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Abstract
Seasonal patterns vary dramatically around the world, and
we explore the extent to which systems of season categories
support efficient communication about the local environment.
Our analyses build on a domain-general information-theoretic
model of categorization across languages, and we identify sev-
eral qualitative predictions that emerge when this model is ap-
plied to season naming, including the prediction that systems
with even numbers of categories should be more common than
systems with odd sizes. We test the model quantitatively using
a collection of season systems drawn from the linguistic and
anthropological literature and data specifying temperature and
precipitation in locations associated with these systems. Our
results support the predicted even-odd asymmetry, and we also
find that the model makes a number of successful predictions
about the locations of boundaries between seasons.
Keywords: categorization; efficient communication; informa-
tion theory

Imagine an alien geographer who has detailed knowledge
about the natural environment in one part of our planet. The
geographer knows how temperature, rainfall, humidity, wind
speed, and wind direction vary over the course of the year.
The geographer knows about clouds, fog, dew, storms, and
lightning, and about the water levels in local streams, rivers
and lakes. The geographer is intimately familiar with the
flowering patterns of local plants and the breeding and mi-
gration patterns of local animals. In all of these cases the ge-
ographer knows about long-run averages as well as the vari-
ability that can be expected year to year. Before meeting any
of the local people, what predictions could the geographer
make about the categories named in their language? We fo-
cus on a special case of this question, and consider the extent
to which named seasons reflect properties of the local envi-
ronment. For example, we ask whether the geographer could
predict how many seasons the local people might recognize,
and where the boundaries between these seasons might lie.

Our approach builds on a growing body of work that ex-
plores ways in which languages support efficient communi-
cation (Rosch, 1978; Corter & Gluck, 1992; Gibson et al.,
2019). Particularly relevant to our approach are information-
theoretic accounts of variation in named categories across
languages (Baddeley & Attewell, 2009; Kemp, Xu, & Regier,
2018). Regier, Kemp and colleagues have developed an
information-theoretic formulation of the idea that named cat-
egories achieve a near-optimal tradeoff between complexity

and communicative cost, and have applied it to domains in-
cluding color (Zaslavsky, Kemp, Regier, & Tishby, 2018) and
kinship (Kemp & Regier, 2012). Here we use the same for-
mal framework to study season naming across languages.

Our work addresses an important question that is largely
absent from previous formal treatments of categorization and
efficient communication. The information theoretic frame-
work that we adopt allows for different languages to reflect
different communicative priorities. For example, the frame-
work allows that systems of color categories may vary in
part because speakers of different languages are embedded
in environments (e.g. desert vs rainforest) with very different
colour distributions, which may produce different local com-
municative needs. Previous authors acknowledge this point
but typically implement models that assume that speakers
all around the world encounter the same distributions over
colors (Zaslavsky et al., 2018), kin types (Kemp & Regier,
2012), and other elements of their environments.

A notable exception is a project that explored words for
ice and snow, and found that languages with a term that
covers both of these concepts tend to be found in warm re-
gions (Regier, Carstensen, & Kemp, 2016). That work fo-
cused specifically on environmental variation, but the nam-
ing behavior considered is extremely simple (one term versus
two for frozen precipitation). Here we focus on environmen-
tal variation in a domain that offers the potential to make de-
tailed predictions about not just the number of categories, but
the locations of the boundaries between these categories.

Season naming has previously been studied by researchers
from disciplines including linguistics, anthropology and ge-
ography. In a pioneering project Orlove (2003) compiled
systems of season terms from twenty eight languages, and
used them to document general tendencies in season naming.
For example, Orlove suggests that seasons are usually char-
acterized in terms of atmospheric phenomena such as rainfall,
wind, and temperature. In some cases, however, seasons are
based on changes related to plants (e.g. the flowering of a
certain species), animals (e.g. the first appearance of a given
species), or water levels in local rivers and lakes. Our ap-
proach builds on the work of Orlove and others by using com-
putational methods to probe the relationship between season
naming and the local environment.
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A small amount of previous work has taken a computa-
tional approach to season naming. Hatfield-Dodds (2016)
gives a detailed description of Yolngu seasons from the north
east Arnhem land in Australia, and describes a computational
model that uses climate data to detect when the seasons start
and begin. Our work provides much less detail about any
single language, but complements the approach of Hatfield-
Dodds by using computational methods to explore season
naming across a relatively large set of languages.

