
UC Irvine
ICS Technical Reports

Title
Analyzing decision making in software design

Permalink
https://escholarship.org/uc/item/6z0667tw

Author
Pidgeon, Christopher W.

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6z0667tw
https://escholarship.org
http://www.cdlib.org/

Jlnalyzing Decision Making
in Software Design

Christopher W.]:?idgeon.
Department of Information and Computer Science

University of California, Irvine, USA
cpidgeon@luna.hac.com

pidgeon@ics.uci.edu

Technical Report 90-16
February 1990

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

/

0f p

ytJ-!<:.;

UNIVERSITY OF CALIFORNIA
IRVINE

Analyzing Decision Making in Software Design

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Christopher W. Pidgeon

Dissertation Committee:
Professor Peter Freeman, Chair
Professor Richard Selby
Professor Allen Stubberud

1990

@1990
CHRISTOPHER W. PIDGEON

All Rights Reserved

The dissertation of Christopher W. Pidgeon is approved,
and is acceptable in quality and form for

publication on microfilm:

Cornrruttee Chau

University of California, Irvine

1990

11

Dedication

This dissertation is dedicated to my family.

lll

Contents

List of Figures

List of Tables .

Acknowledgements

Curriculum Vitae

Abstract .

Chapter 1 The Problem and the Approach
1.1 Background
1.2 Research Goal ...
1.3 Research Problem .
1.4 Approach
1.5 Applying the Design Decision Model
1.6 Contribution

Chapter 2 Design and Rationality
2.1 What is Design?
2.2 To Design is To Decide
2.3 Controlling the Design Process .
2.4 The Nature of Rationality
2.5 Conclusion

Chapter 3 Decision Analysis
3.1 Multicriteria Decision Problems
3.2 Formal Multicriteria Problems .
3.3 A Taxonomy of Decision Methods
3.4 A Time Backdrop for Decision Modeling
3.5 Conclusion

Chapter 4 A Formal Model of Design Decision Making
4.1 A State-Transition View of Design
4.2 Representing Decision Control Knowledge

IV

VI

. .
vu

...
Vlll

lX

x

1
1
2
4
7

12
13

16
18
20
21
22
26

28
29
32
36
42
43

44
44
51

4.3 Background and Guidelines for Components of the SvcK
4.4 The Rationality of Routine Design Decisions
4.5 The Temporal Backdrop for Rationality .
4.6 Conclusion

Chapter 5 Empirical Explorations
5.1 The Hospital Bed Monitoring Example
5.2 A Simple SvcK for Structured Design .
5.3 Classification of Stevens' Decisions ..
5.4 Rationality Assessment for Multiple Alternatives .
5.5 Summary of Results for Conceptual Data Modeling
5.6 Conclusion

Chapter 6 Conclusions .
6.1 Unique Features of DDM .
6.2 Other Models of Design Decision
6.3 Future Research .
6.4 Postscriptum

v

54
56
58
60

61
61
62
64
65
69
75

77
77
79
81
84

List of Figures

1.1 Design decision viewed as a state transition. 6
1.2 Mapping decision analysis techniques onto a scale of rationality. 9
1.3 An abstract architecture for design decision modeling. . 10

4.1
4.2
4.3

.\ thre 1 specialization of design.
Repres ig Decision Control Knc
A procedure for determining the ra

45
·dge. . . 52
1ality of routine design decisions. 59

5.1 A decision control structure for Structured Design.
5.2 A decision control structure for Conceptual Data Modeling ..

63
70

Vl

List of Tables

3.1 A taxonomy of decision analysis methods. 37

5.1 The rationality for each decision in Stevens protocol. 66
5.2 The Hospital Bed Monitor initial observation matrix. 66
5.3 The indeperdent rankings of alternatives by SAM, LAM, ELECTRE,

and TOPSIS. 68
5.4 The aggregation of the SAM, LAM, ELECTRE, and TOPSIS orderings. 69
5.5 Example #1 observation matrix. . 72
5.6 Example #2 observation matr-ix. 75

Vll

Curriculum Vitae

1950 Born in Baltimore, Maryland

1976 B.S. Business Administration, California State Polytechnic University,
Pomona.

1980 M.B.A., California State Polytechnic University, Pomona.

1983 M.S. in Information and Computer Science, University of California,
Irvine

1990 Ph.D. in Information and Computer Science, University of California,
Irvine
Dissertation: Analyzing Decision Making in Software Design

Publications

Structured Design Methods for Computer Information Systems, and Instructor's
Guide with 1. C. Teague. In preparation.

Structured Analysis Methods for Computer Information Systems, and
Instructor's Guide with L. C. Teague. Science Research Associates, Inc.
Chicago, 1985, 408pp.

"Development Concerns for a Software Design Quality Expert System," with P.
Freeman. In proceedings of 22nd A CM/IEEE Design Automation Conference,
June 1985.

"Maintenance and Porting of Software by Design Recovery," with G. Arango,
I. Baxter, and P. Freeman. In proceedings of Conference on Software
Maintenance-1985, November 1985.

"TMM: Software Maintenance by Transformation," with G. Arango, I. Baxter,
and P. Freeman. In IEEE Software, Vol. 3, No.3, May 1986.

IX

Abstract of the Dissertation

Analyzing Decision Making in Software Design
by

Christopher W. Pidgeon
Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1990
Professor Peter Freeman, Chair

A model is given for the analysis of rationality in design decision making. We
define a formal means for answering the query, To what extent has a designer, on a
particular occasion, using an explicit definition of 'good', decided rationally'?

A decision rationality classification scheme is proposed. This scheme incorpo­
rates non-compensatory decision analysis techniques (dominance and conjunctive cut­
off) as well as compensatory techniques (simple and hierarchical additive weighting,
linear assignment, concordance, and displaced ideal). A formal definition of design de­
cision is derived by extending the Lehman, Stenning, Turski transformational model
of the software design process. Their view of artifact specification mappings between
linguistic systems is extended to include the concomitant effect of the mapping on
resource expenditure.

A formal specification for decision control knowledge is defined. This repre­
sentation is the union of that knowledge required to support the various decision
analysis techniques. Presumed to operationalize a designer's goals, the knowledge
representation scheme includes five levels:

1. Each objective expresses some relevant design concern for an artifact and/or
resource characteristic.

2. Each criterion expresses some relevant decomposition of a superior objective or
criterion.

3. Each attribute expresses the bottom-most decomposition for a superior criterion.
Each attribute may have a weight indicating its relative contribution to its
superior criterion.

x

4. For each attribute, a value Junction expresses the designer's preference ordering
over observed performance for an attribute.

5. For each attribute, an observation channel describes an observer independent
metric over some specification (either resource or artifact) rendered in some
linguistic system and a procedure for application of that metric.

Our model is applied to problems in Structured Design and conceptual data
modeling. We argue that a comprehensive design history must include not only the
transformations applied but also the rationale used in deciding their application. This
rationale must include decision control knowledge governing both artifact (product)
and resource (process) facets of design decision making. The principal contribution
of this work is that the opacity of the decision intensive aspects of design are re­
duced thereby taking a necessary step for increasing the efficiency and effectiveness
of software development.

Xl

Chapter 1

The Problem and the Approach

1.1 Background

This dissertation advances a formal model for the assessment of rationality
in routine software design decision-making. It represents an effort to formalize an
operational technique called design rationalization [16, 54].

The objective of design rationalization (DR) is to make software designs more
reviewable and thereby, to have a better chance of meeting the expectations of devel­
opers, maintainers, and users. The central question addressed by DR is,

To what degree has a designer, on a particular occasion, using an explicit
definition of 'good', decided rationally?

Design rationalization stems from the plausible, but unproven hypothesis that
there is a direct correspondence between the quality of a design and the degree of ratio­
nality in the process leading to said design. DR holds that this decision-intensive pro­
cess should be based on logical reasoning, supported by facts, and explicitly recorded.
DR distinguishes between two kinds of designing-discovery and routine. The former
is distinguished by creativity, the latter by rational choice. As presented in [16], DR
focuses on routine design situations.

The cornerstone of DR is the explicit recording of information used in the course
of design decision making. DR identifies two types of rationalization. One type, syn­
thesis rationalization, is the pre- or co-structuring of information that is collected
and recorded before or during the decision process. The other type, called analysis
rationalization, is the post-structuring of information produced after committing to a
design decision. Parnas ascribes the provocative rubric "faking" to indicate the ide­
alization of this post-structuring [54]. 0th, ~ consider keeping an incomplete design
history [69], still others consider informal ra.cionales for "significant" decisions [76].

1

2

Though acknowledged as a worthwhile thing to do, DR has seen only limited
application. This is probably due to its largely intuitive basis and a lack of empirical
justification for the hypothesis that more rational decision making leads to better
designing and therefore, to better designs. Each of these in turn stem from the
absence of a model for the central activity in designing, decision making. Lack of
support for capturing and recording decisions is also a major impediment.

The discipline of decision analysis is concerned with the systematic transforma­
tion of opaque decision problems into ones which are transparent. This is achieved
through the application of formal analytical techniques. An opaque decision prob­
lem is difficult to understand, solve, or explain. It is not simple, clear, or lucid. In
contrast, a transparent decision problem is readily understood, clear, and obvious.
Other engineering disciplines have successfully applied decision theoretic techniques
in clarifying decision problems [20, 21, 75].

The research reported here represents a novel application of the decision the­
oretic paradigm to the software process in general and to design decision-making
specifically.

1.2 Research Goal

A designer's goal-seeking characteristics in software development can be char­
acterized as follows. Being unable to satisfactorily describe his goals in terms of
one objective, a designer customarily maintains multiple objectives. Each is relevant
to some aspect of the design artifact or design process. Two general categories of
objectives can be identified: those concerned with design artifact effectiveness and
those concerned with design process efficiency. The former focus on properties of
specifications while the latter focus on the deployment of resources during design.

Due to their multiplicity, the objectives may frequently be in conflict with each
other. When they are, a multiobjective problem exists. A particularly important
aspect of the designers multiobjective decision problem is temporal. Thus, at best,
the designer can only "optimize" as of that time when the decision is made. This will
frequently be considered non-optimal when viewed in subsequent times e.g., due to
the effects of learning.

Typically, design decision problems are so complex that any attempt to dis­
cover or impose some definitive set of optimal actions is useless. Instead, designers
express their objectives such that outcomes may be deemed good enough i.e., they
subscribe to Simon's principle of bounded rationality [72]. The concept of bounded
rationality (which might be more appropriately named, bounded optimality) should

3

not be confused with the concept of satisficing. Satisficing is sometimes incorrectly
characterized as the pursuit of prespecified goals (or aspiration levels) with respect
given criteria. More accurately, satisficing is the consequence of "an incomplete or
unsuccessful attempt at optimization." Zeleny further asserts [92]:

The idealized concept of rationality assumes maximization of a fixed or rela­
tively stable objective, a known set of relevant alternatives and their outcomes,
and a skill in computation that allows one to reach the highest attainable point
with respect to the objective.

Zeleny cautions that such an ideal rationality is unattainable due to limits on
human information processing, the dynamic nature of objectives, imperfect informa­
tion, and constraints on resources available for search. He concludes:

The point is that neither maximization nor optimization is incompatible
with bounded rationality. Given all the constraints and limitations indicated
above, one can still pursue a given maximizing objective subject to constraints.
Unconstrained, unbounded optimization is rarely postulated in any economic
theory; it is a mathematical artifact. Bounded optimality, i.e., optimization un­
der all the constraints and limitations of the human mind, would be a suitable
term for human decision making.

Granting all these difficulties, we conclude that designers do attempt to reason
rationally in solving their decision problems. To help, they rely on a great store of
past human experience codified for them in the form of methods, techniques, and
practices. These principles, maxims, and heuristics are such that adhering to them
is no guarantee of success, but they do afford guidance.

The goal of this research is to combine these various normative, descriptive,
and practical perspectives into a single logical framework for the analysis of software
design decision-making.

Concisely, the three viewpoints which influence our work are:

• Practical design decisions are frequently ineffective without: 1) normative guid­
ance e.g., in the form of design method and 2) descriptively accurate represen­
tations of information about the design artifact and process.

• Normative guidance is vacuous without: 1) practical problems to solve (ones
with which real-world practitioners can relate) and 2) descriptive devices to
gather facts and predict consequences i.e., design artifact and process specifica­
tions with concomitant reasoning formalisms.

4

~ Descriptive results of design research findings are uninteresting without: 1)
significant application to software development and 2) normative incentive such
as the improvement of designs and designing.

Thus when addressing the central question of DR, we strive for that delicate bal­
ance and synergism which combines the strengths of all three points of view while
attempting to avoid falling prey to the excesses of any one.

1.3 Research Problem

Informally, the problem addressed in this research is the reformulation of the
DR query such that it may not only be asked in some well-defined manner, but also
answered with some measure of rigor. This effort entails formalizing several related
components of the design decision milieu. These include:

• distinguishing routine from non-routine design decision;

• defining the predicate "rational";

• determining the "occasion" for designing;

• establishing a knowledge representation for a designer's explication of "good";
and

• allowing for the definition of specifications for design artifact and design process
resources as well as transformations affecting those specifications;

We define design from two distinct perspectives: artifact and process. By de­
sign artifact we mean the collection of sentences constituting a specification for the
construction of a software-based system. Design process connotes the purposeful,
human-directed activity of asserting and retracting sentences constituting a specifica­
tion. We consider the elicitation of a specification setting forth the requirements for a
system as separate from design. Similarly, we consider the construction of a software
artifact from its design specification as separate from design. We recognize that this
bounding of design is a somewhat limiting but useful abstraction from reality.

The meaning and acceptability of the sentences forming the object of design, a
specification, are governed by a linguistic system [45, 81]. A linguistic system includes:
1) a grammar giving the rules for well-formed sentences; 2) a system oflogic specifying
logical axioms and rules of inference; and 3) a collection of extra-logical symbols and
axioms related to some underlying problem domain.

Using the terminology of [45, 81] (hereafter, the LST model), a routine design
decision consists of an agent who either transforms sentences constituting an artifact's

5

current base specification or refines those sentences into sentences in some target
linguistic system. The general notion of transformation or refinement is similar to the
mathematical notion of a mapping. The distinguishing feature (hence, the separate
terms) being whether or not the source and target specifications are expressed in the
same linguistic system.

We elected to continue use of the term "routine" from DR because it connotes
the deterministic and mechanizable. However, these are not the only kinds of decision
confronting the designer. These other kinds of decision are deemed non-routine owing
to their meta-relationship with routine and owing to their involving some degree of
creativity. They include: selecting or synthesizing a current base or target linguistic
system; choosing whether to transform the current base specification or to refine to
the target specification; electing to modify the current base or target linguistic system;
choosing to synthesize a new lin1:,uistic system.

The LST model makes no mention of resources. Practical, real-world designing
is resource constrained. It seems an unrealistic omission to exclude from our model
representation of the expenditure of some precious commodity which is a direct con­
sequence of routine decision.

Regardless of the type of decision, the effect of decision may be characterized as
a change of state (as in Figure 1.1. Thus, the state-space paradigm so prevalent in AI
research may be brought to bear. A decision, then, is an instance of an abstract entity
completely defining the transition between two design states. By decision process we
mean the activity of assessing a design state coupled with the companion activity of
asserting and retracting sentences which completely define the transition to a new
design state. Each transition consists of:

• specifications for both the artifact and resource states (i.e., the bases for obser­
vation)

• the library mappings (i.e., the sources for alternatives), and

• the decision control knowledge used in determining a particular choice of map­
pmg.

The persistent record of each design state transition constitutes a design history.

In keeping with the distinction between discovery and routine kinds of design
and in the interests of tractability, we confine our model to the choice of mapping
whose consequences 1) directly affect specifications and 2) cause some resource(s) to
be expended. As mentioned above, we call such decisions, routine. While non-routine
decision types are not analyzed in our model, their effects on the design state must be
represented as they may engender change in the designer's decision control knowledge.

