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CRITICAL RESOLVED SHEAR STRESS FOR ATHERMAL DISLOCATION GLIDE
THROUGH A RANDOM DISTRIBUTION OF POINT OBSTACLES
Kenton Lloyd Hanson
Inorganic Materials Research Division, Lawrence Berkeley Laboratory and

Department of Materials Science and Engineering, College of Engineering;
University of California, Berkeley, California

ABSTRACT

The critical resolved shear stress for atherﬁal dislocation glide‘
through a random distribution of point like barriers is examined. An
upper bound for the strength determining dislocation configuratioﬁ is
derived by ;mﬁloying the extinction theorem of stochastic branching
procéss in probability theory. The solution yields the critical
resolved shear stress, distribution of forces, and mean segment lengih.
Also, a new general and efficient'computer éimulatioh for this problem
is describéd. The results of the analytic solutidn are compared with
the compﬁter simulation and show good agreement. ihe analytic solution
is then extended to the case of a random distribution of obstacles
having an arbitrary distribution of strengths. The extended soiution
shows good agreement with computer simulation with iespect to the
critical resolved shear stress, distribution of forces, mean segment
length, and concentration of obstacle types found on the strength

determining configuration.



I. INTRODUCTION

A, General Problem Area

The achievement of a microstructure-based theory of the mechanical
behavior of engineering alloys remains one of the central objectives of
basic research in metallurgy. Its engineering-impértance is two-fold.
First, a predictive theory of mechanical behavior is_needed to provide a
firm basis for materials selection and engineering design with real
materials., Second, an interpretive theéry of mechanical behavior is
needed to guide metallurgical research in the design of new alloys to
meet advanced éngineering needs. The complexity of the mechanical
behavior of real materials suggests that accurate, dqtailed theories
'will be slow in coming (as they hgve been). On the,§ther hand, the evi-
dent potentiai engineering benefit to be derived from successful research
would certaihly'seem to justify a sustained, systematic effort.

A typical problem in the mechanical behavior of engineering alloys
sets up essentially as follows (modifying the concise discussion of
Friedelg). An alloy consists of an aggregate of individual crystalline
grains. Each of those is described‘by its composition, its crystal
structure, its defect structure (including point defects, the network of
existing diélocations, and the type and distribution of included voids
or precipitates), its size and shape, and the néture of the grain
boundaries which define its contact with adjacent grains. The state of
‘stress within an individual grain depends on the applied'load, tbe
modification of that load by the geometry of the polycrystélline struc-
ture, and the state of internal stress within the body. The response to

that stress depends on its magnitude and resolution on the various
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potential slip planes within the grain. .The respohse is’initially

elastic, witﬁ a small anelastic supplement due to thé'bowing or
recoverable_motion'of dislocaéions, and to short range chemical arraﬁge— .
ments. To initiagte plastic deformation, dislocationé'must be created
or liberated onto slip planes bearing a resolved shear stress of
sufficient'magnitude to sustain glide. To induce gross yieldiﬁg of the
polycrystallihé alloy the resulting crystallographic slip must be accom-
modated at grain boundaries and propagated from gréin to grain across
the ‘body. To sustéin plastic deformation, the applied load must adjust
to cﬁanges in fhe mechénical state of the body as deformation proceeds,
The deformation process ultimately terminates in fracture or failure
through plastic instability.

The sequence of proceéses listed above suggests several natural
~entry points for theoretical research; One of the mést interesting and
important13 of these is the problem of yield and initial deformation in
a grain or single crystal which 1s assumed to contain dislocations (or
active sourcés_of dislocations) together with micfostructural features
which act as barriers to free dislocation glide. Thé bulk of prior
research (summarized in references 9 and 13) argues that this is a
central problem in the deformation of engineering materials. Potentially
mobile dislocations may generally bé assumed to exist in a metéi and the
native lattice resistance tovglide may generally be assumed small compared "
to that offered Ly such internal barriers as point defects, "forest"
dislocations, precipitates, and other internal streés fields.

The central parameters in this nartowed problem are the nature of

-dislocations in the matrix, the nature and distribution of the barriers
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impeding glide, the resolved shear stress impélling glide, and the
temperature; At zero temperature the imuortant parameter is the criticel
resolved shear stress for athermal dislocation glide through the micro-
structﬁre, a function of the nature and distribution of barriers.

The initial research on this problem concentrated on the motion of
an isolated segment of a dislocation by cutting through or bowing around
an obstacle or simple configuration of obstacles of a given type. This
research céntinues13 as Investigators have sought more precise solutions
to more realistic dislocation-obstacle models.

However, as was recognized in early regearch by Mott and Nabarr020

0 the distribution of barriers is also of qualitative

and by Friedel,l
importance. Thus Friedel10 argued that in high temperature glide through
a random array of point barriers the nature of the activation barrier to
glide woul& change with applied stress even though the physical nature

of the obstacles remained the same. The source of the change was a
statistical tendency for thé dislocation to contact a greater number of
obstacles per unit length as the stress increased. Mott and Nabarr020
treated an essentially similar phenomenon in the case of diffuse
barriers., This initial research led to a series of studies on the effect
of the statistics of the obstacle distribution on the characteristics of
dislocation glide (summarized by Kocks, Argon, and Ashby in reference 13
and by Nabarro in reference 15). This research followed the dichotomy .
set up by Friedel10 and Mott and Nabarro20 between '"localized" obstacles
(those vhose rénge of significant interaction with a dislocation was

small compared to their mean spacing) and "diffuse" obstacles (whose

interaction fields must be considered to overlap) and reinforced their
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conclusion'thatrdifferent theoretical techniqqes.wOuld‘be needed to
handle the two cases. The "localized" obstacle approximation appears
generally more applicable to hardening by small precipitates, "forest"
dislocations which interact weakly in the glidevplané, énd dilute cén—

" centrations of.solute”a;oms. The "diffuse" obstacle'épproximétion '
appears more épplicable to hardening'by a higher éoncentration of solute
atoms aﬁd by dislocations which'intéract strongly in the glide plane.
Criteria separéting the two cases have been given by Labusch.l-5 To date
neither‘case has fully yielded to theoretical attéck. More theoretical
progress has been made on the "localized" obstacle approximation, largely
due to the obsérvation,(initially by Foremaﬁ and Makin65vthat under
suitable approximations this case could be set up for direct computer

simulétion.v

B. Specific Problem Area

The problem of dislocation glide through a statigtical distribﬁtion
of localized miérostructural obstacles has been the subject of extensive
research from several points of view (research up to about 1972 is
reviewed in réference 13). The bulk of this research addresses variants
of the following basic problem (using_;he notation of reference'l7).
Consider a crystal plane which 1s the glide plane of a dislocation. Let
it contain a random distribution of microstructurai barriers, which are
represented18 as point obstacles fé dislocation glide. The array is
described by the statement that its points are randomly distributed and

by a characteristic length

% - a1/2 | | S (1.1)



00 o0 43805 4%

L &4

-5—

Qhere a is the mean area per point. A disldcation in this plane is
modelled as a flexible, extensible string of constant line tensiﬁn, r,
and Burgers' vector of magnitude b, taken to lie in the plane. The
resolved shear stress, T, impelling glide of this dislocation may be

conveniently written in dimensionless form

*
T = Tlsb/ZI‘ , : (1.2)