Previous authors have also discussed the notion of an op-
timal set of seasons for a given area. Entwisle, for example,
proposes a set of five seasons for southeastern Australia that
fits the local climate better than the four traditional European
seasons (Entwisle, 2014). Proposals like these are often based
in part on climate data, but are not typically derived from
computational models. Our work builds on these approaches
by connecting season naming with a domain-general account
of categorization across languages.

Theoretical framework
This section introduces an information-theoretic approach
that measures the extent to which a system of season terms
supports informative communication about the environment.
Consider a speaker who is talking about an event that falls
within a standard year of 365 days. Let d indicate the day of
the event. The prior distribution p(d) captures the probability
that the speaker will talk about an event that occurs on day d.
For simplicity we assume that p(d) is uniform.

Each day is associated with a distribution p(~s|d) over
a vector of season variables. We will consider three—
precipitation (sp), temperature (st ), and temporal location
within the year (sy)—so that ~s = [sp,st ,sy]. Many other fac-
tors are relevant to season naming, and in principle we would
like to include additional variables that capture information
about the local climate, food sources, and bodies of water. In
future it may be possible to include some of these variables,
but for now we work with two climate variables (precipita-
tion and temperature) that are readily available for locations
all around the world.

Each day is also associated with a distribution p(w|d) over
words for seasons. The speaker labels day d by sampling
from the distribution p(w|d). After hearing the label the lis-
tener uses Bayesian inference to compute a distribution over
the season variables:

p(~s|w) = ∑
d

p(~s|d)p(d|w) ∝ ∑
d

p(~s|d)p(w|d)p(d).

We assume that communication succeeds to the extent that
the speaker distribution s = p(~s|d) resembles the listener
distribution l = p(~s|w), and formalize this idea using the
same information-theoretic measure of communication cost
used by previous work on domains including color and kin-
ship (Kemp & Regier, 2012; Zaslavsky et al., 2018). Com-
munication cost is defined as the Kullback-Leibler divergence
KL[s||l] from the speaker distribution s to the listener distri-
bution l, and is low when the distributions are similar to each

other. This cost measure can be used to assess the overall
communication cost associated with an entire system of sea-
son terms. This overall cost is defined as the expected cost
when the speaker communicates about an event:

system cost = ∑
d

P(d)KL[s||l] = ∑
d

P(d)KL[p(~s|d)||p(~s|w)].

There is a tradeoff between the communication cost of a
system of categories and its complexity. Complexity can
be formalized in different ways (Kemp & Regier, 2012; Za-
slavsky et al., 2018) and here we define the complexity of a
system as the number of terms that it contains. A system with
many terms (high complexity) can allow the listener to recon-
struct the speaker distribution very precisely (low communi-
cation cost), but a system with few terms (low complexity)
means that the listener is typically able to approximate the
speaker distribution only roughly.

Previous work suggests that systems of kinship
terms (Kemp & Regier, 2012) and color terms (Zaslavsky
et al., 2018) are efficient in the sense that they achieve
near-optimal tradeoffs between communicative cost and
complexity. An optimal tradeoff is achieved if the com-
municative cost of a system cannot be reduced without
increasing the system’s complexity, and vice versa. We will
explore the extent to which attested season systems support
efficient communication by comparing them to hypothetical
systems of equal complexity.

Synthetic climate data
To illustrate some qualitative predictions of the model we first
apply it to a simple synthetic data set that specifies how a sin-
gle climate variable sc varies over a hypothetical 48 day year.
Fig 1a shows a climate variable sc that rises smoothly then
falls over the course of the year, as temperature does in many
parts of the world. We combined this climate variable with a
temporal variable sy so that ~s = [sc,sy]. Fig 1a includes sea-
son systems that minimize communication cost for different
levels of complexity. For example, when n = 2 the optimal
categories divide the year into days when sc < 0.5 and days
when sc > 0.5

Although the model allows categories to be disconnected
the categories in these optimal systems are always connected
regions of the year. This result emerges because connected
categories ensure that category members have similar values
of the two season variables sc and sy.

