 331 + (89

where the superscript refers to the element number.
Geometric compatibility at any nodal point requires
that the external joint displacements must equal the ele-

ment nodal point displacements in the global system,
-1 -2 =3 -4

The structure stiffness matrix K for the entire
structure can now be assembled by properly adding the

element stiffness sub-matrices of Eq., (4.6)

{r}= [k] f{r}

6nxl 6nx6n 6nxl

The structure stiffness matrix K will be extremely large
for problems of this type and will have a size 6n x 6n

in which n 1s the number of nodal points. By adopting

a proper sequence for numbering the nodal points, such
that the maximum difference in the nodal point numbers

of any finite element is minimized, advantage may be taken
of the topology of the structure to yield the minimum band
width possible for the K matrix,. In the computer pro-
gram to be described later, advantage is taken of the

prismatic nature of the structure by requiring only the
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4.7)

(4.8)

4.9)
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numbering of the nodal points on the cross—section at

X = 0, The computer then automatically assigns nodal

point numbers to the other specified sections along

the span, which define the locations of nodal points.
(9) A tri-diagonalization method is used to solve the large

system of equations represented by Eq. (4.9), This is

the most time consuming part of the problem in the com-

puter,

(10) With the nodal point displacements r known, the finite
element nodal point displacements v in the local
coordinate system may be found through the use of Egs.
(4.8) and (4.2).

(11) 1Internal forces and displacements, Fig. 16, in each
finite element are calculated at selected points by
expressions relating these quantities to the nodal

point displacements.

4.3 Development of Finite Element Stiffness by Virtual Work

The derivation of the element stiffness matrices for membrane action
and slab action can be accomplished either by a direct geometric approach or
by using the principle of virtual work. General descriptions of both of
these approaches, which have become well known, may be found in the book by
Zinkiewicz [16]. The virtual work procedure is adopted here and is outlined
below for the plane stress and plate bending effects occurring in the
rectangular finite element to be used. The outline is based on the descrip-

tion given by Abu-Ghazeleh [13].



(1

(2)

Express the internal displacements V in terms of

displacement functions F.

{vix, 7} = [F&x,m» 7 {&)

a, The in-plane displacements u and v are
used for the plane stress problem and the normal
displacement w is used for the plate bending
problem,

b, A total of 24 linearly independent coefficients
®, 12 for plane stress and 12 for plate bending,
are used as the generalized coordinates for the
system, The number of degrees of freedom assigned
to the element is also taken equal to 24,

c. The functions contained in {V(x,y)}, Eq. (4.10),
may be thought of as the superposition of a number
of independent displacement patterns equal to the
number of degrees of freedom assigned to the element,

Define a set of generalized displacements Vi which have the

following properties,

a. Capable of uniquely expressing the connectivity

between different elements,

b, The boundary displacement field should be uniquely

determined by means of these generalized displace~-

ments.

¢, In the present development the nodal point displace-

ments (translations and rotations) at the four corners
of the rectangular element are selected as the

generalized displacements.
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Evaluate the nodal point displacements in terms of the generalized

coordinates,
vl = [a] {o} (4.11)

The A matrix can be found using Eq. (4.10) by appropriately
defining Vi and substituting in the nodal point coordinates,
a, For a plane stress problem, evaluate the element strains
€ by appropriate differentiation of the displacement
functions of Eq. (4.10).
b, For a plate bending problem, evaluate the element curva-
tures K by appropriate differentiation of the dis-

placement functions of Eq. (4.10).

{etx,y)]

I

(B, x,3)] {ab}
4,12)

i

kGl = [B G,y ] {o )

a. For a plane stress problem, evaluate the element stresses
¢ from the assumed stress-strain law,
b, For a plate bending problem, evaluate the element moments

M from the assumed moment-curvature law,

i

folx,m} (b, {ex,y]

(4.13)

1

{M(x,y)} 0.1 {KGx,5)}

The matrix D 1in each case contains the appropriate
elastic constants,
Substituting Egs, (4.12) into Eqgs, (4.13)

{ox,91 = (b3 [B, G,y ] {ab}

(4.14)
{M(x,y)} = [DS] [Bs(x,y)] {Ols}



(7) a. For a plane stress problem, introduce sets of virtual
strain fields € such that the corresponding generalized
coordinates have unit values, i.e, aﬁ = I (identity

matrix) in Eq. (4.12).

b. For a plate bending problem, introduce sets of virtual

68

curvature’fields K such that the generalized coordinates

have unit values, 1i.e, 5é= I (identity matrix) in
Eq, (4.12),
c. The internal virtual work done in a differential volume

of the element is

dWI = €T odv

de = &7 yav

d, Taking transposes of both sides of Egs, (4.12)
= T A T
fex,y,1" = {ozp} [B, Gx,3) ]

Kee,m)T

i

(@3 B 6,1

€. Substituting Eqs. (4.16) and (4.13) into (4,15) and
dropping the matrix brackets and X,y for simplified

notation.

~T_T
dWI = aTB DB odV

W i/F&TBTDB odv
rJ _

Since @ and ¢ are independent of the variables of

integration

(4.15)

(4.16)

4.17)

(4.18)
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(10)

W=t [f B'DB dv ]y
A2

I
(4,19
W_ = &Tfl\;ol
I
where
~ T
kK = [ B'DB av (4.20)
v
Defining B as the generalized forces corresponding to the
generalized coordinates ¢, the external virtual work WE
done during the virtual displacements & = I is
W= a'p (4,21)
E
Since the external virtual work must equal the internal
virtual work
W_ =
e =V (4.22)
which gives using Eqs. (4.21) and (4.19)
=T T
o' B = o ko (4.23)
but since o = I (identity matrix) this may be simplified
to
8 = Ka (4.24)

in which ¥ is the element stiffness matrix relating the
generalized forces B to the generalized coordinates o.
Since the number of linear independent coefficients o 1is
equal to the number of degrees of freedom of the element,
the element stiffness matrix k relating nodal point
forces Si to nodal point displacements Vi may. be

obtained as follows.
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(a) From Eq, (4,11) using brackets only where needed

for clarity
o = [A"l] v, (4.25)

the A matrix can be inverted for this case since
it is a square non-gingular matrix,
(b) The A—l matrix represents the displacement trans-—

formation matrix relating generalized coordinates

@ to nodal point displacements Vi° Thus the

relation between nodal point forces Si and

generalized forces B may be written as follows

-1.T

si = [A"]B (4.26)

(c) Combining Egs, (4,24) (4.25) and (4.26)

s, =71 B = T R - a7 T R 4. 27)
or simply
5, =k v, (4,28)
where
k = [A71 77 ®ra™t (4.29)

Once Kk is known for all elements the direct stiffness solution out-
lined in the preceding section may be used to analyze the total structure.

For rectangular elements the necessary integration involved in finding
ﬂ' in Eq, (4“20) can usually be carried out in a formal mathematical manner,

Abu Ghazaleh has madé-an extensive study [12] of element stiffnesses
for rectangular elements. He compared the properties of five different

plane stress finite elements and two different plate bending finite elements,
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Based on a comparison of the results obtained in applying these to problems
of plane stress and plate bending with known solutions, he selects one plane
stress finite element and one plate bending finite element as being the

most acgurate and the most suitable for combining to solve prismatic folded
plate problems, The stiffness matrices for these latter two elements will
be developed in detail in the next two sections based on the dissertation by

Abu ‘Ghazaleh [13],

4.4 Element_Stiffnessvfor Membrane Action -~ Plane Stress Analysis

4.4.1 Elasticity Equations for the Plane Stress Problem

For a plane stress problem, an exact elasticity solution should
satisfy the conditions given below. The standard notation, sign convention
and direction of coordinate axes based on Timoshenko and Goodier [187], are
shown in Fig, 17,

(1) Equilibrium requirements:

BGX awxy

. +X =0 4,30

= Sy (4.309)

awxy aoy

+ == +Y =0 ., 30b
o 5 (4 )
(2) Stress-strain law:

mi[ - 1 (4.31a)
¢, =3 Lo, voy .31la
e == [0 - vo ] (4.31D)
v =% [9 Vo .

= 2(14v) 1 ES (4.31¢)
ny - YV E Txy TG one
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(3) Compatibility conditions:

e = ou (4.322a)
X ox

e =4 (4.32Db)
y dy

y =M, (4.32¢)

xy oy = ox

eliminating u and v 1in these equations gives

2 2 2
3 €. o ey fo ny
+ - (4.324d)
2 2
3y 3x Xy
(4) Boundary conditions:
(a) Displacements
u (internal) = u (external) : (4.33a)
v (internal) = v (external) (4,33b)
(b) Forces
X, = ¢ cosy + T sing (4,342a)
b X Xy
Y =0 sing + 7T cosy (4.34b)
b y Xy

A solution which satisfies Eqs. (4.30) through (4.34) over the entire domain
of the problem may be termed an exact solution to the plane stress problem,
Often this exact solution is difficult to obtain for many practical problems

because of the complexities of irregular boundary conditions, cutouts etc,

4.4.,2 Types of Finite Element Models

In the finite element method, a certain internal behavior of the
elements is selected which satisfies some, but not all, of the conditions
defined by Eqs. (4.30) through (4.34). Three types of finite elements and

the conditions they satisfy may be described as follows:
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(1) A compatible element model satisfies:
(a) Internal compatibility, Eg. (4.32)
(b) Boundary continuity of displacements, Eq. (4.33), at both
element and external boundaries
(c) Stress-strain law, Eq, (4.31)
(2) An equilibrium element model satisfies:
(a) Internal equilibrium, Egq. {(4.30)
(b) Boundary continuity of forces, Eq. (4.34) at both
element and external boundaries
(c) Stress-strain law, Egs. (4.31)
(3) A mixed model which satisfies partially some of the condi-

tions under (1) and (2).

In general, investigators have chosen formulations based on the
use of compatible elements because they have yielded excellent results and
because their properties are more easily derived than those of equilibrium
elements, Sometimes difficulties are also encountered in developing fully
compatible finite elements. In these cases discontinuities of certain
displacement quantities which have a secondary effect are permitted at the

element interfaces and good results are still achieved,

4.4.3 Nodal Point Displacements and Resulting Displacement Patterns

For plane stress in the present investigation, a finite element
is selected in which a physical interpretation may be utilized to visualize
the nodal point displacements and the resulting displacement patterns over
the element. The nodal points are taken at the four corners of the rectangular

element and each node is assumed to have three degrees of freedom, Fig. 18.



75

Note that a different sign convention from that shown in Fig. 15 is adopted
in Fig. 18 for purposes of the present derivation. The displacements at a
typical node i are:
(1) A displacement in the x direction, ui (4,35a)
(2) A displacement in the 'y direction, A (4,35Db)

(3) An averaged rotation about the z-axis, ezi defined by

_Llifavy _(au
ezi T2 [<Bx>i <ay>i] (4.35¢c)

The corresponding nodal point forces are forces in the x and y
directions, in and Fyi’ and a moment about the z-axis, Mzi' The
inclusion of the rotation about the z-axis, which has not been used by other
investigators, gives a complete set of physical displacements corresponding
to those found in the usual structural analysis problem of a rigid frame
loaded in its own plane, It also permits a simple and accurate coupling with
the plate bending element, to be described later, for use in the solution of
the prismatic folded plate problem,

The displacement pattern over the surface of the element due to

each nodal point displacement may be built up from an assumed variation

defined by a function along one edge of the rectangular element which is damped

to a zero value at the far edge by a damping function, The functions used
for this purpose are shown in Fig. 19 and consist of a linear function; a
beam rotation function which has the deflected shape of a beam subjected to
a unit rotation at one end and fixed at the far end; and a beam displacement
function which has the deflected shape of a beam subjected to a unit dis-
placement at one end with both ends fixed against rotation. A similar set
of functions in the x and y directions is required for all four nodal

points and a complete list of these is as follows:



FIG. 18 NOTATION AND POSITIVE DIRECTIONS FOR
DISPLACEMENTS AND FORCES AT A TYPICAL
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FIG. 19 DISPLACEMENT AND DAMPING FUNCTIONS.

76



(D)

(2)

(3)

the above functions.

placements

Linear function

X, (0
X, (a-x)
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(4.36)

(4.37)

™~

> (4.38)

The first step in the development of the finite element stiffness

a,, v,, and 8 |,
i i Zz1

may now be initiated by specifying the displacements

u and v in terms of

The displacement patterns assumed for nodal point dis-

are shown graphically in Figs, 20, 21, and 22,



78

: : LINEAR
LINEAR FUNCTION

a) PLAN VIEW b) VARIATION OF u OVER SURFACE

FIG. 20 DISPLACEMENT PATTERN FOR NODAL
POINT DISPLACEMENT U;

Y
a -
| | k
Ty .
~(3%); b LS
~—~—p" LINEAR ke FUNCTION
ViI — — « FUNCTION  ~ 3¢ v
i j
z
a) PLAN VIEW b) VARIATION OF v OVER SURFACE
FIG. 21 DISPLACEMENT PATTERN FOR NODAL

' POINT DISPLACEMENT Vi
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a) ©,; PRODUCES u ANDv
DISPLACEMENTS

y

BEAM DISPLACEMENT
FUNCTION

B = (Y, , BEAM
/J'\ p X ~ Lo ROTATION
] S~ - x ~ FUNCTION

b) PLAN VIEW OF v ¢) VARIATION OF v OVER
DISPLACEMENT SURFACE
y —+ BEAM DISPLACEMENT
FUNCTION X
/ | y . /
- oy
N—92i = ~Gy)i BEAM
ROTATION
FUNCTION
& X
d) PLAN VIEW OF u e) VARIATION OF u OVER
DISPLACEMENT SURFACE

FIG.22  DISPLACEMENT PATTERN FOR NODAL
POINT DISPLACEMENT |
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A similar set of displacement patterns exist for nodal points j, k, and 4
giving a total of 12 displacement patterns to be superposed., Note from
Fig. 22 that the nodal point displacement Szi produces both u and v
displacements within the element and that the displacement patterns correspond-
ing to u, and vy shown in Figs. 20 and 21 will also contribute to the
total 6

z1

Equation (4.10) may now be written out totally in the following

form in terms of 12‘generalized coordinates al to alzu

Nodal Point Translation Nodal Point Rotation

in x-direction about z-axis
ulx,y) = olel(X)Yl(y) 0 X (Y, () Nodal Point i
+°‘4X1(3"X)Y1 () —ozGXB(a-x)Yz(y) Nodal Point j
(4.39)
+a7Xl(a-x)Y1(b—y) +a9X3(a—x)Y2(b—y) Nodal Point k
+alOXl(X)Yl(b—y) +a12X3(X)Y2(b—y) Nodal Point £
Nodal Point Translation Nodal Point Rotation
in y-direction about z-axis
v(x,y) = azXl(x)Yl(y) +a3X2(x)Y3(y) Nodal Point i
+oz5X1(a-X)Y1 (y) —a/6X2(a—X)Y3(y) Nodal Point j
: (4.40)
+u8Xl(a—x)Yl(b-y) —ang(a—x)YS(b—y) Nodal Point k
Y - - d Point
+wlle(x) l(b y) +a12X2(x)Y8(b y) Neodal Point £

When Eqs. (4.36), (4.37), and (4.38) are substituted into Egs.
(4.39) and (4.40) a polynomial expression is obtained for ‘u and v in
terms of x, y and the generalized coordinates al to &) g

A comment should be made regarding the compatibility properties

of the nodal point displacements and the displacement functions chosen for

the finite element. Consider a typical nodal point 1 joining four adjacent
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rectangular elements, Fig. 23.. Restating the definitions of the

shearing strain Yi and the nodal point displacement ezi defined earlier.