Let the dislocation, under the applied stress T , encounter a configura-

tion of point obstacles denoted by (i). Between two adjacent obstacles
the dislocation will take the form of a circular arc of dimensionless
radius R* (=vi/21*). If the distance between any two adjaceﬁt obstacles
along (1) exceeds ZR* or if the dislocation l;ne anywhere intersects
itself, then the configuration (i) is tgansparent'to the dislocation and
will be mechanically by-passed. If (1) is not transparent, its mechani-

cal stability is governed by the strength of the dislocation-obstacle

- interaction,

At the kEE obstacle on (i) the dislocation line forms the asymptotic

k
i

angle wi (0 <y, < 7). The force, Fi, that the dislocation exerts on the

kEE obstacle is, in dimensionless form,
k

31 = FE/ZF = COS(%WE) | ‘ (1.3)

The méghanical»strength of the obstacle is measured by the dimensionless
parameter Bc (or angle wc) and corresponds to the maximum force the
obstaclé can sustain without being cut or locally by-passed. A non-~
transparent line configuration of obstacles constitutes a mechanically

*
stable barrier to the glide of a dislocation under stress t if B? < BC
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for all obstacles k oﬁ i; hence if B, < B , where B, is the maximum of
the B:. The smallest stress T* at which Bi > Bc for‘all configurations
within the array (i.e., B, > 8_, where B, is the minimum of the Bi) is
the critical resolved shear stress, T:. When < T: thevdislocation
will encounter at least oné stable configuration within tﬁe array, and
can glide only with the help of thermal activation.

In early work, Friedel10 employed essentially this model tb treat
thermally activated glide at high‘temperature and low stress. He assumed
that in steady state glide the pinning configuration might be approxi-
mated by a straight line of equi-spaced points with separation given by
the condition that the dislocation sﬁeep through dimensionless areé one
in cutting an obstacle. With these assumptions all forces (B) are the

" same, given by

g = (v)2/3 (1.4)

* . ‘
and % , the separation between adjacent obstacles, is

F e (o3 | | (1.5)

Fleisgher and Hibbard5 suggested that/the same model might be
applied to determine the critical resolved shear stress for athermal
glide through a random array of weak obstacles. Their expectation
seemed confirmed by the computér simulation experiments of foreman and
Makin,6 who determined the critical resolved shear stress for athermal
glide (T:) aé a function of obstacle strength-(Bc) for random arrays of
up to 4><104 points. They found good agreement with the inverse of

equation (I.4) when the obstacle strength was small. Foreman and Makin
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inferred that the other features of ;he Friedel model, e.g. eduation
(1.5), were also obeyed for small.obstacle strengths, but apparently did
not confirm this result,

In the strong obstacle limit BC v 1.0, Foreman and Makin found
T: v 0.82, a result in essential agreement with the value obtained
earlier by Kocks,11 who used graphical methods. Publication of the
function T:(B;) by Foreman and Mak;n led to a series of theoretical
attempts to fit it, including the "perculation" model developed by
Kocks,12 and the "unzipping" model broposed by Dorn, Guyot, and
Stéfansky.3 .Other pertinent theoretical work includea the method of
distribution functions developed by Labusch16 (a special case of his
earlier14 estimate for the first instability in glide thropgh an array
of diffuse barriers) whiéh yielded functional agreement with the Friedel
model at low stress.

Foreman énd Makin7 and Foreman, Hirsch, and Humphrie38 continued
research on glide through arrays of unlike obstacles7 and arrays of

obstacles of finite size and shape.8 As recognized by Morris and_Klahn17

_the behavior in athermal glide is strongly influenced by the characteris-

tics of the most stable configuration encountered/during glide. These
most stable configurations depend-on applied sttesé, but are identically
the configurations which determine the critical resolved shear stress as
a function of obstacle strength. Detailed examination of these configu-
rations showed that while their strengths were reasonably approximated
by the Friedel relation (at low stress) their othef pertinent character-
istics (shape, distribution of forces, distribution of segment lengths)

were not, This'discrepency is significant, since the distribution of
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forces is important to the kinetics of low-temperature glide and sihce
the mean segment length is a parameter often used in attempts to fit

experimental data to the point obstacle model.

C. Research Problem

The conﬁinuiné interest in dislocations resisted by random point
barriers combined with the discrepancies between theory (the Friedel
model) and the results of computer simulation provided an incentive for
persuing>this’prob1em area. Two complimentary approaches were used.
First, a new computer code‘was written enabling general and gfficient
simulation.of the idealized problem described. 1Its generality enabled
simulation pf'the present problem and is easily extendable to variants
of this problem. Second, an analytic solution is derived for a limiting
streﬁgth determining dislocation configufation. The strength, distribu-
tion of forces, and mean segment length defined b& ;his solution are
shown to be in good agreement with computer simulated experiments.

The generality of the analytic solution is then shown by extension
to the limiting dislocation configuration in a glide plane containing a v
randoﬁ mixture of distinct obstacles. Again, characteristics of the
limiting configdration are shown to be in good agreement with computer
simulation experiments; A description of the computer simulation and

derivation of the limiting configurations follow.
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IT. COMPUTER SIMULATION

Althoﬁgh various computer simulations of the random array problem
existed at Berkeley and elsewhere it was decided to design a ﬁew more
general and efficient code. .Gengrality enables easy modification of
various‘sophistications. Efficiency enableé sophistications and large
array simulations to be reasonably computable. As simulations become
- more complicated and comprehensive, these attributes should prove
invaluable. The new code is presently being used by E. S. P. Das at
Argonne National Laboratories and has been sent to Peter Hazzledine at
Oxford University. The salient features of the simulation will now be
described.

Using a pseudo-random number generator the code first fills a
square array of size n with a random_distribution of points of density
one. Each point has four parameters: 1) x location, 2) y location,

3) obstacle characteristic (e.g. the strength determining angle ¥), and
4) status parameter (denoting the obstacles status with respect to an
advancing dislocation). Periodic boundéries are assumed in all direc-
tions. The code then introduces a dislocation across the lower boundary
of the array and allows it to move forward until it contacts points in
the array. The dislocation segments that constitute a dislocation
configuration afe stored in an ordered ligt. The list contains the
following infofmation for each segment: 1) all parameters of the |
obstacle on the 'left end of the segmeht, 2) the arc angle, 9, of the
bowed segment, and 3) status of the segment, Given this information the

dislocation can be advanced using the algorithm now described.
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The arc.angle, Q; is defined positive when the‘éegment‘is bowed
forward and negative when bowed backwards. Two useful properties oer'
are: 1) Q is the tangent angle 6f the arc with respect to a straight
line connecting the segment endpoints, and 2) the angle formed by two
lines connécting any point on thé arc and its end points is equal to Q;
The first‘property of Q allows easy calculation of Y, . the angle made By
two bowed segments adjacent to any point obstacle;  The second,propefty
of § allows unique andveasy_determinétion of the order in which new
points ére encountered as a segment bows forward. Clearly the minimum
" Q calculated for all points considered determines the first point the
bowing segﬁent finds. Furthermore, if the minimuﬁ Q calculated is less

than QS where
QS = arcsin [segment length/(2R)] , v (11.1)

then the sggﬁent reaches its equilibrium bow out radius, R, before any
néw point is encountered. The pinning points of a segment bowed to
equilibrium are tested for mechanical stability by‘comparing the
preassigned obstacle strength with rgsolved force exerted by the disloca-
tion. 1If this occurs the segment status parameter is set to zero
denoting a mechanically stable segment. Otherwise the status parameter
of the segment(s) to the right of the Unstéble pinning'point(s) is (are)
set to two dendting that the obstacle to the left must be mechanicaily
bypassed (unzipped). |
Reméving an obstacle from a dislocation configuration entails
combining the two adjacent segments iﬁto a newly defined segment. The

new segment's status parameter is set to one denoting need for advancement.
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Similarly if an obstacle is encountered by an advancing segméht it is
incorporated into the ordered list of segments by creating two new
segments replacing the old segment. Again, the ﬁew segment's status
parameters are set to one.