6

Current Transition
Next

State State

Nonroutine
Decision

Linguistic Generic Linguistic

System Design Step System

Decision Modify Decision

Control Decision Control

Knowledge Control Knowledge
Represent a ti on Knowledge Representation

Transform
Modify Transform

Library
Transform Library

Library

Modify
Resource

Resource
Representation Resource

Representation Representation

Apply

Artifact Transform Artifact

Representation Routine Representation

Decision

Figure 1.1: Design decision viewed as a state transition.

7

Decision control knowledge is a time varying structure expressing the objective
and subjective controls on a designer's decision-making. It explicitly represents what
the designer holds as "good". If we are to critique a designer's choices made with
respect to this knowledge, it too must be represented as part of the design state. The
necessity for a time backdrop stems from observations that: 1) a designer's notion
of good may change and 2) decisions are serialized. Our assessment of rationality is
predicated on the decision control knowledge used at the time the decision was taken.

A design rationale is the explicit representation of a designer's time-varying de­
cision control structure coupled with the sequence of decisions (and their concomitant
states) over which the decision control structure presumably had some influence.

Using the aforementioned terms, our research problem may now be stated.

Define a model for the determination of rationality for routine design decisions
predicated on the explicit representation of decision control knowledge, routine
decision, and artifact and resource specifications.

We now outline our approach to the solution of this problem.

1.4 Approach

The essence of our specification for the predicate rational lies in two fundamental
observations. Firstly, the range of rationality is not binary. Like [12] we presume both
a lower and upper bound on rationality.

• An agent is said to be more rational when he undertakes all and only those acts
that are supported by his particular decision control knowledge.

• An agent is said to be less rational when he undertakes some, but not necessarily
all, of those acts that are supported by his particular decision control knowledge
structure.

Secondly, though decision theorists have classified their numerous decision analysis
techniques, no one has proposed the application of their classifications in a definition
of rationality.

Our design decision model defines an ordinal scale of rationality. Each rational­
ity level stems from an ordering induced by a) the classification of decision analysis
techniques postulated by decision theorists and b)the observation that decision anal­
ysis techniques can be applied in series.

8

In Figure 1.2, noncompensatory techniques are considered weaker analyses of
rationality due to the fact that tradeoffs between between decision attributes are
not considered. Whereas, in compensatory techniques, tradeoffs between decision
attributes are considered.

In the noncompensatory category, no distinction can be made between the dom­
inance technique and conjunctive cutoff technique in so far as rationality assessment
is concerned. However, the serial application of dominance and conjunctive cutoff is
considered stronger than mere application of one or the other.

In the compensatory level, several different techniques (with at least one tech­
nique from each of scoring, compromising, and concordance category) are applied
independently and in parallel. This is justified by the observation that each considers
a slightly different perspective on the application of decision control knowledge in
the ranking of alternatives: scoring uses multiattribute value functions; compromis­
ing techniques indicate distance from an ideal solution; and concordance techniques
rank alternatives on their being in accord with preferences. The independent, paral­
lel application of these techniques is considered weaker than the aggregation of their
individual rankings into an overall consensus ranking.

Each of the aforementioned decision analysis techniques presumes more than
one alternative course of action is being considered. We identify another level of
rationality which is weaker than the non-compensatory assessment when there is
only one alternative course of action. If that course of action results in a state which
is not dominated by the present state, we call the decision trivially rational.

Before any classification of rationality can be made, a designer's decision control
knowledge must be represented. That is, we must formally represent the designer's
notion of "good". Figure 1.3 gives the abstract architecture for our design decision
model. The particular structure given for representing decision control knowledge is
strongly influenced-by the requirements imposed by the decision analysis techniques
supporting our scale of rationality.

1st in all
techniques

1st or tied
in POSET of

combined
compensatory

techniques

weights,
preferences,

1st in at least
1 compensatory

technique

range(obsch) &
ceiling/floor,
no trade-offs,

more than 2 Alts

range(obsch) or
ceiling/floor,
no trade-offs,

more than 2 Alts

2 Alts

?

Scoring/
Compromise/
Concordance

Conjunctive
Cutoff

Figure 1.2: Mapping decision analysis te' hniques onto a scale of rationality.

9

Design Goal
Open World

I
. ·t·

I Closed World
I

r-----------+----~----------------------~
I I I

1 1 Decision Control Structure
I
I
I
I
I
I

Objective

Criterion

Attribute

Value
Function

Observation
Channel

Measurement Basis:
Preference

Measurement Basis:
Physical Properties

I
I
I
I

L--------- -----------------------------~

Artifact
Representation

.J ••••.
I
I

Artifact

Resource
Representation

I
. I . .

I
I

Resource

Figure 1.3: An abstract architecture for design decision modeling.

10

11

Proceeding from top to bottom, the structure consists of:

1. Each objective expresses some relevant design concern for either an artifact or
resource characteristic. For example Structured Design exhorts us to minimize
artifact complexity.

2. Each criterion expresses some decomposition of a superior objective or crite­
rion. For example the Structured Design artifact complexity objective can be
decomposed into module complexity and interface complexity criteria. The lat­
ter can be further decomposed into a criterion for complexity due to passed
parameters and a criterion for complexity due to global data references.

3. Each attribute expresses the bottom-most decomposition for a superior crite­
rion. For example, attributes of module complexity might include the McCabe's
cyclomatic number, Halstead's volume metric, the total number of modules, and
the total number of module invocations.

4. For each attribute, a value function expresses the designer's preference ordering
over observed performance for the attribute. Thus the preference function for
each attribute of module complexity is probably some inverse monotonically
increasing function of the attribute's observation channel values. For example,
as the cyclomatic number increases, preference decreases.

5. The observation channel for an attribute describes a metric over an artifact
and/or resource and a procedure describing the metric's application. For ex­
ample, a module's cyclomatic number is the number of decision nodes in the
module plus one.

A crucial interface in this structure is that between the value function and ob­
servation channel. The value function serves an important purpose. It maps objective
physical performance (as measured by the observation channel and therefore, with a
potentially unique unit of measure) onto a scale of subjective preference (with a uni­
form unit of measure). Incommensurability is not an issue. In the non-compensatory
techniques, direct physical performance comparison of alternatives are confined to an
attribute-wise basis. For the compensatory techniques, trade-offs are only considered
on the unitless (or equivalently, uniform unit) scale of preference.

Since each attribute or criterion may not contribute equally to its superior,
weights may be used to indicate the relative salience of each attribute to criterion,
each criterion to superior criterion, or criterion to objective.

In sum then, our design decision model incorporates the generally accepted goal
for designing i.e., to synthesize a plan for construction of some artifact which must
meet some specified effectiveness measures; at the same time, the effort must not waste
precious design resources. This open-world goal is "operationalized" into a closed­
world specification of decision control knowledge consisting of objectives, criteria,

12

attributes, value functions and observation channels. It is intended to represent the
designer's notion of "good." With such an explicit specification we can critique the
rationality of the choices and inevitable trade-offs made during the course of design.
This is accomplished through the use of the ordinal scale of rationality as applied to
routine design decisions.

1.5 Applying the Design Decision Model

We applied the model to one problem from Structure Design [77] and one from
conceptual data modeling [6].

The application to Structured Design entailed the construction of a decision
control structure approximating that of the original author. We defined a simple
decision control structure consisting of a resource efficiency objective and an artifact
effectiveness objective. We adopted the cost of performing a transformation as a
surrogate for the amount of resource expended in transiting from one state to the
next. This expenditure was measured in terms of the number of sentences added,
deleted, and updated in the design specification. Clearly this is a meager substitute for
resource measures which, in practice, would include personnel time and cost factors.
Unfortunately such factors are generally unavailable.

The artifact effectiveness objective (Design Complexity) was decomposed into
two criteria. One criterion covered intra-module complexity while the other covered
inter-module complexity. This is consistent with the perspective of [89]. Module com­
plexity was described by four attributes: the sum of the cyclomatic complexity [40]
for each module, the sum of the volume metric [26] for each module, the total number
of module invocations, and the number of modules. Each of these has an associated
observation channel which was defined in the obvious manner.

The interface complexity criterion had two attributes-one in which inter­
module communication is effected via explicitly passed parameters and the other
wherein some globally shared data module is used. Substantiation for the selection of
these measures of Structured Design can be found in the empirical findings of [80, 36].

In Stevens original protocol involving 13 transformations, justification is given
for only one transformation at a time. That is, we are never given any indication of
alternatives considered. Thus, at best, his decisions should be found to be trivially
rational. In fact of the 13 decisions analyzed, only 5 were found to be trivially
rational while the other 8 were deemed not rational since each had an attendant cost
but yielded no improvement in the artifact complexity objective.

I

ii
:1

:1
I,
:1

ii
!I
ii

ii
!I
I
I

ii
I
I

15

give a definition of routine design decision. This is predicated on the assumption that
some decisions (deemed non-routine) beget other decisions while others (deemed rou­
tine) only effect change in the specification of the artifact. We introduce the concept
of a specification of decision control knowledge to represent that which a designer
holds as "good" and uses in routine designing. It is intended to represent an oper­
ationalization of the designer's goal. It is defined in such a way that we can bring
to bear the decision analysis techniques previously identified. We define each of the
ordinals in our decomposition of rationality. We give an algorithm for determining
where a particular decision falls on the ordinal scale of rationality.

Chapter 5 presents the application of our model to a familiar problem from
Structured Design and a problem in conceptual database design.

Chapter 6 presents our conclusions by reviewing our model, contrasting it with
other models of designing, and identifying future research directions.

Chapter 2

Design and Rationality

Engineering is the uniquely human activity of marshalling knowledge and arti­
facts from the "given-world" of the scientist along with knowledge and artifacts from
the "made-world" of the engineer, combining these to make something that did not
a priori exist, while simultaneously, and above all, obviating failure in the effort [55].

Software engineering was defined at the first major conference dedicated to the
subject [50]:

The establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.

This definition has been operationalized into the generally accepted goal for
software engineering, 'To produce the best possible software at the lowest possible
cost.' Few would deny that quality and productivity are related. How they are related
is another matter. Some researchers argue that these are conflicting objectives [41].
Others hold that quality software necessarily costs less [35] [44].

The debate is fueled by the proliferation of practices, tools, and techniques
(collectively called software technologies) each of which claims to solve some part of
the software crisis. Pressman observes [60]:

There is no single best approach to a solution for the software crisis.
However, by combining comprehensive methods for all phases in software de­
velopment: better tools for automating these methods; more powerful building
blocks for software implementation; better techniques for software quality as­
surance; and an overriding philosophy for coordination, control, and manage­
ment, we can achieve a discipline for software development-a discipline called
software engineering.

A skeptical, but not pessimistic, Brooks reiterates Pressman's eschewing of a
single approach-technological or managerial-which of its own accord affords "even

16

17

one order-of-magnitude improvement in productivity, in reliability, in simp] 1ty" [9].
How then is software engineering to progress toward its goal? Brooks comments
further,

Although we see no startling breakthroughs-and indeed, I believe such
to be inconsistent with the nature of software-many encouraging innovations
are underway. A disciplined, consistent effort to develop, propagate, and ex­
ploit these innovations should indeed yield an order-of-magnitude improvement.
There is no royal road, but there is a road.

If one accepts the premises: one, that the essential injunction of engineering
is the elimination of error in designing and two, that the function of criticism is
the elimination of error, then several eminent philosophers have set forth what must
surely be the central concern for software engineering. The self-described pancritical
rationalist, Bartley [5] asks:

How can our lives and institutions be arranged so as to expose our positions,
actions, opinions, beliefs, aims, conjectures, decisions, standards, frameworks,
ways of life, policies, traditional practices, etc.-whether justifiable or not-to
optimum examination, in order to counteract and eliminate as much error as
possible?

Popper [58] continues,

Nothing is exempt from criticism-not even this principle of the critical method
itself.

Post concludes [59]:

The idea is not just that there is nothing we may take on authority, or that
there is nothing about which we cannot be mistaken. In addition the rational
man should accept nothing which cannot be overthrown by criticism. In some
sense all his beliefs must be criticizable in principle.

This chapter, indeed this dissertation, is motivated by the pursuit of pancritical ra­
tionality for software engineering.

Freeman provides a cybernetic model of software engineering in [18]. This model
is intended to serve as the basis for systematic examination of sofr vare development

----- -----

18

systems. In this effort, Freeman clearly fits Bartley's definition of a pan.critical ra­
tionalist. Much of Freeman's discourse is devoted to how an organization should
comprehensively examine its system development systems. Here we continue with a
detailed elaboration of the design-centered issues raised by Freeman. We begin by
surveying diverse viewpoints on design. We proceed to the identification of decision
and its control as central acts in designing. This leads quite naturally into a discussion
of the motivation for analyzing design decision making.

2.1 What is Design?

We are interested in discovering the nature of software design decision-making,
especially that which distinguishes "good" designing from "bad." However, as Pye
admonishes [63]: "It is not of the slightest use for us to ask 'what is good design?'
until we can answer the question 'what is design?' "

Consulting the dictionary [84] we immediately discover, from the etymology of
the word, the dichotomy of design. It stems from the Latin, "designare} to mark out,
to define; de, out, from, and signare} to mark, from signum, a mark, a sign." We are
at once struck by the dual nature of design: on the one hand a thing, product, on the
other an act, process.

Freeman [19] presents some alternative views of the general nature of design
with a collection of "one-liners" taken from [33]. He observes that the descriptions
are "quite varied, but they do share the common theme of addressing the process of
design, not the results." Save for one phrase in the definition attributed to Asimow,
each definition provides only a unidimensional view of design. Perhaps this is due
to the closeness of the disciplines of the various authors. These disciplines are dis­
tinguished by their technological bent (as opposed to social, political, environmental,
etc). Yet, Asimow does introduce human needs and culture into the context of design.
The terms introduced in the various definitjons, scientific principles} technical infor­
mation and imagination together with economy and efficiency coupled with human
needs and culture} begin to polarize the various concerns for our picture of design. We
see the emergence of a structure for the elements of influence that affect and effect
both the products and processes of design i.e., the beginnings of a systems view of
design.

MayQ.ll [39] comments on this great diversity in design suggesting that it "con­
ceives and defines all (emphasis added) the means we employ to satisfy our many and
increasingly intricate needs." With this statement one begins to sense the ubiquitous
nature of design. Mayall reinforces this notion stating:

21

globa; J.ct, e many, less important "mechanical" decisions, which have local
1mpac .1ijkstr .. naintained for some time that these tedious decisions can and
should De mecl1 .Jed [15]. Dijkstra exhorts, "Mechanizing the tedium, however,
increases the density of the task that remains!" Others also hold that decision is a
central activity in designing [7, 20, 47, 4, 69, 73].

A designer may be thought to have a basic decision making cycle analogous to
that of the ins'ruction execution cycle of a von Neumann computer - fetch, decode,
execute. The designer must identify which is the next decision to address (fetch), eval­
uate that decision's alternatives (decode) and their ramifications, and finally commit
(execute) to selection of one of the alternatives. Mostow offers a more expansive view
of this process. In his call for a comprehensive model of design decision-making [4 7],
Mostow argues for explicit representation of the processes of:

1. Framing a decision to be made.

2. Generating alternatives.

3. Establishing criteria for comparing them.

4. Evaluating the alternatives according to the established criteria.

5. Choosing an acceptable alternative.

6. Retracting the decision if it proves unsatisfactory.

Formalizing these decision-related processes is seen as a crucial step in gaining control
of software desir···

2.3 Controlling the Design Process

Dijkstra [15] motivates the need for control of the design process stating:

... the puc2ntialities of automatic programming equipment will only bear the
fruits we look for, provided that we take the challenge of the programming task
seriously and provided that we realize what we are called to design will get
so sophisticated, that elegance is no longer a luxury, but a matter of life and
death. . . . It is in this light that we must appreciate .. . all efforts to discover
the intellectual disciplines for controlled design.

Acceptance Speech, AFIPS Harry Goode Memorial Award, 1974

Freeman [16] offers one solution - the introduction of rationality into the design
process - stating:

The basis for design rationalization is the belief that designs can be improved
by making them more rational. That is, design decisions should be based on
logical reasoning, be supported by facts, and be recorded.

22

We would interject here that not only should the factual bases for decisions be
recorded but also the valuational bases need be included as well. Freeman continues:

The cornerstone of this technique is the explicit recording of design information,
in the form of design problems, alternative solutions, and the evaluations or
arguments leading to the choice of a particular alternative.