_ (), (a
Yi = <6x ) + <ay>i (4.32¢)

_li{av) _fau
ezi B 2[E§x>i <5;>i] (4.35¢)

it 1s apparent that even though the averaged rotations ezi for each of the
four elements joined at nodal point i are made to have the same value, there
will be an angular discontinuity between the common edges of adjacent ele-
ments which is proportional to the difference in shear strain existing in the
elements joined at nodal point i. Four possibilities are illustrated in

Fig, 23. 1In Fig. 23a, it is assumed that the shear distortion in all four
elements is zero, in which case full compatibility is achieved. 1In Fig. 23b,
it is assumed that the shear distortion in all four elements is the same, 1in
which case full compatibility is again achieved, In Fig. 23c¢c, it is assumed
that only equal pure shear distortions of opposite signs occur in adjacent
elements. For this case ezi = 0 for all four elements, but angular
discontinuities will exist between adjacent elements. Finally in Fig, 23d,

in the general case where rotation plus a different shear distortion exist

in the four elements, angular discontinuities occur even though eZi is,thg
same for all four elements. From the results of numerical studies it has

been found that effect of these discontinuities is very small and that the
element chosen above for’the present investigation gives more accurate results
for a given mesh size than does a fully compatible element used by other
investigators, which includes only the two degrees of freedom ui and v, at

1

each nodal point shown in Figs. 20 and 21,
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a) ROTATION AT A NODE BUT NO b) ROTATION AT A NODE WITH
SHEAR DISTORTION IN ALL WITH THE SAME SHEAR
FOUR ELEMENTS DISTORTION IN ALL FOUR

ELEMENTS
ANGULAR DISCONTINUITY ANGULAR  DISCONTINUITY
\

C) PURE AND EQUAL SHEAR DIS- d) ROTATION AT A NODE WITH
TORTIONS OF OPPOSITE SIGNS DIFFERENT SHEAR DISTOR~
WITH ZERO AVERAGED ROTA- TIONS IN ALL FOUR
TION IN ALL FOUR ELEMENTS ELEMENTS

FIG. 23 ROTATIONS AND SHEAR DISTORTIONS IN FOUR
ELEMENTS MEETING AT A TYPICAL NODAL POINT
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ement Stiffness for Plane Stress

The necessary st
matrix for plane stress kp
point forces vp, Fig, 18,

Egqs. (4.28), (4.29), and (4.

{sp}

12x1

where
k =
p

and
K
p

The Ap matrix

the generalized coordinates

v} =
12x1
The elements of
of the nodal point displacem
of Egs. (4.39) and (4.40).
stitutions of the nodal poin

obtained,

eps required to derive the element stiffness
relating the nodgl point forces Sp to nodal

have been given in Section 4.3. Rewriting

20) specifically for the plane stress problem.

= [kp] {Vp} (4.41)
12x12 12x1

“1.T ~ _ =1
[Ap ] kp[Ap ] (4.42)
v T
= J" B D B dv (4,43)
v P PP

relates the nodal point displacements Vp to
o
b

[a,] {ozp} (4.44)
12x12 12x1

the Ap matrix may be found from the definitions
ents, Eqs., (4.35), and the displacement functions
When the appropriate differentiations and sub-

t coordinates are made, the following result is



~ r~
" u, 1 0 0 0 0 0
i
v, 0 1 0 0 0 0
i
1 1 1
— i 0 — 0
921 2b 2a 2a
u, 0 0 0 1 0 0
J
v . 0 0 0 0 1 0
J
1 1 1
- 0 = = 1
zj 0 2a 2b 2a
u > 0 0 0 0 0 0
k
0 0 0 0 0 0
Yk
1
e 0 0
ezk 0 0] 0 55
0 0 0 0 0 0]
Y4
0 0 0 0 0 0
Y2
1
— 0 0 0
ezﬁ 2b 0 .
. v, -

0 o o 0 0
0 o o o0 o
0 o 0 - é% 0
0 o o0 0 0
0 0 0 0 0
"51_60000
1 o o 0 o
0 1 o 0 o0

0 1 0 - 1 o1
2a 2b 2a
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The Bp matrix in Eq. (4.43) relates the internal strains

€ 1in the element to the generalized c

{elx,y) ]} = [Bp(x,y
3x1 3x12

oordinates ab,

ST

12x]

5
ol [
%
0 o,
0 o,
0 o,
0 o,
0 % ) @443
%
%g
%
%0
%11
1 o
12
J L
(4.45)

The elements of the Bp matrix may be obtained by appropriate

differentiation of Eqs., (4.39) and (4.

(e
X

{ex,7)] =< e, >

N Xy)

40) and by noting from Egs.

's 3u N

ox

3

B, 3y

CaES

(4.32) that

(4.453a)



!
I

)

|

|

i

]

s‘
=33
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{
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‘B (1,10)
P

obtained for the elements of the

3

x 12 B
p

matrix,

Performing these differentiations, the following results are

differentiation of that function with respect to its variable,

il

B (1,1)
o

B (1,2) =
P

B (1,3 =
p

B (1,4) =
p

B (1,5) =
D

B (1,6) =
P

1,7) =
Bp( 7

B (1,8
p

B (1,9 =
b

il

i

B (1,11)
p

1l

B (1,12
p

]

B (2,1)
P

1

B, (2,2)

B _(2,3)
p

i

B (2,4)
o

B (2,5) =
o

B (2,6) =
1Y

to form the

Xl(X)Yl(Y)

0

—Xl(x)Yz(y)
Xl(a~X)Yl(y)

0

Xé(a—X)Yz(y)
Xl(a—x)Yl(b—y)
0
X3(a~X)Y2(b*y)
Xl(x)Yl(bvy)

0

XB(X)YZCb—y)

0

Xl(X)Yl(Y)
X2(X)Y3(y)

0

Xl(a—x)Yl(y)

—Xz(a—X)YS(y)

B (2,7)
p
Bp(2,8)
Bp(2,9)
B (2,10)
p

B (2,11)
p

B (2,12)
p

B (3,1)
P

B (3,2)
p

B (3,3)
p

B (3,4)
p
Bp(3,5)
B (3,6)
p

B (3,7)
p

B (3,8)
p

B (3,9)
p

B (3,10)
p

B (3,11)
p

B (3,12)
P

i

]

]

il

1

i

i

1

0
Xl(a—X)Yi(b—y)
—Xz(a—X)YB(b—y)
0

Xl(x)Yl(b—y)
Xz(x)YS(b—y)
Xl(x)Yl(y)

Xl(X)Yl(Y)

~X3(x)Y2(y) + XZ(X)YS(Y)

Xl(awx)Yl(y)

Xl(a—X)Yl(Y)
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A prime indicates a

—Xs(a—X)Y2(y) - Xz(a—x)YS(y)

Xl(a~X)Yl(bwy)

Xl(a—X)Yl(b-y)

Xs(a—X)YZ(b—y) - X2(a—x)Y3(b~y)

Xl(x)Yl(b—y)

Xl(x)Yl(b~y)

XB(X)YZ(bwy) + XZ(X)YS(b-y)

Internal stresses may be expressed in terms of internal strains

D matrix,
P

folx,m} = (b, {etx,m1]

3x1

3x3

3x1

(4.46)
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in which h

in Egs. (4.44),

Eq. (4.,41)

and

in which KP

N
Xy

E
S K T

(l—vz)

is the plate thickness,

With the elements of the Apy Bp’

can now be determined,

p

Eh

0

0
(1-v) /2
-

€
y

Xy
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(4.462a)

and Dp matrices now defined

-1.T b sa T -1
=mp]u;£%%%wdﬂ[%]

(8,1 = [k,1 (v} =< 2) [kp] {v}

1-v

tedious integration and matrix multiplication indicated in Eq.

(4.45) and (4.46), the element stiffness matrix

k in
p

(4.47)

(4.48)

is a 12 x 12 matrix of coefficients obtained by performing the

(4.47) . The

sequence of nodal point forces and corresponding displacements in Eq. (4.48)

is as follows:

(7 )
X

1

F_.
yi

M .
z1

F_.
xJ

F_.
yJ

M

F

xk
Fyk

Mzk

Eh

I-v

)

12 x 12 KP matrix

(4.48a)
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The expressions derived for the elements of the symmetrical

matrix by Eq.

given in Fig,
KP(1,1)
KP(1,2)
KP(1,3)
KP(1,4)
KP(1,5)
KP(1,6)
KP(1,7)

KP(1,8)

KP(1,9)
KP(1,10)

KP(1,11)

KP(1,12)
KP(2,2)
KP(2,3)

KP(2,4)

KP(2,5)

KP(2,6)

KP
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(4,47), are as follows, using the notation and sign convention

18:

i

i]

i

il

1l

1i

123 b 41 a
350 & T 175 p 7V
2 .1
80 T80 ¥
2
_ 9 p° 393 743
175 a 8400 2 * gaoo0 V*
123 b 57 a
" 350 a t Ta00 p W
9 .29
80 T g0
9 b’ 183 533
175 a ' 8400 @ ~ 8400 V2
% b 57 a
T 175 & 1200 p W
- KP(1,2)
2
_ 67 b7 18 167
2100 a ' 8400 8400 "%
% b 41 a
175 2 " 175 p &~V
- KP(L,5)
2
67 b~ 393 43
2100 a _ 8400 * * 8200 V2
123 a 41 b
350 b T 175 @ 17V
9 Eﬁi L3938 T3
175 b ' 8200 8400 "
- KP(1,5)
26 a a1 b
175 b 195 & V)
2
_67_a’ 303 43
2100 b = 8400 8400



KP(2,7)

KP(2,8)

KP(2,9)

KP(2,10)

KP(2,11)

KP(2,12)

KP (3, 3)

KP(3,4)

KP(3,5)

KP(3,6)

KP(3,7)

KP(3,8)

KP(3,9)

KP(3,10)

KP(3,11)

= XP(1,8)
% a 57

= T 175 b " 1400 a &7V

2
_ 67 _a’ 183 167
~ 2100 b _ 8400 8400
= KP(1,5)

123 a 57 b

= " 307p 1200 & 7V
~ 9 ng 183 533
- 175 b 8400 ° * 8400 ¥
—————2 3?- £+83 ab ab
T 175 \p T a 2100 g4 ¥
= KP(1,6)
= -KP(2,6)
_ .23 13 8
= 175 a 350 b T Tos0 *° T Tos0 V@
= -KP(1,9)
= -KP(2,9)
_ 3 b3 _2.1_3___1 b b
350 \a b/ 70 & 1050 v2
= - =KP(1,12)
= KP(2,12)

3
e b2 2 b+ —— Uab
© 7350 a " 175 b T 1050 ®° T 1050 V*
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KP(4,4)
KP(4,5)
KP(4,6)
KP(4,7)
KP(4,8)
KP(4,9)
KP(4,10)
KP(4,11)
KP(4,12)
KP(5,5)
KP(5,6)
KP(5,7)
KP(5,8)
KP(5,9)
KP(5,10)
KP(5,11)
KP(5,12)
KP(6,6)
KP(6,7)
KP(6,8)
KP(6,9)

KP(6,10)

| KP(6,11)

used together with Eq. (4.48a) to perform equilibrium checks on the element

i I
by taking ZFX, 2 v

i

i

i

i

1

1

1l

1

il

1

li

i

i

]

il

il

and YM
Z

KP(1,1)
-KP(1,2)
KP(1,3)
KP(1,10)
KP(1,5)
KP(1,12)
KP(1,7)
KP(1,2)
KP(1,9)
KP(2,2)
~-KP(2,3)
KP(2,4)
KP(2,11)
-KP(2,12)
KP(1,2)
KP(2,8)
KP(3,8)
KP (3, 3)
KP(3,10)
-KP(2,12)
KP(3,12)
KP(3,7)

KP(2,9)

KP(6,12)
KP(7,7)
KP(7,8)
KP(7,9)
KP(7,10)
KP(7,11)
KP(7,12)
KP(8,8)
KP(8,9)
KP(8,10)
KP(8,11)
KP(8,12)
KP(9,9)
KP(9,10)
KP(9,11)
KP(9,12)
KP(10,10)
KP(10,11)
KP(10,12)
KP(11,11)
KP(11,12)

KP(12,12)

values of each of the nodal point displacements,

1l

il

I

i

1

il

il

1l

i

i

1

il

li

i

KP(3,9)
KP(1,1)
KP(1,2)
-KP(1,3)
KP(1,4)
KP(1,5)
~KP(1,6)
LKP(2,2)
KP(5,6)
KP(2,4)
KP(2,5)
KP(3,5)
KP(3,3)
-KP(3,4)
KP(2,6)
KP(3,6)
KP(1,1)
-KP(1,2)
~KP(1, 3)
KP(2,2)
KP(2,3)

KP(3,3)

As a check on the above derived expressions for KP

tions equalled zero providing a check on the derivations,

they were

of the nodal point forces produced by unit

In all cases these summa-

89
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4.5 Element Stiffness Matrix for Slab Action - Plate Bending Analysis

4.5.1 Elasticity Equations for the Plate Bending Problem

For a plate bending problém, an exact solution by the classical
thin plate theory should satisfy the equations given below, The standard
notation, sign convention and direction of coordinate axes, based on
Timoshenko and Woinowsky-Krieger [19], are shown in Fig, 24.

(1) Equilibrium requirements:

aMxy BMy
Sl 5 Q=0 (4.492)
oM oM
VX L ZX g =0 (4.49b)
Ay 9% X
3, 29
= +—a—§¥—+z = 0 (4.49¢)

(2) Displacement - curvature conditions:

2
sz_l__:___ag (4,50a)
px ox '
2
« =L=§—-‘g (4.50Db)
py oy
2
K, = S aaxg” (4.50¢)
Yy pxy y
from which it follows that:
2
3% 237, 3%
X J Y -0 (4.504d)

- o
ayz Xy BXZ

(3) Moment = curvature relationships:



BOUNDARY
ELEMENT
Y
INTERIOR et
ELEMENT
/ d_y’?
d
- X S x
v
Z

a) ELASTIC PLATE AND
REFERENCE AXES

-

W
Yoy

x5 1/

Myy
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t
b) EXTERNAL FORCE AND
NORMAL DISPLACEMENT
oM
Myx + —52% dy i
Y oM
___.,,,,'V‘Y"’—“LaY dy
My M
2 l MW+b Xde
P J— AL bx
Mycy I M
My + =% dx
oy
e
My
Myx

c) TORSIONAL AND BENDING MOMENTS

1QY

2Q
Qy + 2L ¢
Qy @ © 2Qy
X Qx+ bX dX
&®
Qy

d) TRANSVERSE SHEAR FORCES

FIG. 24 POSITIVE DIRECTIONS FOR COORDINATE AXES,
EXTERNAL FORCES, DISPLACEMENTS, AND
INTERNAL MOMENTS AND FORCES.
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| M o= D& X (4.51a)

; x o, P

y
M = D [i— +‘12] (4,51b)

y S
M = D (1-v) | —=— (4.51¢)

xy Py
in which
3

| D = — 2B - (4.51d)

12(1-v7)

(4) Boundary conditions:

(a) Displacements

w (internal) = w (external) (4.52a)
~ el (internal) = v (external) (4.52b)
| on on

(b) Moments and forces:

Mn “(internal) = Mn (external) (4,53a)

M (internal) = M (external) (4.53b)
nt nt

Qn (internal) = én (external) (4.53c)

The three conditions expressed by Eqs, (4.53) are
reduced to two sufficient conditions by using

Kirchoff's relationship,

B

n n ot

(4.53d)

A solution which satisfies Eqs., (4.49) through (4.53) over the
entire domain of the problem may be termed an exact solution within the assump-

tions of the classical thin plate theory.
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4.5.2 Nodal Point Displacements and Resulting Displacement Patterns

For plate bending, a finite element model is selected which closely
approximates the properties of a compatible element model (see Section 4.4.2).