Given a stress (= 1/(2Rf)k the dislocation configuration may be
advanced by.advancing all segments with a status parameter of one and
unzipping all obstacles with a status parameter of two. When all
segment status parameters are zero a mechanically sfable dislocation
configuratibn'exists. Introducing a Qisloqation at tﬁe bottom edge of
an array entéils defining a dislocation consisting of straight segments
(status parameters set to one) ending at equally spéced phantom points
of zero strength. This dislocation will advance to thé first stable
configuration.

The important features of this algorithm are:

1) The dislocation is always kept intact, thus assuring all obsta-
cles will be encountered.

2) Including more complex dislocation obstacle interactions is
relatively straight forward.

3) The capability of introducing more than one dislocation
exists.

4) Vafious non random arrays can be explored (e.g. grain boundary
obstacles).

5) The stable configurations found are unique and independent of
the order that unstable segments are advanced.

The algorithm described becomes muchvmore efficient by, 1) using a

two way chained list for storing the ordered dislocation segments, and
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2) dividing'thé array of point obstacles into subarrnys permitting a‘ -
local search for obstacles when advancing a segmen£;: Presently this
algorithm advances a dislocation through an excess of one thonsand
obstacles per second on a CDC 7600 computer. Thus; the present
algorithm is sufficiently general and efficient ennbling more complex
simulations to be eXpldred. |

Methods:for determining local search regions and determining when a
dislocation intersects itself are not difficult when the structure of |
the simulation is considered. When a stable dislncation configuration
is encountergd all information concerning the configuration is easily
obtainable from the ordered list of dislocation segments. Given this
information'nimethod for advancing stable configurations can be chosen.
One method 1s to increase the stress until the configuration becones
mechanically unstable, Ano;her method is to assume a thermally activnted
process and to unzip‘accordingly. A third method is to unzip the
obstacle resinting the greatest resolved nislocation.force (minimum ¢).
The disloc#tiou path (sét of configurations) will denend on the criteria
used fof advancing mechanicaliy stable dislocations. It should be
evident.that characteristics of stable dislocationnconfigurations
encounteren-will depend on the path.

The strongest dislocation configuration at a g;ven stress, T*, was
determined by the minimum angle (¥) path, i.e., given a stable configura-
tion the dislocation was unzipped at the obstacle having the highest
ratio of resolved dislocation'force to preassigned obstacle strength.

It can be shown that this metho& will find the minimum obstacle strength

. *
necessary to pin at least one dislocation. Therefore, BC(TC) and
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TZ(BC) can be uniquely determined for a given array. Furthermore, the
periodic boundary conditions avoid two shortcomings of previous codes.
First, prior simulations assume mirror boundary conditions which can
Influence dislocation configurations in a finite array. Second, the
dislocation is allowed to pass ﬁhrough‘the array until the strongest
configuration is encountered twice thus assuring thaf the entire array
has been examiqed. The later capability will prove useful when less
well defined péths are examined, e.g., thermal activation, multiple

dislocations, or mobile or changing obstacles.

The code described above was used to generate the simulation data
presented in the following and was also used in the simulation of the
tensile deformation of an idealized crystal reported by Altintas, Hanson,

and Morris (reference 1).
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IIi. AN UPPER BOUND ON THE MOST STABLE CONFIGURATION

A, The Circle-Rolling Technique as-a Branching Process

A useful device for locating the stable configuratibns within a

‘random array of point obstacles is the "circle¥roiling" technique
described-in‘reference 19. The dislocation line between two obstacles
(say, k-1 and k) is the érc’of.a cifcle of dimensionless radius

R* = 1/(21*). If k-1 and k are obstacles of strengﬁh Bc'in a stable
configuration.at T* then there must be at least 6he 6bstacle.(k+l) in

the area swept out by rotating the circle counter-clockwise about k

through an angle
8 =T -9 =2 sint (é ) ‘ | (II11.1)
c c c
Since this requirement holds for all obstacles on a stable line, the
liné may be generated by successive circle-rolling.
* *

If 1 < TC(BC) then it must be possible to locate at 1east-on¢
stable configuration by circle rolling. Hence, givén ec, if there is a
%
T, such that this technique demonstrably cannot yield a stable configu-~

0

%
ration then <t

0

the formal similafity between the circle rolling‘prbcedure and the

* : ) *
> T and is a valid upper bound. A T is found by noting

classical branching process in probability theory.

The classical branching process4 contains independent events which.
may produce descerdents of like kind, with the number of offspring given
by an integer random variable of 'known distribution. The theory of
branching processes estimates the size of the kth'generation descended
from a single initial event. The asympgotic size of fhe descendent

population is sharply constrained by the extinction theorém of branching
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processes, which states that if <n> < 1, where <n?:is the'expécted
number of offspring, then the line of desceﬁt will necessarily terminate
after a finite number of generations.

The circle-rolling technique locates stable configurétions through
a type ;f branching process. Let the initial or zeroth segment on a
configuration be that.connecting an obstacle to the left hand boundary
. of the array. Then the first segment, if it exists, will connect the
first obStaclé (1) to a second (2) located in the area (A*) swept by
rotating a circle of radius R* through an angle ec about (l). Each
obstacle in A* defines a possible first segment. Since A* ié a subarea
of an array containing a unit density of Poisson;distributed oBstacles
the probabiiity that there aré.exactiy v first segments (offspriﬁg) is

x v *

p(;a") = L&) A | (111.2)

The expected number of descendents in the first generation is

%
<n> = A ' (111.3)

Generalizing, the kth segment connects the kth to the (k+l)th
obstacle along the dislocation line. The possible»kth segments of a
configuration ére the segments which can be succeésfully found through
sequential searches by circle rolling from the initial segment; they
belong to the kth generation of descent from (1). Each member of each
generation has descendents whose number is governed by p(v;A*) with
expectatioh A*. A given initial segment 1is on a.stable configuration

only if it has descendents through a sufficient number of generations

to reach across the array. The extinction theorem may be invoked,



-16—

and statesjthat stable configurations cannot exist in an array of

arbitrarily large size if
A R (1I1.4)
If the circle-rolling technique were a classical brgnching process
the inequaiity (III.4) would directly yield fhe éritica;vstréss'(iz(ﬁc))
for an array bf arbitrarily large size. However, the circle-rolling
technique violates the assumptions of the classical branching process in
two ways. First, the descendent segments found by circle-rollingvafe not
_ always distinct. A particular segment may be obtainable from a given
initial segﬁent through more than one path; Second, the descendent
segments afé always legitimate extensions of the dislocation line. The
circle—rollihg may find segments which cause the dislocation line to
intersect itself and hence violate a necessary number of valid disloca-
tion segments in the kth generation below the value estimated by the
theory of classical branching processes. The inequality (III.4) still
‘applies, but may be shown to yield a serious overestimate of T:. A more

accurate estimate is obtained by modifying the ;ircié—rolling procedure.