A second qualitative result is that the turning points of the
climate variable (i.e. the peak and trough) always lie within
a category rather than at a category boundary. Because the
days on either side of a turning point have similar values of sc

and sy, assigning them to the same category minimizes com-
munication cost. A related but more subtle result is that for a
fixed value of the system size n, categories containing turning
points are longer than categories without turning points. For
example, when n = 4 the categories that contain the peak and
trough have 13 days each, and the remaining categories have
11 days each. In general, combining two intervals of length k
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Figure 1: Analyses of synthetic climate data over a 48 day
year. (a) Optimal systems of different sizes given a climate
variable that varies smoothly. (b) Communication costs rel-
ative to the climate and temporal variables for the optimal
systems in a. Labels indicate the sizes n of the 5 systems. (c),
(d) Analogous results when the climate variable has a discon-
tinuity at the end of the year.

that lie on either side of a turning point produces a category
of size 2k that has the same coherence (in sc) as a category of
size k in a region without a turning point.

A final qualitative result is that even systems (i.e. systems
with even numbers of categories) are more effective than odd
systems at capturing information about the climate variable.
The n = 2 system in Fig 1a distinguishes naturally between
low and high values of sc, but distinguishing between low,
medium and high values turns out to be less straightforward.
If only three categories are used, then the medium category
must have two disconnected components (not shown in the
figure). If all categories are connected regions of the year than
four categories (as for the n = 4 system in Fig 1a) are actually
needed to distinguish between low, medium and high values
of sc. More generally, if categories are connected then at least
2k−2 categories are needed to distinguish k levels of sc. As a
result, distinguishing between levels of sc in a parsimonious
way naturally leads to an even system.

Fig 1b compares the even and odd systems in Fig 1a by
plotting communication cost with respect to variables sc (cli-
mate cost) and sy (temporal cost). Although communication
cost was defined earlier with respect to the entire set of season

variables~s, here we use the same approach to define commu-
nication cost with respect to one variable at a time. Fig 1b
shows that moving from 2 to 3 categories produces a rela-
tively small improvement in climate cost, but moving from 3
to 4 categories produces a relatively large improvement. A
similar but less pronounced kink in the curve is visible when
moving from 4 to 5 to 6 categories. Moving from 2 to 3 cate-
gories does allow a speaker to convey additional information
about sy, but Fig 1b shows that this increase in complexity
provides little additional information about sc.

Most of the qualitative results just discussed depend crit-
ically on the assumption that sc varies smoothly over time.
Figs 1c and 1d show analogous results if sc increases
smoothly over the year then drops very sharply to its origi-
nal value before the year starts again. In this case optimal
categories are still connected regions, but the turning point
always lies at a category boundary, the categories within each
system have equal sizes, and there is no even-odd asymmetry.

The simulated environment in Fig 1a is simple and highly
stylized, and it is not clear whether qualitative results like the
even-odd asymmetry still apply if the climate variable rises
and falls at different speeds, or if additional climate variables
are added. Even so, we propose that seasonal variation in
real-world climates is more like Fig 1a than Fig 1c. Our anal-
yses therefore identify several characteristics of real-world
systems that might be expected purely on the basis that these
systems support communication about periodic variables that
vary smoothly through time.

Season naming data
We next evaluated the model using real-world naming and en-
vironmental data. Orlove’s (2003) ethnoclimatology database
was not available and we therefore consulted the primary lit-
erature to assemble our own data set.