The nodal points are taken at the four corners of the rectangular
element and each node is assumed to have three degrees of freedom (Fig. 25),
Note that a different sign convention from that shown in Fig. 15 is adopted in
Fig. 25 for purposes of the present derivation. The displacements at a typical
node 1 are:

(1) A rotation about the X—axis, exi, defined by:

6 = <§E> (4.54a) -
x1i dy /.
i
(2) A rotation about the y-axis, eyi’ defined by:
= <§‘ﬁ (4.54b)
yi >
T
(3) A displacement in the z-direction, v, (4,54¢)

The corresponding nodal point forces are moments about x and
y axes, MXi and M&i’ and a force in the z-direction, in'

The displacement pattern over the surface of the element due to
each nodal point displacement may be built up from an assumed variation
defined by a function along one edge of the rectangular element which is
damped to a zero value at the far edge by a damping function, The functions
to be used are the same as those used in the derivation of the element stiff-
ness matrix for membrane action. These are given in Eqs. (4,36), (4.37), and
(4.38) and are shown in Fig, 19.

The first step in the development of the finite element stiffness

may now be initiated by specifying the displacement w in terms of the above
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functions. The displacement patterns assumed for nodal point displacements

8., ©_., and w, are shown graphically in Figs., 26

<i vi , 27, and 28, A

similar set of displacement patterns exists for nodal points j, k, and %
giving a total of 12 displacement patterns to be superposed. Note that the
displacement pattern corresponding to Wi shown in Fig, 28 is a pure twist
pattern and also that it will contribute to the total exi and eyi dis-
placements.

Equation (4.10) may now be written out totally in the following

form in terms of the generalized coordinates alS to Q24.
Nodal Point Nodal Point Nodal Point
Rotation Rotation Translation
about y-axis about x-axis in z-direction
' = %)Y (x)VY. (v) \ Pt i
wx,y) oz13X2(x)Y3(y) 0 X (Y, (3) +) X, ()Y (5) Nodal Pt i
— - — ; — P 5
al6X2(a X)Ys(y) +al7X3(a x)Yz(y) +a18X1(a x)Yl(y) Nodal Pt j

—algxz(a~x)Y3(b—y) -0y 0Xs(a~x)Y2(b-~y) +oY le(a—X)Yl(b—y) Nodal Pt k

2 2
+a22X2(X)Y3(b—y) —QZSXS(X)YZ(b~y) +a24Xl(x)Yl(b—y) Nodal Pt 4
(4.55)

When Eqs. (4.36), (4.37), and (4.38) are substituted into
Eq. (4.55) a polynomial expression is obtained for w in terms of X, ¥y and

the generalized coordinates to «

%3 24"

It can be shown [13] that the displacement function chosen in
Eq. (4.55) will provide complete compatibility along the entire common edge
between adjacent elements with respect to displacements and slopes parallel
to the edge. However, for slopes normal to the edge, compatibility is main-

tained at the common edge only at the nodal points and at the midpoints

between nodal points, From the results of humerical studies it has been
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~ 1k

y
A_,7/
k
exi,Mxi %h 22 lib b
*‘6—-1‘ : X Oxi Mxi | Wi Fzi
X{ll 4 J *‘?i j
z
Oyi, Myi Oyi,Myi

FIG.25 NOTATION AND POSITIVE DIRECTIONS FOR
"DISPLACEMENTS AND FORCES AT A
TYPICAL NODAL POINT

BEAM DAMPING FUNCTION

V=

~BEAM ROTATION
FUNCTION

FIG.26 DISPLACEMENT PATTERN FIG.27 DISPLACEMENT PATTERN
FOR NODAL POINT FOR NODAL POINT
DISPLACEMENT eyi DISPLACEMENT O yi

LINEAR FUNCTION PRNET D -LINEAR  FUNCTION

FIG. 28 DISPLACEMENT PATTERN
FOR NODAL POINT
DISPLACEMENT  W;
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found that the effect of this discontinuity is small and that accurate results

can be obtained in plate bending problems using a reasonable mesh size,

4,5,3 Derivation of Element Stiffness for Plate Bending

The necesgsary steps to derive the element stiffness matrix for
plate bending ks relating nodal point forces to nodal point displacements
have been given in Section 4.3. Rewriting Eqs. (4.28), (4,29) and (4.20)

specifically for the plate bending problem

(s} =[x ] fv)

(4,56)
12x1  12x12 12x1
where
-1 . T~ -1
k £
.= [, 1%, [a]] (4.57)
and
~ T
k =IB D B dvV (4,58)
<] v S S S

The AS matrix relates the nodal point displacements VS to

the generalized coordinates as'

=181 {e} (4.59)
12x1 12x12 12x1
The elements of the AS matrix may be found from the defini-
tions of the nodal point displacements, Egqs. (4,54), and the displacement
functions, Eq. (4,55). When the appropriate differentiations and substitu-
tions of the nodal point coordinates are made, the following result is

Obtained.
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The BS matrix in Eq. (4.58) relates the internal curvatures

K in the element to the generalized coordinates as.

(G, 33 = [B,G, 9] {a] (4.60)
3x1 3x12  12x1

The elements of the BS matrix may be obtained by appropriate

differentiation of Eq. (4.55) and by noting from Eq. (4.50) that
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N\ N\ \
(K (1 ~
X pX axz
2
{K(x,y1 =Jr< = J L = J é—% r (4.60a)
Y py dy
2
Zny EE* giB;
\ ) \ X \ J

In specifying the generalized curvatures above, note that a
factor of 2 has been added to the twisting curvature, This factor of 2
is needed ta account for the virtual work done in Eq. (4.58) by the torsional
moments on both of the adjacent faces of the differential element shown in
Fig, 24c.

Performing the necessary differentigtions, the following results
are obtained for the elements of the 3 x 12 BS matrix, A prime indicates

a differentiation of the function with respect to its variable,

B (1,1) = x;(stcy) B.(1,7) = —xg<a-x>Y3<b-y>
B,(1,2) = X (Y, () B,(1,8) = -X (a-x)Y,(b-y)
B (1,3 = X{(X)Yl(Y) B (1,9) = X{(a—x)yl(b—y)
B,(1,4) = —X;(a~x)Y3(y) B_(1,10) = Xg(x)YS(b-Y)
B.(1,5) = Xg(a—x)Yg(y) B_(1,11) = —xg(x)Yz(b—y)

1]

BS(1,6) = Xl(a—x)Yl(y) Bs(l,lz) Xl(x)Yl(b-y)
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B,(2,1) = X,V (y) B,(3,1) = 2X ()Y (y)

B (2,2) = XS(X)Y;(y) B,(3,2) = 2X ()Y, (y)
B,(2,9) = X ()Y B,(3,3) = 2/ (0¥ ()
B,(2,4) = -X,(a-x)¥5(y) B (3,4) = -2%)(a-x)Y (y)
B,(2,8) = X, (a-x)Yy(y) B.(3,5) = 2X[(a=x)Y,(y)
B,(2,6) = X (a-x)Y(y) By(3,6) = 2% (a=x)¥](y)
B_(2,7) = ~X2(awx)Yg(b—-y) BB = ~2Xé(a—X)Yé(b—y)
B (2,8) = —Xs(a—x)Y;(b—y) B,(3,8) = -2X (a-x)Y, (b-y)
B.(2,9) = Xl(a*x)Y{(b—y) B_(3,9) = 2X£(a—x)Yl(b-y)
B_(2,10) = xz(x)yg(b-y) B_(3,10) = ZXé(x)Yé(b—y)
Bs(z;ll) = ~x3(x)yg<b—y) B (3,11) = —ZXé(x)Yé(b—y)
B (2,12) = Xl(x)Y{(bvy) B (3,12) = 2Xl/(x)Yi(b~y)

Internal bending and torsional moments may be expressed in terms

of curvatures and twists to form the DS matrix

Mz, = (D] {K(x,m} (4.61)

MY 1 v o ] (x )

X X

3

(v - L v 1 o {« y (4.61a)

y 12(1-v%) Y

(1-v)

\Mxy/ k...O 0 2 et LZKquA

in which h 1is the plate thickness.
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matrices now
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defined in Eqgs. (4.59), (4,60) and (4.61), the element stiffness matrix ks

in Eq. (4,57) can now be determined

and

in which KS

tedious integration and matrix multiplication indicated in Eq.

1l

I

-1.T _pb a2 -1
A ] [Jo J‘o B B_ dxdy] [A_"]

[k, v ] =

3
““EE““E*;> [ks] {v_}
12(1-v7)

12 x 12 matrix of coefficients obtained by

(4.62)

(4.63)

performing the

The

sequence of nodal point forces and corresponding displacements in Eq, (4.63)

is as follows:

-~

- F

M .
yi

M

X1

B,
zi

M.
yJ

M.
XJ

E_.
zJ

M
vk

Mxk

sz

My2

Mx£

z 4

Eh
‘ 2
12(1-v )

12 x 12 K8 matrix

" ™
( e ‘ |
yi

o

xi

0.
yJ

xJ

(4.632)
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The expressions derived for the elements of the symmetrical KS
matrix by Eq, (4,62) are as follows, using the notation and sign convention

given in Fig. 25:

3
52 b 8 a 4 g
K8(L,L) = 2+ 3% 5" 3 3
2 2
11 a 11 b
Ks(1,2) = == =+ 35 3t Ll-2v+0.2
b a
23 a2 33 Db 7 v
Ks(1,3) = '5‘5""'§+ﬁ'——2~+25 <t 1.3-};
b a
26 b 2 a 3 33
2 2
13 a 11 b v
KS(L,8) = 76 5 "3 2 10 ~ 202
b a
33 b 12 a2 7 1 )
KS@,8) = -9y S +55 3 35" %13
a b
3
9 b 2 a 3 a
SO < F Rt EL % 3
2 2
; 13 b 13 a
KS(1,8) = 70 3o + %0 5 0,02
a b
9 b 12 az 7 1 X
KSW® = -7 5" % 3%+ %%
a b
3
18 8 a 4 a
-2 2
- La _18b v ‘
KS(1,11) = 35 3 25 73 + 0 + 0.02
b a
9 b 23 a 7 1 v
KS(,12) = 97 5 - 353 %5 13y



Ks8(2,2)

KS(2,3)

KS(2,4)

Ks(2,5)

Ks(2,6)

Ks(2,7)

KS(2,8)

KS(2,9)

KS(2,10)

Ks(2,11)

Ks(2,12)

KS(3,3)

KS(3,4)
KS(3,5)

KS(3,6)

KS(3,7)
KS(3,8)

KS(3,9)

i

11

i

]

i

H

1

ab

102



103

KS(3,10) = KS(1,12)
KS(3,11) = -KS(2,12)
KS(3,12) = g% 3% - %%? j% - %g— ”ﬁ%‘“ 0.8 é%
KS(4,4) = KS(1,1) KS(6,11) = -KS(2,9)
KS(4,5) = =-KS(1,2) KS(6,12) = KS(3,9)
K8(4,6) = -KS(1,3) Ks(7,7) = KS8(1,1)
KS(4,7) = KS$(1,10) KS5(7,8) = KsS(1,2)
KS(4,8) = -KS(1,11) KS(7,9) = -KS(1,3)
KS(4,9) = -KS(1,12) KS(7,10) = KsS(1,4)
KS(4,10) = KS(1,7) KS(7,11) = KS(1,5)
KS(4,11) = -KS(1,8) KS(7,12) = -KS(1,6)
KS(4,12) = -KS(1,9) KS(8,8) = KS(2,2)
KS(5,5) = KS(2,2) KS(8,9) = -KS(2,3)
KS(5,6) = KS(2,3) KS(8,10) = KS(2,4)
KS(5,7) = XS(1,11) KS(8,11) = KS(2,5)
KsS(5,8) = Ks(2,11) KS(8,12) = -KS(2,6)
KS(5,9) = KS(2,12) KS(9,9) = KS(3,3)
KS(5,10) = -KS(1,8) KS(9,10) = Ks(1,6)
KS(5,11) = XS(2,8) KS(9,11) = =KS(2,6)
KS(5,12) = KS(2,9) KS(9,12) = KS(3,6)
KS(6,6) = KS(3,3) KS(10,10) = KS(1,1)
KS(6,7) = -KS(1,12) KS(10,11) = -KS(1,2)
KsS(6,8) = -KS(2,12) KS(10,12) = KS(1,3)
KS(6,9) = KS(3,12) KS(11,11) = Ks(2,2)
KS(6,10) = KS(1,9) KS(11,12) = -KS(2,3)
’ : KS(12,12) = KS(3,3)

As é éheckion the’above derived expressions for KS they were
used together with Eq. (4.63a) to perform equilibrium checks on the element
by taking ZMX, ZMy and ZFZ of the nodal point forces produced by unit
values of each of the nodal point displacements. In all cases these summa-

tions equalled zero providing a check on the derivations.
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4.6 Computer’Program ~ FINPLA

A general computer program,called FINPLA, has been written to perform

the finite element analysis described in this chapter. The program has

been written in FORTRAN IV language for the IBM 7094 computer. For detailed

descriptions of the input, output, sign conventions, limitations, and usage

see Appendix B,

A brief description is given below,

(a) . Input Data:

D)

(2)

(3

4)

(8)

(6)
(7)

Geometry and dimensions of the structure and its finite
element mesh idealization.

Dimensions and material properties of each finite
el‘ement type.

Magnitude and location of uniform surface loads on

the elements.

Magnitude and location of concentrated or 1line

loads along joints or at mnodal points.

Boundary conditions of the structure.

Location, geometry and properties of diaphragms.

Desired locations for final results in output.

(b) Output Data:

(1)

(2)

(3

(4)

The complete input data are properly labelled and
printed as a check,

The six final displacement components are printed

for each nodal point of the structure.

Internal forces, consisting of the inplane quantities
N, N, ny, and the bending and torsional moments

, M , are printed out at the nodal points and

M M
>3 y Xy

at intermediate points wherever desired.

The execution times for the different links of the

program conclude the output,
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(¢) Limitations, Restrictions, and Remarks:

1

(2)

(3)

(4)

(5)

(6)
(7)

The maximum number of nodal points in one cross-
section is 20. The maximum absolute nodal point
difference of one element is 5.