B. The Limiting Configuration Obtained Through Circle—Rolling

Let a circle of radius R* be rotated counter—élockwise through aﬂ
angle ec about obstécle k. The new area (A*) swept during this operation
is shown in Fiéurg 2. The area may be described by coordinates 6 and ¢.
The lines of cbnstant 6 aré concave arcs generated by the leading edge

*

of the circle as it is rotated. 6 is chosen such that 0 <8 :-GC'in A,

The lines of constant ¢ are convex afcs generated by the trailing edge
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of the circle as it is rotated through an angle\n’+ GC. We éhoose $
such that —n‘§_¢ :_ec in A*.'

The advantage of this parametrization of the search area is the
following. Let a point k+1 be found at (6,¢) within A* (Figure 3).
Then 6 is the angle of rotationvbetween arcs k-1 and k at point k. Let
'tk be a unit tangent vector to arc k-1 at point k and let £k+1 be a

unit tangent vector to arc k at point k+l. Then'¢'gives the angle

between t.,. and Next, let a dislocation cohfiguration (i) be

een by L1
generated by circle-rolling left to right then the angle at the kth
obstacle is 6? and the direction of the line at the kth obstacle is
specified by the accumulated value of ¢ according to the relation

j=1

: k
Lk _ £0 exp i [Z ¢_1:| ‘ (1II1.5)

where t. is a unit vector perpendicular to the left-hand edge of the

0
array and the imaginary axis is taken parallel to the left hand edge of
the array.

Equation (III.5) yields an important constraint on a -stable config-
uration. If a stable configuration is to connect the sides of an array
of arbitrarily large size then it is necessary that -

<>, = = 0%.= 0 , (I11.6)

i N : :

where Ni is the number of obstacles in the configuration. Equation
(111.6) is a weak phrasing of the constraint that a stable dislocation

line cannot loop onto itself. It is clearly insufficient, since <¢> = 0
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on an arbitrarily 1ohg line containing a finitevnumber of loops and also
on a liné containing equal numbers of loops of,posicive and hegapive
sense,

Employing the constraint (I11.6) along with the extinction theorem

: . . * * .
of branching processes establishes a t z_rc(ec) for an array of

0
arbitrarily large size. Given an obstacle strength <8C) let a configu-
ration be generated.by circle-rolling left to right. Now assume a
stochastic process, ignoring any illegitimacy or redundéncy in descendent
segments. Then in each generation the points within the search area A*
give possiblé'extensions of the line.b'These pointé_may only be used in
sets which satisfy equation (II1II1.6). Let f(6,¢); 0 < f <1, be the
normalized frequency with which a point found at (é,¢) is used to test
the continuation of the line. We choose f(6,¢) to find the minimum
value of R* fof'which the circle rolling procéduré will not necessarily
fail,

Since'each search area A* is a sub-area of an array having a unit
density of Poisspn-diétributed points; the probability thét a point will

%k * * o
be found in an element dA of A is simple dA . 1In terms of the

coordinates (0,¢),

* *2 ‘
dA R~ 8in(6 ~ ¢) d¢dé

R"2 da(e,$) | o

where da(6,¢) is independent of the radius. Given f(8,¢), the expected

]
number of descendents in A is

n = (R*)Z ./_-/-f(e,¢)da(e,¢) | (11I1.8)
_ a ' :
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and the expected value of the coordinate ¢ is

@ = ®H7 _[f¢ £(6,0)da(e,0) , (111.9)
a

where the area a(BC) is the area swept when a circle of unit radius is

rotated through the angle ec; it includes the coordinates 0 < 6 5_ec,

- < ¢ :_ec. If the circle rolling process is to be successful in an

array of large size we must have <n> > 1, and <¢> = 0. Incorporating

* * :
these constraints and writing R = 1/(2t ), we have

L= [/f(e,¢)da(e,¢) > 402 | (111.10)
] a

and

<p> = jﬁ f(6,¢)da(e,¢) = 0 . ' (I1I.11)
a

It follows that

x % 1. 1/2 ' o
Tc < TO =3 L0 (I11.12)
where'L0 is the maximum value of the integral in (II1.10) under the

constraint (III.11).
As shown in the Appendix, L is maximized by the choice

1 da ¢ ao(ec)

£(6,4) = ; (I11.13)

0 da ¢ a, = (a - aO)
where ao(ec) (Figure 4) is the subarea of a(ec) over which ¢ 3_¢0(9c),

wit etermine the condition
ith ¢,(8 ) d ined by th diti

8

fC ¢[ﬁa(6,¢)] = ‘Zic ¢da(d) = 0 . (I11.14)
c :

-¢O
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Hence a-iimiting configuration is formed by selecting points only from
* x
among those found in the limited subarea R 2ao(ec) of A. The limiting

value of the critical stress is

] 1/2

P c , .
TO =5 f da(¢) (III.15)
v =4 . ,

The distribution of forces and éegment lengths may be computed.from the

distribution of points within ag.

* .
Given the limiting function TO(GC), the solution of equation

%
(II1.15), we may invert to obtain. the function BO(TO) where

* _ 1 * ‘
BO(TO) = Sin[iec(TO)] (I11.16)

R
The function SQ(TO

* : .
stable configurations are to exist at stress Ty Equivalently, it sets

) places a lower bound on the obstacle strength Bc if

a lower bound on the value, Bl’ of the maximum force exerted on the

most stable configuration encountered in glide through an array of
*

-arbitrarily large size at stress Ty

Before discussing the detailed properties of the limiting configu-

rations we should perhaps point out that the precise configuration

*
found by a search confined to R 2

ao(ec) depends on the starting point.
Since the angle ¢ measured between successive tangenﬁs left to right
along .a configuration differs from that measured_right to left a limiting
configuration generated right to ieft across the arfay will not be
strictly identical to one generated left to right. Still another

configuratiqn would be formed by searching toward the two lateral

boundaries of the array from an interior point. Howéver the physical
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properties of the limiting configuration (its strength, distribution
of forces, and distribution of segment lengths)'are uniquely

independent of the starting point

C. Properties of the Limiting Configuration

To compute the properties of the limiting configuration the function

¢0(6c) is requifed, determined by equation (III.14). The differential

area
, -0
da (¢) =f da (6,9 (I11.17)
is
| 1 - cos(eC - ¢) 0<¢ <8,
da(¢) = cos¢ - cos(ec - %) ec -m<¢ <0 (I11.18)
cosp + 1 -m < ¢ 5.ec -7

The function ¢0(6C) cannot easily be givern in closed form, but is plotted

in Figure 5. In the limit of small ec

¢0 > klec _ (I11.19)
where
k, = G- 2D+ g+t (I11.20)
= 0.3388 .

