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ABSTRACT OF THE DISSERTATION

High-Performance Cloud Computing Frameworks for Serverless Computing and 5G
Systems

by

Shixiong Qi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2024

Dr. K. K. Ramakrishnan, Chairperson

Cloud computing has fundamentally transformed the landscape of computing by

leveraging the widespread accessibility of network connectivity. In this space, serverless com-

puting platforms have emerged as key facilitators, promising cost-effective cloud computing

capabilities for users. However, existing serverless platforms face several challenges, particu-

larly in the data plane they use for communication between serverless functions. These data

plane mechanisms conflict with the event-driven philosophy of serverless computing. They

do not help meet the desired low-latency requirements crucial for a variety of services using

the cloud. For example, 5G cellular networks are transitioning to a cloud-native design,

adopting a Service-based Architecture, to simplify the development and deployment of 5G

systems in the cloud. However, this comes with trade-offs, as it may limit performance and

hinder the execution of low-latency operations in 5G cellular core network (5GC).

Our first contribution focuses on assessing the overhead of container network in-

terface, the essential networking component in the serverless data plane. Our investigation

revealed that current serverless platforms treat inter-function networking as though each

x



function were isolated by a network link in the kernel, a methodology fraught with overhead.

We recognize the imperative of facilitating seamless communication within nodes via shared

memory processing and design SPRIGHT. SPRIGHT is the first serverless framework that

leverages the extended Berkeley Packet Filter (eBPF), an in-kernel event-driven networking

subsystem, to supplant long-running stateful components typically used in current server-

less platforms. We also optimize the placement engine in the serverless control plane to

account for heterogeneity and fairness across competing functions, ensuring overall resource

efficiency, and minimizing resource fragmentation.

We then show how an improved serverless design (called LIFL) can be suitable

to support fast and efficient model aggregation in Federated Learning (FL), which typi-

cally involves varying numbers of heterogeneous clients locally training machine learning

models. LIFL adopts the streamlined data plane from SPRIGHT. We further introduce

locality-aware placement in LIFL to maximize the benefits of shared memory processing.

LIFL precisely scales and carefully reuses server resources for hierarchical aggregation to

achieve the highest degree of parallelism while minimizing aggregation time and resource

consumption. Our open-source implementation of LIFL achieves significant improvement in

resource efficiency and aggregation speed for supporting FL at scale, compared to existing

serverful as well as serverless FL systems.

Our last contribution introduces L25GC+, a 3GPP-compliant 5G Core designed

to support low-latency control plane operations and high-performance user plane packet

transmissions. In the control plane, L25GC+ leverages the 3GPP-specified Service-Based

Interface (SBI) for exchanging control events between 5G functions. L25GC+ addresses this

xi



by redesigning the SBI using shared memory processing instead of kernel networking. We

augment asynchronous shared memory I/O with synchronous data exchange primitives and

stateful processing to differentiate across user sessions. The optimized design seamlessly

integrates with the 3GPP-compliant SBI, demonstrating improved latency, scalability, and

user experience on commercial 5G testbeds. In the 5GC data plane, packet classification

becomes expensive with a growing number of user sessions. We devise faster packet clas-

sification approaches in the 5GC data plane, ensuring high data plane performance, even

with an increasing number of user sessions.
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Chapter 1

Introduction

Cloud computing has become increasingly popular, with a growing number of

users relying on it for a variety of emerging applications, including 5G networks [176] and

machine learning. These applications benefit from the cloud’s ability to provide scalable,

flexible, and cost-effective computing resources [166, 181]. The rise of 5G, with its need

for high-speed data transmission and low-latency communication, and machine learning,

which demands significant computational power for training complex models, has further

underscored the importance of cloud computing.

In the midst of this growing reliance on cloud infrastructure, a new paradigm

known as serverless computing, also known as Function-as-a-Service (FaaS [197, 109]), has

emerged [181, 180, 171, 76]. Serverless computing revolutionizes the way applications are

deployed and managed in the cloud by abstracting away the underlying infrastructure [92].

This model shifts the responsibility of managing servers, scaling and capacity planning

from the user to the cloud provider [166, 136]. As a result, developers can focus on writing
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code and developing applications without having to worry about server configuration and

maintenance [166, 136].

However, serverless computing faces several significant challenges that impact its

effectiveness and scalability. One of the primary issues is the heavyweight data plane, which

often relies on kernel-based networking and container-based sidecars [181, 215, 138]. This

design can introduce considerable overhead, resulting in higher latencies that are detrimen-

tal to real-time and interactive applications such as those in the Internet of Things (IoT)

and edge computing [215]. Another challenge is the slow startup times of serverless func-

tions, commonly referred to as “cold starts” [132, 156]. When a function is invoked after

being idle, it often requires additional time to initialize, which can lead to noticeable delays.

This latency is problematic for applications requiring immediate responsiveness, as it can

degrade user experience and hinder performance [132, 156, 180]. Furthermore, the place-

ment of serverless functions are often suboptimal [166, 138]. Current serverless platforms

typically do not account for the specific resource constraints and performance requirements

of different applications. This can lead to inefficient use of resources and increased opera-

tional costs [166, 183]. Additionally, poor function placement can exacerbate latency issues,

especially in distributed environments where data and compute resources are geographically

dispersed [138].

Addressing these challenges is crucial for advancing serverless computing to better

support a wider range of applications, particularly those requiring low-latency and high

scalability. In this dissertation, we first start with optimizing the data plane, improving

function initialization processes, and developing more intelligent function placement algo-
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rithms are essential steps toward overcoming these hurdles and realizing the full potential

of serverless computing. This involves the design of (1) a placement engine that considers

heterogeneity and fairness among competing functions [166]; (2) a detailed examination of

Container Network Interface (CNI) overheads, highlighting the heavyweight nature of the

kernel networking stack [178, 179]; (3) a novel, event-driven proxy leveraging the extended

Berkeley Packet Filter (eBPF) to replace traditional container-based sidecars [215, 181, 180];

and (4) the design of event-driven shared memory processing for a significant enhancement

in the dataplane scalability of serverless function chaining [181, 180]. Through evaluations

of our design with various serverless workloads such as online web services and IoT, we show

the benefit of a careful design of the serverless computing environment. We achieve an order

of magnitude improvement in throughput and latency, while substantially reducing CPU

usage, and mitigating the need for ‘cold-start’. We show how our design can also be very

suitable to support Federated Learning, to achieve considerable savings on training time

and cost [183]

In addition, the integration of Network Function Virtualization (NFV) into cellular

networks, adopted by operators, vendors, and standards bodies (e.g., 3GPP), has resulted

in the fundamental transformation of the 5G cellular core (5GC) architecture [130]. The

cellular core, in essence, serves as the central anchor point between user equipment (UE)

and the data network (e.g., Internet), managing crucial control and data plane functions,

such as user authentication and mobility management, user packet routing and classifica-

tion. Having the 5GC NFs implemented as cloud-native microservices promises increased

flexibility, scalability, and ease of deployment [159].
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However, the design of the data plane and control plane in the 5G Core (5GC) net-

work presents several challenges that hinder its optimal performance in cloud environments.

The data plane of 5G lacks a scalable and fast packet classification mechanism, which is

essential for meeting the low-latency requirements of 5G applications [131, 182, 130]. This

deficiency results in suboptimal packet processing speeds, thereby affecting the overall per-

formance of the network. Moreover, the 5G control plane has adopted a cloud-native design

through the use of the Service-Based Interface (SBI [143]). This interface facilitates the dis-

aggregation of 5GC control plane network functions (NFs), allowing for greater flexibility

and scalability in deployment. However, the current design of the SBI is inefficient, leading

to significant processing delays in control plane events. These delays, often overlooked, can

have a substantial impact on the performance of the 5G network. The inefficiencies in both

the data plane and the control plane design mean that the 5G core network struggles to

achieve the best possible performance in cloud settings. Addressing these issues is crucial

for improving the performance of 5G in the cloud. In this dissertation, we enhance the data

plane with more efficient packet classification mechanisms [182, 130] and optimizing the SBI

design to reduce processing delays can help achieve the low-latency, high-performance char-

acteristics that 5G networks require [159]. This will enable 5G to fully leverage the benefits

of cloud-native architectures and meet the demanding requirements of modern applications.

This dissertation makes the following major contributions:

Contribution 1: Assessing Container Network Interface. Container Network In-

terface (CNI [6]) is the fundamental building block of container networking. Given that

serverless computing relies heavily on containerization to achieve necessary isolation and
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virtualization, dissecting the CNI helped us understand the networking overhead in server-

less computing. To this end, we conducted a comprehensive study of various CNI solutions

to understand their implementation details and evaluate their performance [178, 179]. The

key insight was the heavyweight nature of the kernel networking stack, which causes most of

the container networking overhead. The use of advanced host networking techniques, such

as extended Berkeley Packet Filtering, can greatly improve the performance of container

networks. However, eBPF requires careful design to truly realize its value. This perspective

guided our design of the high-performance data plane for serverless computing.

Contribution 2: An Efficient and Fair Algorithm for Serverless Function Place-

ment. Serverless platform, e.g., Knative [59], has the capability to flexibly scale and sched-

ule the cloud services, which does help to improve the resource utilization and relieve the

intensive resource concerns in edge cloud. Whereas, resources in the cloud are heteroge-

neous, saturating only one resource type will lead to the under-utilization and unfairness

of other types of resources, which eventually has negative effects on the overall resource

utilization. We first understand the unfairness of the function placement logic in current

serverless computing frameworks, which are not primarily designed for resource-constrained

edge environments, and fail to satisfy the Service Level Objectives (SLOs) for co-locating

serverless functions. We then propose Mu [166], which includes a serverless function place-

ment algorithm that considers resource demand across multiple dimensions (CPU, memory).

We adapted the notion of dominant resource fairness to ensure efficient and fair placement

of functions in resource-constrained edge environments.
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Contribution 3: High-performance and Efficient Serverless Computing using

Event-driven Shared Memory Processing. We proposed SPRIGHT [181, 180] that

focuses on addressing the inefficiencies and performance challenges observed in the data

plane in existing serverless frameworks. SPRIGHT’s contributions include the design and

implementation of event-driven shared memory processing for serverless function chaining,

through the extensive use of the extended Berkeley Packet Filter (eBPF [39]). This design

minimizes unnecessary protocol processing and serialization-deserialization overhead in the

serverless data plane. eBPF’s use ensures that shared-memory processing is event-driven

compared to polling-based shared memory processing that constantly consumes the CPU

cycles [225, 185], thus keeping network overhead strictly load-proportional. We also in-

troduced the eBPF-based event-driven sidecar [215] as an alternative to the heavyweight,

container-based sidecar, which causes significant overheads in current serverless frameworks.

Furthermore, the problem of slow startup of serverless computing occurs when

functions need to be started on demand and the infrastructure needs time to allocate re-

sources and execute the function [156, 132]. The negative impact of slow startup is especially

evident in scenarios that require fast or real-time responses. Addressing the challenge of

slow startup in serverless computing is critical to ensure optimal performance and cost-

effectiveness in a variety of application scenarios. To this end, we investigate the impact of

container networks on the startup of serverless functions, especially in the context of mas-

sively paralleling the startup of multiple serverless functions [132, 180]. This study iden-

tified the major bottlenecks in container networks that cause delays in function launches,

which guides our design philosophy for mitigating function startup latency, which is to keep
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functions warm at the lowest possible cost, thus avoiding the need for fast startups while

enabling real-time responses.

Contribution 4: Efficient Model Aggregation for Federated Learning using

Serverless Computing. Federated Learning (FL) typically involves a large-scale, dis-

tributed system with individual user devices/servers training models locally and then ag-

gregating their model updates on a trusted central server [87, 126]. Existing systems for

FL often use an always-on server for model aggregation, which can be inefficient in terms

of resource utilization [87, 126, 98]. They may also be inelastic in their resource manage-

ment. This is particularly exacerbated when aggregating model updates at scale in a highly

dynamic environment with varying numbers of heterogeneous user devices/servers [87].

We present LIFL [183], a lightweight and elastic serverless cloud platform with fine-

grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a

streamlined, event-driven serverless design that eliminates the individual heavy-weight mes-

sage broker and replaces inefficient container-based sidecars with lightweight eBPF-based

proxies. We leverage shared memory processing to achieve high-performance communica-

tion for hierarchical aggregation, which is commonly adopted to speed up FL aggregation

at scale. We further introduce locality-aware placement in LIFL to maximize the bene-

fits of shared memory processing. LIFL precisely scales and carefully reuses the resources

for hierarchical aggregation to achieve the highest degree of parallelism while minimizing

the aggregation time and resource consumption. Our experimental results show that LIFL

achieves significant improvement in resource efficiency and aggregation speed for supporting

FL at scale, compared to existing serverful and serverless FL systems.
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Contribution 5: High-performance, 3GPP-compliant 5G Core Network. The

control plane in 5G core (5GC) presents challenges due to inefficiencies in handling con-

trol plane operations (including session establishment, handovers and idle-to-active state-

transitions) of 5G User Equipment (UE). The Service-based Interface (SBI) used for commu-

nication between 5G control plane functions introduces substantial overheads that impact

latency [130]. Typical 5GCs are supported in the cloud on containers, to support the disag-

gregated Control and User Plane Separation (CUPS) framework of 3GPP. L25GC [130] is

a state-of-the-art 5G control plane design utilizing shared memory processing to reduce the

control plane latency. However, L25GC [130] has limitations in supporting multiple user

sessions and has programming language incompatibilities with 5GC implementations, e.g.,

free5GC [58], using modern languages such as GoLang [70]. Further, new and constantly

evolving use cases continue to place performance demands on the 5G data plane, especially

for low latency communications with a large number of concurrent user session. This re-

quires to re-examine the packet classification mechanisms to support fast packet processing

in the User Plane Function (UPF) [130]. This work lies on both the control plane and data

plane of the 5G core network (5GC), with the aim of reducing network overhead and thus

providing low-latency 5G services to end users. This work includes optimization of the data

plane and control plane of the 5GC:

• Fast and Scalable Packet Classification in 5GC User Plane Functions. In

the data plane, we tackled the challenge of expensive packet classification in the 5G

User Plane Function (UPF) [130]. UPF is an important component of the 5GC data

plane, which interconnects the radio access network with the Internet. The slowdown
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in packet classification arises from the surge in user sessions, as the conventional

linear search method recommended by 3GPP proves to be unscalable. My contri-

bution centered on devising faster approaches for packet classification in the 5GC

data plane [130]. This addressed the critical need for maintaining high performance

in 5G UPF in the face of an increasing number of user sessions, ensuring efficient

packet processing for diverse services and use cases. The advancement in this work is

also applicable to 6G and beyond systems to compensate for the shortcomings of the

3GPP-specified cellular network design [182, 131].

• High-performance, 3GPP-compliant Service Based Interface. We addressed

the challenges faced by the 5GC control plane, which relies on the 3GPP-specified

Service-Based Interface (SBI) to exchange control events between 5G functions [130].

However, the existing SBI introduced significant overhead that impacted the latency

of the 5GC to process control events from end-users. To overcome these challenges,

we redesigned the SBI to be strictly 3GPP compliant while maintaining high perfor-

mance through the use of shared-memory processing [159]. The key was to augment

the asynchronous shared-memory I/O with synchronous data exchange primitives,

while adding stateful processing to the shared-memory network stack to differentiate

between user sessions [159, 184]. The improved design facilitates integration with

3GPP-compliant SBI and scales to multiple users. It optimizes the 5G control plane

in terms of latency, scalability, and user experience, as we have demonstrated on

commercial 5G testbeds.
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The organization of this dissertation is as follows: Chapter 2 discusses related

work. Chapter 3 assesses various essential aspects of container networking, including the

functionality, performance, and scalability. Chapter 4 presents the fair placement of server-

less functions. Chapter 5 presents a high-performance and efficient data plane for serverless

computing, using eBPF-based shared memory processing. Chapter 6 describes the efficient

model aggregation in Federated Learning using serverless computing. Chapter 7 introduces

control and data plane co-optimization in the 5G cellular core. Finally, chapter 9 concludes

this dissertation.
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Chapter 2

Related Work

2.1 Container Networking

There are a number of blog articles, as well as notes on Github repositories,

that provide a good description of different CNIs [103, 101, 210, 17]. Moreover, several

works [80, 206, 141, 174, 142, 224] have compared and evaluated the performance of differ-

ent CNI plugins. Suo et. al. [206] study different container network models and evaluate

them across different aspects, such as the TCP/UDP throughput, latency, scalability, vir-

tualization overhead, CPU utilization, and launch time of container networks. While the

work attributes the performance differences observed across different CNIs to their different

datapaths, it fails to identify the root causes behind these differences, as we have done here.

As we observe, the main overhead is from how the CNI plugins interact with the network

stack, which heretofore has not been adequately examined.

Kapocius [141] evaluates the performance of Kubernetes CNI plugins on both the

virtual machines and bare metal. Kapocius [142] also evaluates several popular CNIs with
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different factors considered, e.g. MTU, the number of aggregated network interfaces, and

NIC offloading conditions. Their results present the performance variation (at a high level)

with different aggregated interfaces and NIC offloading configurations. However, both the

papers do not analyze the performance differences, or provide an in-depth analysis of the

kernel and namespace overheads observed for different CNIs. Bankston et. al. [80] compare

the performance of CNI provided by different public cloud providers (e.g., AWS, Azure, and

GCP) with different instances. They also evaluate the impact of encryption and MTU on

performance. Their work provides limited insight into the different open-source CNIs. Park

et. al. [174] specifically compare the performance of Flannel network, OVS-based network,

and native-VLAN network, but again, only at a high level. Ducastel [101] evaluates the most

popular CNI plugins using several benchmarks. It also provides a qualitative comparison

on security and resource consumption, but is limited to the inter-host case, providing a

high-level, throughput-only comparison. Hao et. al. [224] study three container network

solutions (Calico, Flannel, and Docker Swarm Overlay) and compare their performance

based on TCP/UDP throughput and ping delay. However, the performance difference

between different solutions are not explained in detail.

Generally, all these existing works fail to provide a kernel-level analysis and com-

parison for CNI plugins. We offer an objective comparison across all of the CNIs, from both

a qualitative and quantitative perspective, which is important for guiding users as well as

the future development of a scalable, high-performance CNI.
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2.2 Function Placement in a Serverless Cloud

The bin-packing problem in the context of cloud resource allocation has been inves-

tigated with a handful of research efforts. Most of these problems are modeled as different

variants of bin-packing problem. [203] addresses the placement of VMs in heterogeneous

distributed platforms, in which there are multidimensional physical resources need to be

allocated. They formulate the problem through a Mixed Integer Linear Problem (MILP)

model and apply different kinds of algorithms, such as Relaxed Solutions, Greedy Algo-

rithms, Vector Packing Algorithms. They also evaluate the impact of inaccurate resource

needs estimation and develop an iterative algorithm to mitigate the penalty of error estima-

tions. From their results, the vector packing approaches outperform the other alternative

algorithms.

[115] focuses on modeling of energy aware scheduling of VMs, aimed to minimize

the power consumption by decrease the number of running VMs and increase the number of

idle VMs. They address the problem through a migration algorithm based on Integer Linear

Programming model. They take multidimensinal resource constraints into consideration,

however, they assume all these constraints are satisfied for simplification.

[220] consider the fluctuations of the resource demands and tend to improve the

resource utilization. The authors report the resource usage (CPU usage in their test case)

is typically low and rarely becomes high, which indicates the resource demands can be

characterized by percentiles of usage history instead of the peak demand. This idea shares

the similarity with the resource requests and limits configuration in Kubernetes scheduler.

The problem is formulated based on a Mixed Integer Programming model, with the objective
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to minimize the amount of allocated resources. The dependability requirements are taken

into account in this work by using fault-tolerance mechanisms for server failure and the

migration plans during maintenance work.

[106] propose an Ant Colony Optimization (ACO) meta heuristic-based algorithm

to optimize the power consumption and resource wastage in VM consolidation. Notably,

It is the first work that applies the ACO metaheuristics to address the multidimensional

bin-packing problem. The problem is formulated as a Multi-dimensional Vector Packing

Problem. Multiple computing resources (e.g., CPU, memory) are taken into account in this

model. Besides, the utilization of different resources are balanced through the proposed

algorithm, which addresses the concern when dealing with multiple resource types. That is

saturating only one resource type would likely lead to other types of resource underutilized,

as the improvement on the resources utilization will stop if one of the resource type has

been saturated.