The data set includes 53 languages in total. For 25 of these
languages the set of season terms was described in enough
detail to be roughly positioned relative to the Western cal-
endar year, and the data set includes season boundaries for
each season in each of these systems. Four examples of sys-
tems with boundaries are shown in Fig 2. For the remain-
ing 28 languages the data set specifies only the number of
season terms in each language. Our data have a strong Aus-
tralian focus because our two biggest sources are collections
of indigenous Australian seasonal calendars compiled by the
Commonwealth Bureau of Meteorology and the CSIRO.1

The data set inevitably reflects a number of decisions that
are somewhat arbitrary. There is no universally accepted def-
inition of a season, and it is likely that our sources adopted
slightly different notions of what qualifies as a season. Some
of the systems are hierarchies with two levels: they include a
number of major seasons which are in turn divided into minor

1Unless specified otherwise, all season systems discussed in this
paper (including three of the four in Fig 2) are drawn from one
of these resources (http://www.bom.gov.au/iwk/index.shtml
and https://www.csiro.au/en/Research/Environment/Land
-management/Indigenous/Indigenous-calendars).
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Figure 2: Climate data, seasons and optimal systems for four languages. Precipitation and temperature are shown using pink
and cyan respectively. A cube-root transform has been applied to precipitation, and both variables are normalized to have zero
mean and unit variance across the entire data set. Empirical season boundaries are shown using vertical lines. The colored bars
across the top show optimal systems according to the model with sizes matched to the linguistic systems. Two systems are
shown for Nuer for comparison to the two major seasons and the four minor seasons recognized in this language.

seasons. Judgments about subjective seasons are likely to be
especially subjective. For example, the Tiwi system includes
three major seasons and thirteen minor overlapping seasons,
including Kurukurari (“season of the mangrove worm”, when
these worms are easy to find) and Tawutawungari (“season of
the clap sticks,” when special yam ceremonies are held). It
seems likely that some of the languages in our data set have
minor seasons that are not documented in our sources.

Although 25 of the languages in the data set include sea-
son boundaries, our sources repeatedly stress that mappings
of indigenous seasons onto the calendar year are approximate
only. Seasons are often fuzzy categories with no sharp bound-
aries, and the boundaries between seasons often shift from
year to year as a result of variability in the local climate and
other factors.

Some of our sources describe overlapping seasons, and this
overlap is preserved in our data set. When seasons overlapped
the distribution P(w|d) over season terms for a given day was
taken to be uniform over all seasons including that day. None
of our sources describes gaps (i.e. unnamed periods) between
seasons, and as a result each system in our data assigns each
day to at least one season.

Among our systems with season boundaries, seasons al-
ways correspond to connected regions of the year, but excep-
tions are known outside our data set. For example, Rukiga has
two words for seasons, orugazi (rainy season) and ekyanda
(dry season), but these seasons may alternate over the course
of a calendar year so that there are two rainy seasons and two
dry seasons (Orlove, 2003). For languages included in our
data set, season terms may pick out disconnected regions of
the year when actually applied by native speakers. For ex-
ample, if an unusually cold spell occurred during the sum-
mer months, a Yolngu speaker might say that one season had
“interrupted” another (Hatfield-Dodds, 2016). These inter-
ruptions mean that seasons can occur in different orders dur-
ing the year, and that a particular season could occur multi-
ple times. For all of these reasons the representations in our
data set are best viewed as crude approximations of bodies of
knowledge that are both rich and subtle.

Season variables
The precipitation (sp) and temperature (st ) variables are based
on global gridded data available from the Climate Prediction
Center (CPC) in the USA.2 Our analyses used daily precip-
itation and daily temperature averaged over the period from
1979 to 2005 and excluding leap years. Following a common
practice in climate modeling we applied a cube-root trans-
form to the precipitation data. We then normalized both vari-
ables to have zero mean and unit variance; normalized vari-
ables for four locations are shown in Fig 2.

We assigned Glottocodes manually to each language in the
data set then retrieved the position (i.e. latitude and longi-
tude) associated with each language in the Glottolog data
base (Hammarström, Forkel, & Haspelmath, 2018). We then
used these positions to extract precipitation and temperature
data for each language from the CPC data.