*
Given ¢0(6C) the function TO(GC) follows immediately from equations
) *
(IT11.15) and (I1I.18). The computed function TO(BO) is compared to the

*
function TC(BC) obtained from computer simulation experiment in Figure 6.
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The agreeméht between the two éurveé is good over the range 0 <B<0.7,
which excgeds the réﬁge of obstacle st;engths whi;h recent theoretical

work (Bacdn,“Kocks, and Scattergoodz)vsuggests is physically meaningful. .
For B > 0.7 ;he theoretical curve diverges frbmbthat'obtained by

. & ’
computer experiment, eventually approaching the limit T T vn/2 at

BO = 1,0, This divergence is not surprising since dislocation looping

becomes important at high stress, but is not properly accounted for in

.the derivation of equation (III.15). The problem‘of “overlap,' or

: *
indistinguishability of descendants, may also be more serious when 1 1is

large.
) *
In the limit of small obstacle strength o is given by the relation
2 1 2 -1 -2,.3
(TO) = 38% (3x" + 6x + 13 + 6x ~ + 3x )6c
0.7870(6 _/2)° | (111.21)

where x = (3 + 2/3)1/3, This equation may be rewritten

(1) = ky (8% = 0.8871(8,)>/? | (1T1.22)

which differs from the Friedel relation (I.3) only'through a multiplica-
tive constant. Both the agreement and disagreemént between equations
(1;3) and (I11.22) deserve comment. The agreement in functional form
is ﬁot fortuitous. Virtually any technique for searching an array by
rolling or bowing a circle.éf fadius‘R* through'a smail angle ec leads
to a search area simple proportional to (R*)zei, and will hgnce yield an
equation which differs from (I.3) only through a multiplicative constant;

Regarding the.disagreemént, note that what we have obtained here is an

upper bound on the value of T in an array of arbitrarilyAlarge size,
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which lies bélow the Friedel limit by ~11%. This‘result may be possibly
questioned on the grounds that T; also lies below the data obtained from
computer simulation (Figure 6) when B is small, One should, however,
_récognize that the number of obstacles on. the most stable configuration
in a finite array is small wheﬁ T* is small and increases with array
size n only as vn. Hence the asymptotic relation obtained from computer
simulationiin arrays of tractable size will tend to overestimate rz for
an array of infinite size.

The normalized distribution of forces along the limiting bonfigura—

tion may be computed from the relation

* ) '
p(8,T )d6 = R da(6,9) (1I11.23)

N .
where p(6,T ) is the distribution of angle 6, in the limiting configura-

* ,
tion at stress T Using equation (III,7) and assigning appropriate

0°
limits to the integral we obtain

-
A
3
|

{R? 6+,
[1-cos(8+¢) ] 0= 0.
*2

*
p(8,7 ) ={2R 0,282 =9, 6> -0

*2
R “[1-cos(6+¢)] ™ - ¢5202>0, ¢5>7 -8
(111.74)

For the range of interest here, 0 < By <0.7, ¢0’is less than (7 - ec)

and only the first form is important. Since B = sin(6/2),

0 (8,1 )d8/dB

]

*
p(B,T )

-1/2

28*2( (1-8%)

[1-(1—282)cos¢0] + 28 sin¢0

(11I.25)
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where we have assumed ¢0.i T - ec. This distribution is, of course,
sharply cut off at BO' It is uniquely fixed by.either r;.or BO since
elther is suffi;ient to determine the radius R*, the angle ¢O,vand the
maximum 80. |

The theoretical distribution (III.ZS)ris compéred to computer-
generatedvdiétribution at T* = 0.1, 0.3, and 0.5 in_Figure 7. The
empirical distributions were obtained by superimposing the forces found
on the most Stable configurations in 10 arrays of 104 obstacles. The

fit seems good. The slight discrepancy near the‘éut—off value of the

*

0(TO)] is due to the fact that the configura-

theoretical distribution [B
tions found by the computer have a distribution of'B1 values near 80;
In the limit of small obstacle strength (or, equivalently, low

‘ stress) the density of forces takes the form
' . 2 2, .
p(8;8y) = [(B/By) + k 17/ (k38) (B < By << 1) (IIT.26)

where k., is defined in equation (III.22) and kl in equation (III.20).

2
" Note that this limiting distribution can be recast in the form

p(B/By) = [(B/By) + kllz/kg (8/60:‘1', By << 1) (III1.27)

which is iqdepgndeﬁt of T* or 80. In earlier work19 it was found that
the function D(B/Bl) might be stress-independent. While.équation (1I1.25)
suggests that this inference is not strictly correct, equation (I11.27)
argues that it becomes correct when'T* is small., .In fact, equation

(II1.25) deviates from its asymptotic form (III1.27) by no more than 3% at

*
0

interest here.

T, = 0.5. Equation (III1.27) is quite accurate over the whole range of
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* %
The normalized distribution of segment lengths,.p(2 ,T ), may be
*
found by expressing £ as a function of 6 and ¢ and finding the
x
differential subarea of a, over which £ 1is constant. The result is,
for ¢0 T - ec,

* ' ’ %
J A ' 0 <R <&

’ * * c . . — —_—
p(‘Q‘ ’T ) = * -1 * * ( *
878+ ¢y - 2 sin (8 /2R)) &' <& <M
(II1.28)

where

%

2R sin(§,/2)
(II1.29)
2"

]

2R* sin((ec + ¢0)/2)

The mean segment length, <&(t )>, is the quantity which is usually

compéred to the Friedel rglation (I.5). Using equation (I11.28),

U * * % =
<&(t )> =f L p(L ,t )de

(2/3) (ZR*)3{cos<¢0/z>[1 - 3 c0s”(4(/2)]

+ ¢ 6 + ¢
- cos(?—c-?,—-2>[l - % cosz(c—z-—g)]} (I1I1.30)

The calculated function <£(T*)> is compared to'thé function <£(T*)>
obtained throﬁéh combuter simulation in Figure 8. The empirical curve
was found by averaging.the segment lengths along the most stable config-
uration in each of ten arrays of 104 obstacles at each value of T* for
which a data bar is shown. The calculated curve closely fits the

empirical data. Both curves lie below the prediction of the Friedel
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* *
model. When T or Oc is small <%(t )> is approximated by the asymptotic

relation‘

/2

< (t)> w-% k;3[(1 + ki)4 - ki](ec/Z);l

Ao.764(ec/2)‘1/2

]

-1/3 : (111.31)

]

*
0.734(t )

which suggests that the Friedel relation overesti@ates-the asymptotic
<2(t*)>, by about 33%Z. The two relations are, however, identical in
functional form.