In [112], the authors develop a dynamic bin-packing model instead of the static

version, which fits better with real data center environment. In the dynamic bin-packing

model, the arrival of items have randomness over time. After the items complete their

tasks, they will be terminated and leave the system. Through their experimental analysis,

they demonstrate that the Best Fit algorithm achieves the best performance when dealing

with the bin-packing problem in practice. This work also considers the resources in different

dimensions. They treat different resource types with different weights. However, the impact

of weights on the performance of is not reported in this paper.
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Some works focus on the greedy and random based algorithms to address the multi-

dimensional bin-packing problem [205, 204]. Based on their results, the proposed algorithm

are proved to be asymptotically optimal. Ghaderi [111] considers to schedule VMs in a

multi-server system, which is common in today’s cloud data center. A class of randomized

algorithms aimed at VM placement are presented. The algorithms are proved to be able

to achieve maximum throughput without preemptions. The algorithms are distributed in

nature due to the distributed queueing architecture and they can be implemented with low

complexity. However, the multidimensional model used in this paper doesn’t fit with the

various resource types. The “dimension” in this work denotes the various VM types rather

than resource types. A weighted strategy is applied to deal with different VM types and

help to figure out the best score of placement scheme.

2.3 Optimizing Serverless Computing Data Plane

In recent years, a number of serverless platforms have been launched, e.g., AWS

Lambda [47], IBM Cloud Functions [25], Apache OpenWhisk [22], OpenFaaS [30], Kna-

tive [59], etc, to support cloud-resident applications. Work on understanding the perfor-

mance impact of commercial or open-source serverless platforms [151, 81] has guided us on

the design of SPRIGHT. Li et al. [151] showed that the overhead of the ingress gateway

reduced the throughput by 13%, compared to the performance of function invocation using

the ‘direct call’ mode (i.e., the client directly invokes the function instance, bypassing the

ingress gateway). Priscilla et al. [81] studied the suitability of different serverless func-

tion startup modes (i.e., cold and warm) for supporting IoT applications, indicating that
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cold start can have significant resource-saving benefits but can impact response time. This

prompts us to examine the resource consumption of each component carefully.

Several past works have examined the inefficiency and overheads that exist in

Linux networking, including data copies and context switching [90, 167, 148, 150]. The

overhead of protocol processing [178] and serialization-deserialization [218, 140] directly

impact networking performance, which applies to the container-based serverless function,

including function chains. A variety of optimizations have been proposed to improve the

network performance for different application scenarios, which can be complementary to

current Linux networking (e.g., XDP [125], AF XDP in OVS [211]) or bypass kernel-based

networking (e.g., NetVM for NFV [127]). Our work combines the advantages of kernel-

bypass zero-copy networking where essential for serverless function chains, and leveraging

eBPF-based event-driven processing.

Multiple proposals optimize different aspects of serverless frameworks, e.g., re-

source provisioning, function deployment, load balancing [200, 166, 207, 86, 173, 139, 138],

runtime overhead reduction [74, 76, 197, 110, 171, 76], and mitigation of function startup de-

lay [108, 196, 156, 109, 193, 212, 214] within serverless platforms. Further, [173], [86], [207]

aim to optimize resource allocation and deployment of serverless functions on the basis of a

chain, which improves the efficiency and flexibility of building microservices using serverless

function chaining. However, they do not focus on optimizing the dataplane, which as we

show has a significant impact. Furthermore, substantial efforts have been directed towards

addressing the data plane overheads inherent in serverless architectures [181, 136, 197, 223],

characterized by heavyweight function chaining and sidecar proxy.
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2.4 ‘Cold Start’ in Serverless Computing

The cold start latency of serverless functions detracts from their being an ideal

framework for building microservices. [108] proposes a startup latency optimization specif-

ically for Kubernetes-based environments by placing pods on nodes that have container

image dependencies locally to avoid the latency of pulling images. However, their 95%ile

startup latency after optimization is still around 23s, severely impacting the QoS. In ad-

dition, startup (either cold start or pre-warm [196]) adds additional costs, as we have ob-

served, making optimizations built around cold start less desirable. A policy of ‘keep-warm’

of pods has been an alternative to mitigate the cold start latency in serverless [156]. They

can achieve an 85% improvement of the 99%ile latency. Although [156] considerably im-

proves the SLOs, it is built on Knative with heavyweight components (e.g., queue proxy),

resulting in excessive resource usage. Fuerst et al. [109] consider greedy-dual caching to

determine which functions should be kept as warm. By factoring in several key indicators

of a function, e.g., memory footprint, invocation frequency etc., they can prioritize func-

tions to be kept warm, thus limiting memory consumption to keep a minimum number of

warm functions and achieve SLOs. Since SPRIGHT primarily contributes to controlling

CPU usage, [109] can be a good complement to SPRIGHT to reduce memory utilization.

2.5 Federated Learning Optimization

As a fast-evolving ML technology, a large body of work has been proposed for FL;

the proposals in [162, 152, 169, 153, 189] focus on FL algorithms while others investigate how

to select FL clients or datasets more intelligently [146, 157, 72, 137, 170, 198, 118, 147, 104].
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[158] seeks to schedule FL jobs across a shared set of FL clients with less contention and

reduce job scheduling delays. These efforts are orthogonal to our effort (LIFL) because

LIFL focuses on system-level optimization of model aggregation of FL. This makes LIFL a

good complement to these efforts by providing an efficient and high-performance FL system

to bring various FL approaches to the ground.

Several open-source FL platforms, e.g., Flame [57], FATE [40], OpenFL [43],

FedML [123], IBM federated learning [160] have been launched to facilitate the promotion

and adoption of FL in both research and applications. These platforms assume themselves

to be a serverful design with static, inflexible deployment, which makes them unprepared

for large-scale FL. Our design of LIFL can be used as a representative case to guide the

future development of these platforms.

2.6 Optimizing 5G Core Control Plane

There has been a focus on how to reduce the latency of 3GPP SBI in the 5GC

control plane. L25GC [130] is the state-of-the-art 5GC control plane optimization that seeks

to use shared memory processing to reduce the control plane messaging latency incurred by

kernel-based 3GPP SBI, which is commonly adopted in existing 5GC implementation, such

as our earlier work free5GC [58]. Although L25GC achieves considerable latency reduction

of various control plane events, its imperfect design of shared memory I/O, e.g., lack of

synchronous data exchange support, unawareness of connections, making it ill-suited for a

3GPP-compliant 5GC control plane and fail to scale up to multiple user sessions. Buyakar

et al. [143] propose to replace the HTTP/REST APIs with gRPC to construct 3GPP SBI,
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since gRPC shows better scalability, in terms of CPU utilization and data transmission

latency, compared to the HTTP/REST APIs when dealing with an increasing number of

UEs. However, gRPC still suffers from kernel networking overhead as HTTP/REST-based

SBI, making it less competent compared to our improved 5GC, L25GC+.

Apart from optimization on 3GPP SBI, there are many other efforts on optimizing

the cellular core control plane. Neutrino [75] is a 5GC control plane design that also seeks to

reduce control plane latency. However, unlike L25GC+ that focuses on reducing the messaging

latency within the 5GC control plane, Neutrino attempts to reduce the messaging latency

between the RAN and the 5GC control plane by minimizing the data serialization overhead,

while being 3GPP-compliant. This could be a good complimentary to L25GC+.

CleanG [168] and DPCM [154] reduce the latency of 5GC control plane by re-

designing control plane procedures. CleanG primarily focuses on creating a new control

plane protocol that can simplify the control plane interactions in cellular networks, thus

reducing latency [168]. Another approach, DPCM [154], reuses the UE-side state to skip

unnecessary control plane procedures (i.e., those used to generate the UE-side state which

is already there). However, both of these proposals are not 3GPP-compliant, which makes

them less complimentary to L25GC+, as our faith of L25GC+ is to keep 3GPP compliance.

Besides latency optimization, [163] seeks to characterize and model the control

plane traffic in cellular cores, which may facilitate the testing and evaluation of L25GC+’s

control plane design when real traffic is not available due to regulatory compliance.
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Chapter 3

Assessing Container Network

Interface: Functionality,

Performance, and Scalability

3.1 Introduction

Kubernetes is the leading container orchestration platform used by cloud service

providers (CSPs) to improve the utilization of their cloud resources [82]. It provides the

flexibility to run a variety of containerized cloud applications, with the ability to deploy on

both physical and virtual cloud resources. In Kubernetes, a “Pod” is the atomic unit of

deployment, for scaling and management [15]. A pod may comprise one or more containers

that share the same resources including the networking context. Pods can be scaled to

multiple instances to meet the workload characteristics and also to provide failure resiliency.
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Figure 3.1: Kubernetes Cluster and the Role of CNI.

The proliferation of microservices [213] and function-as-a-service [92] architectures

for deploying cloud-based services make it necessary to support large numbers of containers,

and to provide efficient communication between them. Hence, orchestration and networking

are critical and need to be automated, scalable, and secure to benefit large production

deployments. Kubernetes adopts the Container Network Interface (CNI) specification as

its core networking foundation [6]. Each Pod in a Kubernetes cluster is given a unique IP

address for communication.

A general architecture overview of a Kubernetes cluster is shown in Fig. 3.1,

with one control plane host and two worker hosts. The control plane host is in charge of

maintaining the cluster state, and the worker host is responsible for running cloud workloads

in the execution unit named Pod, while the CNI Plugin facilitates communication among

these execution units [18]. There are a number of different CNI implementations, and these

CNI ‘plugins’ perform the tasks for Pod networking in a Kubernetes cluster. With thousands
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of Pods running in a cluster, the network’s status can change rapidly, with frequent creation

and/or termination of pods. When a new Pod is added, the CNI plugin coordinates with

the container runtime and connects the container network namespace with the host network

namespace (e.g., by setting up the virtual ethernet (veth) pair), assigns a unique IP address

to the new Pod, applies the desired network policies and distributes routing information to

the rest of the cluster.

Several open-source CNI plugins are available for use in a Kubernetes environment.

Amongst them, Flannel[107], Weave Net (or Weave)[217], Cilium[96], Calico[68], and Kube-

router[144] are popular and have been adopted by many Kubernetes distributions [101].

While each finds their application in different contexts due to their unique and distinct

networking characteristics, we believe there is an inadequate understanding and a lack of a

comprehensive characterization of these different CNI plugins on both the qualitative and

performance aspects. To better understand the operations of different CNI plugins, it is

necessary to generalize the working of the different CNI plugins based on the underlying

network model and identify the key implementation differences and their corresponding

impact on the performance and scalability aspects.

While existing works [206, 141, 80, 174, 142, 224] study the overall performance of

different CNI plugins at a preliminary level, there is still a lack of in-depth understanding

on how the various design considerations affect performance. Besides, there is also a lack

of examination on the CNI plugins’ performance under large scale deployments. With the

help of autoscaling feature, the number of Pods on a single host can be easily scaled up to

hundreds [2], which results in additional interference and impact on the performance of the
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CNI plugins. Hence an analysis of the impact of background communication for different

CNIs is necessary to understand scalability, and associated performance impact.

In this chapter, we provide an insight into the overall performance of Pod net-

working with different CNI plugins, by examining throughput, latency, and fine-grained

CPU measurements of the various components of the networking stack. First, we present

a qualitative analysis of the popular CNI plugins, namely: Flannel, Weave, Cilium, Calico,

and Kube-router, to provide a high-level operational view of the feature support of different

CNIs. We also consider the different variants of the Calico to demonstrate the effect of tun-

neling and overheads with different encapsulation modes. We omit the other less frequently

used (and some outdated) CNIs such as Romana [14], Canal [3], and Contiv-vpp [8] from our

study. Next, we provide a measurement-driven quantitative analysis of their performance

for various communication modes. To summarize, the contributions of our work include:

• We provide qualitative analysis for different CNI plugins in terms of the subset of

network or datalink layer features they support (e.g., IPv6, encryption support), and

accordingly classify and generalize the CNI Plugin networking model into four different

classes.

• We analyze the interactions with the host networking stack including the network

filter configurations (iptables rules) across different dimensions (e.g., iptables chains,

packet forwarding, overlay tunneling, extended Berkeley Packet Filter (eBPF), etc.)

to determine the critical function calls that contribute to overhead.

• Based on this qualitative analysis, we examine the root cause for the performance dif-

ferences across several representative CNI plugins for packet transmission throughout
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the entire network protocol stack with a measurement-based quantitative evaluation.

We analyze the performance impact of various data path components in the kernel

network protocol stack.

• We present extensive performance analysis by considering different real-world traffic

patterns for varying scale of deployment Pods and concurrent clients to help under-

stand the suitability of using different CNIs. We briefly examine Pod startup latency.

3.2 Background

In Kubernetes, networking plays a pivotal role in enabling the cluster-wide com-

munication among the pods. In this section, we briefly present the details of the Kubernetes

networking and CNI plugin models.
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ADD DELETE VERSION
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Figure 3.2: CNI Plugin: Interfacing w/Kubernetes & Namespaces
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3.2.1 Container Network Interface

The Container Network Interface (CNI) is a container networking specification

proposed by CoreOS [6] and has been adopted by several open-source projects such as

Cloud Foundry, Kubernetes, Mesos, etc. and has also been accepted by the Cloud Na-

tive Computing Foundation (CNCF) [4] as an industry standard for container networking1.

Container Network Model (CNM) is an alternative container networking standard proposed

by Docker [7]. Although, both CNI and CNM are modular and provide plugin-based inter-

faces for network drivers to create, configure, and manage networks, the CNM is designed

to support only the Docker runtime, while CNI can be supported with any container run-

time [91].

Table 3.1: Qualitative Comparison on the Features of different CNI Plugins.

CNI Network Tunneling Network Policies Packet Additional Default MTU
Solutions Model Options Kubernetes / 3rd party Ingress / Egress Encryption Features (Bytes)

Flannel Hybrid + Underlay/Overlay VXLAN No / No No / No No – 1450

Weave Net Hybrid + Overlay VXLAN Yes / No Yes / Yes Yes Multicast 1376

Cilium L3 + Underlay/Overlay VXLAN/Geneve Yes / Yes Yes / Yes Yes IPv6 1500

Calico L3 + Underlay/Overlay IP-in-IP/VXLAN Yes / Yes Yes / Yes No IPv6 1440

Kube-router Hybrid + Underlay/Overlay IP-in-IP Yes / No Yes / No No IPVS/LVS, DSR 1500

The CNI specification defines a simple set of interfaces (e.g., CHECK, ADD,

DELETE) for adding and removing a container from the network. With the help of CNI

plugin, network interface, route, iptables, etc can be efficiently set up in a Pod/host net-

work namespace. A modular/driver-based approach allows the integration with several 3rd

party implementations of the CNI specification, called the CNI plugins. A CNI plugin is

implemented as an executable and the container runtime is responsible for invoking this

1CNCF is backed by a large number of companies that currently support CNI being the de facto standard
for container networking [192].
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plugin to set up and destroy the container network stack as shown in Fig. 3.2. The CNI

plugin is then responsible for IP Address Management (IPAM), to connect the Pod network

namespace with the host network, provide IP address allocation to the container network

interface, manage the IP address allocation across different pods in the cluster, configure

the routes on both the host and Pod network namespaces, etc. “CNI plugins” comprise of

two major components, namely the CNI daemon and CNI binary files. The CNI daemon

is mainly used to do network management jobs, such as updating the routing information

of the hosts2, maintaining network policies3, renewing the subnet leasing4, Border Gateway

Protocol (BGP) updating5, and maintaining some self-defined resources (e.g., IP-Pool in

Calico6). The CNI binary files are mainly used to create the network devices (e.g., Linux

bridge) and allocate IP address to Pods. Although it is possible to concurrently support

multiple CNIs for a Pod (i.e., setup a Pod with multiple network interfaces, which are

managed by different CNIs), we focus on cases having only a single CNI.

3.2.2 Linux Network Namespace and Kubernetes Namespace

Before we delve into the Kubernetes networking model, it is necessary to under-

stand the namespace model and distinguish between the Linux network namespace and

Kubernetes namespace and the associated impact on setting up of the CNI.

Linux network namespace is designed for network isolation. Each Pod has its own

network namespace, which is isolated from the host network namespace and the network

2https://docs.projectcalico.org/reference/architecture/data-path
3https://kubernetes.io/docs/concepts/services-networking/network-policies
4https://github.com/coreos/flannel/blob/master/Documentation/reservations.md
5https://docs.projectcalico.org/networking/bgp
6https://docs.projectcalico.org/reference/resources/ippool
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namespace of other Pods. This enables the Pod to operate its own network stack and

interfaces without interference and collision with other Pods. When a new Pod is created,

the container runtime interface (CRI) creates the network namespace for the new Pod.

Thereafter it invokes the CNI plugin, which allocates the IP address for the pod, attaches

the virtual Ethernet pair (veth-pair) to link up the Pod’s network namespace to the host

network namespace, and add the corresponding routing and network policy rules.

On the other hand, the Kubernetes namespace is used to divide the physical clus-

ter into multiple virtual clusters. This enables sharing the physical cluster resources among

different groups of users and makes the management of the cluster more flexible. This also

means that the Pods in different Kubernetes namespaces are not strictly isolated. Ku-

bernetes starts with several system namespaces typically prefixed with ‘kube-’ (e.g., kube-

system, kube-pubilc, kube-node-lease, and default). Users are also allowed to create their

own Kubernetes namespaces to isolate their workloads from other users. When creating

the user namespaces, users can specify the resource quota for the created namespace, such

as the maximum number of running Pods, CPU, and memory limits to avoid the threat

of exorbitant resources requests. The Kubernetes namespace can be used as a selector in

the network policy, to apply a specific network policy to a group of Pods in that names-

pace, which decouples the Pods from their static IP addresses and improves the resource

management efficiency in a large scale cluster.

3.2.3 Kubernetes Networking Model

The Kubernetes networking model is proposed for dealing with four different

kinds of communication: i) intra-pod or Container-to-Container communication within a
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Pod, ii) inter-Pod or Pod-to-Pod communication, iii) Service-to-Pod communication and

iv) External-to-Service communication [5]. To achieve these four communication services,

Kubernetes only provides the specification of the network model, while the actual imple-

mentation is handed over to the CNI plugins. The key requirements of the Kubernetes

network model include i) Pods are IP addressable and must be able to communicate with

all other Pods (on the same or different host) without the need for network address trans-

lation (NAT), and ii) all the agents on a host (e.g., Kubelet) are able to communicate

with all the Pods on that host. CNI plugins may differ in their architecture but meet the

above network rules. Thus, there is a range of CNI plugins that adopt different approaches.

Popular CNI plugins are Flannel, Weave, Calico, Cilium, and Kube-router [5].

3.2.4 Kubernetes Network Policy

Kubernetes Network Policy is the means to enforce rules indicating which network

traffic is allowed and which Pods can communicate with each other. The policies applied to

Pod network traffic can be based on their applicability to ingress traffic (entering the Pod)

and egress traffic (outgoing traffic). The control strategies include ”allow” and ”deny”. By

default, a Pod is in a non-isolated state. Once a network policy is applied to a Pod, all

traffic that is not explicitly allowed will be rejected by the network policy. However, other

Pods that do not have network policies applied to them are not affected. CNI plugins in

Kubernetes can implement elaborate traffic control and isolation mechanisms.
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3.3 Qualitative Comparison on CNI Plugins

The different open source CNIs vary in their design and approach towards facil-

itating intra-host and inter-host Pod communication, and their support for Pod network

policies. We provide a careful qualitative analysis of different CNIs based on the layer of

operation, packet forwarding and routing approach for Pods within the same host or across

hosts. CNI performance and scalability are influenced by the overheads in the network pro-

tocol stack (typically in the kernel). We also consider several other factors such as support

for encryption, IPv6, and multicast functionalities.

Network model: As Pods are uniquely identified by their IP addresses, CNIs

primarily operate at Layer-3 (Network) to facilitate inter-pod communication. However,

CNIs can also operate at Layer-2 (Link) for intra-host Pod communication e.g., using the

‘Bridge’ or ‘MacVLAN’ capabilities. Layer-2 CNIs take advantage of a software Linux

bridge. This greatly simplifies the configuration and management of Pod networking, es-

pecially for the intra-host Pod-to-Pod communication. However, they suffer from scale

limitations and also exhibit significant time to adapt to the network changes because of

MAC learning and forwarding updates. Layer-3 CNIs, based on IP routing and forwarding,

are better for scalability and to support cluster-wide communication. They often depend

on Border Gateway Protocol (BGP) support to cross autonomous system (AS) boundaries,

which could be a potential security concern in some cloud sites [89]. BGP suffers from its

security vulnerabilities, such as BGP hijack [195], route leaks [202], etc. Alternatively, the

‘hybrid Layer-2/Layer-3 solutions’ (i.e., Layer-2 for intra-host and Layer-3 for inter-host)

may facilitate efficient intra-host, and scalable inter-host, communication.
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Packet Forwarding and Routing: Another aspect to consider is the process

for packet forwarding between hosts, which has a significant impact on the performance

(i.e., latency and throughput). Based on how the packets are forwarded across hosts, the

CNI can be classified into two categories: (i) Overlay networking is a virtual network that is

built on top of an underlying physical infrastructure, which not only provides new isolation

or security benefits but also gets around the dependency (e.g., IP address, routing, etc) on

the underlying infrastructure support. All the hosts in an overlay network communicate

with each other via the virtual links, which are also called overlay tunnels. When packets go

through the overlay tunnel, they are encapsulated with an outer header based on the adopted

overlay protocol, such as Virtual Extensible LAN (VxLAN), Generic Routing Encapsulation

(GRE), etc. Although using overlay technologies remove the dependency on the underlying

infrastructure, it increases the difficulty to trace data packets when errors occur in addition

to the performance reduction. (ii) Underlay networking is just the datalink layer or Layer-3

(IP) infrastructure for packet forwarding. The underlay network provides the native routing

connectivity between different hosts in the cluster. This typically requires BGP, where the

host hosts act as BGP peers and share the routing information among them to support

inter-host routing without the need for any encapsulation.