If we accept that the designed artifact (product) is important, then it follows
that we should also think the process by which the artifact came about is important
also, but for different reasons. For it is the case that if we find the product lacking
(Brooks might say, a flaw· in the conceptual integrity of the product [8]) for any of
an number of reasons, we will probably need to review the process by which the flaw
came to be. We can paraphrase Weinberg, who captures the notion succinctly [85],
"Neither a product nor a process view can be the entire view."

2.4 The Nature of Rationality

Simon [71] states that rationality is concerned with "selection of preferred be­
havior alternatives in terms of some system of values whereby the consequences of
behavior can be evaluated."

Ackoff [1 J implicitly reflects a similar theme in the context of problem solving:

... choice exists only (1) when there are at least two possible courses of action
available to the decision maker, (2) where there are at least two possible out­
comes of unequal value to him, and (3) where the different courses of action
have different effectiveness. In other words, choice exists where the action of
the decision maker makes a difference in the value of the outcome.

Ackoff tacitly assumes a rational decision maker.

Simon suggests the use of adverbs to clarify what objectives and whose values
shall be used in judging rationality. Thus Simon's classification for the rationality of
decision is:

23

objectively - fact based, i.e. correct behavior is determined by maximizing given
values in a given situation where values are factually determinable.

subjectively - maximize attainment relative to the actual knowledge of the sub­
ject (i.e., decision-maker).

consciously - to the degree that the adjustment of means to ends is a conscious
process.

deliberately - to the degree that adjustment of means to ends is deliberately
brought about by the individual.

In subsequent discussion, we shall always refer to decisions as rational in the con­
scious and deliberate senses. However, we will maintain the distinction between the
objectively and subjectively rational decision by using fact-based and value-based
respectively.

Simon distinguishes between value judgments and factual judgments m the
following manner.

The minute decisions that govern specific actions are inevitably instances of
the application of broader decisions relative to purpose and method. ... Each
decision involves the selection of a goal, and a behavior relevant to it; this goal
may in turn be mediate to a somewhat more distant goal; and so on, until a
relatively final aim is reached.

He concludes that decisions leading to the selection of final goals will be called value
judgments. Decisions concerned with the implementation of such goals are deemed
factual judgments. We can characterize the valuation.al judgments as the "ought's"
and the factual judgments as the "is'es" or "must's."

Simon's focus is on decision-making within the domain of administrative or­
ganization. We may quite naturally ask, in what manner, if any, do factual and
valuational judgments enter into decision-making in the design of software.

2.4.1 Valuational and Factual Concerns in Design

Asimow distinguishes the concerns of design as being either of two kinds: factual
or ethical (or value-based) [3]. Factual concerns are distinguished from the valuational
because the former may be compared with reality and thus the truth of a factual con­
cern can be tested empirically. Whereas the factual concern presents a generalization
of some relevant part of reality, the valuational concern presents a generalization of
the values and mores of a culture and an individual. In a grammatical sense, the

24

factual concerns are in the indicative mood. Asimow comments on the testability of
valuational concerns:

They are in the imperative mood, like the Ten Commandments; and like the
Ten Commandments they can only be tested in a pragmatic sense. If people
generally like the results, then we assume that the corresponding principles fit
the ethics of our society. We might individually disagree with the particular
ethics; if so, we have the right to seek, or to offer, the leadership that could
persuade people to change them.

Let us consider software design from the perspectives of several "cultures" and
ask, "What values and mores are imbued in the designer that affect his decision
making?"

Structured Design [89] (aka Composite Design [48, 49]) holds that "good"
software design is the cumulative result of a large number of incremental techni­
cal decisions. Decisions about modularity are governed primarily by concerns for
inter-module dependence (coupling) and intra-module relatedness (cohesion). Other
heuristics (e.g. module size, scope of effect/control, fan-in/out) also have a bearing
on decisions about the modularity of a system. Categories of module cohesion and
coupling are presented on a scale of preference. The basic strategy for design in this
culture is, "program structure is initially derived from problem structure by analyz­
ing data flow (not discussed here) and subsequently rearranged according to design
structuring criteria."

The data structuralists, [32] and [83], suggest that system modularity is best
derived from the structure of input and output data. In Jackson Program Design,
the input and output streams are described using a context-free grammar. Next,
a general program structure is created to match the input and output structures.
When a single program structure cannot be generated due to a "clash" between the
input and output structures, two or more program structures that communicate via
intermediate data structures are derived. The basic strategy for design in this culture
is, "program structure is matched to problem structure by a process of derivation
from the problem's data structure."

Higher Order Software (HOS) [27] represents yet another culture. This one is
characterized by its axiomatic definition of appropriate design constructs. The work
originated out of an analysis of the most common errors detected in the design of
a large-scale, real-time project. Design errors were found to lie primarily within six
basic categories that are related to the way modules interfaced with each other. The
originators of HOS concluded that six basic axioms could be defined which cover the
manner in which a module can control another module, pass data to another module,

25

and use data within a module. This culture can be construed as an enhancement
of Structured Design wherein additional criteria for evaluating design constructs are
prescribed in an axiomatic manner.

We could comment on other design "cultures," e.g. Parnas' decomposition
criterion: decompose a system such that each module hides a design decision [53],
object-oriented design, or stepwise refinement. However the point should be clear:
when a designer declares that he is practising a particular design method he tacitly
adopts a value system to be used in decision making.

2.4.2 How does one make good decisions?

Asimow provides some insight into this question. He suggests that making
good decisions is man's most difficult and crucial task [3). Asimow states that good
decisions are based on the decision maker's perception, experience, and intuition as
well as the cumulative knowledge of civilization. We look to philosophy to help us
answer the question of how to organize the knowledge implied by, as Asimow puts it,

the immediate evidence of one's senses, the accumulated experience of one's
lifetime, the intuitive feeling for what is proper and fitting, and the recorded
wisdom of civilization.

In its literal sense, philosophy is a love of wisdom. A philosophy implies a
wisdom organized to form a usable intellectual structure. It is a body of knowledge,
both principles and general concepts, which supports a given branch of learning.
Philosophy also includes the application of this knowledge in the domain of their
relevance. The interaction between knowledge and its application - reasoning - is
summarized by Asimow [3].

Al though the choice and formulation of the principles that underlie a philosophy
are subject to the vagaries of the individuals who construct it, the principles
themselves must nonetheless be bound by the rules of logic in applying them
to the situations which are subordinate to the philosophy. The principles must,
therefore, form a consistent set, so that one does not contradict another. They
must be capable of expansion by logical combination and extension to form a
larger body of derived principles on which discipline may find a secure founda­
tion.

Can a philosophy of software design be made so straightforward and be L .and by
the rules of logic? The writings of [65], [13], and [51) would lead us to be pessimistic,

26

though for differing reasons. Rittle establishes the argument that significant design
problems are essentially "wicked." This wickedness stems from:

• the magnitude of the solution space - the number of alternative feasible solutions
is effectively infinite.

• the multivariate nature of design objectives - each design solution must be
appraised on a large number of ill-defined, disparate, and conflicting criteria.

• the temporal nature of objectives - relevant criteria will change throughout the
life of the designed artifact.

As mentioned earlier Cross, et. al., assert that design method and scientific method
are fundamentally different. With his provocative title, "Why is design logically
impossible?", O'Cathain looks at attempts (ill favored in his opinion) to draw on the
history and philosophy of science to make design theory more respectable.

I~ [61 J, Protzen presents a delightful fable to introduce three principles by which
to justify decisions:

• the principle of indifference or chance,

• the principle of absolute truth, and

• the principle of idoneity.

Protzen dispatches the first two principles: design and indifference or chance are
antithetical and we can never know truth absolutely, only relatively. (Curiously, [34]
now actively seeks chance in designing rather than dismissing it.) Protzen's last
principle is intriguing for it yields a glimmer of hope for the integration of fact-based
and value-based elements of decision into a single system. The idoneous is "that
which is proper to, and conforms with, the ends and intentions." The advice given
in the fable is: "If you do not know the true, the idoneous you shall seek."

2 .5 Conclusion

With the following eloquent statement, Asimow motivates the need for an eval­
uative element in a philosophy [3]:

The origin of the philosophy is empirical, but its test is pragmatic. The
solutions to which it leads must be good in the sense that they are useful. But
good is a relative term that needs a specific definition especially tailored for each
particular situation; its value needs to be measured in a way that is peculiar to
each situation. Therefore, the philosophy must include an evaluative scheme

which guides and enables the formulation of specific criteria of goodness. This
evaluative element is essentially a feedback mechanism which serves to indicate
how well the principles have been applied in the particular instance and to
reveal shortcomings so that an improved application of the principles can be
made.

27

The discipline of software engineering has matured to the point where some
formal feedback mechanism must be considered if we are to progress beyond the
level of craft decried by [28, 15]. However as indicated by this survey of design, said
feedback mechanism must accommodate both factual and valuational elements. The
superiority of the factual element of design lies in its ability to provide standards for
the testing of designs and design decisions; but unfortunately, these standards are
rigid and absolute; they rarely admit the uniqueness of each situation. On the other
hand, the valuational element allows for the relativity and flexibility attributable
to individuals, but it provides no genuine testable standards of conduct. In short,
we require not an entirely fact-based appraisal mechanism having standards without
flexibility; not an entirely value-based mechanism having flexibility without standards;
rather, a combination of standards with flexibility.

Chapter 3

Decision Analysis

Philosophers study what constitutes "good". Good decision-making is a major
concern of ethics. Central to the question of goodness is the issue of what accounts
for that which happens. This, in turn, is related to the "truth" of what is known
(or believed). Owing to the conclusion that universal truth is approachable but
ultimately unknowable, an operational philosophy of decision has evolved wherein
the goodness of a decision is measured by the extent to which its consequences satisfy
the decision-maker's objectives [43].

Unlike the largely nonquantitative values with which philosophers have dealt,
economists focus on the quantification of goodness and satisfaction [72]. This focus re­
sults in a particular viewpoint on behaviors of participants in the supply-and-demand
relationship of the marketplace. Thus, each participant's behavior is framed in terms
of the utility-a measure of the power to satisfy human wants-which a commodity
provides a consumer and which the production of the commodity provides the pro­
ducer. Each participant's objective is to maximize his utility subject to limits on his
resources. The rationality of each participant is defined in terms of his deployment
of limited resources in the pursuit of utility maximization.

The assumptions of the economists have not gone unchallenged. Indeed, social
scientists have amassed impressive evidence suggesting that people are not anywhere
near the rational decision engines postulated by the economists [92]. Logicians too
have entered the fracas with formalizations of preference-logical systems for the
definition of and reasoning about statements of goodness [82] and models of vague
fact based on fuzzy systems [91].

The nineteenth century Italian economist and sociologist, Vilfredo Pareto put
forth an idea that has found widespread use in decision problems. Pareto was con­
cerned with the problem of what principles should govern the actions of society if
it is assumed that the utilities of the individuals comprising the society cannot be
compared. (Utility here means the subjective value ascribed by individuals to the
various goods and services available.) Under these circumstances society cannot act
to achieve the greatest total utility because each individual's utility is unlike that of

28

29

any other. Pareto suggested that society should try to achieve a condition such that
each individual has the maximum utility possible without subtracting anything from
anyone else's utility. This condition has been labeled Pareto optimality.

The Pareto optimality problem has two distinguishing characteristics: 1) there
is no common standard or measure of values between individuals and 2) there exists a
multiplicity of objectives (at least one per individual) to be simultaneously satisfied.
Like many other researchers, we note the similarity between the Pareto problem
and our problem in design when faced with multiple, potentially conflicting design
objectives, each of which is decomposed ultimately into incommensurate performance
measures. In almost all decision making the multiplicity and incommensurability of
criteria for judging alternatives is pervasive. This is the domain of the multicriteria
decision problem (MCP).

In the remainder of this chapter we establish a terminological base for MCP.
This is followed by alternative formalizations of MCP each of which stresses a slightly
different viewpoint of MCP. We identify time as an important backdrop for MCP.

3.1 Multicriteria Decision Problems

In somewhat simplified terms, traditional research on decision has taken one of
two distinct and quite often mutually exclusive paths [42], [72]:

• the descriptive - whose objective is to discover and describe how decisions are
actually made, but without disturbing or improving the process, and

• the normative - which seeks to prescribe how decisions ought to be made (some­
times without checking real decision-makers to determine whether they are will­
ing or even able to follow the prescriptions).

Research in software engineering can be classified similarly. The role of method is
to influence the behavior of the software practitioner. The central question is: "Can
systems be put forth that will induce software developers to adopt and follow meth­
ods?" It is irrelevant whether practitioners behave this way normally provided that
ways to change their behavior can be found and they are willing and able to change.
The model presented in this dissertation provides a feedback mechanism for the clas­
sification of design decisions. This is deemed essential for the influence of designers
behavior. Without it we m~rely have the designer's claim to have followed the method.
Since design methods address a multitude of design concerns it seems appropriate to
look to decision theory for paradigms for multicriteria decision problems.

30

Multicriteria decision paradigms use a common ontology based largely on four
fundamental terms. Though there are no universally accepted definitions we shall use
the following (after [31]).

The term attribute has numerous synonyms e.g., performance parameter, com­
ponent, factor, characteristic, property. The distinguishing feature common to these
is the notion of means for measuring levels of achievement. Hence in this dissertation,
we associate an observation channel (for the assessment of performance) and a value
(preference) function (for the assessment of worth of the observed performance) with
each atomic attribute. Whereas an observation channel may be empirically validated
and may be used in multiple settings, a value function is more situation and/or agent
specific. Moreover, two agents may agree on a means for observing an attribute of
some phenomena but disagree on how that observation is valued.

An objective indicates something to be pursued and thus the direction of de­
sired change. It is usually expressed with a maximization or minimization function;
Objectives are intended to reflect the desires of the decision maker.

A goal (aka target) establishes an a priori level of aspiration which is to be met,
surpassed, or not exceeded. Constraint is a common synonym for a goal which is
established as a limit not to be exceeded. Goals are usually expressed in terms of a
desired specific state in the space that represents an artifact.

The distinction between goal and objective is somewhat inconsistent in the
literature. Quite often they are used interchangeably. We shall not do so here.
Rather, as graphically illustrated in Figure 1.3, we reserve the term, goal, for the
open-world and somewhat ethereal notion of something pursued. In contrast, we use
the term, objective (as a noun), for the closed-world, specific characterization of a
goal.

The basis for valuation is a criterion which defines an explicit measure of ef­
fectiveness. The plural, criteria, is often used to denote multiple attributes, multiple
objectives, or both. We restrict a criterion to be a composition of other sub-criteria
and/or attributes. Moreover, each objective is decomposed into criteria. Thus we
assume a definitive hierarchy from objectives through criteria to attributes.

3.1.1 Structured Design in MCP terms

Consider the Structured Design [89] prescription for minimizing system design
complexity as an objective. Other objectives inc:;lude maximizing return on devel­
opment resources, maximizing maintainability, and minimizing construction cost.

31

Inter-module coupling is one criterion providing a decomposition of the system com­
plexity objective. Other criteria include cohesion, design shape, etc. Yourdon and
Constantine assert that coupling is described in terms of four attributes. Moreover
they explicitly acknowledge the different salience of each attribute stating, "In order
of estimated magnitude of their effect on coupling, these are"

1. Type of connection between modules. The set of connection types include:
minimal, normal, pathological. The observation procedure for this at­
tribute is given in [89]:

If all connections of a system are restricted to fully parameterized (with
respect to inputs and outputs) conditioned transfers of control to the single,
unique activation/ entry/ origin/identity interface of any module, then the
system is termed minimally connected. .. . We shall call a system normally
connected if it is minimally connected, except for one or more instances of
the following:

• There is more than one entry point to a single module, provided that
each such entry is minimal with respect to data transfers.

• Control returns to other than the next sequential statement in the
activating module, provided that alternate returns are defined by the
activating module as part of its activation process.

• Control is transferred to a normal entry point by something other
than a conditioned transfer of control.