While the model developed here yields an eXceilent fit to the mean
segment length <£(T*)>, it is less successful in matching the distribu-
tion of segment 1gngths. The density function p(l*,r*) calculated from
equation (III.28) is cémpared to that obtained from computgr simulation
in Figﬁre 9.,  The empirical curve was determined Ey compiling the segment
lengths found along the most stable configuration in each of 10 arrays
of 104 pbints at T* = 0.1. The calculated curve correctly predicts that
p(l*) is zero when 2* is significantly larger than <£;, hence over most
of the available range 0 < 2* <:2R*. However, the theoretical curve does
not correctly reproduce.the shape of the empirical distribution. It is
not cleér whether this diécrepancy principally results from the approxi-
mationsvinvolved in the theoretical model or from the finite size of the

arrays used to generate the empirical distribution.
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IV. THE LIMITING CONFIGURATION IN AN ARRAY
OF OBSTACLES OF DIFFERENT STRENGTHS

A. Extension of the Like Obstacle Limiting Configuration

When the obstacles are not identical the procedure for generating
- the limiting configuration must be modified slightl&. Let a stable
chain be constructed left to right across an array which contains
randomi&‘diétributed obstacles of p distinct typés, labelled o = 1,...,p,
having'fractionslxa and strengths Bd (or ea) as described in Section I.
Consider thé kth segment of the chain, which, in the language of the
branching process, is a member of the kth generation of descent from the
-1n1tia1 (or.zeroth) segment. Let yz be the probability that the kth
segment terminates at an obstacle of type a; ya_is.independent\of k if
k is large; _ |

If the'kth segment terminates at an o point then the obstacle de-
fining the (k+i)th segment must be chosen from among those located in

the search area of an oa-obstacle, an area like that shown in Figure 2

with ec = ea._ This area contains an expected number of points

~

2® = () = ®5)2° _ (IV.1)

of which an expected fraction vaare of type B. Let fa8(9,¢) be the
fraction of the obstacles of type B found in the differential area
da(6,¢) which aré used to extend the chain from obstacles of type a.
Then the expected number of descendents (stable segments) in the (k+l)th

generation per point in the kth generation is

<n> = (R*)Z Zyi L[Zf“ﬁ(e,cp)xs]da(e,é) . (1v.2)
‘ ;) a B Lo
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By the extinction theorem of branching processes:<n> must be greater
than one if the chain is to extend across an array of arbitrarily large

size. The ekpected value of the coordinate ¢ is

<¢>>= (R*),zzy_;: L[qus(e,¢).x8]¢da(e,¢) . (Iv.3)
: a aLs :

which must vanish if the chain is not to intersect itself. The expected

fraction of segments of the (k+1)th generation which terminate at

obstacles of type a is

a -1, %2 B Ba a
Vppy = @ (R) %;yk.g@ £ (0,0)x"da(6,4) . (1V.4)
When k is’larée,”
@« _ .a_ o - . '
k1T Tk T Y - | (IV.5)

The limiting.configuration is obtaiped from'eqhations.(IV.Z)—(IV.S)
by setting ;n> = 1 and <¢> = 0, and then choosing the‘frﬁctioﬁs ya and
functionS‘faB(9;¢) so that R is minimized (T* maxiﬁized) for a given
set of fractions x° @nd.strengthS'ea. With <n> = 1 and <¢> = 0,

equations (IV.2)-(IV.4) may be conveniently rewritteni

x . ’ » .
2t) = f £(6,6)da(o,4) R (1V.6)
. a v o -
0= f ¢£(s,6)da(s,¢) | - (1V.7)
v a
ya = xa{-l—*z- ZyBL fsa(e,@da(e,tb_)} (1v.8)
2t )" B a - '

: 5 ' .
where a~ is the search area o0f the obstacle of greatest strength

(maximum ea = es) and where
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£6,0) - ): £ (6,4)x"y*n% (0) <§:y°‘h°‘<e>' (1v.9)
o, B
with
' 1 0 <6 <8
n%(e) = o (1IV.10)
0 8> 8

It follows directly from the theorem given in the Appendix that the
integral on the right hand side of equation (IV.6) is maximized under

the constraint (IV.7) if £(0,¢) is assigned the value

;yah“(e) ~0g < ¢ <6

£(6,¢) = T | (Iv.11)
0 otherwise

where ¢0 is the solution to the-equation '

Eyaha(e)ida(e,tb) . (Iv.12)
o

Equation (IV.8) then yields the identity
ya = x" : (Iv.13)

and equations (IV.6) and (IV.7) may be written in the more compact form

* 2 1 2%

(o) ZTZ ay (IV.14)
o
0= }:xaag<¢>a (1v.15)
a
* v '
where T is the strength of the limiting configuration (an upper limit
%* o o ’ . o

on Tc), ag is the sub-area of a over which —¢O < ¢ :_ea, and <¢> 1is

the average value of ¢ over ag.
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The seqUentiél solution of equations (IV,lS) an& (IV,lA) d;termines
13, which estimates the critical resolved shear stregs, Tz, for glide
through an érbitrarily large array of randbmly diétributed obstacles
haying strengths Ga (o0 = 1,...,p) and fractions x*, The properties of
the particular configurationrwhich determines TZ maj also be approximated
by the properties of the limiting configuration, “Threé properties are
of:particular_interest:; the fréction, ca, of obstécles of type o in the
configuration, the distribution éf angles (6) or, equivalently, of
forces_(B)Taiong it, and the mean value of the sepération between
~adjacent oBstagles.

A:The fraétion c” is gasily cdmpute&. The kth generation of descent
from an initial_segmeﬁt contains an expected fraction x* of segmeqts
which terminate at obstacles of type a. An expected fraction R*zag of
these are continuéd by stable setments to points found within the optimal
search area, and hence become "parents" of the (k+1)th generation.

Sincé successive generations of the limiting configuration aie stochas-
tically independent, obstacles of type will appear in the limiting
configUration'in precisely the fraction in which they are expected as

"parents" of the-(k+l)th generation. Hence

* ' : B
= xaagR 2 _ (1v.16)

The computafion of the distribution of forces in the limiting
configuration is also s;raight—forward given the discussion in section
III. The fraction of obstacles of type o along the chain is given by
équation (IV.16)1: It follows from equations (III.23)-(III.25) that, if

normalization is properly accounted for, the distribution of forces on
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obstacles of type o is specified by the density function

* - *
(agR 2) lp(B,T ) 0<B <8,
p%(8) = | - (1v.17)

0 ' B> B

X -
where p(B,7 ) is the density function given by equation (III.25). The
density of forces in the limiting configuration 1s hence
* :
p(8) = Y c%%(®) = o(8,1 ) T x"n%(8) (1v.18)
a a :

where ha(B) is a weighting function equal to one if B j_Ba and to zero
otherwise.
A similar argument yields the equation for the mean spacing between

adjacent obstacles along the limiting configuration:
. .
<> = Zxa<1(r )>ot . (1v.19)
a

%*
where the function <&(1 )>a is the form appropriate to (a) of the

function given by equation (III.30).

< (th)>% = (-25) (ZR*)B{cos(ea/Z)[l - % cosz(ea/Z)]

6 + ¢ . 6 + ¢
- cos(—a—z-——q)[l - % cos(——g——z——-—(—))]} (Iv.20)

B. Comparison with Computer Simulation Results

To test the accuracy of the equations developed in the previous
section with computer simulation experiments consider the following.
Let the obstacle (k,i) of equation ( 1.3 ) be of type a and let the

mechanical strength of an obstacle of type a be Ba’ corresponding to the
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maximum force an obstacle of type a can sustain without being cut or

locally bybassed. Then the dislocation is localiy.stable at (k,i) if

*k

g% = 68 < 1. | L (Iv.21)

* v '
Evaluating the quantity B i for each obstacle on configuration (i), with:
o given the value appropriate to the obstacle at (k,i),'the condition

* :
for mechanical stability of (i) becomes B : < 1 for all k on i, hence

8. <1 v : v (Iv.22)

* *
where Bi is the maximum of the 8,:.