There may be up to 28 elements in one cross—-section
and up to 40 elements subdivision along the span

of the whole structure.

Each finite element must belong to one of up to 90
different element types, characterized by its geometry,
material properties, and uniform loading.

Up to 150 concentrated or distributed line loads or
displacements may be specified at the longitudinal
joints,

There may be up to 25 boundary displacement components
specified, which are applied to any number of nodal

points in a cross~section,

-The maximum number of transverse diaphragms is 5.

The internal forces of adjoining elements may be averaged

if desired,

(d) Logical Steps:

&Y
(2)

Read and print input data,

Set up the total force and displacement arrays for the
structure, containing the complete or final input forces
or displacements of each nodal point. An indicator
array which is set up shows if a force or displacement

is specified,



(3)

(4)

(5)
()

(7
(8)
(9)

Calculate the element stiffnesses for each element

type in global coordinates,

Form and invert the total structure stiffness for

one longitudinal segment at a time,

Print ocut final joint displacements.

Calculate all desired internal forces and average the
results of adjacent elements if desired,

Print out internal forces,

Calculate and print internal forces in diaphragms,

Print execution times,

106
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5. COMPARISON OF RESULTS

5.1 Introduction

Three different methods for analyzing continuous box girder bridges
have been presented in the preceding chapters. The assumptions, limitations,
advantages and disadvantages have also been discussed for each of the methods,
The general computer programs, MUPDI, SIMPLA, and FINPLA, developed to per-
form these analyses provide a powerful means for the analysis of continuous
box girder bridges as well as a variety of other problems.

In order to check the validity of the assumptions and the accuracy of
the three methods of analysis, it is desirable to analyze a general case by
the three methods and to compare the results obtained. A two span continuous
bridge with a cross-section consisting of three cells was selected as the
example structure to be analyzed. Extensive results were obtained from the
computer output with respect to displacements, internal forces and moments at
various sections along the span, Only selected results will be presented
for discussion, Comparisons will be made of vertical deflections, longitudinal
stresses, percentage of total moment at a section taken by each girder, and
transverse slab moments. In addition a summary of computer times required
for each solution will be given, so that this factor may be considered in

evaluating the advantages and disadvantages of one method over another,

5,2 Description of Example Bridge and Analytical Models

The dimensions and loading for the example bridges are shown in Fig., 29,
Rigid diaphragms are assumed to exist at each of the three support points.
The cross-sectional dimensions of the 3-cell bridge are the same as those
used for one of the example bridges in the initial report on simply supported
bridges [1]. By subjecting each of the two 60 ft, spans to a midspan load

of 1,000 1b. distributed over a 1 ft. length and placed over an exterior web,
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symmetry is obtained in the longitudinal direction about the middle support.
Thus, instead of the two span continuous bridge, a single 60 ft, span can be
analyzed, if desired, which has boundary conditions consisting of a fixed
support at one end and a simple support at the other end.

Five separate computer analyses were made of the example bridge: one by
the folded plate method; two by the finite element method, using two different
element subdivisions; and two by the finite segment method, using two different
segment subdivisions. The results of the folded plate analysis are used as
a standard for comparison, since it is considered to be the most accurate of
the methods of analysis used. The modulus of elasticity was assumed to be
3,000,000 psi in all analyses, Poisson's ratio was taken as 0.15 for the
folded plate and finite element analyses and as zero in the finite segment
analyses as necessitated by its assumptions.

The folded plate analytical model was taken as a two span continuous
structure with simple supports at the two extreme ends. A rigid diaphragm
1 ft. thick was assumed to exist at the interior support. The cellular folded
plate system was subdivided into 11 plates interconnected at 9 longitudinal
joints, Fig, 30. Note that a longitudinal joint was included in the top
slab midway between the two interior webs. This was done so that the same
subdivision could also be used for a central concentrated load as well as
for the eccentric one shown. In the analyses, displacements of the folded
plate system at the rigid diaphragm over the interior support were set to zero
at all possible joint and plate restraint points. A total of [(9x3) +
(11x4) ] = 71 redundant reaction forces at the section over the interior
support resulted from these imposed restraints., Both the applied concentrated
1,000 1b. loads and the reaction forces at the interior support were repre-

sented by the sum of the first 99 harmonics of the appropriate Fourier series.
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Because of longitudinal symmetry this involved 50 non-zero harmonics. The
computer program MUPDI was used to perform the analysis by the folded plate
method.

Two element subdivisions were used in the finite element analysis, The
first subdivision, designated Mesh 1, is shown in Fig, 31. A single span,
fixed at one end and simply supported at the other end, was used in the
analysis. For Mesh 1, a typical transverse section, Fig. 3lb, had 10 finite
elements and 8 nodal points, Longitudinally, the structure was divided into
14 segments resulting in 15 sections containing nodal points, Fig. 3la. Thus
the total number of finite elements in the structure was 140 and the total
number of nodal points was 120, Since each nodal point has 6 degrees of
freedom, this resulted in a structure stiffness matrix with a total of 720
degrees of freedom. The maximum band width in the structure stiffness matrix
was equal to 66, This i1s defined as being equal to the number of degrees of
freedom per nodal point times the sum of the maximum absolute difference
between the nodal point numbers on a typical cross-section for any single
finite element plus the number of nodal points on the cross~section plus one,
In the computer program for .the finite €lement method, FINPLA, a major portion
of the computer time is expended in solving Eq. (4.9) which contains the
structure stiffness matrix, As an approximate guide, the time required for
the solution of the equations increases directly with the total number of
degrees of freedom and as the square of the maximum band width,

The second subdivision, used in the finite element analysis, designated
Mesh 2, is shown in Fig., 32. The same number of subdivisions, as in Mesh 1,
were used longitudinally, Fig, 32a. However, a typical transverse section,

Fig. 32b, had 15 finite elements and 13 nodal points and, as can be seen,



FiG. 3l

1000 LBS
N T
|
g AN S S NN NN | N N N N
l GOI O" -
| 5@5, 1@4, 2 @4, 1@4%, 5@ 5,

a) LONGITUDINAL ELEVATION

[T ]

b)  TYPICAL TRANSVERSE SECTION

iI000 LBS

FINITE ELEMENT ANALYTICAL MODEL - MESH |

I000°LLBS
T f | T T T T T
f | [ | I [ | | | I
2 A A NN NN MO | N N N N
7]
l 60! Ou
| 5@5, @44, 2@4, 1 @41, 5@5

a) LONGITUDINAL ELEVATION

1000 LBS

N .

b) TYPICAL TRANSVERSE SECTION

FIG. 32 FINITE ELEMENT ANALYTICAL MODEL- MESH 2

11



112

the finer mesh was used only in the loaded cell. Mesh 2 had a total of 210
finite elements, 195 nodal points, 1170 degrees of freedom and a maximum
band width of 96,

The two element subdivisions used in the finite segment analysis,
designated Mesh 1 and Mesh 2, are shown in Figs, 33 and 34, It can be seen
that these are identical with those used in the finite element analysis with
the exception that at midspan, one 1 ft. long longitudinal segment was used in
place of two 1/2 f£t. long segments., In the analysis by the computer program
SIMPLA, longitudinal stopovers, as discussed in Section 3.4, were specified

at the end of every other segment.

5.3 Vertical Deflectionsv

Results for the vertical deflections along longitudinal lines at the top
of each of the four webs are depicted in Figs, 35 to 38. Good agreement exists
between the results of the five analyses. The vertical deflections are gen-
erally the least sensitive of the results obtained and even the coarse Mesh 1
used for the finite element and the finite segment methods gave results which
compare favorably with the folded plate results. As would be expected the
shapes of the deflected curves are all similar in form to that of a beam fixed
at one end and simply supported at the other end,

The distribution of vertical deflections across transverse sections at
x = 17.5 ft, x = 30.0 ft. (midspan), and x = 42,5 ft. from the fixed end
support are shown in Fig. 39. The deflections at the midspan section exhibit

the greatest non-uniformity due to the effect of the concentrated load at

midspan,

5.4 Longitudinal Stresses

In evaluating the longitudinal stresses from the computer output, plots

of stress GX at each element edge versus distance from the fixed support
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were made for all elements in the cross-section. Typical plots of this type
are shown in Figs. 40, 41, and 42 for points on the top slab, bottom slab
and exterior web of the loaded cell.

In making these plots it should be noted that each of the methods of
analysis used involves different assumptions regarding the longitudinal varia-
tion of stress along an element edge. The folded plate method assumes a
continuous variation along the entire span based oﬁ the sum of the hérmonic
contributions. Thus results by this method may be plotted directly from the
computer output at specified sections. The assumed displacement patterns used
in the finite element method, Figs. 20 to 22, result in a uniform variation
in longitudinal strain along the longitudinal edges of a finite element. Thus§
the results for OX by this method, from the computer output, indicate
essentially uniform stress along the longitudinal edge of each element, with
sudden jumps at each nodal point., In interpreting these results the simplest
procedure is to average the values longitudinally at each nodal point. This
was done in plotting the curves shown in Figs, 40 to 42. Essentially the same
curves are obtained from a plot of the stresses at the midpoints of each
longitudinal element edge, The curves were extrapolated to the support and
to midspan to obtain stresses at these sections. The finite segment method
assumes a linear sfreSs variation along a longitudinal edge of a segment,
Values at the midpoints and at the ends of the segments were used in plotting
the curves shown in Figs, 40 to 42, 1In all three methods the plotted
stresses on the top and bottom slabs at a longitudinal joint were taken as
the average transvérsely of the stresses in the elements on either side of
the joint,

A study of Figs. 40 to 42 indicates general agreement between the results
of all five analyses except in the sensitive vicinity of the concentrated

load. 1In this vicinity, a refinement of the mesh from Mesh 1 to Mesh 2 for
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both the finite element and finite segment methods improves. the comparison
with the results of the folded plate method,

The transverse distribution of longitudinal stresses at midspan and at
the fixed support are shown in Figs, 43 to 48, The folded plate method gives
a continuous transverse variation of stress and results in longitudinal stress
concentrations directly under the midspan concentrated load and at the slab-
web junctures at the fixed end support reactions. For both the finite element
and finite segment methods a linear transverse variation of stresses exists
between joint locations and it is apparent that as the mesh is refined from
Mesh 1 to Mesh 2 the distributions by both methods begin to approach each
other and that obtained by the folded plate method. The assumptions of both
the folded plate and the finite segment methods automatically insure that
statics at a section are satisfied, thus the stresses obtained by the finite
segment method represent a best "fit', within the restriction of a 1inear
variation between joints, of the stresses found by the folded plate method,
The assumptions of the finite element method do not insure that statics at
a section are satisfied, however, as the mesh is made finer and finer, this

condition is approached,

5.5 Distribution of Moments to Each Girder

The actual box girder cross-section is first divided into individual
girders consisting of a web and top and bottom flanges, The flanges are
taken equal in width to the distance between the midpoint of the cells on
adjacent sides of the web, Thus for the example bridge, shown in Fig. 29,

all the interior girders have flange widths twice those of the exterior

girders.

The girder moment at any section taken by an individual girder can be

found by integrating the stresses, shown in Figs. 43 to 48, over the proper
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slab and web areas to obtain forces and then multiplying these forces by
their respective lever arms to the neutral axis of the section, The girder
moments, at a particular section, can then be summed to determine the total
moment on an entire cross-section, This was done for sections at midspan
and at the fixed end support. ZEach girder moment can then be divided by the
total moment at a section to determine the percentage distribution to each
girder, “

The results of the above procedure for all five analyses are given in
Table 1. It can be seen that the results for both Mesh 1 and Mesh 2 by the
finite segment method are in good general agreement with those found by the
folded plate method. For the finite element method, the results for the coarse
Mesh 1 tend to overestimate the moments taken by girders Rl and R2; how-
ever, the results for the fine Mesh 2 are in good agreement with those found

by the folded plate method,

5,6 Transverse Slab Moments

In evaluating the transverse slab moments from the computer output, plots
of moment My at each element edge versus distance from the fixed support
were made for all element edges in the cross section. Typical plots of this
type are shown in Figs. 49, through 52 for points in the top slab, bottom
slab and web of the loaded cell, The curves for the folded plate method were
plotted directly from results at specified sections in the computer output,
For the finite element method, values averaged longitudinally at the nodal
points and values at the midpoints of each longitudinal element edge were
used to plot the curves. Values at the midpoints of the longitudinal segments

were used in plotting the curves for the finite segment method.
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TABLE 1: DISTRIBUTION OF MOMENTS TO EACH GIRDER
FOR 3-CELL BRIDGE UNDER ECCENTRIC LOAD
(FIXED-SIMPLE END SUPPORT CONDITIONS) .
1000 1b
L, Ly "R R,
Folded Finite Element Finite Segment
g P
S late Mesh 1 Mesh 2 Mesh 1 Mesh 2
I —
L M M M M M
m .
Girder ft-1b| P |ft-1b| P |2t-1b| % |st-1b| P |ft-1p| P
[: L, 412| 4.3| 424| 3.9 412 4. 383 4.1| 421| 4.4
=)
g | L, 1265| 13,3 1287| 11.9]| 1251| 13. 1150| 12.3] 1242| 13.1
0]
©
i I Ry 2925 30.8| 3566| 32.9| 2829] 30, 2824 | 30.2| 2804 29.5
_:] R, 4894 51.6| 5568| 51.3| 4690]| 51, 4994 53.4| 5045 53.0
Total 9496 [100,0(10845|100.0| 9182|100, 9351100.0| 9512{100.0
[::' L, 914 8.3| 1040| 8.4| 1074| 9. 818 7.4| 860]| .7.8
E
& | L, 1994 18.2| 2051 16.6| 2258| 19, 1879 17.0| 2007 | 18.2
]
wn
3 | R 4023| 36.7| 4383| 35.5| 4204/ 36. 4101 | 37.1| 4140 37.5"
v 1
ol
Fry
:] R, 4040| 36.8| 4870| 39.5| 4040 34. 4256 | 38.5] 4034 36.5
Total 10971 100.0(12344(100.0[11576 |{100.0{11054 |100.0 |11041 [100.0
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A study of Figs. 49 to 52 indicates good agreement between the results

of all five analyses except in the sensitive vicinity of the concentrated
load at midspan, In this vicinity a refinement of the mesh from Mesh 1 to
Mesh 2 for both the finite element and the finite segment methods generally
improves the comparison with the results of the folded plate method,

Static equilibrium requires that the sum of the transverse moments acting
on a longitudinal joint should be zero. Thus, for a longitudinal joint at
the top or bottom of the exterior web, the transverse moments in the slab
should be equal and opposite to those in the web, Comparing these moments
in Figs. 49 to 52, it can be seen that both the results of the folded plate
and finite segment methods accurately satisfy static equilibrium, while for
the finite element method this requirement is only satisfied approximately.

The transverse distribution of the transverse slab moments at midspan
are shown in Figs. 53, 54 and 55. Both the folded plate and the finite ele-
ment methods, which assume two way slab action, give distributions which are
distinctly non-linear in the slabs of the loaded cell. The high moments
directly under the concentrated load are clearly given by the folded plate
method. The finite segment method, because of its assumption of one way slab
action, gives transverse distributions in the slabs which are linear between
the web supports. Thus the peak moments directly under the concentrated

load cannot be found by this method.