Based on the existing implementations of different CNI Plugins, we classify the

networking models and datapath design into the following four broad classes: i) Layer-3 +

Overlay; ii) Layer-3 + Underlay; iii) Hybrid + Overlay; iv) Hybrid + Underlay.

Layer-3 + Overlay uses an overlay tunnel endpoint (OTEP) and multiple veth-pairs (Fig.

3.3). The OTEP is used to encapsulate/decapsulate the packets. The veth-pair enables data
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Figure 3.3: Network model for CNIs operating at Layer-3 in overlay mode (e.g., Calico,

Cilium)

exchange between the Pod network namespace and the host network namespace. The intra-

host data exchange is handled by the host protocol stack in Layer-3. For inter-host case,

the outgoing data packet is delivered to the OTEP via IP forwarding, where the packets get

encapsulated at the endpoint and sent to its destination via the host’s physical interface.

Layer-3 + Underlay comprises of veth-pairs (Fig. 3.4). The intra-host data exchange

with IP routing works the same as in the overlay-based design. The inter-host communica-

tion is also processed in the host at Layer-3.

Hybrid + Overlay combines the hybrid Layer-2/Layer-3 design with overlays. It consists

of a Linux bridge, an OTEP, and multiple veth-pairs (Fig. 3.5). A Linux bridge in the

host network namespace connects with the Pods through veth-pairs facilitating intra-host

data exchange. For inter-host data exchanges, the outgoing data packet first arrives at the

bridge and is then handed over to the host protocol stack operating at Layer-3. The host
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Figure 3.4: Network model for CNIs operating in Layer-3 in underlay mode (e.g., Calico,

Cilium)

Containers ve
th

 (P
od

)

ve
th

 (h
os

t)

eth0

Containers ve
th

 (P
od

)

ve
th

 (h
os

t)

Overlay 
Tunnel 

EndpointPod0

Pod1

user space kernel space

Linux 
Bridge

Inter-host data flow Intra-host data flow

Figure 3.5: Network model for CNIs operating in both Layer-2 & Layer-3 in overlay mode
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protocol stack forwards the packet to OTEP via IP forwarding. At the OTEP, the packet

is encapsulated (based on the overlay encapsulation type) and sent to the destination via

host eth0.

Hybrid + Underlay comprises multiple veth-pairs and a Linux bridge (Fig. 3.6). The

intra-host data exchange here works the same as in the Hybrid+Overlay approach. For the

inter-host communication, the outgoing data packet first arrives at the bridge, which is then

handed over to the host protocol stack operated in Layer-3. With the host’s IP forwarding

turned on, the data packets will be sent through the host’s physical interface to the other

hosts.
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Figure 3.6: Network model for CNIs operating in both Layer-2 & Layer-3 in underlay mode

(e.g., Flannel, Kube-router)

Kubernetes Network Policy: Before implementing network policies in a Ku-

bernetes cluster, a network policy controller needs to be installed. This is provided by the

CNI plugin. The CNI plugins which support the network policy include Weave, Calico,

Cilium, and Kube-router. The CNI plugin daemon works as a Network Policy Controller (a
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daemon ensures that some or all hosts in a Kubernetes cluster run a copy of a Pod). Users

can provide the Network Policy annotations to the daemon to enable various filtering rules.

3.3.1 Description of each CNI plugin

(1) Flannel:

• Layer of Operation: Flannel uses a combination of Layer-2 and Layer-3 operation.

Pods in the same host can use the Linux bridge to communicate (Layer-2), while pods

on different hosts use an overlay tunnel endpoint to encapsulate their traffic and use

Layer-3 routing and forwarding.

• Packet Forwarding across Hosts: With its default settings, Flannel configures

the Kubernetes cluster with an overlay network. Flannel has several different types

of overlay backends (e.g., VxLAN, UDP) that can be used for encapsulation and

routing. The default and recommended method is to use VxLAN because of its

better performance. The VxLAN backend is in kernel space while the UDP backend

works in the user space, which has more context switches (up to 3) compared to the

VxLAN mode. Besides the overlay mode, Flannel also has an optional underlay mode,

which transfers packets using IP routing (Layer-3). However, this mode requires direct

Layer-2 connectivity between communicating containers from the underlying network

infrastructure. In both the VxLAN overlay and underlay modes, only one context

switch (userspace to kernel space) happens when the packets are delivered from the

Pods into the host network stack. However, when using the UDP overlay mode, the

packets need to be encapsulated with a UDP header via the Flannel daemon in the
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user space. After the packets are delivered from the Pod into the host network stack,

it will be delivered back to the userspace to be processed by the Flannel daemon.

Then they will enter into the host network stack again to be sent to its destination.

Hence, in total three context switches happen under the UDP mode resulting in more

CPU overhead and poor performance.

• Network Policy Support: Flannel does not implement the network policy controller

of its own hence lacks the support to realize any network policies.

• Miscellaneous: In the overlay network, each host has its own subnet (a fixed Class-

less Inter-Domain Routing), which is used to allocate IP addresses internally. When

spinning up a new Pod, the Flannel daemon on each host will assign an address to

each new Pod from that address pool.

Note: We configure Flannel in VxLAN mode.

(2) Weave:

• Layer of Operation: Likewise to Flannel, Weave also operates at both Layer-2

and Layer-3. Intra-host communication is performed at Layer-2, where the packets

are forwarded to its destination via the Linux bridge and Layer-3 for the inter-host

communication.

• Packet Forwarding across Hosts: Weave only uses overlay links (VxLAN or UDP)

for communication between hosts. The VxLAN mode is running based on the kernel’s

native Open vSwitch datapath module, while the UDP mode relies on the Weave CNI

daemon to implement encapsulation. Likewise to Flannel, Weave incurs one context
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switch when running in VxLAN mode, and three context switches when running in

UDP encapsulation mode.

• Network Policy Support: Weave provides network policy support for Kubernetes

clusters. When setting upWeave, a network policy controller is automatically installed

and configured. Weave can only configure the standard Kubernetes Network Policy,

which implements network policies on Layer-3 (Network) and Layer-4 (Transport)

attributes. Weave implements its network policy based on iptables. Weave uses

state extension in iptables, which is a subset of the connection tracking extension

(conntrack). Weave uses state extension to speed up the processing of iptables. For

an established connection, only the first packet needs to be matched with the iptables,

the remaining packets will be allowed to pass directly. Moreover, Weave uses ‘ipset’

to speedup iptables processing. Ipset uses a hash table to map a rule to a set of IP

addresses, and a hash table lookup for a packet to find the target rule.

• Miscellaneous: A feature unique to Weave, which is not available in most of the

existing CNI plugins, is simple encryption of the traffic based on NaCl (a network-

ing and cryptography library)7, with a user API to simplify the implementation of

encryption in the networking system8. Multicast support is provided in Weave to

improve throughput and save bandwidth for applications such as streaming video or

the exchange of lots of data across multiple containers9.

Note: We configure Weave in VxLAN mode.

7http://nacl.cr.yp.to/
8https://www.weave.works/docs/net/latest/concepts/encryption/
9https://www.weave.works/use-cases/multicast-networking/
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(3) Calico:

• Layer of Operation: Unlike Flannel and Weave, Calico operates at Layer-3 for both

intra-/inter-host communication.

• Packet Forwarding across Hosts: Calico allows for both underlay/overlay packet

forwarding across hosts. The underlay mode uses native routing based on BGP. Calico

uses BGP to distribute and update routing information providing better scalability

and performance10. Calico’s overlay mode uses IP-in-IP or VxLAN encapsulation.

Calico only incurs one context switch for both the overlay modes using IP-in-IP or

VxLAN and underlay mode using BGP.

• Network Policy Support: Calico has very good features for Kubernetes network

policy customization. Users can enable both the Kubernetes network policy as well

as Calico’s own network policy, covering the policy from Layers 3 to 7. Calico can

also be integrated with the service mesh, Istio, to implement strategies for workloads

within the cluster at the service mesh layer11. This means that users can configure

iptables rules that describe how Pods should send and receive traffic, thus enhancing

the security of the network environment. Calico implements its network policy based

on iptables. It inserts user-defined chains on top of the system default chain. Calico

uses conntrack to optimize its iptables chains just like Weave. In addition, Calico also

uses ipset to provide better scale and performance than default iptables12.

10https://www.projectcalico.org/why-bgp/
11https://www.projectcalico.org/category/istio/
12https://docs.projectcalico.org/about/about-network-policy
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• Miscellaneous: Calico provides IPv6 support. However, it is limited to underlay

mode only and the overlay (with IP in IP and VxLAN) can support only IPv4 ad-

dresses. With IPv6 enabled, the larger address space allows for scalability in the

number of endpoints in the Kubernetes cluster.

Note: Calico can be run in two intra-host modes: Calico-wp (native routing with network

policy) and Calico-np (native routing without network policy). In ‘Calico-wp’, we consider

the ordering/priority, allow/deny rules, etc rules to be enabled. For the inter-host scenario,

Calico has two network models (‘Layer-3 + overlay’ & ‘Layer-3 + underlay’). This in

conjunction with network policy support provides four different modes namely Calico-wp-

ipip, Calico-wp-xsub, Calico-np-ipip, and Calico-np-xsub. “ipip” means the IP-in-IP overlay

mode and “xsub” means IP based underlay. Accordingly, we evaluate each of these distinct

configuration modes.

(4) Cilium:

• Layer of Operation: Cilium is also a Layer 3-only solution. For intra-host communi-

cation, Cilium relies on eBPF programs attached at the veth-pairs to redirect packets

to their destination. Cilium builds its datapath based on a set of eBPF hooks that

run eBPF programs. The eBPF hooks used in Cilium include XDP (eXpress Data

Path), Traffic Control ingress/egress (TC), Socket operations, and Socket send/recv.

TCs, attached to the veth, are utilized to forward packets through eBPF function

calls, e.g., bpf lxc, bpf netdev13. Arriving packets at the veth cause eBPF programs

to be executed and route traffic.

13https://docs.cilium.io/en/v1.7/architecture/
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• Packet Forwarding across Hosts: Cilium allows for both an underlay (IP) packet

forwarding and an overlay solution with VxLAN or Geneve as the encapsulation op-

tions. Like Calico, Cilium’s underlay mode uses native routing based on BGP. If

Cilium uses the overlay solution, bpf overlay will be executed to direct the packet

from veth to the OTEP. Like Calico, Cilium also incurs one context switch for both

overlay and underlay mode of operation.

• Network Policy Support: Cilium supports both the standard Kubernetes network

policy and its own network policy customization based on the iptables. These net-

work policies can work in Layers 3-7. In addition, Cilium can use eBPF hooks (e.g.,

XDP, TC) to define packet filters. Since this filtering occurs earlier than the network

protocol stack, it can achieve better performance than iptables.

• Miscellaneous: Cilium supports packet encryption in Layer-3, i.e., it provides en-

cryption using the IPSec tunnels. Cilium also provides support for IPv6.

Note: We configure Cilium in VxLAN mode.

(5) Kube-router:

• Layer of Operation: Kube-router operates in both Layer-2 and Layer-3. Kube-

router uses Linux bridge to forward packets intra-hosts (Layer-2). It uses Layer-3

operation to forward packets inter-hosts.

• Packet Forwarding across Hosts: Kube-router allows for both an underlay (IP)

packet forwarding across the hosts based on BGP and an overlay solution using IP-

in-IP encapsulation. As with Calico and Cilium, packet forwarding in Kube-router

incurs just one context switch for both overlay and underlay modes.
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• Network Policy Support: Kube-router only supports the standard Kubernetes

Network Policy APIs to apply at Layer-3 and Layer-4. Kube-router implements its

network policy based on iptables. Kube-router uses conntrack to speed up the pro-

cessing of iptables. Kube-router also uses ipset to get around the overhead of a large

iptables.

• Miscellaneous: An important feature of Kube-router is the usage of IPVS/LVS

kernel features to improve service load balancing performance14. Kube-router applies

a Direct Server Return (DSR) feature to implement a high-efficient ingress for load

balancing, which is a unique feature compared to other CNIs15.

Note: We configure Kube-router in IP-based underlay mode.

3.3.2 Iptables Comparison

In order to implement specific packet forwarding, routing, and networking policies,

the CNI Plugins leverage ‘iptables’ - a userspace interface to setup, maintain and inspect

the tables of IP packet filter (Netfilter) rules in the Linux kernel (we use the terms iptables

and Netfilter interchangeably in this paper). Netfilter registers five hook points (callback

function points) into the network stack to implement packet filtering, NAT, and security-

related policies. The five hook points are: PREROUTING, INPUT, OUTPUT, FORWARD

and POSTROUTING. These are ‘chains’ of tables of iptable-related processing of a packet,

for the purpose of filtering and execution of security policies. Fig. 3.7 shows the iptable

chain processing. Each iptables chain comprises a number of tables, each with a different

14https://cloudnativelabs.github.io/post/2017-05-10-kube-network-service-proxy/
15https://www.kube-router.io/docs/user-guide/
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purpose. There are four kinds of tables: raw, mangle, nat, and filter. The raw table is used

to split the traffic without a need for the connection to be tracked. The mangle table is

used to change the QoS settings of packets. The nat table is for network address translation

and the filter table is used for packet filtering.

PREROUTING

TC	Hook

raw

mangle

nat

INPUT FORWARD OUTPUT
POSTROUTINGfilter

mangle

filter

mangle

rou$ng

raw

mangle

filter

nat
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nat

OTEP

rou$ng

TC	Hook

rou$ng

XDP	Hook

host	eth0,	veth,	
OTEP

host	eth0,	veth,	
OTEP

Figure 3.7: Iptables chain processing and hook points [84].

Based on the user-defined network policies for different Pods (input as a Yet An-

other Markup Language file), the CNI’s network policy controller configures the iptables on

all the Kubernetes worker hosts. When packets arrive at an iptables chain, a nf hook slow()

function call is executed to traverse the list of tables in that chain and process the matching

iptable rules. This rule processing can be a major source of overhead in iptables [84].

Moreover, when a host starts up, the kube-proxy installs a set of default iptables

rules on the worker hosts. These default iptables rules contribute to the Netfilter processing

overhead for packet transmission. These rules are used to redirect the traffic from the default

iptables chains to the Kubernetes’ user-defined iptables chains (e.g., kube-services, kube-

forward, etc). Kubernetes relies on these user-defined chains along with the internal rules

to support different kinds of communication. For example, the kube-proxy installs NAT

rules to support ‘External-to-Service’ communication.
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Iptables’ Routing Management: Based on the network model, different paths will be

exercised through the iptable chains. For intra-host communication (Layer-3 IP routing

and Layer-2 bridge forwarding), we have the packet processed through the PREROUTING,

FORWARD, and POSTROUTING chain. When a source Pod sends out a packet, the

packet will be checked first by the PREROUTING chain. It will look up three tables

(raw, mangle, nat) in the PREROUTING chain and match with the rules in these tables.

So, if there are any matched rules, the corresponding actions specified will be taken on

the packet (e.g., NAT, change ToS (Type of Service) field, etc). The packet will then be

checked by FORWARD and POSTROUTING chain before it arrives at the veth interface of

destination Pod. The intra-host routing works for both bridge forwarding and IP forwarding

network models, following the same processing. The exception is for the eBPF approach,

as the eBPF integrates the packet filtering functions in the eBPF program and bypasses

the iptables processing by leveraging the XDP or TC hooks.

In the case of inter-host communication, the traffic can be classified into two

different cases: ingress traffic (i.e., inbound traffic originating from an external network and

destined towards the internal host network) and egress traffic (outbound traffic originating

in the internal network). For ingress traffic in overlay solution, first the packets follow

the PREROUTING → INPUT path, to be routed from the host Ethernet interface

to the OTEP. Then, after the packet is decapsulated by the OTEP, the packets follow

the PREROUTING → FORWARD → POSTROUTING path, to be routed from the

OTEP to the destination Pod. For egress traffic in overlay solution, the packets follow

the PREROUTING→ FORWARD → POSTROUTING chain first, when routed from
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the Source Pod to the OTEP. Next, the packets follow the OUTPUT → POSTOUTING

route, to be routed from the OTEP to the host Ethernet interface. The configuration for

the underlay solution has the PREROUTING→ FORWARD → POSTOUTING route

applied for both egress/ingress traffic.

3.3.3 Summary of Qualitative Comparison

Overall, the CNIs are plug-and-play components in Kubernetes. They provide an

off-the-shelf network paradigm for the users to easily set up the networking environment.

Based on Table. 3.1, we can observe that none of the existing CNIs cover all the qualitative

features, e.g., Flannel’s primary drawback in lack of network policy support. Each CNI has

its unique feature with the comparison to others. Users can choose the best-suited CNI in

regard to their qualitative needs e.g., network model, tunneling option, etc.

As shown in Table 3.1, Calico and Cilium use a Layer-3 based network model.

Both of them support either an overlay or underlay solution. For the encapsulation options

in overlay mode, Calico offers IP-in-IP and VxLAN while Cilium offers VxLAN and Geneve.

Flannel, Weave, and Kube-router use a hybrid based datapath. Flannel and Kube-router

support an overlay or underlay solution. Weave only supports an overlay. Flannel provides

a simple network model, and users can easily set up an environment, while Weave and

Cilium provide encryption support and also provide rich support for network policy and in

addition Cilium and Calico are also able to support 3rdparty network policies and enable

IPV6 support. And, Kube-router offers a unique DSR feature to enhance the load balancing

in the Service-to-Pod mode of communication.
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3.3.4 Additional Feature Considerations

(1) Multi-interface CNIs. Multi-interface CNIs are required in a number of cloud

scenarios (e.g., Virtual Private Network (VPN) connectivity, multi-tenant networks), where

network isolation is needed [129]. By enabling multiple network devices and multiple subnets

for a single Pod, Multi-interface CNI is able to provide a better separation of the control and

user planes. A typical Multi-interface CNI is Multus [129]. Multus works as an orchestrator

instead of configuring the Pod networking itself. It calls the Single-interface CNIs (e.g.,

Flannel, Weave, etc.) to configure the underlying Pod networks, including routes, iptables,

etc. With Multus, multiple Single-interface CNIs can coexist on the same host, and each

Single-interface CNI has its own subnet, which is separated from each other. With the

orchestration from Multus, we can choose the right subnet to use for each Pod based on its

networking needs.

(2) Hardware Acceleration: Tunnel Offload. Most modern network interface cards

(NICs) support the tunnel offload for a number of tunneling protocols, e.g., IP-in-IP, GRE,

VxLAN, GENEVE, etc. Tunnel offload includes the following components: TCP segmen-

tation offload (TSO, which is also performed for normal IP), checksum processing, Receive

Side Scaling (RSS) selection (for multiplexing/demultiplexing), etc. This can accelerate

packet processing and reduce the load on the CPU. However, some NICs may only support

a limited set of tunneling protocols to offload. This can severely impact the performance

of the CNI plugin. For example, Flannel can be configured to use IP-in-IP or VxLAN

tunneling for inter-host communication. Hence, it is necessary to make the appropriate

choice of the CNIs overlay networking based on the hardware supported tunneling options.
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We demonstrate the performance benefits achieved by the CNIs utilizing the tunnel offload

capabilities. We find that it is necessary for the individual container framework to lever-

age the NICs offload capabilities and match it with the appropriate CNI to leverage that

hardware acceleration to maximize performance.

3.4 Quantitative Evaluation and Analysis

In this section, we first compare the performance of different CNI plugins with

a single connection between the Pods. Based on the performance results on the single

connection, we breakdown the packet transmission overhead into different components and

study the principal factors that influence the performance. Subsequently, we evaluate the

performance with the increasing number of connections across Pods. Then, we examine the

performance of different CNIs by applying a typical HTTP workload. We also assess the

impact of netfilter rules and iptables chain configurations.

3.4.1 Experimental Setup

All the CNI plugins are evaluated on the Cloudlab testbed[191]. We build the

Kubernetes cluster on two physical hosts. Each host machine has a Ten-core Intel E5-

2640v4 at 2.4 GHz and 64GB memory, and 2 Dual-port Mellanox ConnectX-4 25 Gb NIC.