The preference function for this attribute states that, "All other things be­
ing equal, then, coupling is minimized in a minimally connected system; it is
likely to be slightly higher with a normally connected system and much higher
with pathological connections." Note that the modifiers suggest an nonlinear
preference function.

2. Complexity of the interface. This is a function of the number of items present at
the interface with smaller preferred to larger. This preference function appears
to be a linear mapping of observed values.

3. Type of information flow along the connection. Here a preference ordering
is given asserting: "Data-coupled systems have lower coupling than control­
coupled systems, which have lower coupling than hybrid-coupled systems."

4. Binding time of the connection. For this attribute connections which are bound
at execution time are preferred to those fixed at load time, which are preferred
to binding taking place a linkage-edit time, which in turn is preferred to com­
pilation time and finally least desirable are those fixed at coding time.

Thus we have successfully mapped the Structured Design concepts for coupling onto
the terms from MCP.

32

Yourdon and Constantine define another orthogonal coupling objective which
they call common-environment coupling or simply, common coupling. We mention
this objective because other authors, notably [52, 77, 49, 60], insist on combining it
with the aforementioned. Yourdon and Constantine caution that common coupling
is a second-order effect and it "does not fit easily into the schema of (first-order)
coupling strengths that we have already presented." Yourdon and Constantine's
multiple objectives for coupling are easily supported using the MCP approach. There
is no need to combine first and second-order effects. In fact, this is one of the strengths
of the M CP paradigm.

3.1.2 Common characteristics of MCP

Disregarding their descriptive or normative orientations and disregarding the
tremendous diversity in problem domains for their application, multicriteria decision
paradigms share the following characteristics.

Multiplicity of objectives) criteria) and attributes: Each problem is formulated
as a set of objectives, which are made up of criteria, each of which, in turn, may have
multiple attributes.

Conflict among objectives) criteria1 and attributes: The simultaneous satisfac­
tion of objectives though theoretically possible is largely unrealizable owing to the
fact that an increase in one requires the decrease of one or more others.

Incommensurable units: Performance for each bottom-most attribute may be
measured in different units. Thus comparison may be difficult where there is no
"obvious" conversion function. Moreover, differing units of measure may have no
"obvious" composition function.

Both analytic and synthetic: The problem may require the synthesis of one or
more alternative solutions, the analysis of some previously specified set of altern'ative
solutions, or some combination of both.

In the following section we briefly review the mathematical formulations for
MCP. This is followed by taxonomy of decision methods.

3.2 Formal Multicriteria Problems

The general mathematical form for the MCP is

33

Maximize: [!1(x), f2(x), ... , fk(x)]

Subject To: gi(x) < 0, i = 1, ... , m

by choosing appropriate values for x where x is an n dimensional variable vector.
Thus, the problem consists of n decision variables, m constraints, and k objectives.
Any or all of the functions may be nonlinear. This form is sometimes called the vector
optimization problem [11 J.

There are two strategies for solving the MCP. One strategy attempts to opti­
mize a single selected objective while considering the others as part of the constraint
set. The optimal solution would then satisfy these other objectives to at least some
predetermined level. Thus,

Maximize: fi (x)

Subject To: gi(x) < O,j = 1, ... ,m
!1 (x) > az' l = 1, ... ' k /\ l # i

where a1 is a prespecified aspiration level for objective l.

The principal difficulty with this approach is choosing a1 's which result in a
nonempty solution set. Implicit in this formulation of the problem is a trade-off
between ft and fi, i.e., when ft ~ az, the trade-off is 0, when f1 < a1 the trade-off is
oo. This probably does not reflect the actual value structure of most decision makers.
Moreover, this value structure is sensitive to the level of at.

The other strategy for solving the MCP attempts to optimize a synthetic­
ob jective comprised of the vector sum of the product of each objective and some
"appropriate" weight.

Maximize: 2=7=1 Wi . fi (x)

Subject To: gi(x) < 0, i = 1, ... , m

The weights may be normalized by E7=l Wi = 1.

The principal difficulty with this approach is the determination of the weight
coefficient for each term of the synthetic objective. Each weight is likely to be sensitive
to the particular objective as well as the levels for each of the other objectives.

3.2.1 Formulae and representations for MCP

Several equivalent notations can be made for the vector optimization formulation
of a multicriteria decision problem [31, 30].

34

Firstly, there is the enumerated objective function form.

Given: x, k objectives, m constraints, n decision variables, and an n-dimensional
vector

Maximize: [f1(X'),f2(X'), ... ,f1c(x)]

Subject To: 9i(x) ~ O,j = 1, ... , m

Equivalently, there is the vector form,
Maximize: f(x)

Subject To: §(x) ~ 0

The interpretation of~ is, for any two vectors x and y,

The constraints ff(x) ~ 0 define a feasible set X of the set of decision variables
which satisfy the constraint set. Thus, X = {x/§(x) ~ O}.

For each element in the feasible set X, there is an associated f(x) vector which
maps X into a set S of functional values. Thus, S = {f(x)/x EX}.

The equivalent notations, then, are:

1. Maximize: f(x) Subject To: §(x) :::; 0
2. Maximize: f(x) Subject To: x EX

3. Maximize: f(x) Subject To: f(x) E S

In conclusion, the multicriteria decision problem may be concisely represented
in matrix form. In the m x n decision matrix D, each Xi,j element represents the
evaluation or value for alternative i, denoted Ai, with respect to attribute j, denoted
Xj. For each of the m alternatives, a row vector Xi represents the performance of
alternative ion each of then attributes Ai, i = 1, 2, ... , mis Xi= (xi,1, Xi,2, •.. , Xi,n)·
Each column vector Xj represents the contrasting performance of each alternative
with respect to attribute j, Xj,j = 1, 2, ... , n is Xj = (x1,j, x2,j, ... , Xm,j)· We use
the matrix form for our approach to design decision representation.

35

3.2.2 MCP categories

In distinguishing MCP, Hwang and Yoon identify multiple attribute decision
making (MADM) as largely analytical with trade-offs expressed for a limited number
of predetermined alternatives [31]. In contrast, multiple objective decision making
(MODM) methods are characterized as synthetic since the issue confronting the de­
cision maker is the generation of some "best" alternative subject to constraints.

In contrasting solution types for MADM vs. MODM, we note that an ideal
solution in MADM is characterized as subjective. Whereas, for MODM the optimal
solution is said to be objective [31]. Thus for the general form of a MODM problem,

Maximize: Vx EX, [fi(x), f2(x), ... , fk(x)],X = xlgi(x) ~ 0, i = 1, 2, ... , m

the optimal solution is that which simultaneously optimizes each objective function:

Maximize: Vx EX, fj(x),j = 1, 2, ... , k.

The optimal alternative is defined as

A*= (f;,J;, ... ,fj, ... ,J;).

where each fJ denotes the feasible, optimal value for the ;th objective function. Given
the assumption of conflict among objectives, the optimal solution is generally infea­
sible.

In contrast, the ideal solution in MADM is the hypothetical alternative whose
Cartesian product is composed of the most preferable values for each attribute in the
decision matrix. That is, the ideal alternative is

where
xj = Vi,maxVj(xi,j),i = 1,2, .. . ,m

and Vj is the jth value function. This ideal solution too does not generally exist.
However, it is useful as an anchor point in the decision alternative space.

We note that our approach to design decision modeling incorporates both the
MADM notion of ideal alternative and the MODM notion of optimal alternative.
We think this is necessary for a comprehensive treatment of software design decision
modeling. In addition further classification of M;CP solution types are required in
screening alternatives.

36

Nondominated solutions: The "best" solution will be found here. This set is also
know as noninferior, efficient, and Pareto-optimal. Membership is determined by: 1)
the solution must be feasible, and 2) if there does not exist another feasible solution
which will yield an improvement in one objective/ attribute without causing a degra­
dation in at least one other objective/attribute. This concept is used as the sufficient
condition for the "final" solution. Thus, it is quite often deployed as an initial screen
in a multi-step procedure. Formally, x* is a nondominated solution iff •:lx E X such
that Fi(x*) s fi(x)Vi /\ fi(x*) s fj(x) for at least one j.

Satisficing solutions: As defined by [72], these solutions constitute a subset of the
feasible set which exceed the aspiration levels (minima or maxima) established for
each attribute. Thus, these are "acceptable" solutions and they need not be non­
dominated. This solution procedure is deemed to be practical given the bounded
rationality generally ascribed to decision makers. This approach may be used to
initially screen the acceptable from the unacceptable.

Preferred solutions: The preferred solution is that nondominated solution selected
as the "final" choice from the candidate nondominated solutions. As such it reflects
the application of the decision maker's preference structure.

In conclusion, the generic multicriteria decision problem incorporates four com­
ponents [90]:

1. the set of alternatives, X, which are input to the decision process;

2. the set of criteria, J = (!1, ... , fq), controlling the decision process;

3. the outcome of each choice-f(x) = (!1 (x), ... , fq(x))-the totality of which is
denoted, Y = f(x)lx EX;

4. the decision maker's preference structure which allows the determination of y*,
the "best" outcome in Y, and thus the "obvious" choice, y* = f(x*).

In the following section we review the taxonomy of decision methods which serves as
the basis for our rationality predicate.

3.3 A Taxonomy of Decision Methods

As indicated in Table 3.1 there are two major categories of multiattribute de­
cision methods. The distinction between the two is based on whether tradeo:ffs are
allowed between attributes. Hence, the two categories are named, compensatory

Characteristic

Decision
Method

Non-compensatory

Dominance
Sieve

Conjunctive
Cutoff Sieve

Scoring

SAW
HAW

Compensatory
Compromising Concordance

TO PSIS ELECT RE
LAM

Table 3.1: A taxonomy of decision analysis methods.

37

(tradeoffs permitted) and noncompensatory (tradeoffs not permitted). In this section
we summarize further distinguishing characteristics of each category and describe the
decision methods used in our model.

3.3.1 N oncompensatory MethJds

Methods in the noncompensatory category compare alternatives on an attribute­
by-attribute basis. Furthermore, an alternative with inferior performance on one at­
tribute cannot be offset by superior performance on another. These methods are
considered simple yet intuitively appealing to decision makers whose knowledge and
information processing ability are bounded. The noncompensatory methods do not
require the articulation of preference, hence their simplicity. Accordingly, these meth­
ods yield objective results rather than subjective ones.

Two methods we shall use from the noncompensatory category are the domi­
nance sieve and the conjunctive constraint sieve (also known as satisficing). Since a
dominated alternative cannot possibly be in the set of rational final choices and since
the dominance checking procedure is rather simple, we first check whether the de­
signer only pursues nondominated alternatives. The conjunctive sieve is also a simple
method for quickly dismissing alternatives which do not meet prescribed attribute
performance levels. Our second rationality check then, is to determine if the designer
only pursues acceptable alternatives. For other methods in the noncompensatory
category see [31 J.

The Dominance Sieve

An alternative is considered dominated if there exists another alternative which
excels it in at least one attribute and at least equals it in the remainder. The sieve of
dominance produces a set of nondominated alternatives. Note that this method does
not require any transformation of attribute performance (scaling) as each attribute's
comparison is done on its own scale. Moreover the dominance sieve procedure does

38

not require further assumptions e.g., minimum or maximum performance levels for
attributes.

The dominance sieve procedure can be described informally: Compare two al­
ternatives on an attribute-wise basis. If one is dominated by the other, discard the
dominated one. Consider each of the undiscarded alternative(s) with the other alter­
natives (not yet considered) discarding any dominated alternatives.

The Conjunctive Sieve

Simon describes a method called "satisficing" where minimally acceptable stan­
dards of performance (prescribed by a decision maker) are used to screen alterna­
tives [72]. The minimally acceptable attribute values are called the cutoff values.
They play a crucial role in the elimination of noncontending alternatives. Suppose
the cutoffs are set unrealistically high, then the set of acceptable alternatives may
be empty. Conversely, if the cutoffs are too low, the set of acceptable alternatives
may equal the set of candidates. In which case, resources expended on the conjunc­
tive sieve procedure are wasted. Sometimes an iterative approach is used to arrive
at "appropriate" cutoff values. Because of its strong intuitive appeal, the satisficing
method has enjoyed widespread use.

We shall use the conjunctive sieve to dichotomize alternatives into accept­
able/unacceptable categories. An alternative A is classified as acceptable only if

Xi,j 2:'.: xJ,j = 1,2, ... ,n

where xJ is the cutoff level for attribute Xj·

As with the dominance sieve, the conjunctive sieve does not require attribute
values to be expressed in numerical form nor does it require that the relative impor­
tance of attributes be expressed. It is noncompensatory. No acceptable alternative is
credited for especially high attribute performance, nor is any attribute penalized for
minimally acceptable attribute performance.

3.3.2 Compensatory methods

Recall that the compensatory methods accommodate tradeo:ffs between at­
tributes. Thus a (perhaps small) change in one attribute may be offset by com­
pensating (perhaps large) change in one or more other attributes. Furthermore, the
rate of exchange need not be constant i.e., it may be nonlinear. Each compensatory
method ascribes a single figure of merit to each alternative. This figure of merit is

39

intended to be a compilation of the alternative's performance on each of the multi­
ple attributes. The compensatory methods may be classif ,;d into three subgroups
according to how the figure of merit is determined.

Scoring Methods

These methods use multiattribute value functions to determine the figure of
merit. There are several techniques in this category. However, they all share three
common assumptions: 1) additive value functions which are 2) monotonic, and each
of these two assumptions is based on 3) preference separability (decomposability).
For rigorous definitions see [90]. The additivity, monotonicity, and separability as­
sumptions for va' ae functions are not entirely uncontroversial. See [37, 68] for a
comprehensive treatment. Each of these assumptions is imposed in direct considera­
tion of resource limits on information processing i.e., both from the decision maker's
perspective of assessing weights for many attributes and the computational complex­
ity of combining these to arrive at a figure of merit.

A preference structure with n attributes is said to be decomposable if there exist
real-valued functions V1, . .. , Vn defined on sets of possible attribute values X 1 , ... , Xn
and v defined on X, such that for any x' and x" E X

where 'P is read, "is preferred to."

The general forms for v (x) are then [11] :

• simple additivity

• weighted additivity

where Wi > 0 and I:i=i Wi = 1

The weights are used to adjust for the relative salience of each term in the value
function. A method for determining a hierarchy of criteria and their weights is given
in [68]. The approach is a vertical extension of simple additive weighting (SAW). It is
suggested as a means for simplifying the information overload faced by the decision­
maker attempting to assign weights to many criteria. It is called hierarchical additive
weighting (HAW).

40

Compromising Methods

The compromising methods indicate which alternatives are close to an ideal.
The TO PSIS (Technique for Order Preference by Similarity to Ideal Solution) method
[88] and [31] is distinguished from others in this category in that it discriminates not
only on the notion of distance from an ideal alternative but also on the distance
from a negative-ideal. Thus, "best" is defined as that alternative which is closest
to the positive-ideal and simultaneously farthest from the negative-ideal. The ideal
and negative-ideal alternatives-that which is composed of all best (worst) possi­
ble attribute values-are. considered artificial in that each is practically unrealizable.
For example, one could think of the ideal as the infinite capacity, zero cost alter­
native, whereas the negative-ideal is zero capacity and infinite cost. TOPSIS also
distinguishes between "benefit" criteria (those in which larger attribute outcomes are
preferred) and "cost" criteria (those in which smaller attribute outcomes are pre­
ferred).

TOPSIS consists of six steps:

1. Construct a decision matrix.

2. Produce the weighted normalized decision matrix.

3. Determine the ideal and negative-ideal alternatives.

4. Calculate then-dimensional Euclidean separation between each alternative and
the ideal; between each alternative and the negative ideal.

5. Calculate the relative closeness to the ideal for each alternative.

6. Rank the alternatives based on relative closeness to the ideal.

The notion of distance is fundamental to both simple additive weighting (SAW)
and TOPSIS. SAW uses the city block measure [14]. TOPSIS uses the Euclidean
measure. SAW is shown to be a special case of TOPSIS [31]-TOPSIS equivalent to
SAW when TO PSIS uses the city block measure. This subtle change yields a dramatic
change in consequences.