Next consider the fdllo@ing simula-
tion experiment, If the dislocation is allowed to move through the |
array along a path found by paséing each non—transpérent éonfiguratiop
i at the obstacle at which B*E (equation (IV.21)) hasvits maximal value
(B:) then the dislocation will necessarily encoun;er the most stable
configuration within the array (this path is the analogue of the
"minimal angle" path17 through an array of like obstacles). The theory
developed here approximates the strength of this configuration, in an :
array of large size, as BI = 1.0. The computer simulation yields ‘an
empirical Value‘of BI for a.particular ér?ay,vwhere B:.corresponds to
the ratio of experimental_strquth with respect to the theoretical
strength at a given stress, T*.

To compare the simulation with theory, strengths Bs and Bw were
choéen with fespective concentrations of x° and x" =1 - xs). The

* .
corresponding limiting stress T, from equations (IV.14) and (IV.15) was

0

* :
computed to determine Bl. Three combinations of obstacle strengths were

simulated at each of three choices of the fraction xs, giving the total
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of nine cases listed in Table I. For each case glide was simulated
through ten arrays of 1200 obstacles. Given the finite size of these
arrays, there is some scatter in the BI vglues'fopnd and a statistical
bias toward B: < 1.0 which becomes more pronounced as the array size or
the applied stress is decreasedf Nontheless the theory appears to give
a good estimate of the critical resolved shear sﬁreSSTz (as measured by
the agreemeﬁf BI v 1.0), the fraction ¢’ of weak obstacles in the con-
figuration_which determines r:, and the mean value of the interobst;cle
spacing along this configuration.

To tesi the accuracy of the force distributioﬁ predicted by equation
(IV.17) an empirical force distribution for case 7vﬁ§s determined by
compiling the forces (8) along the most stable coﬁfigurations in each
of twenty-five arrays of 1200 points. The resulting normalized histo-
gram is compargd to the theoretical prediction in Figure 10. The fit
seems good.. It should be noted that the fit requires simultaneous
estimates of.the strength of the most stable configufation, the fraction
of weak obstacles along it, and the distribution 6f forces given those

parameters.

C. Extension to Thermally Activated Glide

The approach developed in Part A may also be used to estimate the
velocity of ﬁhermally activated glide at low température; As discussed
in Reference 19, when the temperature is sufficienﬁly low the expected
time required for the dislocation to transit the array, and hence the
velocity of glide, is essentially determined by the expectea time for

the dislocation to activate past the most stable configuration it
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enc0unters} " This activation time is itself determiﬁed.by the expected
‘time for activation atbthe point along the most stable configurétion
- which offers the minimum activation barrier. Defiﬁing.the dimensionless

time

*

t o= vt - o (Iv.23)

where v is the frequency with which the dislocation attempts thermal
activation at an obstacle (assumed constant) and the dimensionless

velocity
o % : : .
s = al/2,%, (IV.24)

‘ S %
where n is the number of points in the array and <a > is the dimension-

: : * -
less area swept out per umnit t , it follows that as T approaches zero

* B '
<y > nllzexp(—AGI/kT) _ (1v.25)

where AGl is the minimum of the activation barrigfs associated with the
obstacles in the most stable configuration.' Computer simulation studies19
have shown that equation (IV.25) gives a reasonabié approximation to'the
glide velocity:over a wide:range of temperature.

The activation barrier AG at an obstacle dependé”’18

on the dislo-
cation configuration at fhe dbétacle (hence on B,.or, equivaléﬁtly onvé)
and on the nature of the dislécation—obstacle interéction. If the
dislocétion—obstacle interaction is reasonably simple'then the activa—

tion energy may be written as a function (AG(B)) of the force on the

- obstacle. Inverting this function gives

Ba = BG(AG) . ' (1v.26)
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or, equivalently, =

N A
determining the force, B, or angle,.e, associated with the particular
value of the aétivation energy\f;r a partiéular type (o) of obstacle.

When conditions are such that equations (IV.éS) and (IV.26) are
obeyed the equations presented in Part A may be used to estimate the
velocity of glide as a function of stress and temperature. Required is
the function-AGl(T*), the minimum activation energy in the most stable
coﬁfiguratipn éncountered in glide at stress T*.

Consider an array which containsla fractidn x of obstacles of
type o (o = 1,...,0). Assume that equation (IV.27) is obeyed for each
obstacle. Then the stress (T*) at.wHich the most stable configuration

encountered poses an activation barrier AGl is the maximum stress at

which there exists a configuration satisfying

8, < 8,(AG)) o (1v.28)

N :

for all a. The stress t (AGl) may be approximated by employing the

values ea(AGl)vin place of ea in equations (IV.14) and (IV.15). Inverting
‘ % * %

this function gives AGl(T ) and consequently <v (7 ,T)> over the range

of conditioné for which equation (IV.25) holds. .
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V. DISCUSSION

The ideaiized modél considered in this research is based on
simplifying assumptions. They are: 1) constant line tension, 2) random
distribution Of immobile point defects, and 3) dislocation defect inter-
action independent of direction. The primary incen;ive for these
assumptions'is to establish a well defined general and solvable problem.
Clearly these assumptions'will be reasonable apprdximations for some
real systems while failing for others. Two types of dislocation
barriers, Qoids, and forest disibcations‘are now é#émined to illustrate
this statemént

First consider the constant line tension analysis. The difference
between edge and screw line tension can be reasonably approximated by
taking an average of their values which differ by (1 - v)-l, where v is
poisson's ratio and is often between 0.2 and 0.4 for metals. Another
- phenomena affecting this approximation is the self iﬁteraction of two
dislocation arms created at a pinning point. Tﬁis_effect becomes
impoftant2 when'wc, the angle between the two dislocation armé,‘becomes
small. Bacon, Kocks, and Scattergood2 have examiﬁea this problem
extensively for the case of impenetrable qbstacles and have.derived
expressions for';he effective wc valueé for line tepsiqn analysis. They
deduced, that generally, a wc of less than W/Z is uﬁstable when self
interaction is included in the line tension analysié. For void defects
the line tension aﬁalysis should provide a goéd approximation. On the
other hand, forest dislocations have strain fields that can interact
with the line tension. In general, any defect that has an associated

stfain field can- affect the line tension_approximatibn if the field of
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interaction is not small relative to the defect spacing.

Next, consider the assumption of a random diétribution of immobile
point defects. Voids are slightly non-random dué tb their interaction
during formation and finite size, but are generally treated as if
random. However, forest disloéétions Lend to be non random because of
their strong mutual interaction. Voids can be considgred immobile while
forest dislocations can be either. The point apprbximation for voids is
reasonable'since their size is small relative to theif average spacing.
Meanwhile foféét dislocations possess a less well défined diffuse field
of interactioﬁ.