We use Ubuntu 18.04 with kernel version 4.15.0-88-generic. Kubernetes is directly running

on the physical machine, so there is no extra virtualization overhead introduced. All the

Kubernetes related packages are installed with their current, latest version. We primarily

use Netperf for throughput and latency measurement, with each test lasting 30 seconds and
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being repeated 50 times. To fully utilize the bandwidth in both intra-host and inter-host

communication, the application data size16 in Netperf to 4MB for the TCP throughput test,

which is the TCP socket buffer limit in the OS. For latency measurement, we use Netperf’s

request-response (RR) mode to get the round-trip time (RTT) for TCP traffic. The packet

size used in the latency measurement is 1 Byte as a default. To examine the effect of Tunnel

offload support, we choose another host machine with Tunnel offload supported on its NIC.

This kind of host has two Intel Xeon Silver 4114 10-core CPUs at 2.20 GHz and 192GB

Memory, and one Dual-port Intel X520-DA2 10Gb NIC.

3.4.2 Intra-Host Performance

We study intra-host performance (communication within a single server host) when

communicating among a number of containers deployed within the host. This enables us

to better understand and distinguish the communication overheads that arise due to the

usage of the Linux bridge, iptables rules, eBPF, and the interaction with the host network

stack. We evaluate Flannel, Weave, Cilium, Kube-router, and Calico variants (Calico-wp

and Calico-np). ‘Calico-np’ helps to isolate the overheads of network policies (additional

Netfilter rules).

(1) Overall performance: The overall throughput comparison across CNIs is shown

in Fig. 3.8(a). For TCP throughput, Cilium with its native solution based on eBPF out-

performs the other alternatives. Layer-3 routing based solutions (Calico-wp and Calico-np)

perform worse than the Layer-2 based solutions. Accordingly, we also observe that Cilium

16Application data size in Netperf is the “Send Message Size”, the total data bytes to be transferred in a
given connection, regardless of the socket buffer size, MSS or MTU settings.
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achieves the lowest latency and Calico-wp has the worst round-trip latency as shown in

Fig. 3.8(b). This is primarily due to the overheads involved in processing the Netfilter

rules and Layer-3 routing, which is avoided with the eBPF based CNIs. In order to un-

derstand how the datapath and iptables affect overall performance, we further break down

the packet processing time into different components of the network stack and measure the

CPU cycles as a packet goes through each component. We identify the following distinct

components of the network stack: Forwarding Information Base (FIB), eBPF, Netfilter,

Veth, and IP forwarding. By analyzing CPU cycles spent per packet in each component of

the network stack, we establish the relationship between the achieved performance and the

specific network activity involved in routing a packet with that specific CNI.

Methodology. In order to measure the CPU cycles per packet (CPP ) spent in each

network stack component, we first use the Linux perf tool [99] to count the total CPU

cycles consumed in a 60-second packet transmission (Cycletotal) , which is repeated 5 times.

We also use perf to trace the function calls and measure the percentage of the overall

CPU cycles spent in the corresponding function (Cyclepercentage). With the total number

of packets sent in a 60-second packet transmission (Npacket), we can calculate the CPP of

a specific function call as follows:

CPP = Cycletotal/Npacket × Cyclepercentage (3.1)
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(2) Overhead breakdown for Intra-host Communication: The total CPP with the

corresponding break down for intra-host communication is shown in Fig. 3.9. For the

overall overhead of the complete network stack, Calico-wp (with Netfilter being the major

contributor) has the highest CPP and Cilium the lowest.

Bridge: Flannel, Weave, and Kube-router use bridge-based solutions to forward packets

in this intra-host scenario. When packets pass through the Linux bridge, the bridge-related

function calls (e.g., br forward()) are executed. Fig. 3.9 shows that the bridge overhead of

Flannel, Weave, and Kube-router to be similar, at ∼ 45 CPP .

FIB & IP forwarding: We put the FIB overhead and IP forwarding overhead together as

‘IP forwarding’ related function calls (e.g., ip forward()) are coupled with FIB function calls

(e.g. fib table lookup()). When using the host IP protocol stack to forward packets, first

the FIB table lookup determines the next hop. Then, the packet forwarding operation is

performed. As Calico relies on the host IP protocol stack to forward packets, it incurs both

FIB and IP forwarding overheads. The FIB overhead of Calico (∼ 30 CPP ) is slightly lower

than the overhead using the Linux bridge (∼ 45 CPP ). But, the IP forwarding processing

in Calico consumes an extra 108 CPP . This overhead of both FIB and IP forwarding is

higher than the overhead of the bridging approaches.

eBPF: Cilium relies heavily on eBPF. Instead of bridge/IP forwarding and Linux Netfilter,

it utilizes a set of eBPF hooks in the network stack to run eBPF programs to support the

intra-host packet forwarding and filtering functions. Cilium attaches the eBPF programs

at each veth resulting in each packet forwarding operation to incur the eBPF processing

overhead. Fig. 3.9 shows that Cilium has the eBPF overhead of ∼ 189 CPP .
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Veth: All CNI plugins spend almost the same ∼ 10 CPP (for send, receive) on veth,

a small percentage of the overall overhead, with little impact on the CNIs’ performance

differences.

Netfilter: Calico-wp, with calico policy fully installed, consumes 324 CPP on Netfilter,

which is 1.35× higher than the others. Although Calico-wp suffers a significant performance

penalty due to the overhead from Netfilter, it allows better network policy customization

and packet filtering due to fine-grained iptables chains. Calico-wp adds user-defined chains

to construct its iptables, which introduces more iptables rules as well as more iptables

overhead. Note: Cilium does not have any Netfilter overhead as it uses eBPF instead of

iptables.

Summary: For intra-host communication, a native routing datapath based on eBPF is

much cheaper than a bridge-based datapath or native routing datapath based on IP for-

warding. eBPF combines packet forwarding and filtering together, which reduces the packet

forwarding overhead. Thus, Cilium achieves the highest throughput and lowest latency. Fur-

ther, a fine-grained iptables chain as in Calico-wp unfortunately hurts packet transmission

performance. As shown in Fig. 3.8, Calico-wp has lower throughput and higher latency

than the others, because of the penalty from the iptables chain processing.

3.4.3 Inter-Host Performance

We use the same set of CNI plugins to communicate between two pods on different

hosts. For all inter-host experiments, Flannel, Weave, and Cilium use the VxLAN overlay

mode. Kube-router uses native IP routing (underlay), while Calico (wp or np options) can

support either native IP routing (underlay) or IP-in-IP overlay. Accordingly for Calico,
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we study all four modes: Calico-np-ipip, Calico-wp-ipip, Calico-np-xsub and Calico-wp-

xsub. We noted that the offloading of IP-in-IP tunnel is not supported by the Mellanox

ConnectX-4 25 Gbps NIC used in our testbed. Hence, to study the impact of tunnel offload

in the NIC, we additionally experimented with Flannel by explicitly disabling the tunnel

offload feature for VxLAN tunneling (‘flannel-off’ mode). We also study the inter-host

communication performance on another Intel X520-DA2 10Gb NIC where IP-in-IP tunnel

offload is supported.

(1) Overall performance: TCP throughput and latency results are shown in Fig.

3.10. The native routing solutions (Kube-router, Calico-wp-xsub and Calico-np-xsub) per-

form better than the overlay solutions (Flannel, Flannel-off, Weave, Cilium, Calico-wp-ipip

and Calico-np-ipip). However, without the tunnel offload in the Mellanox ConnectX-4

25Gb NIC, Flannel-off and Calico in IP-in-IP overlays perform poorly, with much lower

throughput than Cilium and Calico with native routing (xsub) options. Moreover, for

the same datapath, solutions with network policy disabled (Calico-np-xsub and Calico-np-

ipip) perform 0.5 ∼ 1.5Gbps better than when network policy enabled (Calico-wp-xsub and

Calico-wp-ipip). Also, TCP round-trip latencies show a corresponding increase for those

CNIs that see lower throughput. For comparison purposes, we also show the results with

Pods on two hosts communicating across a 10 Gbps link, using Intel X520-DA2 10Gb NICs

that support both VxLAN and IP-in-IP tunnel offload. We see that the performance of

Flannel and Calico IP-in-IP CNIs are comparable. In fact, because the CPU utilization

is reduced due to the tunnel offload, the Calico CNI performance ‘with policies’ and ‘no

policy’ see comparable throughput (however the latency is higher with policies). To sum-
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Figure 3.10: Inter-Host Throughput and Latency. (a) and (b) are with Mellanox ConnectX-

4 25Gb NIC. (c) and (d) are with Intel X520-DA2 10Gb NIC.
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marize, i) Tunnel offload is necessary to improve the CNI performance, and where the CNIs

can support multiple overlay solutions (UDP, VxLAN, IP-in-IP), it is desirable to choose

the overlay mode that can be supported via tunnel offload. ii) the underlay-based CNIs

(Calico xsub and Kube-router) perform better than the overlay options, despite the NIC’s

offloading of the tunnel-related operations.
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Figure 3.11: Overhead Breakdown for Inter-host Scenario: CPU overhead from both sender

and receiver hosts

(2) Overhead breakdown for Inter-host Communication: For the overhead analysis,

we include the VxLAN tunnel, IP-in-IP tunnel, OVS-datapath, and in-kernel tunnel offload

processing components. Again, we use the same methodology to calculate the CPP of

each function call on both the sender and receiver host. The total CPP , along with the

breakdown is shown in Fig. 3.11. The native routing solutions (Kube-router, Calico-wp-

xsub and Calico-np-xsub) have lower CPP compared to the overlay solutions (Flannel,

Flannel-off, Weave, Cilium, Calico-wp-ipip and Calico-np-ipip). Also, the solutions with

simple iptables have lower CPP than the complex iptables chains.

Layer-2 Bridging: Flannel, Weave, and Kube-router use the Linux bridge to forward

packets between different virtual ethernet interfaces (veths) via Layer-2 bridging and incur
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similar overheads as in the intra-host scenario. However, as Weave uses an extra veth-pair

to connect the Linux-bridge with overlay tunnel, it incurs 2× more CPP than Flannel and

Kube-router. With Weave, when the packets are forwarded from the veth to the overlay

tunnel (sender side), they do not go through the host IP protocol stack but instead rely

on the bridge-related function calls (i.e., br forward()). These bridge-related function calls

are invoked again when packets are forwarded from the overlay tunnel to the veth (receiver

side). In contrast, Flannel and Kube-router use the host IP protocol stack to forward

packets from the veth to the overlay tunnel, thus avoiding any bridge forwarding overhead

on the sender side. On the receiving side, when forwarding packets from the overlay tunnel

to the veth, they rely on Layer-2 bridge forwarding. Thus, the total bridge overhead of

Flannel and Kube-router is half of that of Weave.

IP forwarding: Weave and Cilium traverse the host IP stack once per packet transmission

and have similar (100 ∼ 110 CPP ) overhead. The IP protocol stack operations of Weave and

Cilium are performed between the VxLAN tunnel and host Ethernet interface. However,

with Flannel, the host IP stack operations are performed twice per packet transmission.

First between Linux bridge and VxLAN tunnel, and then again between the VxLAN tunnel

and host Ethernet interface. Thus, we correspondingly incur about 197 CPP . Calico-*-

ipip (Note: “*” means both Calico-wp-ipip and Calico-np-ipip) also performs host IP stack

operations twice per packet transmission. First between veth and IP-in-IP tunnel, and

then again between the IP-in-IP tunnel and host Ethernet interface. However, in this case,

additional IP protocol stack processing overhead in the CPU occurs due to the lack of the IP-

in-IP tunnel offload support in the NIC we used. This in-kernel tunnel processing (e.g., ip
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send check() function call) expends more CPU cycles. Calico-*-ipip consumes ∼ 290 CPP

in the IP protocol stack. The underlay solutions (i.e., Kube-router and Calico-*-xsub)

consume ∼ 150 CPP in IP protocol stack.

Netfilter: CNI’s Network Policy is a useful feature that leverages Netfilter rules to enhance

network security. However, Netfilter is a major source of overhead as shown in Fig. 3.11,

requiring a larger amount of CPP than the other components. Large and complex iptables

chains incur higher processing overheads. Fig. 3.11 shows that Cali-wp-ipip has the highest

Netfilter overhead compared to the other solutions due to its large iptables size, while the

Kube-router and Cali-np-xsub have the lowest. Cilium has the least Netfilter overhead

compared to the other overlay-based solutions, as it bypasses the PREROUTING →

FORWARD → POSTROUTING route of Fig. 3.7 and uses eBPF instead.

eBPF: In the case of Cilium, we observe that the eBPF overhead for the inter-host packet

forwarding is relatively higher (236 CPP ) than the intra-host packet forwarding (189 CPP ).

This is due to an additional hook point at the host to support overlay mode and process

the VxLAN tunneling.

Veth: As with the intra-host case, the veth processing overhead is the least compared to

the other components and is similar for most of the CNIs (∼ 6 CPP ). As Weave has 4

veth-pairs on the inter-host datapath as opposed to 2 for the other CNIs, it incurs twice

the overhead (∼ 12 CPP ).

Overlay: Using an overlay incurs packet encapsulation and decapsulation overheads. Flan-

nel, Weave, and Cilium use VxLAN overlay and Calico-*-ipip use an IP-in-IP overlay.

Overhead from the VxLAN overlay is ∼ 114 CPP , while IP-in-IP incurs somewhat lower
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overhead (∼ 30 CPP ). Weave uses the OVS-datapath to implement the overlay processing

and incurs some extra overhead (∼ 40 CPP ) on OVS-related function calls (Fig. 3.11).

Thus, the overlay accounts for 3% ∼ 11% of the total overhead, depending on the packet

encapsulation, potentially having a significant performance impact.

Tunnel Offload: The Mellanox ConnectX-4 NIC in our testbed machines support TSO

and VxLAN offload, but not IP-in-IP tunneling17. Thus, all the IP-in-IP tunnel offload

processing needs to be performed in the kernel, thus increasing the CPU burden. The in-

kernel tunnel processing costs∼ 170 CPP (“TUN” in Fig. 3.11) for Flannel-off and Calico-*-

ipip. As shown in Fig. 3.10, the Calico-wp-ipip and Calico-np-ipip only achieve 11.1Gbps and

12.5Gbps TCP throughput for inter-host pod communication respectively, which is much

slower than the VxLAN overlay (14 ∼ 15.5Gbps) and Layer-3 routing (18 ∼ 19.7Gbps).

Flannel-off also shows the same significant performance reduction when tunnel

offload is disabled on the NIC, confirming the extra processing overhead introduced in the

kernel stack when the VxLAN processing is done in the CPU. In Netperf’s request-response

mode, the size of the payload is only one byte. The tunnel offload processing becomes

important only when the size of the packet (including the tunnel header length) exceeds

the Maximum Segment Size (MSS). So, with the small payload size, we see equivalent

packet forwarding performance with/without hardware tunnel offload support. As shown

in Fig. 3.10 (b), the Calico-wp-ipip has a similar RTT latency compared to some of the

VxLAN overlay CNIs (e.g., Weave, Cilium), while Calico-np-ipip achieves lower latency

than the VxLAN overlay CNIs. Moreover, the Flannel and Flannel-off have similar RTT

17We verified using “ethtool” for the supported offload tunnel functions on the NIC. Also, refer to: (https:
//community.mellanox.com/s/article/mellanox-adapters---comparison-table).
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latency, indicating that the effect of hardware tunnel offload support for small packets is

not significant.

Flannel Weave Cilium Kube-router Calico-wp Calico-np

0 1 100 200 500 800 1K1.3K1.5K
20

30

40

50

Tp
ut

. (
Gb

ps
)

(a) TCP Throughput

0 1 100 200 500 800 1K1.3K1.5K
20

30

40

50

60

La
te

nc
y 

(u
s)

(b) TCP Round-trip Latency

Figure 3.12: Intra-Host Performance with increasing # connections

Summary: Connecting the overlay tunnel and bridge via an extra veth-pair (as in Weave)

may reduce the FIB and IP forwarding overhead, but increases the bridge and veth overhead.

A powerful network policy mechanism can provide fine-grained packet filtering, allowing for

improved security for packet transmission. However, more Netfilter calls result in lower

packet forwarding performance. Users should carefully consider their needs for additional

packet filtering rules and seek to manage the growth of iptables size as much as possible

while meeting security requirements. Generally, a native routing datapath is cheaper than

an overlay-based datapath. Removing unnecessary iptables chains and rules can help reduce

Netfilter overhead. When used with the underlay network model, the Netfilter overhead of

calico-wp-xsub can be kept around 507 CPP , which is lower than with the other overlay

network models. Enabling a CNI’s network policy support with native IP routing can
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achieve a good balance between the overhead and network security support. A NIC’s offload

capability is another important aspect that needs to be seriously considered when choosing

CNI. Having the kernel and CPU perform the tunneling tasks can have a measurable impact

on performance.

3.4.4 Performance for larger-scale configurations

(1) Experimental setup: As the amount of communications between Pods increases,

the individual conversation throughput will reduce, not only because of sharing resources

among contending connections, but also interference and increasing overhead due to con-

tention. To evaluate the performance variation with the scaling of the number of concurrent

connections across Pods, we set up an increasing number of TCP connections between Pods

as background traffic. The bandwidth of each of the background TCP connections was

limited to 10Mbps for the inter-host case. As the intra-host has much higher achievable

bandwidth, we set the bandwidth of each of the background TCP connections as 50Mbps

for the intra-host case. We use iperf3 to generate the background TCP connection traf-

fic [9]. The test connection that we monitor generates traffic using Netperf in a distinct

Pod communicating with a peer. Kubernetes has a maximum of 100 pods per host [2]. We

have different levels on the number of background TCP connections in our experiments.

For the intra-host case, we deploy 49 iperf3 Pods each as the server and the client end on a

single host. For the inter-host traffic, we deploy 99 iperf3 Pods as servers on one host and

deploy 99 iperf3 Pods as clients on another host, each with 1 TCP connection. Two Pods

are deployed for Netperf test for both scenarios. To generate background connections more

than the number of iperf3 Pods, we use “simultaneous connections” in iperf3.
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(2) Intra-host performance with background traffic: Fig. 3.12 shows the intra-host

performance comparison with different amounts of background traffic. The total background

traffic with all 1.5K TCP connections (generating 50 Mbps each) is less than 75 Gbps.

Cilium outperforms the other CNI plugins because of its low overhead in the datapath and

in Netfilter. Calico-wp has the worst performance throughout, due to its large overhead

from Netfilter rules. The TCP round-trip time is also better for Cilium. Further, we observe

that even with just one active background connection, the test connection suffers about a

∼ 2Gbps throughput reduction. This drop is consistent across all the CNIs and happens as

soon as two processes are involved in sending and receiving the packets on the same host.

We speculate it to be likely a result of resource contention especially the locks.

(3) Inter-host performance with background traffic: Fig. 3.13 shows the inter-host

communication performance (throughput and latency for a test connection) of different CNI

plugins with varying amounts of background traffic, generated by an increasing number of

background connections. The background connections not only consume bandwidth of the

NIC and link, but also use up the host’s CPU. However, the throughput reduction is more

in line with the amount of added traffic from the background connections, except for the

cases when the tunnel offloading is disabled, at higher loads. The difference among CNIs is

noticeable in that the native routing solutions (Kube-router and Calico-xsub) outperform

the overlay based solutions, because of less overhead on the datapath and Netfilter. In

contrast, Calico in IP-in-IP mode performs worse than the others, because of the additional

overhead since the NIC does not offload this function. This degraded performance is also

observed with Flannel, when the tunnel-offload is turned off (Flannel-off). All of these see
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a precipitous drop in throughput beyond 400 background connections (each generating 10

Mbps) because the CPU is overloaded and the latency is correspondingly higher.

(4) CPU Utilization and Memory footprint: We also analyze the CPU utilization

and memory footprint with different CNIs corresponding to these inter-host communication

traffic experiments. Fig. 3.13(c), shows the CPU usage with the increasing workload. Na-

tive routing (‘Calico-*-xsub’, ’Kube-router’) incurs relatively low CPU overhead, while the

overlay mode CNIs (e.g., Flannel, Weave, etc. ) have a much higher CPU load. Further,

CNIs with tunnel offload disabled are overloaded with fewer background connections, due to

the extra offload processing in the kernel, which inevitably increases the CPU overhead. We

also assess the memory footprint incurred by different CNIs in Fig 3.13(d). We observe that

Flannel and Kube-router have a low memory footprint (40 ∼ 50 MB), while Weave, Cilium,

and Calico have a very high memory footprint (160 ∼ 200 MB). We profiled the memory

usage of CNIs ‘daemonset’ and ‘binaries’ from the kernel’s pseudo-filesystem (procfs). We

find the memory usage is independent of the number of pods/connections. The ‘daemonset’

is a running process with fixed memory size. And the CNI ‘binary’ file is an executable file,

also with a fixed size.
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Summary: In general, increasing the amount of background connections impacts perfor-

mance as they consume both the CPU resource and bandwidth. CNIs using native routing

can achieve better performance compared to those using an overlay. Moreover, overlay CNIs

without tunnel offload support in the NIC are impacted more, due to the increased in-kernel

processing overhead.