Whereas the city block distance measure guarantees that any alternative which
has the shortest distance to the ideal (and also has the longest distance to the neg­
ative ideal), the Euclidean distance measure makes no such guarantee. SAW imple­
mentations exploit the guarantee, which is why they are simpler. More importantly,
however, SAW and TOPSIS will, in general, produce different ranking of alternatives.
Thus we need to include both methods in a comprehensive review of alternatives.

41

Concordance Methods

The concordance methods order alternatives based on their being in accord with
the decision maker's preference structure. The permutation method [31] measures the
level of accord with a complete preference order. The ELECTRE method first deter­
mines the accord based on a partial order of the alternatives and then constructs a
possible aggregate order. Both methods can be used with cardinal and ordinal prefer­
ences. However, the permutation method was originally designed for use with ordinal
preferences, whereas ELECTRE was intended for use with cardinal preferences.

The linear assignment method (LAM) ranks alternatives based on attribute
performance and relative weights. It is attractive since it uses only ordinal attribute
data (thus, eliminating the need to scale attributes). Moreover, the tedious trade-off
analyses of other methods is not required. However [31] argue that in its base form,
the method is not truly compensatory. The final rank of an alternative is determined
by summing its own attributewise ranks without simultaneously considering all the
other alternative attributewise ranks. They make a rather simple amendment to the
method to make it compensatory. The problem is then stated as a linear programming
model.

The ELECTRE method (Elimination et Choice Translating Reality) [31] uses
a multistage procedure to conduct a pairwise comparison of alternatives. This com­
parison is based on a more refined notion of dominance and uses the concept of an
'outranking relationship'. Briefly, the outranking relationship between two alterna­
tives states that the decision maker somehow accepts that one alternative is almost
surely better than the other alternative. Successive comparison of the outranking
relationships among alternatives yields a partial order over the :cernative'::. This
comparison is based on the degree to which evaluations of the al~ernatives and the
preference weights confirm or contradict the dominance relationship. This is accom­
plished by examining one, the degree to which the preference weights are in agreement
with (concordance) the pairwise dominance relationships and two, the degree to which
weighted evaluations differ from each other (discordance).

The steps in ELECTRE are:

1. Construct a normalized decision matrix.

2. Produce the weighted normalized decision matrix.

3. For each pair of alternatives, divide the set of criteria into the concordance sub­
set and its complement, the discordance subset. The concordance set consists
of those criteria for which one alternative is preferred to the other.

4. Calculate the concordance matrix reflecting the relative preference between
pairs of alternatives.

42

5. Calculate the discordance matrix.

6. Determine the concordance dominance matrix.

7. Determine the discordance dominance matrix.

8. Combine the concordance and discordance dominance matrices into a single
aggregate dominance matrix

9. Eliminate from further consideration those alternatives which are dominated in
the aggregate dominance matrix.

Some observations are in order. Firstly, note that steps one and two in
ELECTRE are identical to those of TOPSIS. Secondly note that the concordance
and discordance matrices are, in general, asymmetric. Thirdly, note that whereas the
concordance matrix represents differences among the weights, the discordance matrix
represents differences among attribute values. Final selection should be based on
the net concordance dominance value being at a maximum and the net discordance
dominance value at a minimum. The net concordance dominance value is defined
to measure the degree to which the total dominance of a given alternative exceeds
the degree to which all other alternatives dominate the given alternative. A similar
definition holds for the net discordance dominance. In ELECTRE, the outranking
relationship is used as a surrogate for the decision maker's value function. It is less
formal and weaker in terms of ordering strength.

In conclusion, we note that each decision method category emphasizes some
salient feature of decision analysis. Moreover, to only apply a single decision analysis
method in the determination of a course of action is to disregard the importance
of multiple viewpoints. A comprehensive model of design decision must take the
multiple viewpoint approach.

3.4 A Time Backdrop for Decision Modeling

Most decision theorists impose simplifying assumptions on the components of
a decision model. The most stringent is the assumption that the decision control
knowledge does not vary with time.

1. decision criteria are fixed and foreknown;

2. these criteria are mathematically formulated such that a single objective func­
tion to be maximized or minimized can be identified;

3. the decision maker's perceived payoffs, measured in terms of the criteria and
resulting from the decisions, are preknown and deterministic;

4. the decision maker's preferences are stable and constant.

43

Under these assumptions there is clearly no room for modeling the effects of learning.
Moreover, such constancy is quite unrealistic for design in general and software design
in particular.

Although each of the components of decision do vary with time in the real
world, we are aware of only one researcher in decision analysis who has attempted
to incorporate a time basis into his model. Understandably, this basis is limited to
those cases where the decision control knowledge components have become stabilized
thus making application of decision analysis methods feasible.

Yu suggests that each of these components of decision be subscripted by
time [90]. Thus, an alternative can be said to be [ti, tiJ-optimal, iff it is a mem­
ber of the set of alternatives considered in time interval [ti, ti] and the alternative is
the unique, nondominated alternative with respect to decision criteria applicable in
time interval [ti, til·

Generalizing on Yu's idea, we shall always speak of a relative rationality. That
is, our analysis of rationality will always be made with respect to:

• the decision control knowledge in place at the time the decision was taken and

• the alternatives explicitly considered at that time.

Thus we have defined the notion of decision occasion. A change of occasion is said to
happen whenever any part of the decision control knowledge is altered or when, by
the addition or removal of a mapping, a different set of alternatives is considered.

3.5 Conclusion

This chapter has explored the terminology and a taxonomy of decision anal­
ysis methods. The argument was put forth that, owing to the unique viewpoints,
assumptions and limitations offered by methods in each of the taxonomic categories,
no single method can be applied and still meet the requirement for comprehensive
decision analysis. Additionally, the argument was made for giving a time backdrop
to the components of decision. In the next chapter we show how these concepts are
integrated into our model of design decision.

Chapter 4

A Formal Model of Design
Decision Making

This chapter gives a formal model for determination of the rationality of routine
design decisions. It provides an architecture for merging a state-transition view of the
design process with decision analysis methods in the assessment of design decision
rationality. The specification of decision control knowledge serves as the central girder
in this architecture and is supported by the explicit representations of the design
state. A scale of rationality is defined based on the type and comprehensiveness of
the decision analysis method applied in judging rationality.

4.1 A State-Transition View of Design

Our view of design is developed m a sequence of three specializations (see
Figure 4.1):

1. The design process can be viewed as a state-transition system wherein states em­
body relevant knowledge and transitions correspond to changes in that knowl­
edge.

2. Transitions are specialized to the Lehman, Stenning, and Turski (LST) [45, 81]
generic design step and specifications are added as explicit parts of the design
state.

3. Design state knowledge is further partitioned to include linguistic systems and
specifications for both decision control knowledge and resources. In addition,
prototype transitions are defined for routine and non-routine decisions.

Thus these specializations culminate in a formal definition of routine design decision
as a particular kind of state transition i.e., one in which our closed-world assumption
holds.

44

51

The next section gives our knowledge representation ,heme for SncK· This is
followed by a brief discussion of some of the practical ramifications for the specification
of SncK· We then give procedure for the function rat which, using SncK, classifies
routine decisions.

4.2 Representing Decision Control Knowledge

The decision control specification (SvcK) is intended to be a particular opera­
tionalization of the generic design goal. See Figure 4.2. We consider this goal to be
the root of a hierarchy of objectives, criteria, and attributes. Each objective expresses
something to be pursued in the fulfillment of the design goal. Since there may be
many objectives we have the potential for conflict among them. Each objective is
further decomposed into criteria. Each criterion expresses some relevant aspect of
either its superior objective or criterion. Each criterion is decomposed into subordi­
nate criteria or attributes (leaf criteria). A weight is assigned to each criterion and
attribute to indicate the relative salience of the node to its immediate superior. For
each attribute a corresponding value function and observation channel are specified.
The value function maps observation channel values onto some specified scale of de­
sirability ranging from aversion through indifference to preference. The observation
channel consists of a metric and a procedure for its application. The observation
channel represents an objective measurement of either the artifact or resource spec­
ification. The value function turns this into a subjective measurement for purposes
of decision control. A top-down perspective on the SvcK indicates how the design
goal and its subordinates are operationalized. The complementary bottom-up view
indicates why a particular component is present i.e., the superior(s) which it serves.

More formally, the decision control knowledge specification, SvcK consists of a
nonempty set of objectives 0. Each Oi E 0 is a tuple

(name, direction, C)

where name is the label for Oi, direction E {Maximize, Minimize}, and C is the
objective's set of criteria. For example, Structured Design objectives Osn might
include:

(ArtifactComplexity ,Max, {M oduleComplexity, Inter faceComplexity })
(TransformationCost, Min, {SentenceCount})

Each criterion Ci E C is a tuple

(name, weight, {CU A}+)

i
I

111

'I
I

,i
'i

52

SpecncK ={Objective}

(name, direction, {Criterion})

(name, weight,{ Criterion U Attribute}+)

(name, weight, ceiling, floor, valfn, obsch)

E range(obs ch) U 0

dom(valfn) = range(obsch)

range(valfn) = [abs averse .. abs indi:ff .. abs pref]

dam(obsch) = Spec Artifact U SpecResource

range(obsch) = arbitrary

Figure 4.2: Representing Decision Control Knowledge.

53

where n~me is the name for Ci, weight -+ (0, 1] indicates the proportional contribution
of c.; to its superior, C is the criterion's set of subcriteria and A is the criterion's set
of attributes. Either Sor A may be empty but, SUA must be nonempty. Continuing
the Structured Design example, C ArtifactComplexity is

c1 = (ModuleComplexity, .4, {Cyclomatic, Volume, Calls, Modules})
c2 = (Inter faceComplexity, .4, {Parameter, Globals})

By convention, the sum of all weights for all objectives is restricted to a small
positive integer, usually 1.

Each attribute ai(x) E A is a tuple

(name, weight, uc, le, val(obs(x)), obs(x))

where name is the name for ai, weight -+ (0, 1] indicates the proportional contribution
of a; to its superior criterion, uc and le are the upper and lower bound used for
conjunctive cutoffs and must be E range(obs) U 0, val(obs(x)) is the attribute's value
function, and obs(x) its observation channel. Thus AArtifactOomplexity is

ai(SD) =
a2(SD) =
a3(SD) =
a4(SD) =

(Cyclomatic, .1, oo, 0, valayclomatic, obscyclomatic(SD))
(Volume, .l, oo, 0, valvalume, obsvolume(SD))
(Calls, .l, oo, 0, valcalls, obscaus(SD))
(Modules, .l, oo, 0, valModules, obsModules(SD))

where SD is a Structured Design specification i.e., either Sa,A or ST,A·

The dom(obs) is RDS, but it is most like1 · confined to Sc,A, ST,A, Sc,R and ST,R·
By including both the current base and targei: ~cifications we allow observations to
be defined over the change between transiti011~ in addition to particular artifact or
resource attribute values. The range(obs) is arbitrary and may support total, partial,
or no ordering. For example the observation channel obscyclomatic(SD) is defined as

Vmodule E SD, I: cyclomatic(module)

where cyclomatic(module) is as defined by [40].

Each value function maps its corresponding observation channel values onto any
ordered set of values Usually, distinguished values representing

absolute aversion < absolute indifference < absolute preference

are specified. All other values, then, lie in

[absolute aversion, absolute indifference]

54

or m
[absolute indifference, absolute preference]

For example the reals in [-1, + 1 J are quite often used where -1 corresponds to abso­
lute aversion, 0 to absolute indifference, and +1 to absolute preference. In cases where
such absolute preference is unknown, a simple transformation (quite often linear,
though not necessarily always) is used. In any case, the domain(val) = range(obs)
and range(val) is some arbitrary closed interval. Our Structured Design example a
simple linear transformation of observation channel values such that range(obs) =
[O, oo] with smaller values preferred over larger and we are indifferent between equal
values.

This formulation of the SncK is presumed to represent all facets of control
knowledge that a designer brings to bear in routine design decision-making. Any
change to the SncK constitutes a non-routine decision.

4.3 Background and Guidelines for Components
of the SncK

In every decision situation there are factual elements and value elements. The
factual elements are those that can be verified independently. Value elements, on the
other hand, defy independent verification-they are agent dependent. In the SncK
we separate the factual from the valuational by distinguishing the notion of observa­
tion channel from the notion of preference valuation. The notion of an observation
channel comes from [38]. The observation channel forms the essential input mecha­
nism for encoding some perception of reality. Observation channels can be crisp or
fuzzy (after the fuzzy set theory of [91]). Properties of the variable representing the
observed phenomenon include ordering (none, partial, linear), whether or not dis­
tance is recognized, and continuity (discrete, continuous). Practically speaking each
of Klir's formal prescriptions must be addressed in the synthesis of a demonstrably
effective observation channel.

The value function component of the SDcK serves to make a designer's prefer­
ence explicit. A collection of value functions coupled with their sources constitutes
a value system. Hence the SncK could be called the designer's value structure.
Judgement, which signifies the act of giving an opinion, is the most common value
element in any decision-making process. By separating the valuational element from
the observation channel we can support the individual (and potentially different) pref­
erences which may be ascribed to observed phenomena. In [82], von Wright gives a
formal system for reasoning about preference. With this system, one has the ability

55

to define a notion of goodness and of badness. Moreover, these notions may be de­
fined relative to an agent and an occasion. "What is good to one subject on some
occasion may not be good to another subject on the same occasion or to the same
subject on another occasion." Though a logical system for evaluating properties of
preference expressions is not presently incorporated in our DDM, the decision anal­
ysis techniques used do presume that such properties as preference transitivity and
consistency hold.

Scaling and measurement are fundamental to the successful modeling of an em­
pirical system such as routine design decision making. It is through these that we are
able to map some perception of reality into a model suitable for automated compu­
tation. The classification of scales is perhaps best considered in terms of the class of
transformations on each scale which leave it invariant-those transformations which
preserve the information it contains. In order of increasing strength the available
scales are:

1. nominal - unique up to any 1-1 transformation (this consists essentially of as­
signing labels to objects).

2. ordinal- gives a rank order of objects and is invariant under monotone increasing
transformations.

3. interval - unique up to positive linear transformations of the form y = ax+b, a >
0.

4. difference - invariant under a transformation of the form y = x + b.

5. ratio - invariant under positive linear transformations of the form y =ax, a> 0.

The essential difference between the ratio and interval scales is that whereas the
ratio requires an origin as a point of reference, the interval scale does not. A formal
treatment of scales of measurement is given in [11].

Scaling and measurement are essential activities in the specification of the obser­
vation channels and value functions. Separating the observation and value functions
eases the difficult task of proceeding directly from physical performance scale values
to preference scale values. Moreover, we can accommodate widely varying physical
performance scales while mandating a common scale for preference.

The structuring of a hierarchy of objectives, criteria, and attributes is not an
easy task. There is no set procedure, nor are decision makers, in general, and de­
signers, in particular, likely to articulate these in the normal course of their tasks.
Keeney and Raiffa conclude, "The intertwined processes of articulating objectives
and identifying attributes are basically creative in nature." [37]. This supports our
assertion that specifying the SncK is non-routine. Keeney and Raiffa also identify
four desirable properties of a Sncx:

56

1. completeness-all pertinent aspects of the problem are represented;

2. operational-can be utilized in some meaningful manner;

3. decomposable-relevant aspects of the problem can be disaggregated into their
constituent parts; and

4. nonredundant-no aspect of the SncK overlaps any other.

To the extent that these properties can be met, we can claim that the SDcK represents
that knowledge which a designer uses in routine designing.

In conclusion, while there does not exist (and probably cannot exist) a sound
meta-methodology for the specification of a SncK, a rich and useful variety of tools,
techniques, methods and examples of their application is present in the literature.
We now move to our formulation of the predicate, rational.

4.4 The Rationality of Routine Design Decisions

A unified approach to combining multiattribute decision methods is defined
by Hwang and Yoon in [31]. Their basic idea is that multiple methods be applied
in series and/or simultaneously instead of selecting a single "best" method for the
situation. This idea coupled with our own observation that the different methods
can be ordered as to their use of decision control knowledge form the basis for our
assessment of rationality.