The distribution p(~s|d) for a given day and location was
defined as a multivariate Gaussian distribution over a three-
dimensional space. Two of the dimensions were the nor-
malized precipitation and temperature dimensions already de-
scribed, and the temporal dimension ran from 1 to 365 days
and wrapped around so that day 366 was identical to day 1.
The covariance was an axis-aligned distribution with standard
deviation of 0.1 along the precipitation and temperature di-
mensions and standard deviation of 40 along the temporal
dimension. The relative magnitudes of these standard de-
viations capture assumptions about the extent to which sea-
son categories should be informative about the three dimen-
sions. For example, increasing the standard deviation along
the temporal dimension would mean that there is less pressure
for season categories to convey precise information about the
location of an event within a year. As a result the tempo-
ral dimension would become less important and precipitation
and temperature would effectively become more important.
The numerical parameters used in our analyses (i.e. 0.1 and
40) were intended to give precipitation and temperature equal

2CPC data provided by the NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, from their Web site at https://www.esrl.noaa
.gov/psd/
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weight, and to capture the idea that season categories locate
events within the calendar year only roughly.

Because climate data are noisy we smoothed the distribu-
tions p(~s|d) using a linear kernel with a width of 9 days. This
smoothing process meant that the distribution p(~s|d) for a
given day (e.g. Jan 15) was defined as a weighted average
of distributions for Jan 11 through 19. As a final step we dis-
cretized these distributions over a regular grid for use in our
information-theoretic analyses.

Analysis of system sizes
Fig 3a shows the distribution of system sizes across our data
set. For languages with hierarchical systems, the system size
is defined as the number of seasons at the finest level of reso-
lution. The system of size zero corresponds to the Grand Val-
ley Dani, who constitute “a significant exception to [the gen-
eral statement] that all cultures recognize seasons” (Heider, p
212). The two systems of size 13 represent Tiwi (described
earlier) and Ngan’gi, and both feature ecological seasons de-
fined with respect to the local plants and animals. Other lan-
guages in the data set almost certainly have ecological sea-
sons that were not documented in our sources, and our Fig 3
therefore likely exaggerates the difference between Tiwi and
Ngan’gi and the other languages in our data set.

As suggested earlier the model predicts a preference for
systems with even sizes, and Fig 3a reveals that 2, 4 and
6 are the most common sizes. Leaving aside the three sys-
tems with sizes of zero or 13, 38 out of 50 systems or 76%
have even sizes. We evaluated the significance of this re-
sult using a Bayesian mixed effects binomial model based
on the rstanarm package and its default priors (Goodrich,
Gabry, Ali, & Brilleman, 2018). The binary outcome vari-
able indicated the parity (even or odd) of a system, and we
included both a fixed intercept and a random intercept for
language family to acknowledge genetic relatedness between
languages.3 The median of the fixed intercept indicates a
probability of 0.77 that a random system would have an even
size, and the 95% posterior credible interval ([0.59,0.94]) ex-
cludes the probability (0.5) that makes even and odd systems
are equally likely. Our data therefore support the conclusion
that even systems are more common than odd systems.

Orlove (2003) previously noted that systems with odd sizes
are rare, and in his data 23 out of 28 systems, or 82% have an
even size. He did not offer an explanation for this asymmetry,
but we have argued that it emerges from a pressure for season

3The model call was stan glmer(parity ∼ 1 +
(1|language family), family=’binomial’). Language
families (e.g. Pama-Nyungan) were extracted from Glottolog.
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systems to support informative communication about factors
that vary smoothly over time.

Analysis of season boundaries
Our remaining analyses focus on the 25 languages for which
we have season boundaries. Four of these languages are
shown in Fig 2 along with optimal systems according to our
model.

Kaytetye has two seasons — Watangka (hot season) and
Yurluurp (dry season) — and the boundaries between these
categories roughly match the model predictions. Maung
has three seasons: Walmatpamalat (heavy rain), Wumulukuk
(cold weather) and Kinyjapurr (hot and humid). The model
predicts three categories of roughly the right duration—in
particular, the category that includes the steep increase in pre-
cipitation is shorter than the other two. The predicted season
boundaries, however, are all shifted later in the year relative to
the Maung system. Fig 2 also suggests that two of the Maung
season boundaries lie close to simultaneous turning points in
both temperature and rainfall. The Maung system therefore
challenges the qualitative prediction that turning points in the
climate data should lie within categories rather than at cate-
gory boundaries.