3.4.5 Impact of CNI on typical HTTP workload

(1) Experimental setup: We use the Apache HTTP server benchmarking tool

(ab [46]) to generate the HTTP workload. We emulate multiple concurrent clients and

choose the nginx [12] as the HTTP server. We primarily study the CNI behavior in the

inter-host scenario, deploying an HTTP server Pod and an ‘ab’ client Pod on two different

worker hosts. To get statistically reasonable results, we generate a total of 500K requests

for each HTTP test. The size of the response payload for each request is fixed, at 5 MBytes.

For each CNI, we also vary the level of concurrency (i.e., number of clients sending HTTP

requests simultaneously from 1, 50, 75, up to 500) to generate increasing amounts of HTTP

traffic.

(2) HTTP Performance Results: Table 3.2 shows the performance with different

CNIs. We can observe that Calico (both overlay and underlay modes) outperform the rest

of the CNIs in a single connection case. However, with increasing numbers of connections

(c = 400), Calico-*-xsub (underlay mode) works the best, while the Calico-*-ipip (overlay

mode) turns to be the worst. This degradation in HTTP throughput is primarily due to

the lack of tunnel offload support at the NIC, which results in high CPU overhead and thus

62



Flannel
Weave

Cilium
Kube-router

Cali-wp-ipip
Cali-np-ipip

Cali-wp-xsub
Cali-np-xsub

Flannel-off

1 50 75100150200300400500
# clients

0

50

100

150

200

RP
S 

(#
/s

ec
.)

(a) RPS, increasing concurrency

0 3K 6K 9K 12K
time (ms)

0

20

40

60

80

100

CD
F 

(%
)

(b) CDF Latency for concurrency 400

Figure 3.14: HTTP Performance for inter-host communication

adversely impacts the HTTP throughput and latency. Fig. 3.14 (a) shows the impact on

RPS with different CNIs for the increasing number of concurrent connections and Fig. 3.14

(b) shows the latency profile with 400 concurrent connections. We can clearly observe that

with the increasing number of concurrent connections (from 100 to 400) the performance

of Calico-wp-ipip and Calico-np-ipip starts to degrade. We observed this to be due to

additional CPU overhead generated by the IP-in-IP tunnel processing in the kernel. In

fact, we noticed that the HTTP server often times out on the Calico-wp-ipip and Calico-

np-ipip at a concurrency level of 500 (hence the numbers are not reported). The results

indicate the overload behavior may be the cause of the poor performance for the Calico

overlay CNIs [167]. From Table 3.2 and Fig. 3.14(b), we also observe that Calico-wp-ipip

and Calico-np-ipip exhibit much higher average and tail latency than the other CNIs, for

the case of 400 clients, suggesting much higher resource utilization on the server Pods.
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Apart from Calico-*-xsub, we also observe that the underlay mode (Kube-router) performs

somewhat better across all the cases when compared to the overlay modes (Flannel, Weave,

and Cilium).

Summary Our realistic HTTP workload tests indicate there is a measurable impact of the

choice of the CNI. In general, a ‘Layer-3 + Underlay’ CNI (e.g., Calico, native routing)

appears better suited for most HTTP traffic, especially at large scale (higher concurrency)

traffic patterns.

Table 3.2: HTTP Performance of CNIs for 1 & 400 clients

CNI RPS Avg.Latency (msec.) Tput (Gbps)
Metrics c = 1 c = 400 c = 1 c = 400 c = 1 c = 400

Flannel 91.50 125.23 10.930 3168.911 3.57 4.90

Flannel-off 84.66 108.15 11.812 3521.380 3.3 4.22

Weave 87.81 117.08 11.388 3362.784 3.43 4.57

Cilium 90.35 120.57 11.069 3217.960 3.52 4.70

Kube-rtr 104.50 143.38 9.569 2829.294 4.08 5.60

Cali-wp-ipip 112.20 51.46 7.987 7481.709 4.38 2.01

Cali-np-ipip 115.74 60.80 7.367 6629.865 4.52 2.37

Cali-wp-xsub 105.36 146.08 9.491 2738.195 4.11 5.70

Cali-np-xsub 108.31 157.28 9.233 2434.811 4.23 6.14

3.4.6 Iptables Evaluation

In order to study the impact of iptable rules (e.g., number of rules, etc) by different

CNIs, we use the ‘iptables-save’ command to profile the iptable configurations set up by

the CNIs. We track the chains and rules that a packet will traverse going from the source

to destination Pod. Table. 3.3 presents the number of iptables chains and rules for different

CNIs for the intra-/inter-host communication patterns respectively.
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In the intra-host case, Cilium use eBPF for packet forwarding, which bypasses the

iptables processing. Flannel, Weave, Kube-router, and Calico-np (both ‘Calico-np-ipip’ and

‘Calico-np-xsub’ in the intra-host case, as they are equivalent) have the same number of

iptables chains and rules, and they all exhibit similar netfiler overhead (∼ 245 CPP ) for the

intra-host case. Calico-wp (both ‘Calico-wp-ipip’ and ‘Calico-wp-xsub’) is configured with

17 iptables rules by default. This adds to a higher netfilter overhead (324 CPP ) compared

to the others.

In the inter-host case, Calico with network policy enabled (e.g., ‘Calico-wp-ipip’)

has more iptables rules configured resulting in higher overhead (749 CPP ). Moreover, with

a similar number of rules, a CNI with fewer iptables chains applied (e.g., Cilium) has much

less overhead (450 CPP ) than the CNIs with more iptables chains applied (e.g., Flannel,

Weave). We observed that CNIs using the underlay model have fewer iptables rules than

the CNIs using the overlay model, as the overlay requires additional mangle/NAT rules to

perform the necessary encapsulation/decapsulation. We also observed that the number of

iptables chains and rules per packet does not increase with more background connections

enabled.

Summary: Based on the iptables evaluation, we conclude that CNIs with fewer iptables

chains and rules will have relatively less Netfilter overhead. However, to assure Pod network

security, users needs to use the CNI’s Network Policy API to install iptables rules, which

could increase Netfilter overhead and lead to performance loss.
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Table 3.3: Number of iptables chains and rules with default CNI configurations. Inter-host

case collects from both the source host and destination host.

CNI Intra-Host Inter-Host
Solutions # of chains # of Rules # of Chains # of Rules

Flannel 3 5 10 21

Weave 3 5 10 21

Cilium 0 0 4 20

Kube-router 3 5 6 10

Calico-wp-ipip 3 17 10 46

Calico-np-ipip 3 5 10 22

Calico-wp-xsub 3 17 6 28

Calico-np-xsub 3 5 6 12

(a) Network Startup Latency Break-
down

(b) Pod Creation Latency: single 
host; increasing # Pods

Figure 3.15: Pod Creation Latency with different CNIs.
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3.4.7 Pod Creation Time Analysis

Starting a pod from scratch can take considerable time, and significantly impacts

cloud-based microservices and Function as a Service offerings. The Pod creation latency is

the time for starting a Pod from scratch until all the containers in the Pod have been created,

comprising multiple steps [11], including network startup. We launch a single Pod each time

and measure the network startup latency breakdown with different CNI plugins. We also

measure the latency as we deploy an increasing number of Pods on a single host, with 10

repetitions. The container image used in our experiment is the ‘pause container’ [13], which

just sleeps after being successfully started. The size of the pause container is 600KB.

The individual pod creation latency is in the range of 1.48 ∼ 1.63s and the net-

working component contributes about 60 ∼ 195ms (Fig. 3.15 (a)). Flannel and Kube-router

have a smaller network startup latency (∼ 60ms) compared to the other alternatives. Weave

consumes about 165ms in the Pod-host Link Up step, due to the work of appending multi-

cast rule in iptables. Calico spends ∼ 80ms in the IP Allocation step, which is primarily due

to the interaction with the etcd store. The time spent by Cilium in the Endpoint Creation

step accounts for ∼ 90ms. During this step, Cilium generates the eBPF code and links it

into the kernel, which contributes to this high latency. Fig. 3.15 (b) shows the Pod creation

latency for simultaneously starting a number of distinct Pods on the same host. Flannel

and Kube-router have the smallest amount of increase in the creation latency as more Pods

deployed together, while the latency with Cilium increases much more rapidly, which shows

poor scalability.
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3.5 Characteristics for an Ideal CNI

Based on our qualitative and quantitative analysis, we outline a design for an

ideal CNI plugin and its characteristics. Our design choice for ideal CNI is motivated by

the need to have very low overhead, low latency, and high throughput intra-host and inter-

host container communication while also able to facilitate rich security and network policy

support.

• Based on our evaluation results, we propose that an ideal CNI should seek to utilize the

eBPF approach for intra-host communication. This is primarily because it generates

the least amount of CPU overhead compared to the other solutions. We attach eBPF

programs (with packet forwarding functionality) at the veth of Pods, so the intra-host

packet forwarding can achieve better performance.

• For packet forwarding across hosts, we propose the ideal CNI use native (IP) routing.

This helps avoid packet encapsulation/decapsulation overheads, avoids unnecessary

fragmentation due to large MTUs, and results in fewer iptable-chains to process.

This can achieve the highest packet forwarding performance when crossing the host

boundary. The daemon of the ideal CNI needs to be able to configure BGP between

nodes to distribute routing information, which is necessary to support native routing

across hosts. Moreover, the host’s physical interface needs to be attached with an

eBPF program, so that we can leverage the benefits brought by eBPF, just as in the

intra-host case. Multicast support can be built by leveraging eBPF’s TC hooks, which

can be a good match with the ideal CNI’s intra-/inter-host datapath.
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• When the underlying networking infrastructure does not provide support for native

routing (such as BGP) or the users have a strong demand for network isolation,

the ideal CNI should be able to offer sufficient overlay tunneling options to users

(e.g., IP-in-IP, VXLAN, GRE, etc.). Support for several overlay modes is desirable,

especially if different NICs in the cluster lack the support for offloading certain specific

overlay tunneling modes. A practical design should be able to auto-configure and

suggest the right overlay option for the user. I.e. the CNI daemon should be able

to detect the tunnel offload support information provided by NIC for all the nodes

in the Kubernetes cluster (interact with ‘ethtool’), and help users to make the right

decision on choosing the overlay tunnel that can exploit the offloading capabilities, so

as to achieve maximum performance.

• The ideal CNI should support the network policies that can be applied across all

layers, i.e., Layer 3 – Layer 7. This will provide a rich set of network policy attributes

to provide needed network security. It is also desirable to have an eBPF-based iptables

implementation [84], which could cooperate with the eBPF-based datapath design and

achieve better packet filtering/forwarding performance.

3.6 Conclusion

Through qualitative analysis and a careful measurement-driven evaluation, we

provide an in-depth understanding of the different CNI plugins, identify their key design

considerations and associated performance. Our evaluation results show the interactions

between the different datapath (organization of iptables), usage of the host network stack
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contribute to the overall performance. While there is no single universally ‘best’ CNI

plugin, there is a clear choice depending on the need for intra-host or inter-host Pod-to-

Pod communication. For the intra-host case, Cilium appears best, with eBPF optimized

for routing within a host. For the inter-host case, Kube-router and Calico are better due

to the lighter-weight IP routing mode compared to their overlay counterparts. Although

Netfilter rules incur overhead, their rich, fine-grained network policy and customization can

enhance cluster security. Tunnel offload is another aspect to be considered, which can help

to achieve the maximum performance when working with a CNI’s overlay mode. This may

be very desirable for Cloud Service Providers.

Our work sheds light on the benefits and overheads of the different aspects of CNIs,

thus informing us of the design of an ideal CNI for Kubernetes cluster environments. The

ideal CNI supports several desirable features including the eBPF-based intra-host datapath,

native routing for inter-host packet forwarding, support for sufficient overlay tunneling

options, automatic tunnel offload support detection, feature-rich network policy support

coupled with an eBPF-based iptables implementation.
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Chapter 4

An Efficient and Fair Algorithm

for Serverless Function Placement

4.1 Introduction

Edge Clouds, aimed to place the data and applications closer to the user, are large

numbers of ”tiny” data centers. Compared to today’s centralized data center, edge cloud

data centers are scaled down and have a short distance from end users, which means much

less transport cost and potentials for delay [16]. The prevalence of Internet of Things (IoTs)

and latency sensitive cyber physical systems boost the demand for edge cloud computing,

which is expected to serve enormous clients with high performance [190]. However, with

the comparison of centralized cloud, edge cloud is far more resource limited [190], due to

its small scale and dense multi-tenancy feature. An efficient, elastic and scalable resource

utilization is the key to maximize the value of edge cloud. Serverless computing, driven by
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the advancements of container technologies, has emerged as a promising paradigm to ease

the concern on resource efficiency in edge cloud. Serverless computing liberates the users

from managing the underlying infrastructure resources [77, 93]. The cloud service providers

(CSPs) are in charge of provisioning, updating and managing the cloud resources. The

resources can be scaled dynamically depending on the incoming load, which is advantageous

to optimize the resource utilization and alleviate burdens on managing the workloads at

scale. With serverless computing, the edge cloud is able to allocate resources on demand

and hence improve the resource utilization.

Serverless function, which works as the Pod (i.e., a group of containers) under the

context of Kubernetes-based platform, is a model for enabling convenient, on-demand access

to a shared resource pool. It can be rapidly provisioned and released. The various types

of hardware layer resources (e.g., CPU, memory, storage and network) can be abstracted

and sold to client as functions. Resource allocation1, as a vital aspect of both edge cloud

and serverless computing, is still in face of several challenges: the increasing number of the

clients and the heterogeneous resources. In order to improve the resource utilization of the

serverless platform, the Pod placement should be optimized to fully utilize various types of

resources and pack as many Pods as possible into the nodes, in order to avoid significant

costs to start up new node instance. Besides, in consideration with user’s experience of

requesting microservices, a resource allocation decision, i.e., placing a requested Pod to its

best-suited node, has to be completed within a limited time. Moreover, the well-known

”cold start” problem can also benefit from efficient Pod placement. Thus, for the Pod

placement in the context of serverless computing, the main optimization goal is to place

1“Resource Allocation”, “Pod Placement” and “Pod Scheduling” are used interchangeably here
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maximum number of Pods through a fast and efficient resource allocation scheme, which

not only performs with low latency but also improves cloud’s resource utilization.

In this chapter, we investigate in the optimal Pod placement scheme under mul-

tidimensional resource constraints, aimed to allocate the maximum number of Pods to a

given set of nodes. We formulate the optimized Pod placement problem through a multidi-

mensional bin packing model, with various resource types considered. In the future, a set

of heuristic and approximation algorithms, e.g., relaxed solutions based algorithms, greedy

algorithms, vector-packing algorithms will be examined on the proposed model. The best

approach will be concluded based on the experimental analysis on the forementioned algo-

rithms. We also plan to apply the proposed model to the popular open-source serverless

platform — Knative — to study its resource utilization improvement under a realistic edge

cloud environment.

Placement Engine (§4.3): Mu carefully decides where to place each function

container to avoid fragmentation and ensure fairness in a multi-tenant environment. Unlike

centralized clouds where resources are seemingly endless, Edge clouds may frequently run

at close to capacity. We show our placement heuristic achieves comparable performance

to optimization techniques at a much lower computation cost and provides up to a 2×

improvement in fairness among tenants.
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Predicates

1st Pod in the queue:

Priority

Figure 4.1: The scheduling model of Kubernetes
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4.2 Background

4.2.1 Kubernetes Scheduler (Placement Engine)

The scheduling model of Kubernetes is shown in Fig. 4.1. Once a new Pod is

created, either by auto-scaler or user manually, it will be inserted into the waiting queue

in the scheduler before being deployed to a suitable node. During each scheduling cycle,

only the 1st Pod in the waiting queue can be scheduled. The remaining Pods will stay in

the queue and wait for the next scheduling cycle. The scheduling decision making process

consists of two steps: predicate and priority. In the predicate step, the scheduler will filter

out the ineligible nodes, which fail to meet the specific resource requirements (e.g., CPU,

memory, etc) of the Pod. A set of filtering plugins has already been offered by Kubernetes

and can be applied in the predicate step, e.g., PodFitsResources, MatchNodeSelector, etc. In

some corner cases, there would be no eligible node to be deployed with the target Pod after

the predicate process. The scheduler will set the status of the Pod as failed deployment,

report to the user and then start the next scheduling cycle.

In the priority step, there would be several eligible nodes retrieved after the pred-

icate step. Scheduler will prioritize all the eligible nodes by using priority plugins provided

by Kubernetes. Various priority plugins can be applied in this step to find the best-suited

node to provision the Pod, e.g., LeastRequestedPriority, MostRequestedPriority, etc. After

the completion of the priority process, it is possible to find more than one node is scored

as highest priority. In this case, the scheduler will randomly select one of them. With the

scheduling decision on the given Pod, the scheduler will inform the kubelet on the selected

node through the API server, and then the kubelet will bind the Pod to the selected node.
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To help the scheduler makes better scheduling decision, users can specify the re-

source requests and limits in the Pod’s configuration. The resource request determines the

minimum resource requirements of the Pod and the resource limit indicates the maximum

resources that the Pod can acquire. Based on the configuration of resource requests &

limits, Pod can be classified into various QoS classes, i.e., Best Effort, Burstable and Guar-

anteed. The Best Effort Pod has no configuration or guarantee on its resource requests &

limits, which means if the node exhausts its resources, the Best Effort Pod will be evicted

first. If the resource requests of the Pod is configured less than its resource limits, it will

be classified as Burstable Pod. For the Burstable Pod, it can use amount of resources more

than requested if there are remaining resources available on the node. The resource requests

of the Guaranteed Pod is configured to be equal to the resource limits, which means the

Guaranteed Pod is able to use maximum resource that allowed by the node. For the sake

of better utilizing node resources as well as ensuring good performance, the users should

properly setup the resource requests and limits of the Pod. On the one hand, unexpected

resource contention between different Pods will definitely degrade the overall performance.

On the other hand, overestimated resource configurations will lead to wasted resources, as

the Pod cannot use up the entire amount of allocated resources.

4.2.2 Knative Serverless Platform

Knative is a well-known open-source serverless platform, which is applicable for

deploying and serving serverless applications. Knative runs on top of Kubernetes. Equipped

with a set of Kubernetes-based middleware components, Knative offers the ability to ex-
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Function PodFunction PodFunction PodFunction PodFunction PodFunction PodClient

Ingress Controller

Queue-Proxy Container

Function Container

Figure 4.2: The working model of Knative platform

ecute FaaS workloads that can be elastically scaled [59]. The working model for Knative

is shown in Fig. 4.2 [151]. The requests generated by the external client will be queued

by ingress controller (from 3rd party, e.g. Istio ingress controller) and wait to be fetched

by the function Pods. Two containers, the queue-proxy container and the function con-

tainer, constitute the function Pod. When the requests reach the function Pod, they will

firstly be queued in the queue-proxy container, and subsequently, forwarded to the function

container for further processing. The queue-proxy container enables concurrent requests

to be processed by the function container. The users can specify the concurrency level in

accordance with their needs [10]. Compared to other alternative serverless platforms, e.g.,

Nuclio, OpenFaas, Knative suffers from higher communication overhead resulted from its

dual-container implementation, which indicated worse performance [151].

4.3 Placement Engine Design

Fig. 4.3 shows the architecture of Mu, which builds on the Knative, Kubernetes,

and Istio tools. The Placement Engine must pack pods to suitable nodes to reduce resource
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Figure 4.3: Mu Overview.

fragmentation, improve the efficiency and ensure fairness between functions when Edge

resources are constrained.

When functions have to be instantiated, the typical approach in Kubernetes and

Knative is to use a bin-packing algorithm to schedule (place) the function pods on available

servers. We develop an efficient and fair algorithm for a placement engine to pack function

pods to suitable nodes while reducing resource fragmentation. Since an edge cloud may have

limited resources, it is important to fairly allocate resources among contending functions,

while considering their demand for resources across multiple dimensions (CPU, memory,

etc). We adapt the notion of dominant resource fairness (DRF) to arrive at a fair placement

strategy [113].

4.3.1 Optimization Model and Metrics

We first model the function placement task as an Integer Linear Program (ILP)

formulation. Let N be a set of nodes; Let J be a set of resources; each resource j ∈ J has

its capacity cn,j on node n. Let F be a set of functions, each function f ∈ F has its desired

pod count pf . Each function’s pods demand df,j ≥ 0 on resource j, and wf,n denotes the
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number of function f ’s pods placed at node n. We define two objective functions for two

alternate models, ILP0 and ILP1, both of which have the same constraints, as below:

ILP0:max
∑

n∈N
∑

f∈F wf,n

ILP1:max
∑

n∈N
∑

f∈F
1
Df
×
∑wf,n

i=1
1
i

s. t.
∑

f∈F df,j · wf,n ≤ cn,j ,∀n ∈ N, ∀j ∈ J

0 ≤
∑

n∈N wf,n ≤ pf ,∀n ∈ N, ∀f ∈ F

(4.1)

The goal of ILP0 is to maximize the total number of pods and thus the overall resource

efficiency among a given set of nodes, while ILP1 maximizes both the resource efficiency

and fairness across different functions. ILP1 assigns a weight wf,n by decreasing the reward

for placing a function’s as the number of pods increases for that function. Thus, the reward

for placing more pods for a single function is less than the reward of evenly placing the

pods of several different functions. In addition, to ensure the function with a small resource

demand will not be starved by functions with a large resource demand, ILP1 weights the

wf,n by the dominant resource share of function f (Df = maxj∈J
df,j×pf∑
n∈N cn,j

). Placing a large

function pod receives a smaller reward, which guarantees fairness between large functions

and small functions. Both ILP0 and ILP1 are constrained by the node’s resource capacity

and each function’s requested pod count.