The purpose of Hwang and Yoon's initial screening is the elimination of domi­
nated and infeasible alternatives and thereby a reduction in subsequent information
processing requirements. Two non-compensatory techniques are used in this screen­
ing. Recall that they are deemed non-compensatory because each technique considers
the valuation of an alternative on each objective, criterion, and attribute indepen­
dently. No trade-off among objectives, criteria, or attributes is considered. The first
technique is the dominance sieve. The second technique applied is the conjunctive
cut-off method. Recall that this technique is known as conjunctive since all attributes
must simultaneously achieve acceptable levels (cut-offs).

In Hwang and Yoons' next step four methods (linear assignment, simple additive
weighting, TOPSIS, and ELECTRE) representing each of the types of compensatory
techniques. (scoring, compromising, concordance) are applied in parallel. The result
is four potentially different orderings of the alternatives.

These four orderings are aggregated into a partially ordered set using three
ranking techniques:

59

Procedure 4.1 (Classify Rationality of Routine Design Decision) Given: a speci­
fication of decision control knowledge, an observation vector for the current design state, a
nonempty set of candidate mappings with associated observation vectors, and a designated
choice from the set of candidates, determine the rationality of the designated choice.

1. If the candidate set of mappings is not singleton, then proceed to Step 2. If the
observation vector for the singleton mapping dominates the observation vector for the
current design state, then terminate with the indication that the choice is trivially
rational. Otherwise, terminate with the indication that the singleton mapping is
dominated by the current state and is therefore, not rational.

2. Apply the dominance sieve to the design state associated with each mapping in the
candidate set. If the designated choice is not a member of the non-dominated alterna­
tives, then terminate with the indication that the designated choice is dominated and
is therefore, not rational. Otherwise, the designated choice is at least non-dominantly
rational.

3. If the non-dominated alternative set is singleton, then terminate with the indication
that the designated choice is non-dominantly rational.

4. Apply the conjunctive cut-off sieve to the non-dominated alternative set.

5. If the designated choice is not a member of the conjunctively acceptable alternatives,
then terminate the with the indication that designated choice is not conjunctively
rational but is non-dominantly rational. Otherwise, the designated choice is at least
both conjunctively rational and non-dominantly rational.

6. Apply the linear assignment method, the simple additive weighting method, the
TOPSIS method, and the ELECTRE method to the conjunctively acceptable al­
ternatives generating an ordering of alternatives for each method.

7. If the designated choice is ranked first in each of the four method's orders, then
terminate with the indication that the designated choice is unanimously rational.

8. If the designated choice is not ranked first in at least one of the four preference
orders, then terminate with the indication that the designated choice is conjunctively
rational.

9. Apply the mean, majority rule, wins-mi~us-losses ranking techniques forming three
sets of aggregate orders. From these construct the partially ordered set of aggregate
preference.

10. If the designated choice is the highest ranking preference or one of the highest ranking
in the case of ties, then terminate with the indication that the designated choice is
consensually rational. Otherwise, terminate with the indication that the designated
choice is compensatorily rational.

Figure 4.3: A procedure for determining the rationality of routine design decisions.

60

4.6 Conclusion

In this chapter we have integrated several notions from diverse disciplines to
provide a model for the assessment of design decision rationality. Beginning with the
LST state-transition model of the design process, we added the explicit representation
of resources to the design state. We further noted that the LST model does not include
the kind of knowledge necessary to justify why a particular mapping was selected.
Hence, alone it cannot serve as a basis for rationality assessment. To address this we
incorporated the general notion of decision control knowledge from decision theory.

However, two additional concepts were required. One concerned the separation
of the act of observation (from general systems theory) from the act of valuation
(from philosophy). The other concept dealt with the hierarchical decomposition of
objectives, criteria, and attributes (a clear concession to the limits on human infor­
mation processing). Use of a single decision analysis method was considered to be
insufficiently comprehensive, especially given the variety of methods and their re­
spective assumptions, limitations and viewpoints. Thus, we adopted an approach
whereby several methods (each representative of a category of methods) are used.
This, in turn, gives rise to a predicate which measures rationality on more than a
binary basis.

Moreover by applying multiple decision analysis techniques, we gain a much finer
granularity on the monotonicity of rationality for routine decision making. In partic­
ular for the non-compensatory techniques, monotonicity must be strictly increasing
(decreasing) for equivalence classes of observed values for each attribute which is to
be maximized (minimized). For compensatory techniques monotonicity is a func­
tion of preferred values. Interestingly though, since the techniques are compensatory,
the monotonicity is based on the net increase (decrease) in preference (abhorrence).
Finally, we set the whole system against a backdrop so that not only could routine de­
cisions could be identified and their rationality determined, but also intervals of these
decisions can be identified and distinguished from non-routine decisions. In conclu­
sion, the integration of these concepts into a single system constitutes the principal
contribution of this dissertation.

Chapter 5

Empirical Explorations

This chapter presents selected results from the application of our model. Using
a well known problem from Structured Design, we illustrate each of the components
of the SvcK and we indicate how the rationality checkint.; algorithm is used. A second
example using extended entity-relationship design is also reviewed. We conclude with
some observations on difficulties encountered and insights gained.

5.1 The Hospital Bed Monitoring Example

Significant difficulties were encountered applying our DDM to Structured Design
(SD) in general and to this problem in particular. Most of the problems related to SD
stem from it's largely informal basis, especially it's two principal design objectives,
coupling and cohesion. Rather than redress this lack of formality, we chose as sur­
rogates more formal criteria and metrics having some empirical basis for their claim
that structural differences in program architectures do have an influence on software
maintenance [22]. In addition to the problems in defining appropriate decision con­
trol knowledge, we also found the transformations to be even less well defined. This
we redressed by first defining a grammar for SD. Then we redefined the informally
described Structured Design transformations in terms of asserting, updating, and
retracting sentences constituting a specification rendered in this grammar.

This particular problem from Structured Design was selected because of the
attention it has received [77, 87, 66]. However, none of these authors gives a formal
language definition for Structured Design descriptions nor can we find anything but
informal discussions of transformations and refinements. Since we have mandated
that the observation channels must be defined over at least some well-defined syntax
(and preferably, a well-defined semantics), we were compelled to develop a BNF for
Structured Design descriptions [56].

Our BNF goes beyond that required for Structure Charts. We have incorporated
the regular expression grammar approach to data and procedure description [32, 83].

61

62

In addition, we do not require code for a module's procedural description. Rather, we
emphasize specification of the relations typically left implicit or not even expressible
in a Structure Chart language.

With this necessary grounding, we next hand translated Stevens' Hospital Bed
Monitoring example [77]. Since no specification of each module's details was given,
we had to reconstruct the module's internal relations from the structure chart alone.
Interestingly, this process unearthed several errors and inconsistencies in Stevens'
structure charts.

No formal description of structure chart transformations was given. Thus, we
constructed a simple library of transformations from those implied by Stevens.

Finally, since no decision control structure was given, we postulated the follow­
ing simple SvcK·

5.2 A Simple SncK for Structured Design

In Figure 5.1 we have proposed a simple decision control structure for Structured
Design. It consists of a two objectives: one is resource efficiency oriented while the
other concerns artifact effectiveness.

The resource objective could be read as: "Minimize the amount of resource ex­
pended in applying a transformation as measured in terms of the number of sentences
added, deleted, and updated in the design representation."

The artifact effectiveness objective is composed of two criteria. One criterion
covers intra-module complexity while the other covers inter-module complexity. This
is consistent with the perspective of [89). Complexity due to modularity is described
by four attributes: the cyclomatic complexity [40], the volume metric [26], the total
number of module invocations, and the number of modules. Each of these well known
metrics constitutes an observation channel and is implemented in the obvious manner.
The interface complexity criterion has two attributes-one in which inter-module
communication is effected via explicitly passed parameters and the other wherein
some globally shared data module is used. Substantiation for the selection of these
measures of Structured Design can be found in the empirical findings of [80, 36, 22].

Our assignment of weights is somewhat arbitrary. We initially decided that
each attribute should contribute equally. However, owing to the restriction that all
the weights should sum to one and that we only have nine attributes, we assigned a
weight of .2 to the resource attribute and J to each of the artifact attributes.

ii

65

reduction in coupling due to parameter passing, the additional beneficial side effect
is a significant reduction in global coupling. For some unexplained reason Stevens
withholds this mapping until the end of his discussion. If the alternative mappings
were available at each decision point, as we have proposed, this decision would almost
certainly have been taken much earlier. Quite possibly other decisions would have
then been ruled out of contention. By not giving the alternatives considered at each
state, we are condemned to guessing what motivated the design choices.

5.4 Rationality
Alternatives

Assessment for Multiple

Though treatment of Structure Chart transformation and refinement is largely
informal (c.f. [52, 77, 89, 49]) we can at least generalize the transformations used in
Steven's protocol. Thus in this section we demonstrate a detailed application of our
rationality predicate when more than one mapping is applicable.

5.4.1 Observing Alternatives

Consider an initial observation matrix is shown in Table 5.2. The first column
(Alt) identifies each alternative transformation. The remaining columns correspond
to the attributes identified earlier. Note that the cost of changing the current state is
zero. By convention we shall always reserve alternative 1 as the current state against
which the states from the competing transformations are compared.

The alternative mappings in Table 5.2 are:

Al Current state

A2 Eliminate Funnel Module (Handle...Factors)

A3 Substitute Iterated Calls For Iterated Data Structure
(Error ..Flags, Error ..Flags...2, Factors, Safa.Ranges, Unsaf e..Flags)

A4 Factor Module (Write...Line_To...Stn) From (Notify.Stn_Q:fJ3adJ)evice,
Notify ...Stn_Qf _Unsafe..Factors)

A5 Move Call To (Notify...Stn_Qf_Unsafe...Factors) From (Handle...Factors)
To (Moni tor..Patient s)

A6 Move Call To (Notify...Stn_Of....Bad...Dev e) From (Handle..Factors) To
(Monitor J>at ients)

66

Tm Count Count Sum Sum Count Count Size Count Size Rat
Sen ts Mods Cyclo Vol um Calls Parms Parms Globs Globs

12 28 878 11 38 336 8 8
1-2 13 0 0 0 0 -1 -7 0 0 Triv

12 28 878 11 37 329 8 8
2-3 9 0 0 0 0 -1 -21 0 0 Triv

12 28 878 11 36 308 8 8
3-4 23 -1 0 0 -1 -5 -37 0 0 Triv

11 28 878 10 31 271 8 8
4-5 5 0 0 0 0 0 0 0 0 Not

11 28 878 10 31 271 8 8
5-6 21 0 0 0 0 -2 -14 0 0 Triv

11 28 878 10 29 257 8 8
6-7 10 +1 +1 +28 +2 +2 +2 0 0 Not

12 29 906 12 31 259 8 8
7-8 13 +1 +1 +24 +1 +3 +3 0 0 Not

13 30 930 13 34 262 8 8
8-9 16 +1 +1 +12 +1 0 0 0 0 Not

14 31 942 14 34 262 8 8
9-10 35 +1 +2 +32 +1 +3 +29 0 0 Not

15 33 974 15 37 291 8 8
10-11 8 0 0 0 0 0 0 0 0 Not

15 33 974 15 37 291 8 8
11-12 8 0 0 0 0 -2 +14 0 0 Not

15 33 974 15 35 305 8 8
12-13 1 0 0 0 0 0 0 0 0 Not

15 33 974 15 35 305 8 8
13-14 65 0 -6 -69 0 +2 -230 -7 -7 Triv

15 27 905 15 37 75 1 1

Table 5.1: The rationality for each decision in Stevens protocol.

Count Count Sum Sum Count Count Size Count Size
Alt Sent Mod Cyclo Vol um Calls Parms Parms Globs Globs
Al 0 12 28 878 11 38 336 8 8
A2 52 11 27 850 9 33 299 8 8
A3 65 12 21 809 11 38 106 1 1
A4 24 13 30 889 13 39 417 8 8
A5 12 12 28 878 11 38 336 8 8
A6 12 12 28 878 11 38 336 8 8
A7 12 12 28 878 11 38 336 8 8

Table 5.2: The Hospital Bed Monitor initial observation matrix.

67

A 7 Move Call To (Store....FactorsJn...Database) From (Handle....Factors) To
(Mani tor.Patients)

In this example we have opted for value functions which are simple linear trans­
formations of observed values. Thus the preference scale factor r for each cell is given
by

r· . = x"!'ax - x. ·/x"!1'ax - x1?1'in
1,3 J 1,3 J J

where i = 1 ... n for n alternatives, j = 1 ... m for m attributes, xjax, xjin corre­
spond to the maxima and minima for attribute j. One could argue that Structured
Design proponents so disfavor global data references that this should be reflected in
some value function which increases exponentially in the number of global references.
Notwithstanding the work of numerous researchers in software metrics, we are un­
aware of any empirically validated or generally accepted Structured Design preference
scheme, hence our admittedly conservative selection of value functions.

5.4.2 The Non-compensatory Techniques

Following Procedure 4.1 (see Figure 4.3), the' first decision analysis method
applied is dominance. The following dominance relationships were determined.

Al is dominated by {}

A2 is dominated by {}

A3 is dominated by {}

A4 is dominated by {Al, A5, A6, A7}

A5 is dominated by {Al}

A6 is dominated by {Al}

A 7 is dominated by {Al}

Note that alternatives A4, A5, A6 and A 7 are dominated by the current state.
That is, there is no benefit gained from the expenditure of resources for these trans­
formations. In fact Stevens designates alternative A5 as his first choice for transfor­
mation. Our analysis indicates that it is not rational with respect to the given SvaK
since it yields a state which is inferior to the present state. In his defense however,
alternate transformations A5, A6 and A 7 are but pieces of the more macroscopic
alternative transformation, A2. The only additional steps are the actual deletion of
one, the call to Handle....Factors in Mani tor_Fatients and two, the module itself.

The next decision analysis technique used is the conjunctive cutoff. Here in­
feasible alternatives are ruled out because they fail to meet some minima or they

68

I Alt II SAW I LAM I ELECTRE I TOPSIS I
Al 3rd 3rd 2nd 1st
A2 2nd 2nd 1st 2nd
A3 1st 1st 3rd 4th
A4 4th 4th 4th 3rd

Table 5.3: The independent rankings of alternatives by SAM, LAM, ELECTRE, and
TO PSIS.

exceed some maxima for each alternative. Consider for example that the number of
modules should not exceed 12. Alternative A3 would no longer be feasible. We shall
not impose this particular cutoff in order to carry sufficient alternatives into the next
phase.

Let us assume that the designer did not designate alternative A5 and that
alternative A3 is not eliminated by failing to meet a conjunctive cutoff. Thus, the set
of non-dominated conjunctively acceptable alternatives feeding into the next phase
are {Al, A2, A3, A4}.

5.4.3 The Compensatory Decision Analysis Techniques

Independent application of the four compensatory decision analysis techniques
yields the rankings given in Table 5.3. If alternative A4 was the designated choice,
the rationality algorithm would terminate at this point with an indication that it
is conjunctively rational. That is, unlike alternatives A2 and A3 (Al not being
designated), alternative A4 is not ranked first by at least one of the techniques.

5 .4.4 The Consensual Evaluation

Aggregation of the four preference orderings (SAM, LAM, ELECTRE, and
TOPSIS) by the three ranking techniques yields Table 5.4. Thus in the aggregate
partial ordering, alternative A4 is always less preferable to any of the other three.
If it were the designated choice, the algorithm would indicate that alternative A4 is
compensatorily rational (but not consensually rational). However, since alternative
A2 is the single consensually rational choice, alternatives Al and A3 are relegated to
the classification of compensatorily rational.

This concludes our Structured Design example. In the following section we
examine the application of DDM to conceptual data modeling.

71

transformations create abstract concepts in the EER and map these to other concrete
and abstract concepts.

The bottom-up transformations are:

B1 createEntity: entityName
B2 createRelationship: relationshipName

with: setOfEntities
B3 createGeneralization: generalizationName

with: setOfEntities
B4 collect: setOfAttributes under: entityName

The top-down transformations are:

T1 mapEntity: entityName toRelationship: relationshipName
with: setDfEntities

T2 mapEntity: entityName toGeneralizationDf: setOfEntities
T3 mapEntity: entityName toCollection: setOfEntities
T4 mapRelationship: relationshipName

toParallel: setOfRelationships
TS mapRelationship: relationshipName toEntity: entityName

with: setOfRelationships
T6 elaborate: entityName with: setOfAttributes

Both transformation types are used to define the mapping between concrete and
abstract EER schemata.