5.7 Computer Times

The execution times, using an IBM 7094 digital computer, for each of

the five analyses described in this chapter, were as follows:
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Folded Plate Method 4 min. 27 sec,

Finite Element Method - Mesh 1 5 min., 50 sec.

I

Finite Element Method Mesh 2 18 min, 17 sec.
Finite Segment Method - Mesh 1 2 min. 35 sec.

Finite Segment Method - Mesh 2 5 min., 48 sec,

It can be seen that for a given mesh size the computer times required
by the finite segment method are much less than by the finite element method,
Also as the mesh size is refined the computer times required increase much
more rapidly by the finite element method than by the finite segment method.

Wherever applicable, the folded plate method should be used, since it
gives the most accurate results and requires a reasonable amount of computer
time. Wherever structural geometry, variations in material properties, end
support conditions and interior supports preclude the use of the folded plate
method, the finite segment method should be used if the assumptions of the
ordinary theory of folded plates are acceptable. Where these are not accept=-
able, the finite element method must be used, in which case, care must be
taken to insure that an adequately refined mesh size is used to yield

sufficiently accurate results,
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6. STUDY OF 3-CELL AND 6-CELL BRIDGES

6.1 General Remarks

Of particular interest in the present study is the effect of longi-
tudinal continuity on the load distribution in box girder bridges. In pre-
sent design methods, a typical repeating segment of the cross-section,
consisting of a top and bottom flange and a single web, is taken from the
cross~section and is treated as an independent longitudinal girder. For
wheel loads placed on the bridge deck, empirical formulas are used to deter-
mine the load distribution to the independent girder, which is then analyzed
as a continuous beam to determine positive and negative moments for design,
The load distribution factors presently used for concrete box girder bridges
are based solely on a single parameter, the center to center spacing of the
webs in the box girder cross-section, and the same factor is used for both
positive and negative moments in the independent girder.

In order to make a rational study of the problem of load distribution
in a multi-celled continuous box girder bridge subjected to a single con-
centrated load at midspan, two basic questions need to be answered,

1. What is the division of the total statical moment in a given span
between the total positive moment at the midspan section and the total
negative moments at the support sections?

2. What is the transverse distribution of the above total positive or
negative moments at a section to each of the independent longitudinal
girders?

Many factors may influence the answers to these questions besides the single
parameter of the center to center spacing of webs in the cross—-section,.
Among these factors may be the geometry and dimensions of the bridge, the
number of cells in theicross—section, the transverse position of the con-

centrated load on the bridge deck, and the degree of longitudinal conti-

nuity at the supports,
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6.2 Description of Example Bridges Analyzed.

A 3-cell and a 6-cell bridge cross-section were selected as the two basic
bridge types for the parameter studies. The cross-sectional dimensions of
these bridges, shown in Fig. 56, are identical to those used for some of the
example bridges in the initial report on simply supported bridges [1]. A
single 60 ft, span was analyzed with three different sets of end conditions.
The end conditions used were simple-simple, fixed-simple and fixed-fixed as
shown in Fig. 57. These conditions give a range of results which can be
extrapolated to the variations in end conditions found in spans of an actual
continuous bridge. Two loading conditions were studied involving a single
midspan load of 1,000 1b. distributed over a 1 ft, length and placed at two
transverse positions on the bridge deck, Fig. 56, The first load position,
designated 1, was at a central lateral position and the second. load position,
designated 4, was at an extreme eccentric lateral position over an exterior
web, These designations correspond with those used in the initial report [17.

A»total of 23 separate computer analyses were performed; eight by the
folded plate method; three by the finite element method; and twelve by the
finite segment method, The cases analyzed are summarized in Table 2. Note
that the fixed~fixed support condition cannot be analyzed by the folded plate
method because the method is limited to structures with simply supported
ends. Only the 3-cell cross-section was analyzed by the finite element
method because of the excessive computer times required for the 6-cell cross-
section., All cases were analyzed by the finite segment method. A modulus
of elasticity equal to 3,000,000 psi was used for all the analyses, while
Poisson's ratio was assumed as 0.15 for the folded plate and finite element

methods and as zero for the finite segment method.
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For each of the computer analyses listed in Table 2, analytical models
had to be selected which divided the structure into a series of plates,
finite elements, or finite segments, interconnected at joints, For the
folded plate analysis 99 harmonics Were used to represent the applied load
and the reactions. The longitudinal subdivisions into finite elements and
finite segments for all cases were the same as those shown in Figs, 31 and
33. The transverse element subdivisions and locations of longitudinal joints
for the various cases are shown in Figs. 58, 59, and 60, For the 3-cell
bridge, Fig., 58, the full cross~section was used,

For the 6~-cell bridge under an eccentric load, Fig. 59, the solutions
by both the folded plate method and the finite segment method were obtained
by the superposition of symmetric and antisymmetric loading cases so that
only half of the cross-section had to be used in the computer analyses. The
boundary conditions imposed at the joints lying on the plane of structural
symmetry are shown in Eigs. 59b and 59c¢. For the symmetric load case the
horizontal joint displacements and the rotations about the longitudinal joints
are set to zero. For the antisymmetric load case the vertical and longi-
tudinal joint displacements are set to zero. In addition, for the web
member lying on the’plane of structural symmetry, the in-plane plate stiff-
ness must be halved for the symmetric load case and the slab stiffness must
be halved for the antisymmetric load case, This is most easily accomplished
by assigning this member a modulus of elasticity equal to one-half that used
when analyzing the entire cross—-section, Due account of this has to be taken
when interpreting the computer output for internal forces in this member.

For the 6-cell bridge, under a central load, Fig. 60, once more, advantage
was taken of symmetry so that only one-half of the structure had to be analyzed

by the computer.
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TABLE 2: SUMMARY OF COMPUTER ANALYSES PERFORMED
ON EXAMPLE BRIDGES

End Number | Transverse| Folded | Finite Finite

Case Support 1 of Load 9 Plate Element | Segment

Conditions Cells Position Method | Method Method
60~-3~1~SS SS 3 1 b'q X X
60-3-1-FS FS 3 1 b X X
60~3~-1-FF FF 3 1 X b4
60~3-4-S8 SS 3 4 X b4
60—3-4—FS FS 3 4 b4 X
60~-3-4-FF FF 3 4 x
60-6-1~38S SS 6 1 X ‘ X
60-6~1-FS FS 6 1 X b4
60-6-~1~FF FF 6 1 b4
60-6-4-S3 SS 6 4 b b4
60-6~4~FS - FS 6 4 X X
60~-6~4-FF FF 6 4 X

1., SS = Simple-Simple; FS = Fixed-Simple; FF = Fixed-Fixed

2. 1 - Central load; 4 - Eccentric load over exterior web.
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6.3 Distribution of Moments to Each Girder

The distribution to each individual longitudinal girder of the total
longitudinal moment at the midspan and the fixed end support sections was
calculated by the procedurg described in Section 5.5. The results of these
calculations for all of the cases listed in Table 2 are presented in Tables
3, 4, 5 and 6., Based on a study of these results a number of points are
discussed in the sections that follow.

6,3.1 Comparison of Results by Different Methods

Results obtained by the folded plate and the finite segment methods
are close to each other for both the total moment at a section and the per
cent of this total taken by each girder. Differences between the results by
the two methods are of the order of 1 to 2%. Results by the finite element
method, given in Table 3, tend to be on the high side especially for the
moments taken by Girders R,1 and R2. A refinement of mesh size as discussed
in Section 5.5 is fequired to get more accurate results by this method.

Since the finite segment method gives accurate results, it can
be used to make extensive studies of this type for arbitrary end and interior
boundary conditions. Further discussion of Tables 3, 4, 5 and 6 will be

based on the results by this method.

6.3.2 Longitudinal Division of Total Statical Moment Between Positive

and Negative Moments.

The moment diagrams for a beam subjected to a midspan concen-
trated load of 1000 1bs. with end conditions of simple-simple, fixedésimple,
and fixed-fixed are shown in Figs, 61, 62, 63. It is of particular impor-
tance to compare the moments at midspan and at the supports given in these
figures with those obtained for the total moments at a section given in
Tables 3, 4, 5 and 6. It is seen that the results are essentially the same,
being within 1 or 2% of each other for all cases, The following conclusions

may be drawn:
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TABLE 3, DISTRIBUTION OF MOMENTS TO EACH GIRDER
FOR 3-CELL BRIDGE UNDER ECCENTRIC LOAD
1000 1b
\
L, L R R,
Section At Midspan At Support
E Support Simple—' Fixed¥ Fixed- Fixed- Fixed=-
$ Conditions Simple Simple Fixed Simple Fixed
=
. M M M M M
Girder ft-1b| © |ft-1b| P |ft-1b] P |ft-1b| % |ft-1b| %
[:: L, 1324| 8.9| 412| 4. 914| 8.3
_8 - ,
p 20 ) .
k | L, 3037 | 20. 1265 13 1994| 18.2
ko]
g I:: Ry 4810 32,3]| 2925| 30. 4023| 36.7
™
::] R, 5713| 38.4| 4894| 51. 4040| 36.8
Total 14884 {100,0| 9496/100. 10971 (100.0
[:: L2 1351 8.2 424 3, 101 1.1{ 1040] 8.4 385 4.7
E
=] 303 8. 8 . 6 .3 . 0 .
5 : | L, 2] 1 1287 11 667 7 2051 | 16.6| 1030} 12.6
<3
v R 5431 | 33.0] 3566 32. 2937 | 32.3| 4383| 35.5| 3016| 36.9
LA
o) .
ol :
B :] R, 6657 | 40, 5568| 51. 5394| 59.3| 4870| 39.5| 3735]| 45.8
Total 16471 |100,0[10845|100. 9099(100.0(12344 |100,0| 8166 {100.0
[:: L, 1310| 8.8| 383| 4. 66 0,9| 818| 7.4 307 4.1
E
=]
B l L, 29331] 19. 1150 12. 538| 7.3| 1879| 17.0] 900{ 12.0
w0
Q)‘
o l Ry 4675 31, 2824 | 30, 2125| 28,.8| 4101 37.1) 2834 37.8
ol
5
B :] R, 5970 | 40, 4994 53, 4648 | 63,0| 4256| 38.5| 3456 46.1
Total 14888 {100.0 | 9351{100.0| 7377 {100,0|11054 |100.0| 7497 |100,0
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TABLE 4: DISTRIBUTION OF MOMENTS TO EACH GIRDER
FOR 3-CELL BRIDGE UNDER CENTER LOAD
1 1000 1b
Lz L Rl R2
Section At Midspan At Support
8 Support Simple- Fixed- Fixed- Fixed- Fixed-
ﬁ Conditions Simple Simple Fixed Simple Fixed
=
M M M M M
Girder ft-1b» % ft-1b % ft-1b % ft-1b % ft-1b %
[:: L2 2104 14, 1129 12, 1682 15,
3
l . 0 . .
ﬁ Ll 5447} 36 357 38 3682 | 34
[~
°
R 5447 36, 3570 38, 36821 34,
g Ln
I
=
:‘I R, 2104| 14.0 1129 12. 1682 15,
Total 15102100, 9398|100, 10728
[:: L2 2110} 14, 1142 12, 780| 10.,5| 1680 15, 1036 13.8
o
8
| 7 . . 2935 9 . ,
% L1 5372 35 3578 37 39,5 3846 34 2717 | 36,2
0
8 I R 5372 35. 3578} 37, 2935 39.5| 3846| 34, 27171 36.2
.E 1
o
a ::] R2 21101 14, 1142 12, 780 | 10.5] 1680 15, 1036 | 13.8
Total 14964 1100, 9440 (100, 74301100,0111052(100, 7506 {100, 0
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TABLE 5: DISTRIBUTION OF MOMENTS TO EACH GIRDER
FOR 6-CELL BRIDGE UNDER ECCENTRIC LOAD
1000 1b
L3 L2 Ll C Rl R2 R3
Section At Midspan At Support
g Support Simple- Fixed- Fixed- Fixed- Fixed~—
§ Conditions Simple Simple Fixed Simple Fixed
=
Girder M M M M M
ft-1b % ft-1b % ft~1b % ft-1b % ft-1b %
|: L, 239 1. 26| 0.3 78| 0.7
I L2 551 3. 92 1.0 169 1.5
! 2.1 3.2
% L1 807 5, 197 350 ¢
)
l ' - 4.7 7.1
o C 1312 8.9 451 ‘ 783 {
C!
I 11.3 15,7
E Rl 2236 15.2| 1073 ! 1717 >
l R2 4214 28, 2811 29.6 3887 35.5
j R, 5381| 36.5| 4834| 51.0 3974| 36.3
Total 14740}100.0| 9484{100,0 10958(100,0
l:’ L, 326 2.2 19| 0.2 o| 0.0 66| 0.6 7 0.1
| L2 830 5, 66 0.7 0 0.0 121 1.1 7 0.1
- .
l 9 9
é L1 875 5. 15 1.7 15 0.2 287 2.6 59 0.8
0
)
n | C 1260 8. 433 4.3 110 1.5 684 6.2 259 3.5
3
P l R1 2046 | 13, 985| 10.5 501 6.8 1655 15,0 894 | 12.1
o
Py
I R2 3854 | 26, 2748 29,3 | 2115 28.7| 3994 | 36.2| 2824| 38.2
::j R3 5633} 38, 5000 | 53,3 | 4629| 62,8 4226 38.3| 3341} 45.2
Total 14824 1100, 9380 10000 73701100,0 11033 {100,0{ 73911100.0
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TABLE 6: DISTRIBUTION OF MOMENTS TO EACH GIRDER
FOR 6-CELL BRIDGE UNDER CENTER LOAD
1000 1ib
L, L, L, C Ry R, R,
Section At Midspan At Support
g Support Simple- Fixed- Fixed- Fixed- Fixed-
g Conditions Simple Simple Fixed Simple Fixed
]
= M M M M ‘ M
. . . %,
Girder ft-1b| P |ft-1D % ltt-1p %leto1p % let-1p
[:: L3 700 4,7 243 2.5 487 4.5
I L, 1579| 10.,6| 706| 7.4 1059 9.7
L 2490 16.6| 1577| 16.5 2076 19.0
% ] 1
i
[a M)
. ] C 5420| 36.2| 44981 47.2 3678 33.6
ko]
R 2490| 16,6 1577| 16.5 207 19.0
3 l 1 : 6
=
I r R, 1579 10.6{ 706 7.4 1059 9.7
‘::] R, 700 4.7 243 2.5 4871 4.5
Total 14958 [100,0| 9550(100.0 109221100.0
[:: L, 684| 4.6 215 2,3 66 0.9| 408 3.7 157 2.1
l L, 1532| 10,3| 634, 6.8 332| 4.5 980} 8.9 495 6.6
s L 2454 16.5| 1521 | 16,3 | 1172| 15.9| 2115| 19.2]| 1462]| 19.5
5 | 1
&
A | C 5533| 37.2| 4590 | 49.2| 4233| 57.4| 4009| 36.4 | 3270| 43.6
0) -
hat I R 2454 | 16.5} 1521 | 16.3| 1172| 15.9! 2115} 19.2| 1462} 19.5
g 1
By
| R, 1532] 10,.3| 634| 6.8 332| 4.5| 980| 8.9| 495 6.6
::] R, 684| 4.6 215 2.3 66 0,9| 408 3.7 157 2,1
Total 14873 (100,0| 9330 [100.0| 7373(100.0(|11015 |100.0 | 7498 |100.0
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(1) The results from the computer analyses satisfy statics.