Quantifying Fairness & Efficiency: We quantify fairness of the allocation of resources

to each function by the placement engine based on the principle of Max-Min fairness [85].

With varying demand from contending functions, it is important to evaluate fairness also

as a function of time. Similarly, we evaluate the efficiency of the placement engine, by

comparing its allocation with an allocation that maximizes the resource efficiency, as spec-
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Figure 4.4: An example on integrating the degree of CPU unfairness over 30 intervals

ified by the greedy algorithm ILP0 above. We evaluate the degree of unfairness Uj and the

inefficiency Ij of a placement algorithm on resource j integrated over a period of time, T ,

in Eq 4.2.

Uj =

∑
f∈Ft

∑
t∈T |Rf,j,t −Mf,j,t|∑

t∈T |Ft|

Ij =

∑
t∈T |

∑
f∈Ft

df,j,t −
∑

f∈Ft
Rf,j,t|∑

t∈T |Ft|

(4.2)

where Mf,j,t indicates the max-min allocation on resource j to function f at time instant

t, and Rf,j,t is the the amount of resource j allocated to each function f by the placement

algorithm at time t. Ideally, a placement algorithm could directly meet the max-min allo-

cation, but in practice this is not possible because it only considers a single resource and

assumes resources can be allocated without any fragmentation. Fig. 4.4 shows an example

on quantifying the degree of unfairness, by comparing the allocations to two functions over

time with regard to their ideal max-min allocation. We integrate the absolute difference

between Rf,j,t and Mf,j,t over a period of time T , (
∑

t∈T |Rf,j,t −Mf,j,t|). The degree of

unfairness can then be calculated by averaging the cumulative area of all the functions over

the entire time period T . Since the max-min allocation achieves the optimal fairness for each

resource [85], a larger Uj indicates more unfair allocation on resource j. We do the same
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for the degree of inefficiency, integrated over time to get the overall degree of inefficiency,

Ij , of the placement algorithm compared to the placement with the greedy algorithm ILP0.

Algorithm 1 Placement Algorithm

1: while F ̸= ∅ do

2: Df ←− {maxj∈J(Rf,j/
∑

n∈N cn,j)|∀f ∈ F}

3: Pick the function f ′ ∈ F with minimum Df

4: Sn ←− {scoren,f ′ |∀n ∈ N, df ′,j fits in an,j}

5: if ∀n ∈ N,Sn = ϕ then

6: F ←− F − f ′

7: else

8: Place f ′ to node k ←− maxn∈N Sn

9: Rf ′,j←− Rf ′,j + df ′,j; ak,j←− ak,j − df ′,j; pf ′←− pf ′ − 1

10: if pf ′ = 0 then

11: F ←− F − f ′

12: end if

13: end if

14: end while

4.3.2 Heuristic algorithms

As the ILP model is NP-Hard, we also design a heuristic algorithm to solve the

pod placement. We break the placement algorithm into two modules: (i) the pod selection

module considering Dominant Resource Fairness (DRF), to decide which function pod is

selected to be placed next; (ii) the node selection, which chooses the node to place the
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function pod at, based on a scoring function, so as to reduce the resource fragmentation,

while minimizing unfairness. For a given scaling decision from Autoscaler, the placement

engine invokes these two modules iteratively until function set F is empty (Algorithm 1).

Module 1: Pod selection. We calculate dominant share (Df ) of every function and pick

the function f ′ with the minimum Df . If multiple functions have the same minimum Df ,

the function with the minimum sum of the resource demands (i.e., MIN(
∑

j∈J df,j)) is

selected.

Module 2: Node selection. We evaluate a number of existing scoring functions for

selecting the node, e.g., Alignment [117], WorstFit [177], and BestFit [177].

Alignment uses scoren,f =
∑

j∈J
an,j

cn,j
× df,j

cn,j
to score the node n for the selected function

f , an,j is the remaining resources on node n. Alignment picks the node with the highest

amount of remaining resources. WorstFit chooses the node with the highest value of:∑
j∈J

an,j−df,j
cn,j

. Thus, WorstFit seeks to pack the function into the node with the least

amount of resources available that can accommodate this function’s demand. BestFit

chooses the node that has the highest value of:
∑

j∈J
an,j−df,j

an,j
. BestFit seeks to pack the

function into the node with the most amount of resources left after accommodating this

function’s demand. All nodes n ∈ N that have enough resources to fit the selected function

f ′, are then scored using a scoring function. If f ′ has no node with a valid score, it is

removed from F . Else, the node with maximum score is picked for f ′. After placing f ′, we

update the resource allocation and capacity. If the total pods demanded for function f ′ is

met, it is removed from the set F .
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4.4 Placement engine evaluation
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Figure 4.5: Fairness and efficiency comparison (simulation)

4.4.1 Simulation

We simulate and compare our different DRF-based heuristic approaches (WorstFit,

BestFit, and Alignment), the default Kubernetes scheduling heuristic (Default), and the

two ILP models, by setting up 500 randomly generated placement test cases. We consider a

simulated cluster of 40 nodes and 300 functions. A workload generator is used to randomize

functions and nodes in each test. In the configuration used, 90% of the functions require

less than 400MB memory while 10% of functions require 500∼2000MB memory. The CPU

demand of functions ranges from 1∼8 cores. Each function requests 1∼16 pods. To ensure

demand exceeds the resources in the cluster, the total CPU capacity of the cluster is set

to 80% of the total CPU demand and the total memory capacity is set to 60% of the total
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memory demand. We use Gurobi [119] to solve the ILP models, adjusting the accuracy and

termination criterion to keep computation time manageable.

Fig. 4.5(a) shows the fairness (as defined in Eq. 4.2) of the allocation decisions

for the CPU and memory. The 3 DRF heuristic-based algorithms (which are all close to

each other) achieve 2× better fairness than the ILP0, which does not consider fairness in its

optimization. ILP1 considers the fairness in the formulation, and achieves better fairness

than the ILP0. However, with the accuracy and termination criteria we used with the solver,

ILP1 achieves better efficiency but poorer fairness than the DRF heuristic algorithms. The

worst algorithm in terms of fairness is the Kubernetes Default approach. Comparing CPU

efficiency (Fig. 4.5(b)), the DRF heuristics have an unmet CPU demand of ∼10 cores on

average, which is slightly worse than the ILP models. The Kubernetes Default is also

better, with an average unmet CPU demand of ∼8 cores. All the alternatives have similar

memory efficiency, resulting in an average of ∼ 130MB unmet memory demand. Thus,

the DRF heuristic approaches strike a good balance of having very good fairness, and

are close to the best case efficiency of the Kubernetes Default algorithm (which however

ignores fairness). In Mu’s deployment, the placement engine is executed once every epoch (2

seconds, driven by the autoscaler). In terms of computation time, the Default Kubernetes

approach takes ∼200 ms. The DRF heuristics are also fast, taking ∼500 ms to determine

the placement of 300 functions among 40 nodes. However, the ILP models, depending on

the accuracy desired, take much more time (> 2 seconds on a server-class machine) and

are impractical for real-time placement use. The DRF approaches, on the other hand, are

feasible for deployment.
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4.4.2 Evaluation of Mu’s Placement Engine with Real Workloads

Table 4.1: Experiment config-

uration

Parameter/Specification Values

Invocation Range
W-1 41-230 rps
W-2 69-182 rps

Average invocations
W-1 154 rps
W-2 146 rps

Container Concurrency 4

Grace Flag (Mu only) 16

Execution time 500ms

Maximum pod capacity 48

CPU and Mem. per pod 7 cores, 30GB

Target
RPS 8
CC 40

SLO 5 seconds
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Figure 4.6: Response time CDF for 3 frameworks for Work-

load 1 (left); Workload 2 (right; only partial CDF for Con-

currency)

We now evaluate Mu’s placement engine for a few large scale workloads. We

compare Mu with the Knative default approaches.

Implementation Details and Testbed Setup: Mu’s implementation extends multiple

components in the Knative ecosystem, including the Knative Queue-Proxy, Istio Gateway,

Knative Autoscaler, and Kubernetes Scheduler (placement engine). We base our code on

Kubernetes v1.17.0, Istio’s Envoy Proxy v1.16.0, and Knative v0.13.0. Our extensions

comprise ∼800 lines for the placement engine. We evaluate the serverless platforms on

the Cloudlab testbed [102] consisting of one master and ten worker nodes, each of them

equipped with Two Intel E5-2660 v3 10-core CPUs at 2.60 GHz (40 hyperthreads per host)

and 160 GB ECC memory running Ubuntu 18.04.1 LTS. We do not add any extra pod

heterogeneity in this experiment other than the natural fluctuations found on CloudLab.

To comprehensively evaluate Mu, we use the workloads received by functions in

the Azure dataset [196]. We select 2 workloads with variable invocation patterns from
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the top 10 workloads sorted by maximum number of invocations for the first day in the

dataset. We scale down these workloads by dividing the number of invocations by 100 for the

experiment, treating each minute of the original trace as one second to add dynamics. The

scaled down workload and the configuration of the serverless environment are in Table. 4.1.

With the fairness-aware Placement Engine, Mu can more fairly allocate the limited edge

cloud resources among the competing functions.

Table 4.2: Comparing Mu with the standard Knative build

Average response 99% response # 503 errors Requests served Requested Pods Active Pods
time (ms) time (ms) /total requests within SLO Max Avg. Max Avg.

Mu
Workload-1 952 3805 6779 / 221026 213437 (96.5%) 33 20.5 24 20.0
Workload-2 1020 4073 5211 / 209905 203622 (97.0%) 26 19.4 24 18.9

RPS
Workload-1 880 11757 0 / 221026 213089 (96.4%) 38 29.3 26 25.1
Workload-2 2605 8808 0 / 209905 158511 (75.5%) 32 27.9 22 20.9

Concurrency
Workload-1 588 2141 0 / 221026 220144 (99.6%) 141 41.4 40 24.5
Workload-2 7765 49526 0 / 209905 142774 (68.0%) 136 62.3 24 21.2

Figure 4.7: Time series of Response Time for Mu, RPS, and Concurrency (Top: Workload

1; Bottom: Workload 2)
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Latency and Fairness: The CDF of the response times for each workload and approach

is shown in Fig. 4.6. Mu has good control over the response times and limits the tail

latency that exceeds the specified SLO of 5 seconds for both workloads. For Workload 2,

Mu provides a substantially tighter response time distribution than RPS or Concurrency.

As shown in Table 4.2, the 99% response time for the two workloads are both below the 5

second SLO for Mu. Examining the response time distribution (Fig. 4.6), and the average

and 99%iles (Table 4.2) and the time series of the response times (Fig. 4.7(a), 4.7(b)), we see

that Mu maintains fairness between the workloads for the entire length of the experiment.

In contrast, the standard Knative approaches result in much larger response time

tails, and both unfairly treat one of the workloads. For Workload 1, both RPS and Con-

currency (CC) achieve a lower average response time (except RPS has a relatively large

number of requests experiencing high delays at the start of the workload, resulting in its

99%ile being higher). However, for Workload 2, both RPS and CC behave quite poorly

at different periods of the workload execution, as seen from the time series (Fig. 4.7(b)),

with 25-32% of requests violating the SLO. Workload 2 sees an unacceptably large 99%

latency with CC as seen in Table 4.2. Since Mu is conservative in its pod allocation for

both Workload 1 and 2, it sees a slightly higher average response time for Workload 1 than

RPS and CC, but better for Workload 2 than RPS and CC. The 99%ile for Mu is clearly

better than the two alternatives.

Pod Allocations: We use the term “requested pod count” for all alternatives. It comes

directly from the autoscalers for RPS/CC. For Mu, the placement engine uses the pod

count determined by the autoscaler and accounts for fairness and overall system capacity
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Figure 4.8: Time series of Pod counts for Mu (left), RPS (middle), and Concurrency (right)

to determine Mu’s “requested pod count”. On average RPS and Concurrency use 18% and

17% more pods than Mu. Mu tends to request fewer pods since its goal is to proactively

provision enough pods to meet SLOs, and the predictor helps to anticipate the future

workload. In Fig. 4.8(a), Mu is aware of both the workloads and fairly determines the

requested pod count. RPS and concurrency on the other hand (Fig. 4.8(b) and 4.8(c)), run

an autoscaler for each workload, without coordination between decisions for each workload.

Thus, the requested pod counts may not only be unattainable, but can also be unfair. This

is most evident for concurrency based autoscaling in Fig. 4.8(c) where the pod requests for

individual workloads exceed 100, whereas the system capacity only allows provisioning 48

pods totally.

SLO Performance: Overall, Mu provides a significant increase in the total number of

requests served within the SLO (96.8%) compared to the RPS scaling policy (86.2%) and

Concurrency scaling policy (84.2%), as shown in Table 4.2. Mu uses SLO-aware admission

control and returns 503 errors [19] for requests which it will not be able to serve within the

SLO based on current queue lengths. This avoids the build up of a large queue with the

arrival of a burst of requests. RPS and concurrency do not factor SLO into account, so
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when bursts occur, requests are buffered in the activator, and the queuing results in a large

number of SLO misses. Throughout the experiment, Mu has relatively uniform response

times, increasing only during bursts, when the system is under-provisioned (e.g., first 200

seconds of the experiment when we have to scale up from zero to a large number (∼ 20) of

pods). On the other hand, Concurrency and RPS see persistent queuing for long periods

(> 400 seconds) and the response time grows substantially more than the desired target

SLO of 5 seconds. There is also significant unfairness for Workload 1 vs. Workload 2 as

seen in Fig. 4.7(a), 4.7(b).

As shown in Fig. 4.7, Mu returns 503 errors (indicated by red dots). Our view

is that by having these failures (and potentially having those requests be retransmitted)

impacts a relatively small number (less than 5%) of requests, which is better than building

up a large queue resulting in very long latencies for a large number of requests (25-30%,

as seen for RPS and Concurrency) and likely to more seriously impact user Quality of Ex-

perience (QoE). These 503 errors are well correlated with the occurrence of bursts when

resources are not yet provisioned by Kubernetes. This is mitigated somewhat by the predic-

tor and proactive autoscaling. In fact, most of the 503 errors occur when the burst arrives

at the beginning when the predictor has not yet learned the characteristics of the workload.

Additionally, even though Mu’s autoscaler requests allocation of a larger number of pods,

Kubernetes can take a large amount of time to provision these pods, starting from an initial

zero-scale system (as seen in the difference between pods being requested and active in the

first 200 seconds for Mu (see Fig. 4.8(a)).
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4.5 Conclusion

Existing platforms such as Knative suffer from their ad-hoc design that leverages

existing frameworks such as Kubernetes without substantial customization for serverless

use cases (e.g., reuse the Kubernetes placement algorithm). Further, today’s serverless

platforms are designed for large scale cloud environments with abundant resources, without

meeting the strict requirements of agility and efficiency needed for Edge cloud environments.

Our work on Mu demonstrates the importance of a fairness-aware placement en-

gine. When resources become overcommitted, Mu’s placement engine ensures greedy func-

tions cannot unfairly starve others. We have demonstrated that Mu’s placement engine

improves fairness for Edge environments, leading to more consistent performance and fair-

ness across functions, while avoiding long tails for the response time.
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Chapter 5

High-performance and Efficient

Serverless Computing using

Event-driven Shared Memory

Processing

5.1 Introduction

Serverless computing has grown in popularity because users have to only develop

their applications while depending on a cloud service provider to be responsible for managing

the underlying operating system and hardware infrastructure. The typical costs borne by

the user of serverless computing are only for processing incoming requests. This event-

driven consumption of resources is attractive for cloud users, especially when their demand
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is intermittent. It does, however, place the burden on the cloud service provider to provide

adequate resources on-demand and ensure the quality of service (QoS) requirements are

met.

In many cases, serverless frameworks are profligate in their resource consumption.

They provide the needed functionality by loosely coupling serverless functions and mid-

dleware components that run as a separate container and/or pod. This can be extremely

resource-intensive, especially when deployed in a limited capacity environment, e.g., edge

cloud [166]. There are still a number of shortcomings to be overcome for building a high-

performance, resource-efficient, and responsive serverless cloud. Some contributors to this

overhead are the following.

Use of heavyweight serverless components. In a serverless environment, each func-

tion pod has a dedicated sidecar proxy, distinct from its application container. Sidecar

proxies help build an inter-function service mesh layer with extensive functionality support,

e.g., metrics collection and buffering, facilitating serverless networking and orchestration.

However, the existing sidecar proxy is heavyweight since it is continuously running and in-

curs excessive overheads, including 2 data copies, 2 context switches, and 2 interrupts (see

§5.2) for a single request. Moreover, since most serverless frameworks primarily focus on

HTTP/REST API [23, 128, 31], additional protocol adaptation is required for specialized

use cases, e.g., IoT (Internet-of-Things) with MQTT [62], CoAP [88]. The current design

runs protocol adaptation as an individual component, resulting in substantial resource con-

sumption [215]. Having such a heavyweight design may overload serverless environments,

especially in resource-limited edge clouds or when handling infrequent workloads (e.g., IoT).
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Instead, going a step further and invoking code for execution on a completely event-driven

basis without using an individual component can result in substantial resource savings.

Poor dataplane performance for function chaining. Modern cloud-native architec-

tures decompose the monolithic application into multiple loosely-coupled, chained functions

with the help of platform-independent communication techniques, e.g., HTTP/REST API,

for the sake of flexibility. But, this involves context switching, serialization and deserial-

ization, and data copying overheads. The current design also relies heavily on the kernel

protocol stack to handle the routing and forwarding of network packets to and between

function pods, all of which impact performance. Although function chaining brings flexibil-

ity and resiliency for building complex serverless applications, the decoupled nature of these

chains also requires additional components (e.g., a message broker such as Apache Kafka [1],

to coordinate communication between functions, and a load balancer like Istio [27]). The

resulting complex data pipelines add more network communications for the function chain.

All of this contributes to poor dataplane performance (lower throughput, higher latency),

potentially compromising service level objectives (SLOs).

In this chapter, we design SPRIGHT [181, 180], a high-performance, event-driven,

and responsive serverless cloud framework that utilizes shared-memory processing to achieve

high-performance communication within a serverless function chain. We base the design of

SPRIGHT on Knative [59], a popular open-source serverless framework. Evaluation results

are presented for SPRIGHT and compared with Knative under various realistic serverless

workloads in a cloud environment. Our event-driven shared memory processing, includes

event-driven proxies (we call them the EPROXY and SPROXY) that significantly reduce
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the high resource utilization in the Knative design. This results in much lower latency.

SPRIGHT overcomes the challenges of existing serverless computing with the following

innovations:

(1) We design the SPRIGHT gateway, a chain-wide component, to facilitate shared memory

processing within a serverless function chain. The SPRIGHT gateway consolidates protocol

stack processing in the Linux kernel and distributes the payload to the chain.

(2) We design event-driven proxies (i.e., EPROXY and SPROXY) using the eBPF (ex-

tended Berkeley Packet Filter [39]), that effectively replace the heavyweight sidecar proxy.

We support the functions of metrics collection etc., with much lower CPU consumption.

We further utilize the XDP/TC hooks provided by eBPF to improve packet forwarding per-

formance outside the serverless function chain. Compared to the kernel networking stack,

the eBPF-based dataplane dramatically lowers latency and CPU consumption.

(3) We implement zero-copy message delivery within a serverless function chain by using

event-driven shared memory communication. This avoids the unnecessarily duplicated in-

kernel packet processing between functions, achieving high-speed, highly scalable packet

forwarding within a serverless function chain. Event-driven shared memory communication

helps reduce CPU usage and alleviate penalties when keeping the function chain warm.

(4) SPRIGHT fully exploits the reconfigurability of the eBPF maps to support Direct Func-

tion Routing (DFR) within the serverless function chains, which eliminates the dependency

on an intermediate routing component (e.g., the message broker in Knative [60]) for func-

tion chaining and avoids duplicate processing in the dataplane.

(5) We implement the separation at the function-chain level in SPRIGHT’s shared memory
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processing by restricting access to a private shared memory to trusted functions of only that

chain. The SPROXY further restricts unauthorized access by applying message filtering for

inter-function communication.

(6) We optimize protocol adaptation by running it as an event-driven component attached

to the SPRIGHT gateway, to avoid unnecessary networking protocol stack processing over-

head. This optimization can significantly reduce resource usage.

5.2 Background and Challenges
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Figure 5.1: Networking processing involved in a typical serverless function chain.