5.5.3 Example #1

Working from an initial concrete schema, Batini and Di Battista present three
alternative mappings to abstract schemata. We have added a fourth. The observation
matrix shown in Table 5.5 summarizes the performance of each alternative against
the decision control knowledge attributes identified in Section 5.5.1. See [57] for the
detailed transformations comprising each alternative abstract schema.

Thus, the alternative 1 (Al) observation vector summarizes the following facts.
The number of transforms is 13 i.e.,

• four createEnti ty transforms, one for each abstract entity defining a partition;

• five createRelationship transforms, one for each relationship connecting ab­
stract and/or concrete entities; and

• four mapEnti ty transforms, one for each projection of the abstract schema onto
the concrete schema.

72

Direct Indirect AvgE Avg R
Alt Transforms Relatn Relatn Parts /Part /Part
Al 13 4 3 4 2.25 1.00
A2 14 1 4 3 2.66 2.00
A3 12 0 7 3 2.66 1.33
A4 12 3 1 3 3.00 2.33

Table 5.5: Example #1 observation matrix.

The number of direct and indirect relationships result from the projections of
abstract to concrete relationships. The direct relationships are analogous to parame­
ters in an interface between modules. The indirect relationships can be though of as
global connections.

The number of partitions is determined by the number of abstract entity types
created in the partitioning step.

Finally, the average number of entity types per partition is calculated by dividing
the number of partitions into the total of both concrete and abstract entity types in
the schema. The calculation is similar for the average number of relationships per
partition.

Thus, the observation matrix summarizes what we know about each alternative
as perceived through each attribute.

Each of the alternatives in non-dominated. Therefore, the selection of any one is
at least non-dominantly rational. Since no conjunctive cutoffs are specified, we shall
assume that each alternative is also conjunctively acceptable. Moreover, since Batini
and Di Battista did not indicate which alternative to implement we shall classify
all alternatives. Independent application of the four compensatory decision analysis
techniques yield the same ranking of alternatives:

A4 > A3 > A2 > Al

Thus A4 is classified consensually rational while each of the other alternatives is
classified conjunctively rational. Note that the other alternatives (Al, A2, A3) are
not classified compensatorily rational since none of them was ranked first by any of
the compensatory decision analysis techniques.

5.5.4 Example #2

Since this example only considers two alternatives we give the bound trans­
formations describing how each is defined. First, however, we give the bottom-up

73

transformations describing the initial concrete schema. After detailing the , vo alter­
natives, we give the observation matrix summarizing each alternative. We conclude
with the rationality classification for each alternative.

The Initial Concrete Schema

The following bottom-up transformations define the initial schema correspond­
ing to [6] (Figure 17b).

createEntity: PERSON
createEntity: TEMPORARY-PERSON
createEntity: RESIDENT-PERSON
createGeneralization: G1 forEntity: PERSON

with: {TEMPORARY-PERSON, RESIDENT-PERSON}
createEntity: GROUP
createEntity: COHABITATION
createEntity: FAMILY
createGeneralization: G2 forEntity: GROUP

with: {COHABITATION, FAMILY}
createEntity: AGGREGATE-GEOGRAPHIC-REFERENCE
createEntity: ELEMENTARY-GEOGRAPHIC-REFERENCE
createEntity: LODGING

createRelationship: R1 with: {FAMILY, LODGING}
createRelationship: R2.1 with: {PERSON, COHABITATION}
createRelationship: R2.2 with: {PERSON, FAMILY}
createRelationship: R3

with: {RESIDENT-PERSON, AGGREGATE-GEOGRAPHIC-REFERENCE}
createRelationship: R4

with: {GROUP, ELEMENTARY-GEOGRAPHIC-REFERENCE}

First Alternative Abstract Schema

The following transformations synthesize the first alternative abstract
schema (6] (Figure l 7a) by partitioning the concrete schema (Figure 17b) and con­
structing the set of top-down transformations mapping from the abstract schema to
the concrete schema. (For the sake of quick visual reference, the name of each abstract
entity ends with an '*'.)

Partitioning step

createEntity: GROUP*
createEntity: PERSON*
createEntity: GEOGRAPHIC-REFERENCE*

createRelationship: Ri
with: {GROUP*, LODGING}

createRelationship: R2
with: {GROUP*, PERSON*}

createRelationship: R3
with: {PERSON*, GEOGRAPHIC-REFERENCE*}

createRelationship: R4
with: {GEOGRAPHIC-REFERENCE*, GROUP*}

Map abstract to concrete step

mapEntity: PERSON*
toCollection: {PERSON, TEMPORARY-PERSON, RESIDENT-PERSON}

mapEntity: GROUP*
toCollection: {GROUP, COHABITATION, FAMILY}

mapEntity: GEOGRAPHIC-REFERENCE* toRelationship: R5
with: {AGGREGATE-GEOGRAPHIC-REFERENCE,

ELEMENTARY-GEOGRAPHIC-REFERENCE}
mapRelationship: R2 toParallel: {R2.1, R2.2}

Second Alternative Abstract Schema

74

The second alternative abstract schema [6] (Figure 20) is synthesized by parti­
tioning the concrete schema (Figure 13a) and constructing the set of bottom-up and
top-down transformations mapping from the abstract schema to the concrete schema.

Partitioning step

createEntity: PERSON*
createEntity: GEOGRAPHIC-REFERENCE*
createEntity: PERSON-IN-FAMILY subsetOf: PERSON
createEntity: RESIDENT-PERSON subsetOf: PERSON
createEntity: FAMILY

createRelationship: R2'
with: {FAMILY, PERSON-IN-FAMILY}

createRelationship: R3'
with: {RESIDENT-PERSON, AGGREGATE-GEOGRAPHIC-REFERENCE}

createRelationship: R4'

Direct Indirect Avg E
Alt Transforms Relatn Relatn Parts /Part
Al 11 4 0 3 2.66
A2 11 1 3 2 2.50

Table 5.6: Example #2 observation matrix.

with: {ELEMENTARY-GEOGRAPHIC-REFERENCE, FAMILY}
createRelationship: WAS-RESIGENT

with: {AGGREGATE-GEOGRAPHIC-REFERENCE, FAMILY}

Map abstract to concrete step

mapEntity: PERSON*

AvgR
/Part

.33

.50

toCollection: {PERSON, RESIDENT-PERSON, PERSON-IN-FAMILY}
mapEntity: GEOGRAPHIC-REFERENCE* tcRelationship: RS

with: {AGGREGATE-GEOGRAPHIC-REFERENCE,
ELEMENTARY-GEOGRAPHIC-REFERENCE}

The Observation Matrix for Example #2

75

The observation matrix shown in Table 5.5 summarizes the attribute values for
each of the two alternatives defined in the previous sections.

Each alternative is non-dominated and conjunctively acceptable (since no cutoffs
are given). Like Example #1 each of the compensatory techniques ranks A2 over Al.
Thus, A2 is consensually rational while Al is at best conjunctively rational. If we
were to use the rationality classification normatively, we would recommend A2.

5 .6 Conclusion

The application of our model in these two cases has offered some insight into the
practicality of assessing designer performance. Several general classes of difficulty can
be identified. Progress is seriously impeded by the lack of a definition of the linguistic
system(s) governing the artifact and resource representations. When coupled with
informal and incomplete description of transforms and refinements, much preparatory
work must be accomplished to meet the prerequisites of our model. Finally, the
paucity of clearly articulated SncK components and the unavailability of the original
designer, condemns one to merely approximate what might have been the case in the

76

original design effort. Clearly, if one had our model incorporated as a component of
a software development environment, then the capture of this essential prerequisite
information would be greatly improved and could probably be made a natural by­
product of the design effort.

Chapter 6

Conclusions

We conclude this dissertation by reiterating the features of our model. This is
followed by a comparison with other approaches to design decision modeling. Finally
we indicate some future research directions.

6.1 Unique Features of DDM

Every model is ultimately the expression of something we hope to understand in
terms of things we think we do understand. The chain linking concepts in the model
may be quite lengthy but must be grounded with some collection of primitives that
we accept without question. Our model is grounded in decision theory and the LST
generic design step model for software development.

We set out to establish a formal framework to answer the central design ratio­
nalization query,

To what extent has a designer, on a particular occasion, using an explicit defi-
nition of 'good', decided rationally? ~

This effort entailed reformulating the query by giving formal definitions for each of
its constituents.

The first step grounded the object of design-an artifact-and the process by
which it came to be with explicit specifications. We adopted a state-transition basis
for the software process consistent with a transformational viewpoint. Artifact and
resource specifications are considered part of the state at any particular decision point
in the design process. Moreover, each of these consists of well-formed sentences from
some explicitly defined linguistic system. The linguistic systems too are considered
part of the state since changes to them can have profound effects on that which may
be observed as part of the decision analysis.

77

78

We introduced the specification of decision control knowledge as the basis for
bridging between a designer's informal notion of "good" and the formal methods for
analyzing decisions. Here we carefully delineated the objective (agent independent)
means for observing properties of the artifact or resource specifications from the means
for expressing the subjective (agent preference-based) means for expressing worth.

We gave a formal definition for routine decision and defined an algorithm for
classifying the rationality of this class of decision.

Finally, given that there can be no absolute rationality, only relative, and given
that no single decision analysis method comprehensively assesses all decision settings,
we defined our notion of rationality based on the knowledge used in the various
decision analysis techniques. Thus, our principal contribution is the specification of a
closed interval of relative rationality. This ordinal scale for the rationality of routine
design decisions coupled with a formal definition of routine design decision fulfills our
requirement for unambiguously answering the DR query.

The significance of our contribution is summarized as follows. When the DR
query is answered in the affirmative (i.e., for a particular designer, occasion, and arti­
fact) and we are dissatisfied with one or more characteristics of the resulting artifact,
then we know that the source of the dissatisfaction must lie in the decision control
knowledge and/or the transformations used to produce the artifact. This conclusion
logically follows since the DDM has indicated that the designer is not at fault inso­
far as rationality is concerned. Moreover, given the persistent, comprehensive design
history, we have significant documentation to assist us in tracing the source of the
offending characteristic. We are aware of no other system supporting such activities
in the development of software.

However, the DDM does require significant commitments before yielding its an­
swer: the articulation of decision control knowledge in the form of objectives, criteria,
attributes, value (preference) functions, observation channels; formal specifications
and their defining linguistic systems; and the specification of transformations defined
over those specifications. In other decision settings, this pre-structuring imposed on
practice has had significant affect on the decision makers and the quality of the object
of their decisions [42]. We would expect similar results for the practice of software de­
sign. Finally, these commitments appear to be on the agenda for software engineering
research [70] an,d should find their way into practice in the future.

79

6.2 Other Models of Design Decision

We encountered few researchers who focus exclusively on design decision mak­
ing [86, 73, 74, 23]. Other researchers either ignore the topic [47] or subsume it under
work on automated assistants [64].

A model of decision making for detailed design is given in [86]. In addition
to the model an associated automated tool exists "for tracking the decision process
during development so that relevant information (particularly assumptions) can be
recorded and later retrieved to assist with system comprehension prior to a mainte­
nance operation."

The overall structure of the model is that of a bipartite decision tree: concept
nodes represent decision points and refinement nodes represent alternative imple­
mentations. Concept nodes may have properties attached which serve as the basis for
deciding between alternative refinements. They represent individual characteristics
considered important in comparing alternatives.

These properties are combined into a single objective function for each concept
node. "In reaching a decision to select a particular refinement and reject others, a
designer is essentially optimizing the objective function across the alternatives."

White describes a process wherein multiple paths through a forest of these
decision trees (each with its own state) is explored interactively. The exploration
proceeds until the designer commits to a particular path. No attempt is made to
automate this exploration other than to provide the human designer with the results
of some symbolic manipulation.

In contrasting White's model with our DDM we note the following. White relies
on a single objective function to be optimized for each node. He does not indicate
that any decision variable normalization is necessary. He implicitly adopts a linear
rate of substitution as well as monotonicity for terms in the objective function. In
essence he uses only one decision analysis technique-something approximating SAW
(though this is not formally defined). He requires all designs to be expressed in a single
design/programming notation. He completely ignores the role of process resources.
Finally, White's purpose is "tracking the decision process so that assumptions sur­
rounding a decision are recorded and, thus, available for system comprehension."

Sintzoff proposes "to express program designs by hierarchical specification of
design decisions" [73, 7 4]. This is essentially a transformational basis for a design
history. Though one could envision other kinds of knowledge represented in Sintzo:ff's
decision frames, he only illustrates artifact knowledge. The frame for a decision
consists of: a label identifying the decision being described; an antecedent giving

80

the preconditions necessary for application of the decision; a consequent stating the
effects of the decision; a composition detailing the sub decisions (each described with
a similar decision frame). Thus, Sintzoff sketches a metalanguage for the description
of metaprograms-a second-order program (method) yielding other programs.

Sintzoff argues that the hierarchical composition of metaprograms is essential
for "distinguishing overall objectives from auxiliary technicalities, strategies from tac­
tics." Moreover, this composition should be expressed using: and-nodes to express the
combination of subdecisions, or-nodes to express alternatives between subdecisions,
subtrees to indicate the refinement of subdecisions, and leaves each of which iden­
tify some known solution to a design problem. It is unclear how this representation
technique meshes, if at all, with our own for the DCS.

Some key issues in understanding the design process are identified in [76]. They
identify four styles of design derivation: 1) rationalized descriptions - the final artifact
is given with sufficient supporting description to convince the reader of its correctness;
2) design sequences - a generally linear and idealized sequence of development steps
leading to the final artifact is given; 3) design spaces - the combination of all possible
sequences of derivation constituting the design space for the artifact is supplied; 4)
problem behavior graphs - the design space supplemented with the exploration paths
and the order of exploration. Our approach lies somewhere between design spaces
and problem behavior graphs. We do not give the entire design space but do give
the order of exploration as well as the non-functional knowledge used in cutting-off
search.

Artifact effectiveness and process efficiency often are not explicitly distinguished.
We have shown how they can be treated in a common framework, even with multiple
conflicting objectives for each.

Similarly, so called "nonfunctional" goals are not explicitly represented in the
specifications or the derivation systems. We have shown how they can be. Moreover,
we explicitly show their interaction in the attainment of an artifact's design.

The omission of details, such as nonfunctional goal knowledge, is not entirely
motivated by a desire to simplify the presentation. Rather, specification languages
just do not represent the great abundance of design knowledge and, thus, do not allow
us to reason with and about it. Here we have incrementally advanced the state of
the art by demonstrating a way of integrating resource and artifact reasoning within
a common framework. Like [69] we also hold that responsible designing not only
delivers a specification for the construction of some artifact but also includes the
derivation and rationale for that design.

Measuring progress toward goals is largely an open issue. A designer does not
necessarily follow a monotonic path to fulfillment of a design goal. This can be due

81

to incomplete or incorrect knowledge. Each of these may be remedied by learning.
Though we only include the effects of learning-non-routine decision-making-in our
model, it is some small consolation that it is explicitly addressed at all. Additionally,
we can deal with some of the nonmonotonicity with some decision analysis techniques.
We have explicitly provided for the inherent tradeoff in dealing with goal conflict.

There are potentially a large number of languages involved for specifications,
partially developed programs, and final results. We have founded our DDM on this
notion in the form of a linguistic system governing what can be represented and,
therefore, made subject to the DCS.

We have not given the definitive answer to the knowledge representation issues
in design decision modeling. Some of these concerns are addressed in the following
discussion.

6.3 Future Research

Further research in design decision modeling is easily divided into three cate­
gories: theoretical advances, empirical investigation, and practical application.