(2) The division of the total statical moment in the box girder
bridges between the total positive moment at midspan and the total negative
moment at the support is the same as that found in a beam subjected to the
same loading. Furthermore, it appears that this is true irrespective of the
number of cells in the bridge or of the transverse position of the load on
the bridge deck. Thus, only the transverse distribution of these total
moments at a section to each girder need be further studied.

The second conclusion could be deduced approximately by the
following simplified reasoning, First, assume the continuous box girder
bridge to be cut along longitudinal lines in the top and bottom slabs at the
midpoint between the webs, thus dividing the bridge into severai individual
and independent girders, If all of these girders have the same longitudinal
variations of flexural and shear stiffness and ratios of these stiffnesses,
similar moment diagrams would exist for each of the girders for similar
loadings., The loadings on the girders consist of the applied external load-
ing plus equal and opposite interaction forces at the cuts between the girders.
The moment diagram due to the applied loading is the same as that in a con-
tinuous beam under the same loading, while the moment diagrams due to the
equal and opposife interaction forces between the girders will cancel each
other out when summed for all the girders. This is what occurs in box
girder bridges of usual span lengths. If the individual girders have sub-
stantially different longitudinal variations of flexural or shear stiffness
or ratios of these stiffnesses then this would not be true,

6.3.3 Transverse Distribution of Moments to Each Girder

The transverse distribution of moments to each girder is influ-

enced by whether the midspan or support section is being considered, the
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end. boundary conditions, the number of cells in the cross-section and the
transverse position of the load on the bridge deck, TFor a uniform distri-
bution across the section, the percentage moment taken by each interior
girder would be approximately equal to 100% divided by the number of cells
in the bridge, while that for the exterior girders would be half this
value. These percentages for interior and exterior girders are thus 33.3
and 16.7% for the 3~cell bridge and 16.7 and 8,3% for the 6-cell bridge,
From a study of Tables 3, 4, 5 and 6 the following comments may be made:

(1) For a given case, a more uniform and thus a better distri-
bution is obtained at a support section than at a midspan section. The
percentage moment taken by the most highly stressed girder at a support
section is from 3 to 17% less than that at a midspan section for the same
girder, Thus it would seem that different distribution factors should be
used at these two sections.

(2) For a given span, the results for different end boundary
conditions show that increasing the fixity at the supports gives a poorer
distribution of moments, This is to be expected since theability of a bridge
to distribute a concentrated 1oad transversely is a function of the ratio
of the relative stiffnesses in the transverse and longitudinal directions.
As this ratio is decreased the distribution becomes poorer and vice-versa.
An increase in end fixity or a decrease in span length increases the longi-
tudinal stiffness resulting in a poorer distribution. Thus different distri-
bution factors should be used for simple and continuous bridges having the
same span lengths between supports. Further studies may show that the same
distribution factors could be used at midspan for bridges with the same

equivalent simple span between points of inflection.



156

(3) A load at position 4, over the exterior girder web, is

the most severe loading case for the exterior web. Furthermore, com-

paring the results for the 3-cell and the 6-cell bridges in Tables 3 and

5, for any given set of end boundary conditions the percentages of the
total moment taken by the exterior girder are within 1 or 2% of each

other, This indicates the localized effect of this loading,

6.5 Midspan Deflections

The midspan vertical deflections found from the computer analyses of
the cases listed in Table 2 are given in Table 7.
The agreement between the results for a specific case as obtained
by the three methods of analysis is generally good for all loading cases.
Comparing the transverse distribution of deflections in Table 7
it is seen that increasing the fixity at the end supports has two
distinct and obvious effects.

(1) The maximum deflection under the load is decreased,

(2) The deflection damps out more rapidly in a transverse

direction,

While the transverse distribution of deflections and of the total moment
at a midspan section to each girder have the same general trend, no
relationship was found that would simply and accurately relate these

two quantities,
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TABLE 7, MIDSPAN VERTICAL DEFLECTIONS IN FT. x 104 FOR

ECCENTRIC AND CENTER LOADS ON 3 AND 6-CELL BRIDGES

Support . Qs . a : s
Conditions Simple-Simple Fixed—-Simple Fixed-Fixed
i{ Method Folded | Finite| Finite | Folded | Finite | Finite | Finite| Finite
Case | Gird Plate Seg. Elen, Plate Seg, Elem, Seg. Elem,
é’n"; L, 0.992 | 0,934 | 0,994 | 0.277 |0.229 |o0.244 | 0.037 | 0.049
E Zj L, 1.173 | 1.122 | 1.115 | 0.412 [0.359 | 0.366 | 0.120 | 0.131
- E R, 1.736 | 1.692 | 1.661 | 0.856 |0.791 | 0.786 | 0.442 | 0.451
—{
élg" ] R, 3.051 | 3.051 | 2,933 | 2.069 [2.,047 |1.956 | 1.614 | 1.540
&
@ | L 1.431 | 1.392 0.614 | 0.561 0.267
S8l
EalL 1.797 | 1.806 0,976 |0.967 0.663
~
- 0| R 1,797 | 1.806 0.976 |o0.967 0.663
TE | |
SICEE 1.431 | 1.392 0.614 | 0,561 0.267
[ap}
i 0.180 | 0,337 0.021 |0.015 ‘ 0.000
o3| Ly 0.210 | 0.286 0.031 |0.023 0.000
o]
T 3 L, 0.312 | 0,329 0.066 |0.052 0.006
& flc 0,510 | 0.484 0.150 |0.127 0.027
5 R, 0.871 | 0.805 0.348 |0.301 0.114
O o
38| R, 1.528 |1.414 0.823 |0.767 0,440
R, 2,874 | 2.719 2.054 {2.031 1.612
L, 0.510 | 0.484 0.151 [0.127 0.027
e |1, 0,604 |0.581 0.221 |0.195 0,071
T T
o g |1 0.901 |o0.883 0.462 |0.430 0.254
m g ‘
o le 1.619 {1,639 1.139 |1.140 . 0.925
- @
SR 0.901 |o0.883 0.462 |0.430 0. 254
1 Q@
© O |R, 0.604 |o0.581 0.221 |o0.195 0,071
[ Ry 0.510 |0.484 0.151 |o0.127 10.027
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7, CONCLUSIONS

Three general methods for the elastic analysis of continuous box girder
bridges have been presented and discussed, The methods are designated as the
folded plate method, the finite segment method and the finite element method,
General computer programs entitled MUPDI, SIMPLA and FINPLA have been developed
and described which reduce the analysis by these methods to a simple matter
of preparing basic input data on cards, which when used with the programs
will yield the detailed output of all internal forces, moments and displace-
ments at selected points,

Each of the methods developed has been shown to have certain advantages
and disadvantages. The folded plate method, which is based on the elasticity
theory for folded plates, is the most accurate of the methods developed,

Where applicable it yields a complete solution in a reasonable amount of
computer time, It is restricted to continuous structures with simple supports
at the extreme ends and to cases in which the material and dimensional pro-
perties of each plate making up the cross-section are constant, both longi-
tudinally and»transversely.

The finite segment method, based on the ordinary theory of folded plates,
may be applied to structures with arbitrary end and interior support condi-
tions. For a reasonable mesh size, it requires a computer time for solution
comparable to that by the folded plate method, It gives accurate results for
deflections and for the distribution of the total moment at a section to each
longitudinal girder. For a concentrated load over a web, a refinement of
mesh size results in values of longitudinal stress and transﬁerse slab moments
which begin to approach those by the folded plate method except directly under
the concentrated load. Because of the one way slab action assumed, it should
not be used to predict local slab moments or deflections directly under a

concentrated load applied between the webs.
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The finite element method, based on the elasticity theory, is the most
general of the methods presented. It can treat arbitrary loadings, boundary
conditions, varying dimensional and material properties, and cutouts in the
plates. It has the disadvantage, that it requires a greater amount of com-
puter time to obtain a solution than the other two methods. It gives accurate
results for deflections using a relatively coarse mesh size. For other
results, such as the longitudinal stresses, the transverse slab moments, and
the distribution of the total moment at a section to each longitudinal
girder, a refined.mesh size must be used to achieve accurate results, espe-
cially in the vicinity of concentrated loads. Unlike the other two methods,
complete static equilibfium is not automatically satisfied by the finite ele-
ment method, but it is approached as the mesh size in the analysis is refined.

Studies of the effect of longitudinal continuity on the load distribution
in box girder bridges have been presented., These studies show that for con-
tinuous box girder bridges of usual proportions and irrespective of the number
of cells or the'transverse position of loads on the bridge deck, the longi-
tudinal division of the total statical moment between positive and negative
moments is the same as that found in a continuous beam under the same load-
ing., The transverse distribution of the total moment at a section to each
longitudinal girder for concentrated wheel loadings is dependent on the
section being cpnsidered, the end boundary conditions, the number of cells
in the cross-section and the transverse position of the load on the bridge
deck and thus these factors should be considered in establishing load distri-
bution criteria for design.

No attempt has been made in this report to make a critical evaluation

of the criteria in the present specifications for the design of continuous
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box girder bridges. However, it is evident from the results given in this
report that the present method of basing load distribution in box girder
bridges on the single parameter of the spacing of the webs is an over simpli-
fication of the problem. Computer programs such as those developed in this
investigation may be used in two ways, First, they may be used as a direct
method of elastic analysis of a specific bridge under a given loading and
thus replace present semiempirical methods used in analyzing complex bridge
systems. Second, they may be used as an aid in studying the effect of different
parameters on certain internal forces, moments, or load distribution prop-
erties. This use could provide a means for developing improved simplified
analysis procedures similar to those presently being used for design.

A continuing program of research on box girder bridges is being conducted
at the University of California, To date, the studies have been restricted
to straight simply supported and continuous bridges.,  Additional studies are
now being conducted on skew bridges and future studies on curved bridges are

contemplated,
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APPENDIX A

Description of IBM 7040/7094 Computer
Program for the Analysis of Folded Plate
Structures by the Finite Segment Method
(Ordinary theory) -- SIMPLA



UNIVERSITY OF CALIFORNIA Department of Civil Engineering
Berkeley, California Division of Structural Engineering
July 1967 and Structural Mechanics

IBM 7040/7094 Computer Program for the Analysis of Folded Plate

Structures by the Finite Segment Method‘(Ordinary Theory) .

1.0 IDENTIFICATION

1.1 Program Name: SIMPLA - A general computer program for the
analysis of folded plate structures by the finite segment
method (ordinary theory).

1,2 Programmed by: Kam~-Shing Lo, Graduate Student.

1.3 Faculty Investigator: A. C. Scordelis, Professor of Civil
Engineering.

1.4 References:
a) Lo, Kam-Shing, "Analysis of Cellular Folded Plate System,”
Ph, D. Dissertation, Division of Structural Engineering and
Structural Mechanics, University of California, Berkeley,
January 1967.
b) Scordelis, A. C., "Analysis of Continuous Box Girder
Bridges," Structures and Materials Research Report, Division
of Structural Engineering and Structural Mechanics, Department
of Civil Engineering, University of California, Berkeley,
SESM 67-25, November 1967.

2.0 GENERAL DESCRIPTION

2.1 Nature of Program: The program provides a complete analysis
of prismatic cellular or open folded plate structures. The
structure may be composed of one or more (up to 15) types of
plates. The folded plate structure is defined transversely by
the cross-section in terms of the dimensions of its plate ele-
ments and their joint interconnection, and longitudinally by
the number of segments and the support conditions at the two
ends and at intermediate points, if any. Line loads can be
applied anywhere on the structure along the joints. A wide
variety of boundary conditions can be accounted for. The input
data is so arranged that only the properties of a typical cross-
section need be specified, and any repeating segments can be
indicated by a simple input format, Results for any particular
segment to be output can also be specified by the user as desired.

2.2 Definitions:

' Element - the plate member between I-Edge and J-Edge (see
Figs. A 2 and A 5).
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Joint - the edge of a plate element, or the junction of two
or more plate elements (see Fig. A 3).

Origin - the vertical plane at the extreme left of the structure.
This program treats the structure longitudinally from
left to right (see Fig. A 1 and REMARK a in Section 6.0).

End - the vertical plane at the extreme right of the structure.
This program treats the structure longitudinally from left to
right, i.e., from Origin to End (see Fig. A 1 and REMARK a in
Section 6.0).

Segment ~ each structure is divided longitudinally into a num-
ber of segments. While the cross-sectional configuration of
each segment must remain the same, the length and the boundary
conditions of the segments may vary (see Fig. A 1).

Joint Actions - the external loadings or displacements imposed
at each joint of a given segment.

Stopover -~ a mathematical manipulation employed in this pro-
gram'to alleviate the problem of sensitivity in the progres-
sion method of solution of linear equations. By specifying a
stopover in every other or third segment, the accuracy of the
results can be assured, at the expense of a slight increase of
computational time. (See also REMARK c¢ in Section 6.0).

Interior Support - an intermediate support along the span, It
must be specified at the end of a segment (see Fig. A 1 and
REMARK a in Section 6.0). Treatment of point support is de-
scribed in REMARK b in Section 6.0.

Plate Type - defined by a given orientation (horizontal and
vertical projections), plate thickness and modulus of elasticity.

Sign Conventions: These are given in Figs. A 1 to A 6. It

should be noted that Joint Actions (forces and displacements)
are referred to a Fixed (global) Coordinate System, and plate
elements are referred to a Relative (local) Coordinate System.

Method of Solution: The basic approach is based on the finite
segment concept in which each plate element is divided into =
finite number of segments longitudinally. Compatibility and
equilibrium conditions are then satisfied along the four edges
of each segment. Each segment of the plate is assumed to obey
the ordinary theory of folded plate analysis. This means,

slab action is defined by the behavior of a transverse one-way
slab spanning between longitudinal joints, and membrane stresses
produced in each plate by longitudinal plate action are calcu-
lated by the elementary beam theory. The stiffness matrix of
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2.

3.

each plate element is obtained in this manner. The total
structure matrix is formed by the direct stiffness method.
Instead of using the direct band matrix solution technique,

a segment progression method is used in this program to solve

the resulting set of linear equations, After the unknown dis-
placements have been found, the final internal plate forces

can then be calculated. (A complete description of the method

of solution canh be found in the references cited in Section 1.4).

General Capabilities and Restrictions:

a) The finite segment method provides for a wide variety of
possible structural boundary conditions to be analyzed.

b) Structures with overhangs and cantilevers can be treated.

c¢) Imposed loadings must be applied uniformly along the full
length of the joint of a particular segment.

d) Due to the ordinary theory, torsional moments MXy and longi-
tudinal moments My are neglected. The longitudinal stress Oy
varies linearly over the width of each plate (see Fig. A 6).
Poigson's ratic is taken to be zero.

e) Compatibility conditions at the longitudinal joints are
satisfied only at the center points of each segment.

f) Each interior rigid diaphragm can have its own restraint
conditions on the structure.

g) The structure can have an arbitrary number of segments and
stopovers.

h) The maximum number of plates and joints is 15 and 16 respec-
tively,

i) The maximum absolute difference between the two joint num-
bers for any plate element is 4.