There are a variety of implementations for function chaining since there is no

standard for a general solution architecture for serverless applications. The data pipeline

patterns for function chaining of different open-source serverless platforms are slightly dif-

ferent, depending on the messaging model applied, e.g., a publish/subscribe model typically
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uses a message broker as the intermediate component for coordinating invocations within

the function chain, while the request/response model typically employs a front-end proxy

to perform invocations within the function chain. We examined the design of several pro-

prietary and open-source serverless platforms [32, 33, 24, 60, 165] and developed a common

abstract model of the typical data pipeline pattern they use, as shown in Fig. 5.1.

The data pipeline for function chains uses a message routing as follows: ① Clients

send messages (requests) to a message broker/front-end proxy through the ingress gateway

of the cluster. ② The messages are queued in the message broker/front-end proxy and

registered as an event. ③ The message broker/front-end proxy sends the message to an

active pod of the head (first) function in the chain, as defined by the user. ④ The function

pod is invoked to process the incoming request. After the first function processes the request,

a response is returned and queued in the message broker/front-end proxy, registered as a

new event for the next function in the chain. ⑤ The message broker/front-end proxy sends

this new event to an active pod for the next function in the chain.

Unfortunately, this data pipeline poses several challenges that are common across

the different serverless platforms. The core dataplane components, including the ingress

gateway, message broker/front-end proxy, sidecar proxy, etc., are usually implemented as

individual, constantly-running, loosely coupled components. In addition, for internal calls

within the chain, each involves context switching, serialization/deserialization, and protocol

processing.

We quantify the overheads in the representative open-source platform, Knative,

through systematic auditing performed with a ‘1 broker/front-end + 2 functions’ chain setup

96



based on the current design depicted in Fig. 5.1. We assume all evaluated components are

deployed on the same node, with the overhead on the external client-side excluded. We use

an NGINX [64] server function for this audit. However, our results are generally applicable,

as these basic overheads are independent of the function used. We examine the different

overheads incurred in the data pipeline processing of one request (from ① to ⑤), including #

of copies, # of context switches, etc. as listed in Table 5.1. Due to implementation-specific

differences, e.g., running multiple threads on the same CPU core, there may inevitably be

additional context switches. Our audit aims to quantify the minimum value of each type of

overhead. Based on these observations, we list the following key takeaways:

Takeaway#1: Individual, constantly-running heavyweight sidecar. Serverless

platforms equip each function pod with an individual, constantly-running sidecar proxy

to handle inbound and outbound traffic. The presence of this sidecar proxy introduces a

significant amount of overhead. Just going through step ④, the sidecar proxy introduces

2 data copies (50%), 2 context switches (50%), and 2 interrupts (33%). To understand

the impact of this overhead on dataplane performance, we evaluate several sidecar proxies,

including the Envoy sidecar from Istio [26], Queue proxy from Knative [151], and the OF-

watchdog from OpenFaaS [29]. We use these sidecar proxies to work with NGINX [64] as

a representative HTTP server function. We also use this NGINX HTTP server function

without sidecar proxies as the baseline to quantify the additional overhead introduced by

the sidecar proxy. We disable autoscaling and limit ourselves to a single function instance.

We use wrk [21] as the workload generator and send variable-size HTTP traffic (2% 10KB

requests, 98% 100B requests) directly to the function pod on the same node.
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Figure 5.2: Performance and overhead breakdown of different sidecar proxies.

Our experimental results are shown in Fig. 5.2. Equipping a sidecar proxy results

in a 3×–7× reduction in throughput, 3×–7× higher latency, and a significant increase (3×–

7×) in CPU cycles per request. Even though the overhead varies, it is common across all

the evaluated sidecar proxies. Looking deeper at the CPU overhead breakdown, the kernel

stack for the sidecar proxy consumes 50% of CPU cycles. This substantial overhead of

sidecar proxies undercuts the benefit of serverless computing and calls for a more lightweight

serverless capability to provide the same functionality.

Takeaway#2: Excessive data copies, context switches, and interrupts intro-

duced by kernel-based networking. The existing Knative framework uses kernel-based

networking to construct the dataplane for a serverless function chain, which inevitably in-

troduces a number of overheads (data copies, context switches, and interrupts) caused by

the kernel-userspace boundary crossing. Looking at the network processing from step ①

to step ⑤ in Fig. 5.1, each request results in 15 data copies, 15 context switches, and 25

interrupts throughout the entire data pipeline. In particular, most of the overhead (80%)

comes from networking within the function chain (from ③ to ⑤). The excessive overhead
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adds up as more messages are exchanged between functions, which have to be handled by

the kernel. This can greatly impact the dataplane performance of a serverless function

chain.

Takeaway#3: Unnecessary serialization & deserialization. HTTP/REST API re-

quires additional serialization and deserialization operations to convert application data to

byte streams before being transmitted over the network. These operations incur signifi-

cant overhead (lowering throughput and adding latency) [218, 187]. Each step in the data

pipeline for the function chain (from ③ to ⑤) introduces 2 serialization and 2 deserialization

operations. As shown in Table 5.1, current designs further exacerbate this overhead with

an excessive number of protocol stack traversals, which we describe next.

Table 5.1: Per request Knative overhead auditing of data pipelines for a ‘1 broker/front-end

+ 2 functions’ chain.

Data Pipeline No.
External Within chain

Total
① ② total ③ ④ ⑤ total

# of copies 1 2 3 4 4 4 12 15

# of context switches 1 2 3 4 4 4 12 15

# of interrupts 3 4 7 6 6 6 18 25

# of protocol processing tasks 1 2 3 3 3 3 9 12

# of serialization 0 1 1 2 2 2 6 7

# of deserialization 1 1 2 2 2 2 6 8

Takeaway#4: Excessive, duplicate processing. Current approaches for serverless

function chains rely on the composition of existing networking components to support asyn-

chronous and reliable message exchange between functions. Traffic within the chain has to

go through the message broker/front-end proxy, each time having to cross the kernel-user

space boundary. This also leads to duplicate network protocol processing, adding to the
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overhead. As seen in Table 5.1, networking within the function chain in Knative accounts

for 75% of the total protocol processing overhead. Protocol processing tasks, including

checksum calculation in software and complex iptables processing,1 contribute to latency

and results in poor scaling (especially as the number of iptables rules increases) [164].

Furthermore, many of the other dataplane overheads (e.g., data copies, context switches,

interrupts, and serialization & deserialization) are also amplified, as the chain becomes more

complex, resulting in very poor scaling.

Summary: The expected benefit of serverless computing was to overcome the inefficiencies

of ‘serverful’ computing through event-driven execution, which helps use resources strictly

on-demand and be proportional to the load. However, the excessive overhead in current

serverless frameworks shows that the ‘server’ is still entrenched in serverless computing. Our

auditing shows that the loosely coupled construction of existing components for serverless

computing results in substantial unnecessary processing overhead, possibly discouraging the

implementation of microservices as function chains. This poor dataplane design and having

individual, constantly-running components in the function chain prompt us to create a

more streamlined, responsive serverless framework by considering high-performance shared

memory processing and lightweight event-driven optimizations to help extract the ‘server’

out of serverless computing.

1In [178] we showed that the overheads for iptables processing in a typical Kubernetes environment (also
applicable to Knative) using the Container Network Interface accounts for 60% of the total networking
overhead.
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5.3 System Design of SPRIGHT

We now provide an overall view of the SPRIGHT architecture, justifying the design

of each component and discussing their benefits for serverless environments. We then discuss

each part in detail, starting with lightweight event-driven processing (§5.3.2), the shared

memory processing for communication within serverless function chains (§5.3.3), and direct

function routing (§5.3.4). We also discuss function startup in SPRIGHT (§5.3.5), protocol

adaptation (§5.3.6), and security domain design (§5.3.7).

5.3.1 Overview of SPRIGHT
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Figure 5.3: The overall architecture of SPRIGHT.
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For this work, we start with open-source Knative as the base platform [59]. Us-

ing an innovative combination of event-driven processing and shared memory, we achieve

high performance while being resource-efficient and providing the flexibility to build mi-

croservices using serverless function chaining. Fig. 5.3 shows the overall architecture of

SPRIGHT. Importantly, we extensively use eBPF in SPRIGHT for networking and mon-

itoring. eBPF is an in-kernel lightweight virtual machine that can be plugged in/out of

the kernel with considerable flexibility, efficiency, and configurability [39]. The execution

of eBPF programs is triggered only whenever a new event arrives, thus working naturally

with the event-driven serverless environment. Using eBPF, various event-driven programs

can be attached to kernel hook points (e.g., the network or socket interface). This enables

high-speed packet processing [125] and low-overhead metric collection [149]. eBPF achieves

its configurability through eBPF maps – a configurable data structure shared between the

kernel and userspace. With eBPF maps, a more flexible dataplane can be implemented with

customized routing. The good features of eBPF help us provide functionality with strictly

load-proportional resource usage, a highly desirable toolbox for serverless environments.

SPRIGHT’s dataplane: SPRIGHT improves the dataplane of serverless computing by

leveraging eBPF-based event-driven processing and shared memory communication, which

helps us avoid the use of individual, constantly-running sidecars (Takeaway#1 in §5.2) and

reduces a number of data movement related overheads within the function chain (Take-

away#2 and #3 in §5.2). SPRIGHT uses Direct Function Routing (DFR) to forward re-

quests directly from one function to the next. This eliminates the need for an intermediate

routing component and avoids unnecessary, duplicate processing overheads (Takeaway#4 in
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§5.2). These dataplane optimizations make the request handling in SPRIGHT strictly load-

proportional and achieve superior performance compared to existing serverless platforms

(see evaluation in §5.4).

• Event-driven processing: We design lightweight, event-driven proxies (EPROXY

and SPROXY in Fig. 5.3) that use eBPF to construct the service mesh instead of a

continuously-running sidecar proxy associated with each function instance, as is used

by Knative. Thus, we reduce a significant amount of the processing overhead (§5.3.2).

To accelerate the data path to/from the function chain and the ingress gateway which

is outside the function chain, we utilize XDP/TC hooks [188] in eBPF (§5.3.2). An

XDP/TC hook processes packets at the early stage of the kernel receive (RX) path

before packets enter into the kernel iptables [83], resulting in substantial dataplane

performance improvement without the resource consumption of a dedicated sidecar

proxy that uses the kernel protocol stack. In addition, protocol adaptation is often

required to interface between application layer protocols, such as MQTT and CoAP

for IoT, to the HTTP/REST API supported by serverless frameworks (addressed in

§5.3.6).

• Shared memory communication: For inter-function communication within the

chain, SPRIGHT takes advantage of shared memory that avoids a number of overhead

associated with data movement, including protocol processing, serialization/deserialization,

memory-memory copies, etc. For every incoming request from external clients, a

SPRIGHT gateway performs the one-time, consolidated protocol processing for the

function chain (§5.3.3). SPRIGHT considers event-driven SKMSG, which is a socket-
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related eBPF program type [188], to construct the zero-copy I/O (i.e., descriptor

delivery) between functions (see §5.3.3).

• Direct function routing (DFR): To eliminate the impact of having an intermedi-

ate routing component (message broker) within the function chain, we design Direct

Function Routing (DFR). DFR leverages the configurability provided by eBPF maps

and allows for the dynamic update of routing rules while exploiting shared memory

to pass data directly between the functions within the chain (§5.3.4).

Although these dataplane optimizations are built around the Knative, our concepts

and methodology can also be broadly applied to other serverless platforms. In addition to

dataplane optimizations, SPRIGHT incorporates security domains to restrict unauthorized

access between different chains, by creating a private shared memory pool for each chain

and applying message filtering for inter-function communication [181].

SPRIGHT’s control plane: We introduce a SPRIGHT controller (Fig. 5.3) to coordinate

the control plane for SPRIGHT function chains. The SPRIGHT controller runs as a cluster-

wide control plane component in the master node, working with serverless orchestration

engines, e.g., Knative and Mu [166], and their associated control plane components (e.g.,

autoscaler, placement engine) to determine the scale and placement of the function chain

at the appropriate worker node.

SPRIGHT adopts Kubernetes to manage the lifecycle of function pods (e.g., pod

creation, termination). It cooperates with the kubelet, which is a key pod management pro-

cess in the Kubernetes control plane that runs on each worker node to manage the lifecycle

of the pods. Given a function chain creation request from the SPRIGHT controller, the
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kubelet starts up functions in the chain based on the user configuration, working in con-

junction with the shared memory manager (‘SHM mgr.’ in Fig. 5.3) and PROXY manager

to set up the dataplane for the function chain. This process includes initializing the shared

memory pool, creating the SPRIGHT gateway, and attaching eBPF programs to functions

(details in §5.3.2). Each worker node has a shared memory manager and a PROXY manager

in the control plane, both running as separate Kubernetes pods. To route external requests

to the SPRIGHT gateway of each function chain, we use a cluster-wide Ingress Gateway to

distribute the traffic.

5.3.2 Event-driven processing

eBPF-based event-driven proxy (EPROXY/SPROXY) The sidecar proxy in a

serverless environment, e.g., the queue proxy in Knative, runs as an additional container

in a function pod distinct from the user container. It buffers incoming requests before for-

warding them to the user container, to help handle traffic bursts and maintain throughput.

The sidecar proxy is also responsible for collecting metrics for the pod (e.g., request rate,

concurrency level, response time) and exposing them to a metrics server to facilitate con-

trol plane decision-making, e.g., autoscaling. However, this design has several drawbacks

as we described earlier. We overcome them with our lightweight, event-driven eBPF-based

EPROXY & SPROXY, which replace the sidecar proxy.

The EPROXY is composed of a set of eBPF programs executed at the veth of the

SPRIGHT gateway (Fig. 5.4), using XDP and TC hooks [188]. SPRIGHT uses EPROXY

to perform L3 metrics collection and dataplane acceleration (§5.3.2). The SPROXY runs
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as a set of socket-related eBPF programs (SK MSG [188]) at the socket interface of the

SPRIGHT gateway/function pods (Fig. 5.4). The ‘SK MSG’ program supports modification

of messages that pass through the attached socket as well as message redirection between

sockets (with the help of eBPF’s sockmap [188] to provide routing rules), which is an

ideal capability to exchange small messages such as packet descriptors in supporting shared

memory communication (§5.3.3). However, the ‘SK MSG’ program only works on the TX

path of the socket [188]. We use SPROXY for L7 metrics collection, packet descriptor

exchange (§5.3.3), routing (§5.3.4), and security [181].

The goal of the event-driven proxy is to achieve functionality comparable to that

of the sidecar proxy but with lower overhead. Since the event-driven proxy is only triggered

when there are incoming requests, there is no CPU overhead when idle. Although EPROXY

and SPROXY work in the kernel, they are created by the cloud service provider rather

than the user, which does not affect the isolation of the user function. This is similar to

how serverless platforms attach a sidecar to a user function. We do not need the queueing

capability in the event-driven proxy as the shared memory within the function chain already

provides that queueing. Thus, SPRIGHT still provides the same functionality to improve

concurrency and handle traffic bursts as a sidecar proxy. But, eliminating the additional

queuing stage helps reduce request delays.

Metrics collection: To collect the required metrics for SPRIGHT’s control plane, we

attach eBPF-based monitor programs to the EPROXY and SPROXY. The EPROXY is

used to collect L3 metrics, e.g., packet rate, bytes received, while the SPROXY collects L7

metrics, e.g., request rate. We assign a ‘metrics map’ in the eBPF maps that serves as a
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local metrics storage on each node. When a new message occurs, the monitor programs are

triggered to collect and update the metrics to the metrics map. The SPRIGHT gateway

has a built-in metrics agent responsible for reading the metrics map periodically and pro-

viding the latest metrics to the metrics server. We further extend the SPRIGHT gateway

with internal event-driven metrics collection capabilities as an enhancement of EPROXY to

provide function-chain-level metrics such as the request rate and execution time on a chain

basis.

Function health checks: Kubernetes natively supports function pod health checks via

the kubelet. Working in conjunction with the kubelet, SPRIGHT can enable TCP or HTTP

probes in functions for health checks. Enabling the TCP or HTTP probes requires a minimal

change of opening an additional socket or HTTP server in the function to listen to health

check requests from the control plane. Thus, we can dispense with Knative’s sidecar proxy

doing a health check to check on function pods, using TCP or HTTP probing.

Initialization of EPROXY & SPROXY: We dedicate a PROXY manager (Fig. 5.3)

on each worker node for attaching EPROXY/SPROXY to the SPRIGHT gateway and/or

function pods. The PROXY manager is created during the startup of the worker node’s

control plane, during which it loads the EPROXY/SPROXY eBPF programs into the kernel

(via the bpf() syscall) and creates required eBPF maps, including the metrics map and

socket map (sockmap). The SKMSG program is then attached to the sockmap. The sockmap

automatically attaches the SKMSG program to the function pod’s socket interface, once

a function’s socket interface is registered into it by the sockmap writer in the PROXY

manager. The initialization procedure of the EPROXY starts as soon as the SPRIGHT
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gateway is ready (i.e., when SPRIGHT gateway passes the health check from kubelet).

kubelet instructs the PROXY manager to attach the EPROXY programs to the XDP and

TC hooks at the veth of SPRIGHT gateway.
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gw’s id
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key value
gw’s sock fd

fn-1’s id fn-1’s sock fd

fn-2’s id fn-2’s sock fd
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dummy server socket
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③

Figure 5.5: Initialization of SPROXY: SKMSG program, sockmap.

Both the SPRIGHT gateway and functions follow the same procedure to attach

to the SPROXY. We use a function as an example to explain the initialization procedure

of SPROXY, as depicted in Fig. 5.5. During startup, the function creates a socket interface

for attaching to the SPROXY. The function initiates a connection on its socket to the

dummy socket in the PROXY manager. The dummy socket stays active to maintain the

connection with function’s socket (①). After the connection is established, the function

sends the socket’s file descriptor and the function ID to the PROXY manager (②). To attach

the SKMSG program to function’s socket, the PROXY manager uses its sockmap writer to

update the function ID (key) and the socket’s file descriptor (value) to the sockmap (③),

using ‘bpf map update elem()’ helper. The SKMSG program is then automatically attached

to the socket by the kernel.
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eBPF-based dataplane acceleration for external communication We exploit EPROXY’s

XDP/TC hooks to accelerate the communication by the function chain in SPRIGHT to ex-

ternal components (e.g., cluster-wide Ingress Gateway). We develop an eBPF forwarding

program (in EPROXY) and attach it to the XDP/TC hook that is positioned on the RX

path of the network interface, including the host-side veth of the pod (i.e., veth-host2) and

the physical NIC, as shown in Fig. 5.6. eBPF offers packet redirect features (i.e., ‘XDP

REDIRECT’ and ‘TC ACT REDIRECT’) that support passing raw frames between the

virtual network interfaces, or to and from the physical NIC without going through the

kernel protocol stack [55]. This helps save CPU cycles consumed by iptables. The eBPF

forwarding program has two functions: 1) Look up the kernel FIB (Forwarding Information

Base) table to find the destination network interface based on the FIB parameters of the

received packet (using bpf fib lookup() helper), including the IP 5-tuple, index of source in-

terface, etc. 2) Forward the raw packet frame to the target (veth-host or NIC) interface via

‘XDP REDIRECT’ or ‘TC ACT REDIRECT’. The communication could be either in the

same node or across different nodes, supported by an eBPF-based dataplane via the eBPF

forwarding program. An XDP program at the physical NIC processes all inbound packets

received by the NIC. It redirects the packet to the veth-host of the destination function pod

after a routing table lookup (① in Fig. 5.6). The TC program at the veth-host handles the

outbound packet from the function pod. Depending on the packet’s destination, the TC

program may take different routes. If the destination of the packet is to another function

pod (e.g., traffic between ingress gateway pod and SPRIGHT gateway pod) on the same

2A function pod is connected to the host through a pair of veths, i.e., the host-side veth and pod-side
veth.
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node, the TC program directly passes the packet to the veth-host of the destination func-

tion pod via ‘TC ACT REDIRECT’ (② in Fig. 5.6). If the destination function pod is on

another node, the TC program redirects the packet to the NIC (③ in Fig. 5.6).
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Figure 5.6: Dataplane acceleration using eBPF XDP/TC hooks

Improvement with dataplane acceleration based on EPROXY: To estimate the

benefit of eBPF’s XDP/TC features, we evaluate the networking performance of SPRIGHT

when the XDP/TC acceleration is enabled in EPROXY. We use Apache Benchmark [46]

to simulate the traffic to/from the cluster-wide ingress gateway running on a different node

than the SPRIGHT gateway. We further break down the CPU cycles expended for the kernel

stack processing, to accurately quantify the CPU cycles saved by the XDP/TC acceleration.