Theoretical advances in DDM include the specification of a formal language
of DDM along with a methodology for its application. Essentially this language
defines what can be said about the process and artifacts of design decision making.
Definition of its formal semantics will require significant effort. We have given a
basis for further work by formally defining the concepts involved. Borrowing from
Sintzoff's idea of hierarchically composable decisions we could envision a hierarchy of
intension/extension levels of decision modeling. Each interior node in the hierarchy
is simultaneously the intension for its subordinates and the extension of its superior.
Perhaps this approach could help overcome the rather simple routine, non-routine
dichotomy. The effect of this approach is to expand the closed-world assumption to
include more of the non-routine decisions, thereby routinizing them. This would entail
specifying the decision control knowledge for when to change for example the library
of transformations. Clearly, such meta-level knowledge specification is a challenging
undertaking.

The methodological implications are equally difficult. A great deal of effort was
expended in identifying a base representation language for Structured Design that
was am.enable to the decision analysis. The great lesson learned was to focus on
the essential relations implied in the Structure Chart language not on the nature of
the pseudo-code. Specification of a decision modeling methodology would likely be a
significant undertaking.

82

The addition of further decision analysis techniques to the ordinal scale of ra­
tionality is clearly warranted. However, classification of decision analysis techniques
with respect to this scale is no mean feat. It is not clear that the simple dimensions of
knowledge representability in terms of compensatory versus non-compensatory tech­
niques is sufficient.

A potentially fruitful line of research is the extension of our model to include
so called fuzzy reasoning. This has application in the specification of observation
channels and the assignment of a particular rationality descriptor to a routine decision
interval or to all the routine intervals. The ascription of the label non-dominantly
rational to a large sequence of routine decisions wherein only one is so described is
clearly too conservative.

An area ripe for empirical investigation is the assumption that more rational
decisions will lead to better designs. This line of study would pursue the distinction
between decision and outcome. An outcome is a future state of the world that is
valued relative to other possibilities. A good decision is an action we take that is
logically consistent with the alternatives we perceive, the information we have, and
the preferences we feel. In the uncertain world of designing, good decisions can lead to
outcomes subsequently deemed as bad, and vice versa. We hold the position that the
prestructuring of the design decision setting will substantially improve the resultant
designs. It should be empirically determined whether the quality of the design stems
from the prestructuring or a descriptive DDM turned normative.

Finally in the practical realm we should consider pursuit of automated design
assistants imbued with prespecified decision control structures. That is, we could
consider moving the DDM from being a purely descriptive model to being a norma­
tive one. However, this would require developers to change the way they approach
designing. The whole idea of a normative model arises when we are not satisfied with
our functioning. In view of the many easily demonstrated lapses in human decision­
rnaking that we can observe, who would want to rely on unaided judgement for a
complex and important design problem?

Development of practical design decision assistants squarely confronts the issue
of scale. While the software quality identified by [10, 41] consisting of three objec­
tives, 11 criteria, and 25 attributes are specified in our knowledge representation, we
do not yet have the empirical support for how these should be weighted, nor have
adequate observation channels been defined (all are presently forced to a common 0
to 10 agent dependent scale) and preference functions have not even been considered.
Considerable effort would be involved redressing these issues.

Organizations are increasingly turning to team designing. As presently envi­
sioned, the DDM supports only a single designer. The reconciliation of multiple

83

potentially conflicting decision control structures emanating from multiple designers
is a challenging thought.

In closing we reiterate the goal satisfied by this work: To combine the norma­
tive, descriptive, and practical viewpoints of decision analysis into a single logical
framework for the analysis of software design decision making.

6.4 Postscriptum

Nay, lad! Deciding's not your ploy,
For that's a risky game.
It's making a decision
That's your surest road to fame.

Decide means to take action,
And actions rock the boat,
And if you act and don't succeed,
Small chance you'll stay afloat.

But ... making a decision,
Ah! that's the way to swing.
It keeps the masses happy
And doesn't change a thing.

So get yourself a task force
Well skilled in all the arts
And call them all together
And watch them flip their charts.

For Jack says no and Jim says yes
And Billy says perhaps
And Chester asks good questions
... When he isn't taking naps.

And Bertram, chomping his cigar,
Is chock full of statistics,
While Waldemar, who puffs a pipe,
Is famed for his heuristics.

84

"The figures prove-" "The model says-"
"The forecast bears me out."
"The complex simplex program
Shows I'm right without a doubt."

Let's tiptoe out and close the door
And let them stew a while.
No fear that they'll do something rash,
For doing's not their style.

Reality's an untamed beast
That's difficult to master,
But models are quite docile
And give you answers faster.

So diddle with a model
To glorify your name,
Then get yourself a task force
And learn to play the game.

From Decision Tables
by M. Montalbano (SRA, 1974).

Bibliography

[1] AcKOFF, R. The Art of Problem Solving. John Wiley and Sons, Inc., New York, 1978.

[2] ARCHER, B. Design as a discipline. Design Studies 1, 1 (Jan. 1979), 17-20.

[3] AsIMOW, M. Introduction to Design. Prentice-Hall, Englewood Cliffs, NJ, 1962.

[4] BALZER, R. Automated enhancement of knowledge representations. In IJCAI-85
(Aug. 1985), AAAI.

[5] BAR.TELY, W. Theories of rationality. In Evolutionary Epistemology, Rationality, and
the Sociology of Knowledge. Open Court, La Salle, Illinois, 1987, pp. 205-214.

[6] BATINI, C., AND BATTISTA, G. A methodology for conceptual documentation and
maintenance. Information Systems 13, 3 (1988), 297-318.

[7] BELADY, L. Software engineer, the system designer. In Software Engineering '86.
Peter Peregrinus, Ltd, London, 1986, pp. 421-425.

[8] BROOKS, F. The Mythical Man-Month. Addison-Wesley, Reading, MA, 1975.

[9] BROOKS, F. No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20, 4 (Apr. 1987), 10-19.

[10] CAVANO, J., AND McCALL, J. A framework for the measurement of software quality.
In Software Quality Assurance Workshop (Nov. 1978), ACM, pp. 133-139.

[11] CHANKONG, V., AND HAIMES, Y. Multiobjective Decision Making. North-Holland,
New York, 1983.

[12] CHERNIAK, C. Minimal Rationality. MIT Press, Cambridge, MA, 1986.

[13) CROSS, N., NAUGHTON, J., AND WALKER., D. Design method and scientific method.
Design Studies 2, 2 (Oct. 1981), 198-201.

[14] DASAR.ATHY, B. Smart: Similarity measure anchored ranking technique for the anal­
ysis of multidimensional data analysis. IEEE Transactions on Systems, Man, and
Cybernetics SMC-6, 10 (1976), 708-711.

[15] DIJKSTRA, E. Selected Writings on Computing. Springer-Verlag, New York, 1982.

[16] FREEMAN, P. Toward improved review of software design. In National Computer
Conference (1975), ACM, pp. 329-334.

85

i

i

-I
I
l

86

[17] FREEMAN, P. The central role of design in software engineering. In Software
Engineering Education. Springer-Verlag, Amsterdam, 1976.

[18] FREEMAN, P. Software Perspectives. Addison Wesley, Reading, MA, 1987.

[19] FREEMAN, P., AND (EDS.), A. W. Fundamentals of design. In Software Design
Techniques (4th ed.). IEEE Computer Society, Los Alamitos, CA, 1983.

[20] GERO, J. Design Optimization. Academic Press, New York, 1985.

[21] GERO, J. Optimization in Computer-Aided Design. North-Holland, Amsterdam, 1985.

[22] GrnsoN, V., AND SENN, J. System structure and software maintenance.
Communications of the ACM 32, 3 (Mar. 1989), 347-357.

[23] GILB, T. Principles of Software Engineering Management. Addison-Wesley, Reading,
Massachusetts, 1988.

[24] GLEGG, G. The Development of Design. Cambridge Press, Cambridge, England, 1981.

[25] GRIES, D. The Science of Programming. Springer-Verlag, Amsterdam, 1981.

[26] HALSTEAD, M. Elements of Software Science. Elsevier North-Holland, New York,
1977.

[27] HAMILTON, M., AND ZELDIN, S. Higher order software - a methodology for defining
software. IEEE Transactions on Software Engineering SE-2, 3 (Mar. 1976).

[28] HOARE, C. Programming: Sorcery or science? IEEE Software 1, 2 (Apr. 1984).

[29] HOLTZMAN, S. Intelligent Decision Systems. Addison-Wesley, New York, 1989.

[30] HWANG, C., AND MASUD, A. Multiple Objective Decision Making - Methods and
Applications. Springer-Verlag, New York, 1979.

[31] HWANG, C., AND YooN, K. Multiple Attribute Decision Making. Springer-Verlag,
New York, 1981.

[32] JACKSON, M. Principles of Program Design. Academic Press, New York, 1975.

[33] JONES, J. Design Methods. John Wiley and Sons, New York, 1980.

[34] JONES, J. Essays in Design. John Wiley and Sons, New York, 1984.

[35] JONES, J. Programming Productivity. McGraw-Hill, New York, 1986.

[36] KAFURA, D ., AND HENRY, S. Software quality metrics based on interconnectivity.
Journal of Systems and Software 2 (1981), 121-131.

[37] KEENEY, R., AND RAIFFA, H. Decisions with Multiple Objectives. John Wiley &
Sons, New York, 1976.

[38) KLIR, G. Architecture of Systems Problem Solving. Plenum Press, New York, 1985.

87

[39] MAYALL, W. Pr nciples in Design. Design Council, London, 1979.

[40) McCABE, T. A complexity measure. IEEE Transactions on Software Engineering
SE-2 (Dec. 1976), 308-320.

[41) McCALL, RICHARDS, AND WALTERS. Factors in software quality, 1977.

[42] MILLER. Professional Decision-Making. Praeger Publishers, New York, 1970.

[43] MILLER, D., AND STARR, M. The Structure of Human Decisions. Prentice-Hall,
Englewood Cliffs, NJ, 1967.

[44) MILLS, H. Software Productivity. Little, Brown and Co., Boston, 1983.

[45] M.M. LEHMAN, V. STENNING, W. T. Another look at software design methodology.
ACM Software Engineering Notes 9, 2 (1984), 38-53.

[46] MosTow, J. Rutgers workshop on knowledge-based design. SIGART Newsletter, 90
(Oct. 1984), 19-32.

[47] MosTOW, J. Toward better models of the design process. The AI Magazine (Spring
1985), 44-57.

[48] MYERS, G. Reliable Software Through Composite Design. Petrocelli Charter, New
York, 1975.

[49] MYERS, G. Composite Structured Design. Van Nostrand, New York, 1978.

[50] NAUR, P ., AND (EDS.), B. R. Software engineering: A report on a conference spon­
sored by the nato science committee, 1969.

[51] O'CATHAIN, C. Why is design logically impossible? Design Studies 3, 3 (July 1982).

[52) PAGE-JONES, M. The Practical Guide to Structured Systems Design. Yourdon Press,
Englewood Cliffs, NJ, 1980.

[53] PARNAS, D. On the criteria to be used in decomposing a system into modules.
Communications of the ACM 15, 12 (Dec. 1972).

[54) PARNAS, D., AND CLEMENTS, P. A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering SE-12, 2 (Feb. 1986), 251-257.

[55) PETROSKI, H. To Engineer Is Human. St. Martins Press, New York, 1985.

[56) PIDGEON, C. A Design Decision Protocol for Stevens' Hospital Bed Monitor
Structured Design. Tech. Rep. ASE-RTPlOO, University of California, Irvine, 9 1989.

[57) PIDGEON, C. Two design decision protocols in conceptual data modeling. Tech. Rep.
ASE-RTP099, University of California, Irvine, 9 1989.

[58] POPPER, K. Conjectures and Refutations. Routledge and Kegan Paul, London, 1963.

88

[59] PosT, J. Paradox in critical rationalism and related theories.
Epistemology, Rationality, and the Sociology of Knowledge. Open

In Evolutionary
Court, La Salle,

Illinois, 1987, pp. 225-278.

[60] PRESSMAN, R. Software Engineering. McGraw-Hill, New York, 1987.

[61] PROTZ EN, J. Reflections on the fable of the caliph, the ten architects, and the philoso­
pher. Design Studies 3, 2 (Apr. 1982), 85-91.

[62] PUGH, S. Design-the integrative-enveloping culture-not a third culture. Design
Studies 3, 2 (Apr. 1982), 93-96.

[63] PYE, D. The Nature and Aesthetics of Design. Barrie and Jenkins, Ltd., London,
1978.

[64] RICH, C., AND WATERS, R. Artificial Intelligence and Software Engineering. Morgan
Kaufman, Los Altos, CA, 1986.

[65] RITTLE, H. Some principles for the design of an education system for design. Journal
of Architectural Education XXVI, 1-2 (Winter-Spring 1971).

[66] RosTENSTREICH, S., AND HOWDEN, W. Two-dimensional program design. IEEE
Transactions on Software Engineering SE-12, 3 (Mar. 1986), 377-384.

[67] RZEVSKI, G. On the design of a design methodology. In Design: Science and Method
(1980), Design Research Society.

[68] SAATY, T. The Analytic Hierarchy Process. McGraw-Hill, New York, 1980.

[69] ScHERLIS, W., AND SCOTT, D. First steps towards inferential programming. In IFIP
Congress 83. North-Holland, Amsterdam, 1983.

[70] SHAW, M. Beyond programming-in-the-large: The next challenges for software en­
gineering. Tech. Rep. CMU /SEI-86-TM-6, Carnegie Mellon University /Software
Engineering Institute, May 1986.

[71] SIMON, H. Administrative Behavior. The Macmillan Co., New York, 1961.

[72] SIMON, H. Models of Discovery. D. Reidel, Dordrecht, Holland, 1977.

[73] SINTZOFF, M. Suggestions for composing and specifying program design decisions. In
Lecture Notes in Computer Science, Vol. 83. Springer-Verlag, New York, 1980, pp. 311-
326.

[74] SINTZOFF, M. Understanding and expressing software construction. In Program
Transformation and Programming Environments. Springer-Verlag, Berlin, 1984,
pp. 169-180.

[75] STADLER, W. Multicriteria Optimization in Engineering and in the Sciences. Plenum
Press, New York, 1988.

[76] STEIER, D., AND ANDERSON, P. Comparing algorithm syntheses, Mar. 1988.

[77] STEVENS, W. Using Structured Design. Wiley-Interscience, New York, 1981.

89

[78] T.J. TEO REY, G. WEI, D. B., AND KOENIG, J. Er model clustering as an aid for
user communication and documentation in database design. CACM 32, 8 (Aug. 1989),
975-987.

[79] TRIBUS, M. Rational Descriptions, Decisions, and Designs. Pergamon Press, New
York, 1969.

[80] TROY, D., AND ZWEBEN, S. Measuring the quality of structured designs. Journal of
Systems and Software 2 (1981), 113-120.

[81] TURSKI, W., AND MAIBAUM, T. The Specification of Computer Programs. Addison-
Wesley, Reading, MA, 1987.

[82] VON WRIGHT, G. The Logic of Preference. Aldine Publishing Co., Chicago, IL, 1963.

[83] WARNIER, J. Logical Construction of Programs. Van Nostrand, New York, 1974.

[84] WEBSTER. Webster's New Twentieth Century Dictionary. The Publishers Guild, New
York, 1967.

[85] WEINBERG, G. Rethinking $ystems Analysis and Design. Little, Brown and Co.,
Boston, MA, 1982.

[86] WHITE, J. A decision tool for assisting with the comprehension of large software sys­
tems. In Automated Tools for Information Systems Design. North-Holland Publishing
Co., New York, 1982, pp. 49-65.

[87] W.P. STEVENS, G. M., AND CONSTANTINE, L. Structured design. IBM Systems
Journal 13, 2 (1974), 115-139.

[88] YooN, K. Systems Selection by Multiple Attribute Decision Making. PhD thesis,
Kansas State University, 1980.

[89] YouRDON, E., AND CONSTANTINE, L. Structured Design. Prentice-Hall, Englewood
Cliffs, NJ, 1979.

[90] Yu, P. Multiple-Criteria Decision Making. Plenum Press, New York, 1985.

[91] ZADEH, 1. Fuzzy sets. Information and Control 8 (1965), 338-353.

[92] ZELENY, M. Multiple-Criteria Decision Making. Mc Graw-Hill, New York, 1972.