Nuer has two major seasons: tot (mid-March to mid-
September) and mei (mid-September to mid-March), each
of which is divided into two minor seasons. The Nuer sys-
tem provides additional evidence that season boundaries can
be aligned with turning points in the climate data. Evans-
Pritchard (1939, p 191) notes that “the mei season com-
mences at the decline of the rains—not at their cessation.” At
the beginning of mei the Nuer start to anticipate the life they
will lead when the dry weather arrives, and Evans-Pritchard
(p 191) writes that their classification of seasons “aptly sum-
marizes their way of looking at the movement of time, direc-
tion of attention in marginal months being as significant as
actual climatic conditions.”

Kunwinjku has six terms: Kudjewk (monsoon season),
Bangkerreng (knock’em down storms), Yekke (start of dry
time), Wurrkeng (cool weather time), Kurrung (hot, dry
time), and Kunumuleng (humidity builds). The boundaries
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Figure 5: Attested systems (black dots) compared to rotations (grey dots) and size-matched optimal systems (black lines).

in the model system roughly match the linguistic data, and
the model correctly predicts that there should be two short
adjacent seasons during the part of the year when rainfall is
declining sharply. Much more could be said about Kunwinjku
and about each specific language in Fig 2, but we now turn to
analyses that range more broadly across the entire data set.

A first general question is how closely season categories
are aligned with variation in the two environmental variables
(temperature and precipitation) included in our model. If a
given system is closely aligned with the environmental vari-
ables, then rotating the system through the calendar year (i.e.
incrementing all season boundaries by a constant while al-
lowing for wrap around) should disrupt this alignment. Fig 4a
plots communication cost against rotation size, and suggests
that attested systems (i.e. systems rotated by zero days) tend
to achieve lower communication cost than rotations of these
systems. As shown in Fig 4, 0 day rotations score better than
99% of the 365 possible rotations. Fig 4b shows separate ro-
tation curves for systems of size 2, 3, 4 and 6. The 2 term
systems make an especially large contribution to the average
result in Fig 4a, but a clear trough at zero days is visible also
for the systems of size 6.

Fig 5 summarizes rotation results for individual languages.
The three languages with hierarchies are included twice in
the plot, once for each level of the hierarchy. Some systems
(black dots) score better than most of their rotations (gray
bar), including Kaytetye and Kunwinjku from Fig 2), but oth-
ers (in particular Narrinyeri) do not. On average, each system
scores better than 64% of its rotations.

Fig 5 also compares each system to the optimal system ac-
cording to our model. Again, the pattern of results is mixed.
Some systems (including Kaytetye and Kunwinjku) achieve
scores close to the optimum, but others (including Laragia) do

not. A likely explanation is that our model was given only two
environmental variables even though language groups around
the world use many markers of seasonal transitions other than
changes in precipitation and temperature. For example, Nar-
rinyeri seasons are distinguished by factors including “the
growth of particular plants” and the “appearance of various
creatures” (Berndt et al, 1993, p 76), and the lack of these
factors in our analyses may explain why Narrinyeri achieves
a sub-optimal score in Fig 5.

Conclusion
We developed a computational model that assumes that sys-
tems of season terms are near-optimal at conveying informa-
tion about the local environment. The model helps to explain
why systems with odd numbers of terms are relatively rare,
and makes a number of successful predictions about the loca-
tions of season boundaries.

Our results do not provide strong support for claims about
optimality but nevertheless demonstrate the value of the
efficient-communication approach to naming and categoriza-
tion. Most interesting to us are the qualitative issues exposed
by the model. We have touched on some of them already,
including the even-odd asymmetry, and the relationship be-
tween season boundaries and turning points in environmen-
tal variables. Many others arise: for example, our approach
could be used to test the hypothesis that systems with large
numbers of terms are especially likely to be found in regions
with variable climates, and the hypothesis that boundaries
are more likely to be aligned with sharp transitions (e.g. the
first major rainfall of the year) than gradual changes in vari-
ables such as temperature. Although our current model is
extremely simple, we have found it to be a useful conceptual
tool for thinking about season naming across languages.
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