Anothef constraint used in this model assumes that the dislocation
defect interaction is independent of direction. This assumption is
valid for voids. However, a gliding dislocation's_interaction with a
forest dislocation will be dependent on their burger vectors and can be
direction‘dependent.

As demonstrated above, the assumptions and solutibn derived for the
athermal critical resolved shear stress in a randovarray of obstacles
can apply to some real dislocation systems while geing unrealistic for
others. To examine void defects, the real system must be non dimension-
alized by equations (I.2) and (I.3). The wc, obstécle'strength, would
have to be calculated and depends on the void size and position relative
to the glide plane. Assuming that.the distributioﬁs of sizes and rela-
tive glide plane positions are known, equations (IV.6) and iV.7) can be
invoked té solve the characterisfics of the limiting strength determining
dislocation configuration. Clearly these configuraﬁions can be examined

as a function of void size and density distribution. Also consider a
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second defect, e.g., a strain free spherical precipitate, that reason-
ably adheres‘to the assumptions of this model. If can then be included

in the analysis to determine its relative importance.
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VI. CONCLUSION

As stated in the introduction, the primary goal of this research
was to determiné methods for examining the athermal critical resolved
shear stress in a glide plane containing random pdint like obstacles.
The two complimentary approaches of direct computer simulation an&
derivation of analytic expressions have proved sudcessful. In the
course of this work a useful and sufficiently general computer simula-
tion was produced. Also, an analytic solution dé3cribing the strength,
.distribution of forces, and mean segment length of the strongest dislo-
cation configuration was derived., The generalityvbf this solution was
then shown by extending it to the case of a glidé plane containing a
random distribution of distinct obstacles. In both cases the results
were compared with computer simulation experiments and showed good
agreement. |

The multiple obstacle solution permits the simple treatment qf
cases which cannof presently be handled b& computer simulation in finite
time. For example consider the case ofitwo distihct obstacle types
occurring where their relative concentrations are several orders of
maghitude different. To simulate a reasonable numEer (%103) of dilute
obstacles COuld’require an array of unmanageable size. Alternately, the
- simulation code should prove useful for examining more complete and

complicatedAdislocation models.
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APPENDIX

Choose £(0,¢) such that the integral

L = [/f(6,¢)da(6,¢) (A.1)
: a
is maximized subject to the consﬁraints
£(8,6) < 1 (A.2)
[/¢f(6,¢)da(6,¢) =0 (a.3)
a .
where a is the'search area of Figure 2, defined by 0<6 i_ec, -1 < ¢ <8
The solution is
1 da € a,
£(6,¢) =_{ (A.4)
0 da € a; = (a - ao)
where a, is the subarea defined by 0 < 6 5_ec, —¢0 < ¢ j_ec, with ¢0

determined by the condition

0 ) v}
c c c
: / ¢|:/‘ da(6,¢):| = f ¢da(4) = O (A.5)
The probf is straightforward. Let q(8,¢) be a piece-wise
continuous function, 0 < q < 1 such that
1 - q(6,9) da € a, :
£(6,9) = { (A.6)
q(8,9¢) da € a,
and define
L, =[/‘da(6,¢)‘. (A.7)
. ._ao
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Then

L-Ly=AL=J =17 | - (a.

where

From equations (A.3) and (A.5)

K, =K T (A.

Ky =.[[ (-¢)q da . o (A
. ai . . ‘

It follows from the mean value theorem and the condition

¢0 < (-¢) < 7 in a;, that

Ky = (65 + N)J; | (A

- where N > 0. Similarly,

Ky = (65 = MJ, | - (A.

where M > 0. Equations (A.10) and (A.9) then require that M < ¢0

i [m] To <70 (4.

which establishes equation (A.4).

Ji=[/qda10' . (A.
. A | _ |

.8)

9)

10)

11)

12)

13)

and

14)

Hence AL < 0 for arbitrary q(6,¢). The equality holds only if q = O,
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Table I. A comparison of the predicted values of BI (= 1.0), éw, and
<%2> with the mean of the values found through computer simula-
tion for the most stable configuration in each of ten arrays
~ of 1200 points under each of the nine conditions shown.

Case | 8 B X" T* <B*> e <> 3 <>

8 w 0 exp | theory exp | theory exp
1 (0.5 |0.2 |05 |0.240 | 1.006 |0.13 0.13 1.30 | 1.28
2 0.5 |0.05(0.5 0.231 0.998 |0.020 0.021 1.44 1.46
3 0.2‘ 0.05 | 0.5 |0.057 | 0.919 |0.064 0.071 2.25 '2.08
4 10.5 |0.2 [0.17}0.299 | 0.997 }0.030 0.041 1.11 1.05
5 10.5 |0.05)0.1710.297 | 1.002 |0.0042 | 0.0048 1.13 1.12
6 /0.2 10.05{0.17{0.073 | 0.948 [0.014 0.015 1.84 1.73
7 10.5  0.2_ 0.83]0.157 | 0.969 |0.40 0.44 1.65 | 1.59
8 [ 0.5 0;05' 6.83 0.135 1.607 0.088 |0.145 2.31 2.26
9 |0.2 {0.05}0.83]/0.035 | 0.890 [0.24 0.23 3.21 | 3.01

n¢ b non

<

g

LEN



Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.
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" FIGURE CAPTIONS
Detail of mechanical equilibrium in the ith obstacle

configuration.

' Parametrization of the area searched by circle-rolling to an

gngle ec =T,

Diagram illust?ating that the angie ¢k measures the change -
in direction of the dislocation line at obstacle (k+1).
Division of the search area (a) into theAlimitihg area (ao)
and the excess arga.(al) by the coordinate line ¢ = —¢0.

The limiting parameter ¢0(6c).

The limiting stress TO(SO) compared to ;ﬁe function r*(Bl)
obtained by direct computer simulation.of»glide»through
arrays of 104 obétacles. The bars include tﬁe values of the
maximum force (81) in the most stable'coﬁfiguration encount-
ered in glide through each of ﬁen arrays of 104 points at
each value of thelstress T* for which a data bar is shown.
The distribution of forces in the limiting configuration
compared to histogréms obtained>through.direct computer

simulatidn of glide through arrays of lO4 points. The

. * - v
‘limiting forces (BO)'are: B. = 0.2322 at T = 0.1,

0

. .
By = 0.4751 at T = 0.3, B, = 0.6526 at = 0.5.



Figure 8.

Figure 9.

Figure 10.
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: *
The mean segment length <2(t )> in the limiting configuration
compared to that predicted by the Friedel relation (equation

1.5 ) and that determined by direct compﬁter simulation of

glide through arrays of lO4 points. The data bars include

- the mean segment length in the most stable configuration in

each of ten arrays of lO4 points at each value of the stresé
for which a data bar is shown.

The distribution of segment lengths in the limiting configu—
retion at T* = 0.1 compared to a histogfam determined by
direct computer simulation of dislocation glide throﬁgh
arrays of 104 points at T* = 0.1, The mean segment iength
<2*> is 1.572 in the limiting distribution compared to 1.493

for the histogram.

The -theoretical distribution of forces (B) in the limiting

'éonfiguration for case number 7 (Table I) compared to an

empirical histogram obtained through computer simulation as

" described in the text.
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