J) Only one load case can be treated in each problem.
Error Checks: Only a limited number of error checks are built-in.

The user should be cautious in checking the input data for each
problem to be run.

3.0 PROGRAM STRUCTURE

Computer System and Language: This program is written for the

B. C. (Berkeley Campus) Computer Center IBM 7040/7094 DCS
(Direct Coupling System), in FORTRAN IV (Version 13) Language.
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3.2 Double Precision: Double precision numbers are used in con-

3.

5

nection with the segment progression solution procedure.

Overlay System: Because of the large size of the computer
program, an overlay system is used to separate the program
into links. The arrangement of links and their subroutines
is shown below:

I

Link O Main Program SIMPLA
I Subroutines DSIMEQ, ERROR

Link 1 Link 2
Subroutines Subroutines
STEP, STIF, DSYINV SOLV, PLFDS

Program Decks: The arrangement of program source (or binary)

and data decks is in the following sequence:

$JOB
$IBJOB
SIMPLA
SUBR@UTINE DSIMEQ
SUBRGUTINE ERR@R
$PRIGIN ALPHA
SUBR@UTINE STEP
SUBR@UTINE STIF
SUBR@GUTINE DSYINV
$PRIGIN ALPHA
SUBR@UTINE S@LV
SUBROUTINE PLFDS
$DATA

First Structural Data Deck
Second Structural Data Deck
etc.

Two Blank Cards

SEQF

Tapes Used: Tape Unit 2 is used for overlay. Tape Units 1,

and 8 are used for temporary data storage.

A-4

3

3
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3.6 Disk Used: None.

3,7 Flow Charts and Name Codes: Flow charts are not shown in this
write-up, but are available in the reference (a) cited in
Section 1.4. Part of the name codes are shown in the INPUT
DATA Section. A complete list of name codes is not available.

PROGRAM INPUT - DATA DECK

The program input is by means of keypunched cards. Continuous execu-
tion of several problems is possible using a single computer run

(see Section 3.4). Each individual problem may not require all the
data cards listed below. The user supplies only what is needed for

a particular problem, Any extra data cards may result in an erro-
neous execution of the program. The sequential order of the input
cards must also be strictly adhered to, and consistent units must be
used throughout a problem.

4.1 Title Card - (12A6)
Col. 1 to 72 - TITLE(12), title of the problem to be printed
with output; any acceptable FORTRAN characters
may be used to identify the problem.

4,2 Control Card - (F10.0,314,F4.0,14)

Col. 1 to 10 - SPAN, span length.
Col. 11 to 14 - NPL, number of plate types, maximum 15,
Col. 15 to 18 - NEL, number of elements, maximum 15.
Col. 19 to 22 - NJT, number of joints, maximum 16.
Col. 23 to 26 - SHEAR, index for shear deformation:
0 - to include shear deformation
1 - to neglect shear deformation
Col. 27 to 30 - NSEG, total number of segments along the longi~
tudinal axis of the structure (no set maximum).

4.3 Plate Type Cards - One card for each plate type used in the
structure under consideration. (I110,4F10.0)

Col. 1 to 10

I, plate type number, an integer assigned by

the user for each type of plate, must not be

greater than 15.

Col, 11 to 20 - H(I), horizontal projection of the plate (see
Fig. A 5 for sign convention).

Col. 21 to 30 - V(I), vertical projection of the plate (see
Fig, A 5 for sign convention).

Col. 31 to 40 - TH(I), plate thickness.

Col. 41 to 50 - E(I), modulus of elasticity.

4.4 Element Cards - One card for each element, all elements in the
cross—-section of the structure must be described. (414)
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Col. 1 to 4 - I, element number, an integer assigned by the
user for each element in the cross-section of
the structure, and must be in consecutive
ascending order.

Col. 5 to 8 - NPI(I), joint number at I-Edge.

Col. 9 to 12 NPJ(I), joint number at J-Edge.

Col, 13 to 16 -~ KPL(I), plate type number, must be one of
those given previously under 4,3-Plate Type
Cards.

i

Origin Boundary Cards - One card for each element in the cross- -
section., Each plate element is treated as a longitudinal beam.
(110,3F10.0,312)

Col. 1 to 10 - I, element number.

Col., 11 to 20 - BCORI(1,I), given longitudinal axial force or
displacement.

Col, 21 to 30 - BCORI(2,I), given transverse beam shear force
or displacement.

Col, 31 to 40 - BCORI(3,I), given longitudinal beam moment or

rotation.
Col, 42 - IORI(1,I), index for axial 1
force or displacement,
Col. 44 - IORI(2,I), index for beam 0 - for given force
shear force or displacement.| 1 - for given displ.
Col. 46 - IORI(3,1), index for beam

moment or rotation.

Segment Cards - One card for each segment, If joint actions
differ from previous segments, 4.7-Joint Action Cards must
follow. If interior support exists at the end of the segment,
4.8-Interior Support Card must follow., (414,F14.8,14)

Col. 1 to 4 - I, segment number, must start from 1 and be in
consecutively ascending order, progressing
from Origin to End (left to right).
Col. 5 to 8 - IAJA, index for applied joint actions:
0 - for repeating applied joint actions as
in immediately preceding segment.
1 - for a new set of applied joint actions
(4.7-Joint Action Cards are needed).
ITRES, index to output results at the center of
the segment:
0 - to give final joint and plate forces and
displacements.
1 - to skip output of joint and plate forces
and displacements.
ITSEG, index for segment length:
0 - for repeating length as in immediately
preceding segment,
1 - for new segment length (give the length
in next space).

Col. 9 to 12

Col. 13 to 16

I
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Col.

Col,
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17 to 30 - TEMSEG, segment length, omitted if O is speci-

31 to 34 - ITSTOP,

fied in ITSEG.

index for interior support or stopover:

0 - for no stopover nor interior support.
1 -~ for stopover appearing at the end of

this segment,
-1 - for interior support a

ppearing at the

end of this segment (4.8-Interior Sup-

port Card is needed).

4.7 Joint Action Cards - These cards are needed i

joint actions is applied to the segment, i.e.
set equal to 1 in 4.6 Segment Cards, one for each joint.

(110,4F10.0,412)

Col.
Col.

Col,

Col.
Col.

Col.

Col.

Col.

Col.

21

31.

41

to
to

to

to
to

10
20

30

40
50

52

54

56

58

I, joint number.

AJFOR(1,I), applied horizonta
displacement.

AJFOR(2,1), applied vertical
displacement.

f a new set of
when IAJA is

b

1 joint force or

joint force or

AJFOR(3,1), applied joint moment or rotation.

AJFOR(4,1), applied longitudi
or displacement.

LCASE(1,I), index for hori- )
zontal joint force or dis-
placement.

LCASE(2,1), index for ver-
tical joint force or dis-
placement.

LCASE(3,1), index for joint
moment or rotation.
LCASE(4,1), index for longi-

nal joint force

0 - for applied
uniform line
load.

?1 - for applied

displacement

at center of
segment.

tudinal force - displacement.J

4.8 Interior'Support Card - This card must follow the 4.6~Segment

Cards or 4.7-Joint Action Cards if an interior support exists,
i,e., when ITSTOP is set equal to -1 in 4.6-Segment Cards. (45I1)

Col.
Col.
Col.
Col.
Col.
Col.

(o200 ; NN SV R ]

IED(1), axial indicator .
IED(2), transverse indicator
IED(3), rotation indicator
IED(4), axial indicator
IED(5), transverse indicator
IED(6), rotation indicator

etc.

for element no.

for element no.

1

2

Continue in this fashion until last element in the cross-section.
0O - to indicate continuity.
1 - to indicate zero displacement.

Use:
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4.9 End Boundary Cards - One card for each element in the cross-

section.
(110,3F10.0,312)

Col.
Col.

Col.
Col.
Col.
Col.

Col.

5.0 PROGRAM OUTPUT

1 to 10
11 to 20

21 to 30

31 to 40

42

44

46

Each plate element is treated as a longitudinal beam.

I, element number,
BCEND(1,I), given longitudinal axial force or dis~
placement.

' BCEND(2,1), given transverse beam shear force or

displacement.

BCEND(3,I), given longitudinal beam moment or ro-
tation.

IEND(1,I), index for axial

force or displacement.

IEND(2,1), index for beam 0 - for given force
shear force or displacement. 1 - for given displ.
IEND(3,1I), index for beam

moment or rotation,

Printed output is furnished by this program. No punched output op-
tion is available. The input data is first given for an echo check.
Final plate actions (forces and displacements) are given at the ori-
gin and at the end of the structure, and at the sections where stop-
overs or interior supports have been specified. Final plate forces
and displacements are given for individual segments as specified by

the user.

It should be noted that the results for each segment are

referred to the center of the segment in longitudinal direction.

5.1

Input Information - Title of the problem and all other input

data are properly labeled and printed out for an echo check.

Final Plate Forces and Displacements for Longitudinal Plate

Element at End. (See Fig. A 6 for sign convention.)

9.2.1 Plate Internal Displacements - the following displace-

ments are given for each plate element:

Longitudinal displacement
Transverse displacement
Beam Rotation

5.2.2 Plate Internal Forces ~ the following forces and stresses

are given for each plate element:

Beam moment

Transverse shear

Axial force

Longitudinal normal force per unit length at I-Edge, NX(I)
Longitudinal normal force per unit length at J-Edge, NX(J)
Longitudinal normal stress per unit area at I-Edge, SX(I)
Longitudinal normal stress per unit area at J-Edge, SX(J)
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5.

5.

3

Final Plate Forces and Displacements for Longitudinal Plate

Elements at End of Segment No. 'xx - These results are given

only at the sections where stopovédrs or interior supports have
been specified.

5.3.1.a DPlate Displacements at Stopover - For sections where
stopovers occur, the following displacements are given
for each plate element:

Longitudinal displacement
Transverse displacement
Beam rotation

5.3.1.b Plate Displacements and Reactions at Interior Support -

For sections where interior support occurs, the following

displacements and reactions are given for each plate
element:

Longitudinal displacement or reaction indicated by:
Transverse displacement or reaction 0 - for displ.

Beam rotation or reaction 1l ~ for react.

5.3.2 Plate Internal Displacements - Same as listed in 5.2.1.

5.3.3 Plate Internal Forces -~ Same as listed in 5.2.2.

Final Plate Forces and Displacements for Longitudinal Plate
Element at Origin

5.4.1 Plate Internal Displacements - Same as listed in 5.2.1.

5.4.2 Platé Internal Forces -~ Same as listed in 5.2.2.

Final Joint and Plate Forces and Displacements at Center of

Segment No. xx - Results given only for the particular segments
which have been specified by the user in the 4.6-Segment Cards.

5.5.1 Joint Displacements -~ The following displacements are

given for each joint: (See Fig. A 4 for sign convention.)

Horizontal displacement
Vertical displacement
Rotation

Longitudinal displacement

5.5.2 Plate Edge Displacements - The following displacements
are given for each plate element: (See Fig. A 6 for
sign convention.)

Rotation at I-Edge
Rotation at J-Edge
Normal shear displacement at I-Edge, W(I)
Normal shear displacement at J-Edge, W(J)
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Longitudinal shear displacement at I-Edge, U(I)
Longitudinal shear displacement at J-Edge, U(J)
Transverse membrane displacement at I-Edge, V(I)
Transverse membrane displacement at J-Edge, V(J)

5.5.3 Plate Edge Forces - The following forces are given
for each element: (See Fig. A 6 for sign convention.)

Transverse moment per unit length at I-Edge, M(I)
Transverse moment per unit length at J-Edge, M(J)

Normal shear per unit length at I-Edge, Q(I)

Normal shear per unit length at J-Edge, Q(J)

Longitudinal shear force per unit length at I-Edge, T(I)
Longitudinal shear force per unit length at J-Edge, T(J)
Transverse membrane force per unit length at I-Edge, P(I)
Transverse membrane force per unit length at J-Edge, P(J)

5,5.4 Plate Internal Displacements - Same as listed in 5.2.1.
(Note that these are at the center of the segment length.)

5.5.5 Plate Internal Forces - Same as listed in 5.2.2.
(Note that these are at the center of the segment length.)

REMARKS

a) The nature of the supports at the Origin, End, and Interior Support
sections is considered for each plate element individually by this
program, and therefore not all of the plate elements have to be sub-
jected to the same boundary conditions at these sections. This provides
a wide variety of boundary conditions that can be specified by the user.

b) Interior point supports, such as resting on top of columns, can be
handled in two ways:

i) Set the corresponding displacements imposed by the point sup-
port equal to zero in the appropriate column of the 4.8-Interior
Support Card. ‘

ii) Set the corresponding displacements imposed by the point sup-
port equal to zero at the center of a segment length in the
appropriate 4.7-Joint Action Cards. A support between longi-
tudinal joints is not allowed.

¢) A stopover need not be specified at the Origin, End, and at sec-
tions where an Interior Support exists, The minimum number of stop=
overs required to give accurate results depends on the size of the
structure and on the suitable choice of locations for stopovers.
Experience is needed to make a proper judgment.,

d) The number O (zero) is not considered as a subscript variable in-
dex, Thus, it can not be used as a joint, element, or segment number.
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Description of IBM 7040/7094 Computer
Program for the Analysis of Folded Plate
Structures by the Finite Element Method
(Elasticity theory) -~ FINPLA



UNIVERSITY OF CALIFORNIA o Department of Civil Engineering
Berkeley, California Division of Structural Engineering
August 1967 and Structural Mechanics

IBM 7040/7094 Computer Program for the Analysis of Folded Plate

Structures by the Finite Element Method (Elasticity Theory)

1.0 IDENTIFICATION

1.1

Program Name: FINPLA - A general program for the analysis of
folded plate structures by the finite element method (elasticity
theory) .

Programmed by: B. Abu Ghazaleh and C, A, Meyer, Graduate
Students,

Faculty Investigator: A. C. Scordelis, Professor of Civil
Engineering.

References:

a) Abu, Ghazaleh, B, N., "Analysis of Plate Type Prismatic
Structures'', Ph.D, Dissertation, Division of Structural
Engineering and Structural Mechanics, University of California,
Berkeley, January 1966,

b) Scordelis, A. C,, "Analysis of Continuous Box Girder
Bridges,' Structures and Materials Research Report, Division
of Structural Engineering and Structural Mechanics, Department
of Civil Engineering, University of California, Berkeley,

SESM 67-25, November 1967,

2.0 GENERAL DESCRIPTION

2.1

Nature of Program: This program is capable of analyzing any
prismatic cellular or open folded plate structure subjected to
surface loads, line loads, concentrated loads or known displace-
ments. All final nodal displacements and the internal forces

and moments within the elements are printed out at points selected
by the user. The input data is so arranged that only the pro-
perties of a typical cross-section need to be specified and

only changes in these properties along the span need to be speci-
fied thereafter.

Definitions:

Finite Element - a rectangular element in the structure whose

location is defined by its I and J nodal points on a typical
cross-section and its interval position along the longitudinal
span (see Fig. B3).
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Nodal Point or Node - a joint at which finite elements are
interconnected; these are defined by assigned numbers at a
typical cross-section.

Finite Element Type -~ defined by a given orientation (hori-
zontal and vertical projections), thickness, modulus of elas-
ticity and Poisson's ratio (see Fig. B5).

Particular Flement - a finite element whose element type or
uniform loading differs from the corresponding element in the
typical cross-section of the first interval along the span,

Group Displacement Component -~ a displacement in a given direc-
tion applied simultaneously to a designated group of nodal
points at a specified section along the span.

Diaphragm - a transverse diaphragm, at a designated location
along the span, which is made up of rectangular finite elements
connected as specified to the folded plate structure.

Sign Conventions: These are given in Figs., Bl to B6. Reference
is made to two right hand coordinate systems., The global
(fixed) system XYZ, Figs. B2, B4, and B5, defines the positive
directions of external loads, forces, displacements and the
horizontal and vertical projections of an element. The local
(element) system xyz, Figs. B5 and B6, defines the orienta-

tion of the element for the interpretation of the positive
directions of internal forces, stresses and moments,

Method of Solution: The solution is based on a standard analysis
by the finite element method. Rectangular elements with six
degrees of freedom at each node are used in conjunction with a
direct stiffness method to obtain a complete solution. A
detailed description of the method of solution can be found in
the references cited in Section 1.4.

General Capabilities and Restrictions:

a) Restrictions as to the maximum number of elements, nodal
points, loads, etc.,, are given directly in the input specifi-
cations, Section 4.0, and under remarks, Section 6.0,

b) External loadings may consist of uniform dead or live loads,
line loads along a longitudinal joint, or concentrated loads
at nodes,

c¢) Boundary displacement conditions may be imposed at each node
independently or on a group of nodes at a section.

d) Each element in a transverse or longitudinal direction may
have different dimensional or material properties and cutouts
may be included by assigning a zero thickness or modulus of
elasticity to an element.
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e) Transverse diaphragms may be included at desired sections
along the span,

f) Only one load case can be treated in each problem,
Error Checks: Only a limited number of error checks are

built-in. The user should be cautious in checking input
data for each problem to be run,

3.0 PROGRAM STRUCTURE

3.1

Computer System and Language: This program is written for the
B. C. (Berkeley Campus) Computer Center IBM 7040,/7094 DCS
(Direct Coupling System), in FORTRAN IV (Version 13) Language.

Overlay System: To increase the capacity of the program, an
overlay system is used, separating the total program into
several links. The arrangement of the links with their sub-
routines is shown below:

|

Link O Main Program FINPLA
]

Link 1 Link 2 Link 3

Subroutines LINK A Subroutine LINK B Subroutines LINK C

1

3.3

TOSTIF ‘l la INTFOS

Program Decks: The arrangement of program source (or binary)
and data decks is in the following sequence:

$JGB

$IBJYB
MAIN (FINPLA)

$ORIGIN ALPHA
SUBRGUTINE LINK A
SUBRGUTINE T@STIF

$ORIGIN ALPHA
SUBRGUTINE LINK B

$SORIGIN ALPHA
SUBRGUTINE LINK C
SUBRUUTINE INTF@S

SDATA
First Structural Data Deck

Second Structural Data Deck
etc,
Two Blank Cards

$EGF
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3.4 Tapes Used: Tapé Unit 2 is used for the overlay system,
Tape Units 1, 3, 8 and 9 are used for temporary data storage.

3.5 Disk Used: Element stiffness matrices are temporarily stored
on disk. The write and read operations on disk are done by
using a BCDISK subroutine supplied by the B. C. Computer
Center in MAP language. ‘

3.6 Flow Charts and Name Codes: Flow Charts are not shown in this
report, but they are available for reference., Part of the
name codes are shown in the INPUT DATA section. A compiete
list of name codes is not available.

PROGRAM INPUT - DATA DECK

The program input is by means of keypunched cards. Continuous
execution of several problems is possible using a single computer
run (see Section 3.3). Each individual problem may not require
all the data cards listed below. The user supplies only what is
needed for a particular problem. Any extra data cards may result
in an erroneous execution of the program, The sequential order of
the input cards must also be strictly adhered to and consistent
units must be used throughout a problen.

4,1 Title Card = (1246)
Col. 1 to 72 - Title of problem to be printed with output;
any acceptable FORTRAN characters may be
used to identify the problem.

4.2 Control Card - (F10,3,614)

Col. 19to .10 - span length = SPAN,
Col, 11 to 14 - number of finite element types = NFEL,
maximum = 90
Col. 15 to 18 - number of nodal points in a typical cross-
section = NPTS, maximum = 20,
Col. 19 to 22 - number of finite element subdivisions along the
X - axis = NUMELX, maximum = 40,
Col. 23 to 26 - number of finite element subdivisions normal to
the X - axis = NUMELY, maximum = 28,
Col. 27 to 30 - number of transverse diaphragms = NDIAPH,
maximum = 5,
Col. 31 to 34 - averaging index = INDAV, which is equal to
0 - if no final averaging of output forces is
desired,
1 - if only longitudinal averaging of output
forces is desired.
2 - 1f all permissible longitudinal and trans-
verse averagings are desired.
(See Remark under Section 6,0d)
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4,3 X-Coordinate Card - (10F7.3)

X~-Coordinates of nodes along the X-axis = XDIST(I).
The origin 0.0 is not to be included, If there are more than
10 nodes along the X-axis, use another card (or third, etc.)

4.4 Element Type Cards (7X,13,5F10.3) - One card for each type of

finite element.

H

Col, 8 to 10 - type number = I,
Col., 11 to 20 - horizontal Y-projection of element = H(I) (See
Fig., B5).
Col. 21 to 30 - vertical Z-projection = V(I) (See Fig., B5).
Col, 31 to 40 - element thickness = TH(I),
Col, 41 to 50 - modulus of elasticity = E(I).
Col. 51 to 60 - Poisson's ratio = FNU(I).
4.5 Element -Cards (415,3F10,.3) - One card for each element in the

cross-section

in the first interval along the longitudinal axis,

(I) (must be smaller than J).
(I) (must be larger than I).

Col. 1 to & - element number = I,

Col. 6 to 10 - nodal point I = NPI

Col. 11 to 15 = nodal point J = NPJ

Col. 16 to 20 - finite element type = KPL(I).

Col. 21 to 30 - dead load (load per unit plate area) = DL(I).

Col, 31 to 40 - load in Y-direction (load per unit of vertical
projected area) = HL(5).

Col. 41 to 50 - load in Z-direction (load per unit of horizontal

projected area) = VL(I),

4.6 Next Card (7X,I13)

Col.,

8 to 10 - total number of particular elements (i.e., elements
whose element types or uniform loadings are
different from the corresponding elements in the
first interval) = NPE, maximum = 62.

4,7 Particular Element Cards (415,3F10.3) - One card for each partic-

ular element,
The numbering order must ascend in agreement with the ordinary
element and interval numbering.

No cards required if there are no such elements,

HLP(I).

Col., 1 to 5 - number of particular element = I,

Col, 6 to 10 - element number corresponding to the first
interval = NEL(I).

Col. 11 to 15 - interval number = INTER(I).

Col, 16 to 20 - element type = KNP(I).

Col, 21 to 30 - uniform dead load = DLP(I).

Col, 31 to 40 - uniform load in Y-direction

Col, 41 to 50 - uniform load in Z-direction

VLP(I).
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4.8 Next Card (7X,I3)

Col. 8 to 10 - number of concentrated or distributed line loads
or displacements at the longitudinal joints = NCDL:
maximum = 150, Only non-zero forces are counted,

2

Load-Displacement Cards (I5,3F10,3,2I5) - one card for each load
or displacement component. No cards required if NCDL = O, For
transverse line loads use equivalent concentrated loads obtained
by the tributary area concept.

Col. 1 to 5 - longitudinal joint number (nodal point number
in the typical cross-section) = LJN(I).
Col, 6 to 15 -~ X-coordinate at which load (or displacement)
starts = XLEN(I). Must begin at a node.
Col. 16 to 25 - length of load or displacement along the X-axis
= XSTRCH(I). Must end at a node. Zero for
concentrated loads or displacements,
force intensity or displacement amount = DFINT(F)
(use total amount if concentrated load).
Col. 36 to 40 - component indicator = INDIC(I), equal to:

Col, 26 to 35

~ applied force or displacement in X-direction
- applied force or displacement in Y-direction
- applied force or displacement in Z-direction
applied moment or rotation about X-axis
- applied moment or rotation about Y-axis
- applied moment or rotation about Z-axis

[ >IN, NI U O =
i

Col. 41 to 45 - action indicator = INDEX(I), equal to:

0 - for applied force or moment
1 - for applied displacement or rotation.

4,10 Next Card (7X,I3)

Col, 8 to 10 - number of applied group displacement components
at a single cross-section = NTAD, maximum = 25,

Group Displacement Cards - two cards for each set of applied group
displacements. Each displacement component requires a set of two
cards. If all nodal points are affected, only one card,

(a) First Card (315,2F10,3)

Col. 1 to & - displacement component number = I,

Col. 6 to 10 - component indicator = INDT(I) (for definition of
indicator numbers see preceding card under 4.9).
number of affected nodal points = NAN(I). If
this equals the total number of nodal points in
this cross-section, omit the second card.
X-coordinate of applied displacement = XTD(I).
displacement magnitude = DTIN(I).

Col, 11 to 15

Col, 16 to 25
Col. 26 to 35

i



FINPLA, IBM 7040/7094 Computer Program, page 7. T B-7

(b) Second Card (20I3) - number designations of nodal points
to which group displacement is to be applied = NAD(I,X).

If there are no transverse diaphragms, skip the cards 12, 13
and 14,

Diaphragm Indicator Card (2I5,5X,515)

Col. 1 to 5 - indicator = INDIAP, equal to:

0 - if all diaphragms are the same
1 - if one or more differ from the others.

Col. 6 to 10 -~ number of element types in diaphragms = NDIATY,
maximum = 10,

Col. 16 to 40 - interval-numbers for location of diaphragms
along the X-axis; zero for diaphragm at the
origin = IDIAP(I).

Diaphragm Element Type Cards (7X,I3,5F10.3) - one card for each
diaphragm element type.

.

Col. 8:to 10 - type number = I,
Col, 11 to 20 - element height = DIAH(I).

Col, 21 to 30 - element width = DIAL(I).

Col. 31 to 40 - élement thickness = DIATH(I).
Col. 41 to 50 - modulus of elasticity = DIAE(I).
Col. 51 to 60 - Poisson's ratio = DIANU(I).

Diaphragm Cards - for each diaphragm one deck, if INDIAP = 1,

otherwise one deck only for the first diaphragm.

(a) First Card (415)

Col. 1 to 5 - diaphragm number = I,
Col, 6 to 10 - number of elements = NDIAEL(I), maximum = 10,
Col. 11 to 15 - number of vertical sections per element for
output of results = NXDIA(I), maximum = 4,
Col. 16 to 20 - number of transverse sections per element for
output of results = NYDIA(I), maximum = 4,

(b) Second Card (615,F10.3) - one card for each element in dia-
phragm.
Col. 1 to 5 - element number = K,

Col. 6 to 10 - element type number = NTYPE(I,6K),.
Col., 11 to 15 - nodal point I = NPTI(I,K).

Col. 16 to 20 ~ nodal point J = NPTJ(I,K).
Col. 21 to 25 - nodal point K = NPTK(I,K).
Col. 26 to 30 - nodal point L = NPTL(I,K).

Col., 31 to 40 ~ Uniform dead load = DIADL(I,K).
Note: Nodal points are taken from typical section
numbering and must be numbered counter-clockwise,
when looking at typical section in + x direction,
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4.15 Results Cards (3I5) - one card for each interval, indicating
where results are desired. (See REMARK under Section 6.0d.)

Col., 1 to 5 - interval number = I,

Col. 6 to 10 - number of longitudinal sections per element =
NSEGX(I), maximum = 4,

Col, 11 to 15 - number of transverse sections per element =
NSEGY (1), maximum = 4.

PROGRAM OUTPUT

Printed output is furnished by the program, no punched output option
is available, PFirst, the input data are printed for an echo check.
The final results consist of the nodal point displacements and
internal force and stress quantities at locations specified by the
user,

5.1 Input Check Printout: The complete input data is properly
labeled and printed out for an echo check, Some error exits
have been built in to stop execution in the case of bad data.

5.2 Final Nodal Point Displacements: The six displacement components

éx, &, 62, 9 O, (see Fig. B4 for sign convention) are
printed out 1n ta%ular form for all of the nodal points of the
entire structure. (However, unknown nodal forces wherever the

corresponding displacements have been specified are not given.)

5.3 Internal Forces: The internal forces N_, N, N__, the moments
X X

My, M s y, and the stresses Oy O (stresses are equal
to the corresponding forces per unlt {engtﬁ divided by element
thickness) are printed out with proper headings in any interval
and at as many intermediate points as have been specified by the
user (see REMARK under Section 6, 4) - (For sign convention, see
Fig. B6.)

5.4 Execution Times: The execution times for the three links of the
program are printed out in seconds,

REMARKS

a) All cards are repeated in the same sequence for the next problem
to be analyzed, Following the last problem, two blank cards have to
be added.

b) Longitudinal averaging of output forces in two adjacent elements w1ll
done only if specified in Section 4.2 and as long as no particular
elements are involved. Transverse averaging of forces will not be

done as soon as more than two elements meet at the joint under consider-
ation, If two elements meet at an angle # 1800, then only the trans-
verse moments and longitudinal shears will be averaged if specified in
Section 4.,2.

be
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¢) Select the joint numbering of the elements so as to minimize the

maximum absolute difference between the nodal point numbers for
any element. The maximum absolute difference is 5 on a typical
cross-section. Also note that a maximum of 20 nodal points can
be used on a typical cross-section,

d) If internal forces are not desired in a certain interval, two

0's have to be punched for NSEGX and NSEGY in Section 4.15. Two 1'
give results at the nodal points only. Additional subdivisions may

be selected, up to NSEGX = NSEGY = 4, in which case results at 25
points will be printed with proper position labels as shown:

X
XRAT=1
YRAT=0 L
XRAT=1
YRAT=1
XRAT=0
YRAT=0 *
i ey
XRAT=0
YRAT=1

e) The number O (zero) is not considered as a subscript variable
index. Thus, it can not be used as a joint, element, or diaphragm
nunmber,

f) The execution time can be estimated by the formula:

. T(seconds) = cNM2 +dP X Y
i nnn

where N = maximum band width = 6 times the sum of the maximum
absolute difference between the nodal point numbers
on a typical cross-section for any single finite ele-
-ment plus the number of nodal points on the cross-
section plus one.

P_ = average number of points within one element for which
internal forces are output,

X = number of element intervals along the span.

= number of finite elements in a typical cross—section,

-4
¢ = time factor = (0.8 to 1.2)10

d = time factor = (2 to 4)1072

M = maximum band width = 6 times the sum of the maximum
absolute difference between the nodal point numbers

B-9

S

on a typical cross-section for any single finite element
plus the number of nodal points on the cross—-section plus

one,
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