Fig. 5.7 (Left) compares the RPS and response latency performance of SPRIGHT

when the XDP/TC acceleration is enabled or disabled. With a concurrency of 32, SPRIGHT

with XDP/TC acceleration has a 1.3× improvement in RPS compared to SPRIGHT without

XDP/TC acceleration. Since XDP/TC acceleration transfers raw packets between network

devices (i.e., veth and NIC), the overhead spent in kernel iptables can be avoided, which

in turn improves throughput. The response latency of SPRIGHT with XDP/TC accelera-

tion is 19µs with a concurrency of 32, compared to 24µs for SPRIGHT without XDP/TC
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acceleration. The RPS and response latency improvements remain even as the concurrency

increases, allowing SPRIGHT to maintain a peak RPS of 53K when XDP/TC acceleration

is enabled.

We then break down the CPU cycles spent on processing a request (at a concur-

rency of 32) based on where the cycles are expended, including in the host’s kernel stack and

the pod’s network stack, as shown in Fig. 5.7 (Right). The client-side overhead is excluded.

For SPRIGHT without XDP/TC acceleration, about 15.2K CPU cycles are spent on the

host’s kernel networking layer for iptables processing. Whereas with XDP/TC acceleration,

since iptables processing in the host’s kernel stack is skipped, only 2.1K CPU cycles are

consumed by the host’s kernel networking layer, resulting in 86% of CPU cycles being saved

for each request. This clearly demonstrates the benefits of eBPF’s XDP/TC acceleration.

Bypassing the host’s kernel networking stack and associated iptables processing can save

considerable CPU usage and thus benefit SPRIGHT’s dataplane performance for commu-

nication outside the function chain. This option, however, means the loss of full-featured

iptables network policy support, which may not be required for certain cases (e.g., when

users require higher dataplane performance, with the infrastructure provider having only a

subset of the kernel iptables functionality [73]).

5.3.3 Shared memory communication within function chains

To support shared memory communication within a serverless function chain, three

key building blocks are required: (1) Protocol processing. The incoming message to a

SPRIGHT function chain requires protocol processing before being moved to shared memory
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Figure 5.7: (Left) Performance impact of TC/XDP redirect: RPS and latency; (Right)

CPU overhead breakdown of receiver side kernel stacks: with TC/XDP acceleration (w/

acc.) & without TC/XDP acceleration (w/o acc.).

for communication within the function chain. Similar protocol processing to construct

outgoing messages is needed. (2) Shared memory pool. A private shared memory pool

that is initialized for the function chain and is attached to functions during their startup

is needed. The message payload is kept in shared memory without being moved between

functions. (3) Zero-copy I/O within the function chain. To enable zero-copy data

movement between functions, shared memory processing relies on packet descriptors to pass

the location of data in the shared memory pool, which is then accessed by the function.

Consolidated protocol processing To flexibly manage traffic in and out of the func-

tion chain and avoid duplicate protocol processing within the chain, we create a SPRIGHT

gateway. It acts as a reverse proxy for the function chain to consolidate the protocol pro-

cessing. The SPRIGHT gateway relies on the kernel protocol stack for protocol processing

and extracts the application data (i.e., Layer 7 payload). It intercepts incoming requests

to the function chain and copies the payload into a shared memory region. This enables
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zero-copy processing within the chain, avoids unnecessary serialization/deserialization and

protocol stack processing. The SPRIGHT gateway invokes the function chain for requests,

processes the results, and constructs the HTTP response to external clients. SPRIGHT

assumes that functions in the same chain run within the same node, to derive the benefits

of sharing the memory between functions.

We dedicate a SPRIGHT gateway for each function chain to support the security

domain isolation between different chains. To mitigate the concern of overhead when there

are many chains in the cluster, we emphasize that the SPRIGHT gateway is a lightweight

component with a relatively small memory footprint (27KB compared to each (even simple)

Golang-based function that is more than 2MB). In addition, since the SPRIGHT gateway

processes requests based on kernel interrupts, its event-driven nature results in the CPU

usage being largely load-dependent.

Shared memory pool SPRIGHT allocates a private shared memory pool with Linux

HugePages for each serverless function chain. Using HugePages can reduce the access

overhead of in-memory pages, thus improving the performance of serverless functions when

accessing data in the shared memory pool. In addition, the shared memory pool within the

function chain supports queueing to help sustain traffic bursts.

SPRIGHT takes advantage of DPDK’s multi-process support [53] to create shared

memory pools for function chains. At the startup of a SPRIGHT function chain, a DPDK

primary process is spun up in the shared memory manager pod. The DPDK primary pro-

cess has the privileged permission to initialize the shared memory pool, using rte mempool

create() API. Each DPDK primary process owns a unique shared data file prefix [53] – a
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multiprocessing-related option in DPDK. We further extend its use to isolate different mem-

ory pools [181]. By specifying the correct prefix, the gateway and functions in SPRIGHT,

which run as DPDK secondary processes, can attach to the memory pool (use rte memzone

lookup() API) created by the chain’s specific DPDK primary process in the shared memory

manager pod.

Note that DPDK’s multi-process shared memory is independent of other DPDK

libs/devices such as DPDK RTE RING and Poll Mode Driver. This gives SPRIGHT the

freedom to choose different implementations of zero-copy I/O to support shared memory

communication within the function chain.

Event-driven zero-copy I/O within the function chain SPRIGHT extends the use

of SPROXY (Fig. 5.4) to implement the event-driven zero-copy I/O for shared memory

communication within the function chain. The SKMSG program in SPROXY works with

eBPF’s sockmap to enable message redirection between the socket interfaces of function

pods by communicating a packet descriptor from one function to the next in the chain.

The packet descriptor used in SPRIGHT is a small 16-byte message that incurs negligible

overhead. A packet descriptor contains two fields: the instance ID of the next function and

a pointer to the data in shared memory. Once the SPROXY receives a packet descriptor,

it extracts the instance ID of the next function, which is then used to query the eBPF’s

sockmap to retrieve the target socket interface information (i.e., the file descriptor). For

the description of the zero-copy based message flow in SPRIGHT, refer to [181].

The packet descriptor redirection performed by the SPROXY bypasses any ker-

nel protocol stack processing (which is unnecessary here), incurring minimal overhead.
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SPROXY operates in a purely event-driven manner, avoiding the need to busy-poll de-

scriptors and saving CPU resources. Thus, the communication overhead is entirely load-

dependent.

Another implementation option is using polling-based zero-copy I/O, as used by

DPDK, which uses polling-based RTE RING [69] to pass packet descriptors. DPDK’s RTE

RING is implemented as a userspace shared memory queue that offers a low-latency IPC

channel between independent processes (i.e., function pods) because it entirely eliminates

any kernel-userspace interaction (e.g., context switches, interrupts) and operates at memory

speeds, ensuring higher performance. DPDK’s RTE RING has been extensively used to

build high-performance dataplanes for cloud services [226]. However, using DPDK’s RTE

RING as the inter-function IPC channel requires expensive busy polling that continuously

consumes CPU cycles, independent of traffic intensity.

Event-driven vs. polling-based shared memory processing To identify the most

appropriate zero-copy I/O for shared memory processing in the context of serverless com-

puting, we compare SPRIGHT’s event-driven shared memory processing based on SPROXY

(hereafter referred to as S-SPRIGHT) with polling-based shared memory processing based

on DPDK (hereafter referred to as D-SPRIGHT), with a function chain containing 2 func-

tion pods. We use Apache Benchmark [46] on a second node as the workload generator. We

additionally set up a function chain with the base Knative environment and use NGINX as

the front-end proxy to coordinate the communication within the chain. Both the SPRIGHT

gateway and NGINX proxy are configured with two dedicated cores for a fair comparison.

Note: We collect the results from 10 repetitions.
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As shown in Fig. 5.8, with low concurrency, e.g., at 32, S-SPRIGHT (0.024ms)

shows a slightly higher average response delay compared to D-SPRIGHT (0.02ms), but still

has a much lower (almost 6×) response latency compared to Knative (0.138ms). In terms

of RPS, both D-SPRIGHT (50.3K) and S-SPRIGHT (41.7K) are substantially higher than

Knative (7.2K), with a significant 5.7× improvement.
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Figure 5.8: Comparison between polling-based (D-SPRI.) and event-driven (S-SPRI.)

shared memory processing with 1 gateway pod and 2 function pods. Kn: Knative; QPs:

Sidecars; SFs: serverless functions; GW: gateway. All results show the 99% confidence

interval.

117



As S-SPRIGHT relies on the in-kernel eBPF program (i.e., SPROXY) to deliver

packet descriptors, it incurs the overheads for context switching, contributing to the ex-

tra latency. However, the SPROXY processing latency is masked when the concurrency

increases (≥ 32), because the context switching latency overlaps with the other process-

ing. Throughput increases rapidly, up to 5× that of Knative. Although S-SPRIGHT has

a 1.2× lower peak throughput than D-SPRIGHT, S-SPRIGHT has a substantially lower

CPU usage, because it is purely event-driven. Both of those approaches have a much lower

overhead compared to Knative. With a concurrency of 1, S-SPRIGHT consumes 32% CPU,

which is 9.6× and 4.5× less than D-SPRIGHT (308%, or more than 3 CPU cores fully used)

and Knative (143%), respectively. When the concurrency increases to 32, S-SPRIGHT con-

sumes 259% CPU, which is still less than D-SPRIGHT (359%). Comparatively, the CPU

usage of base Knative increases to a shocking 1585% (more than 15 CPU cores used) at a

concurrency of 32 (see Fig. 5.8 (c)). The sidecar proxy consumes 70% of Knative’s CPU.

Even with increasing concurrency (≥ 32), S-SPRIGHT has a consistent and steady sav-

ing in CPU compared to the others. Individual, constantly-running components (sidecar

proxy with Knative or DPDK’s poll mode using up CPUs) have excessive overhead. More

importantly, S-SPRIGHT consumes negligible CPU resources when there is no traffic. We

observed that S-SPRIGHT’s gateway and function pods that are event-driven consume zero

CPU when there is no traffic, making it possible to keep a function pod ‘warm’ to overcome

the ‘cold start’ delay (§5.4.2). Thus, event-driven shared memory processing is ideal for

serverless computing, especially for function chains.
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5.3.4 Direct Function Routing within a function chain

To optimize the invocations within a function chain, we use Direct Function Rout-

ing (DFR), which enables the upstream function in the chain to directly invoke/communicate

with the downstream function. As shown in Fig. 5.4, the SPRIGHT gateway only invokes

the head function in the chain once (① in Fig. 5.4). When the first function completes

the request message processing (② in Fig. 5.4), it directly calls the next function without

going through the SPRIGHT gateway. The rest of the function invocations in the chain

also bypass the SPRIGHT gateway, thus significantly reducing the invocation latency (and

overhead) for the function chain. To support DFR, SPRIGHT adopts a two-step routing

mechanism. It uses a chain-specific, userspace routing table, and an in-kernel sockmap.

The userspace routing table helps determine the ID of next function while the in-kernel

sockmap uses that function ID to find its corresponding socket file descriptor, which is then

used by the SPROXY to perform the actual packet descriptor delivery between the sockets

of the source and destination function.

We use the SPRIGHT controller (Fig. 5.3) to manage DFR within the function

chain. The SPRIGHT controller configures the routing table based on the user-defined

sequence for the function chain. We keep the routing table in shared memory to reduce

access latency. To support multiple downstream functions, we use a ‘topic’ (extracted from

the message payload) based publish/subscribe messaging model, and dynamically route

requests using the routing table. The message topic and the ID of the current function

serve as the key to looking up the ID of the next-hop function in the routing table. For

details of load balancing with a function chain, refer to [181].
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5.3.5 Function startup in SPRIGHT

In Knative, the startup of a function pod consists of several key steps: control

plane activity (e.g., pod placement), container runtime initialization (e.g., container im-

age extraction, namespace creation, Cgroups configuration, file system mounting, etc), and

dataplane setup (e.g., route setup, veth devices creation, etc). The startup process of a

SPRIGHT function pod shares several common steps with a Knative function pod creation

in terms of control plane activity and container runtime initialization. However, SPRIGHT

differs from Knative in setting up the dataplane because SPRIGHT uses shared memory

communication. More importantly, SPRIGHT uses eBPF-based event-driven proxies. Kna-

tive, on the other hand, uses the sidecar proxy as an individual container, thus incurring

additional startup latency to initialize the sidecar container. The dataplane setup of a

Knative function pod is nested within the container runtime initialization and is completed

by the Container Network Interface (CNI) plugin [178]. During the dataplane setup of a

Knative function pod, the CNI plugin creates a veth-pair (a pod-side veth and a host-side

veth) to connect the function pod to the host’s network namespace, facilitating inter-pod

connectivity. An IP address is assigned to the function pod and the route is configured in

the host’s iptables to finalize the dataplane setup [178].

By using shared memory and the SPROXY for communication within the function

chain, SPRIGHT avoids relying on the CNI plugin to set up the dataplane of the function

pod. The dataplane setup of a SPRIGHT function pod involves the initialization of the

SPROXY (§5.3.2) and attachment to the shared memory pool (§5.3.3). We compare the

startup overhead of SPRIGHT function pods and Knative function pods in §5.4.3. Note:
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The use of shared memory in SPRIGHT requires initialization of the shared memory pool,

which may incur considerable latency. To avoid this shared memory creation latency during

dataplane setup for SPRIGHT functions, SPRIGHT pre-allocates a number of shared mem-

ory objects in the shared memory pool. This is done while initializing the DPDK primary

process in the shared memory manager pod.

When starting up a function chain in SPRIGHT, a SPRIGHT gateway pod is cre-

ated and dedicated to the function chain to perform protocol processing and move requests

to/from shared memory. The startup of the SPRIGHT gateway pod involves the initializa-

tion of SPROXY and attachment to the shared memory pool. Additional dataplane setup

(e.g., veth-pair creation, route setup, etc) is performed by the CNI plugin to connect the

SPRIGHT gateway pod with the kernel protocol stack, as the SPRIGHT gateway interacts

with the kernel protocol stack to perform protocol processing and to attach the EPROXY

to the veth device. The initialization of the SPRIGHT gateway pod as well as the startup

of functions in the same chain can be performed in parallel to amortize the startup penalty,

as we discuss in §5.4.3.

5.3.6 Event-driven protocol adaptation

Event-driven processing can help tremendously in interfacing serverless frame-

works, which have an HTTP/REST API, with a variety of application-specific protocols

(e.g., for IoT with MQTT [62], CoAP [88]). Current designs use a separate protocol adapter

(e.g., Kamelet in Apache Camel-K [20]) for translation between these protocols. However,

since SPRIGHT’s shared memory processing directly works on payloads independent of the

application layer protocols, the protocol adapter can ideally run as an internal event-driven
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component that is part of the SPRIGHT gateway. This achieves a much more streamlined

protocol adapter design, using resources strictly on demand. Please refer to [181] for the

details of the event-driven protocol adaptation design.

5.3.7 Security domains in SPRIGHT

SPRIGHT recognizes the need for isolation between serverless functions in a shared

cloud environment, especially with the use of shared memory processing. It is necessary

to restrict access of a shared memory pool to only trusted functions. The trust model in

SPRIGHT assumes that the functions within a chain trust each other, but the functions in

different chains may not. To limit unauthorized access across function chains, SPRIGHT

provides two abstractions to construct a security domain for each function chain: 1) a

private shared memory pool for each chain; 2) inter-function packet descriptor filtering

with the SPROXY. Details of SPRIGHT’s security domain design are in [181].

The current SPRIGHT security domain design requires a dedicated SPRIGHT

gateway for each function chain. Although the SPRIGHT gateway is designed to be event-

driven and consumes no CPU cycles when idle, the SPRIGHT gateway is assigned dedicated

CPU cores to minimize interference. This means that the CPU cores are used exclusively

by the assigned SPRIGHT gateway instances, potentially leading to wasted CPU resources,

especially when there is an imbalanced load between different SPRIGHT gateway instances.

Using a common file prefix for all SPRIGHT function chains on the same node would

allow a common SPRIGHT gateway to be shared across all function chains, thus helping

to multiplex a single gateway instance and improve CPU utilization. However, using a

common file prefix for all SPRIGHT function chains will weaken the isolation between
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different shared memory pools. We strike the difficult balance of favoring isolation and thus

use a dedicated SPRIGHT gateway instance.

5.3.8 Discussion

Overhead auditing (contd.) - SPRIGHT: We now perform an audit of overhead for

SPRIGHT, following the same methodology used before in §5.2, and compare it against

the base design depicted in Fig. 5.1. As can be seen in Table 5.2, SPRIGHT significantly

reduces overheads for processing within the function chain. With shared memory process-

ing, SPRIGHT achieves 0 data copies, 0 additional protocol processing, and no serializa-

tion/deserialization overheads within the chain. Although the use of SPROXY generates

context switches and interrupts, which do add latency for processing, the total number of

context switches and interrupts for SPRIGHT is still much less than that of the base Knative

design (repeated in the last column of Table 5.2). In addition, the results in Fig. 5.8 show

that the context switches and interrupts introduced by SPROXY have a limited impact on

the performance with concurrent processing of just a few sessions. The event-based shared

memory processing substantially reduces resource usage, more than compensating for any

of the added context switches and interrupts.

Deployment Constraints: In SPRIGHT, functions in the same chain need to be placed

on the same node to allow shared memory communication. This requires the placement

engine to deploy functions on the basis of a chain. In addition, scaling SPRIGHT across

multiple nodes requires all the functions of a chain to be deployed on each node. This may

lead to more resource fragmentation compared to deployment of each function.
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Table 5.2: Per request data pipeline overhead for SPRIGHT

Data Pipeline No.
External Within chain

Total
Total
of Kn① ② total ③ ④ total

# of copies 1 2 3 0 0 0 3 15

# of context switches 1 2 3 2 2 4 7 15

# of interrupts 3 4 7 2 2 4 11 25

# of proto. processing tasks 1 2 3 0 0 0 3 12

# of serialization 0 1 1 0 0 0 1 7

# of deserialization 1 1 2 0 0 0 2 8

Note: 1. We audit a ‘1 broker/front-end + 2 functions’ chain and exclude client overhead;

2. as SPRIGHT uses DFR, hence no route ④ and ⑤ in Fig. 5.1. ④ here means direct route

from function-1’s pod to function-2’s pod.

Application Porting Requirements: Porting an HTTP/REST-based application to

SPRIGHT requires replacing HTTP/REST-based I/O with SPRIGHT’s event-driven shared

memory I/O. However, SPRIGHT does not support synchronous calls between functions,

e.g., where the client sends a request to the server and waits for a response before moving

on to the next step. SPRIGHT’s existing programming model assumes that a function’s

code runs to completion after invocation, is purely event-driven, and inherently supports

asynchronous calls between functions. In SPRIGHT, a synchronous call needs to be broken

down into multi-step asynchronous calls. For instance, a synchronous “request-response”

transaction needs to be treated as two separate asynchronous calls: (1) The calling function

sends a request (associated with a caller ID) to the serving function. The calling function

can continue processing other requests without pausing and waiting for the response. (2)

The serving function generates a response and sends it back to the calling function (based on

the caller ID in the request). The calling function receives the response and then continues

to process the transaction. We ported the online boutique application [65] to SPRIGHT
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and evaluate it in §5.4.2. The source code is available in [34]. Currently, SPRIGHT only

supports C-based implementations of user functions. We expect to extend SPRIGHT’s

language support as part of our ongoing development of SPRIGHT.

5.4 Evaluation & Analysis

5.4.1 Experiment Setup

To examine the improvement of SPRIGHT and its components, we consider several

typical serverless scenarios, including (1) a popular online shopping boutique, (2) An IoT

environment of motion detectors, and (3) a more complex processing of image detection &

charging for an automated parking garage. For each scenario, we set up a function chain

to execute the serverless application (Fig. 5.9). The details of the setup for each scenario

are as follows:

1. Online Boutique is an open-source representative implementation of a microservice-

based online store application [65]. It has 10 different functions communicating with each

other using gRPC. We ported these functions to SPRIGHT (in C) and Knative (using Go

language) based on the implementation provided in [65]. Functions ported to SPRIGHT

use shared memory, while functions in Knative continue to use gRPC, for inter-function

communication. We use Locust [28] as the load generator and use the default workload

provided in [65] to generate a realistic web-based shopping application’s request pattern.

The default workload utilizes a total of 6 different sequences of function chains (see [34]). We

compare four alternatives to run the online boutique application, including gRPC, Knative,

S-SPRIGHT, and D-SPRIGHT. In the “gRPC” mode (‘server-full’ approach), the function
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runs as a Kubernetes pod without a sidecar and uses the built-in gRPC server for functions

to talk to each other directly without involving a broker/front-end.3 In Knative mode, we

use the Istio ingress gateway to mediate the communication between functions. We dis-

able the activator [61] (a cluster-wide queuing component in Knative) to avoid additional

queuing delays.

2. IoT - Indoor motion detection for automated lighting requires tracking a se-

quence of events utilizing multiple sensors. The simple function chain contains 2 functions

(Fig. 5.9 (b)). Motion sensors going ‘on’ triggers an actuator function to turn on the light.

The light may be automatically turned off after a period of no activity. We consider the

MERL motion detector dataset [219]. We use a traffic generator developed in Python to

send motion events based on the timestamps in the dataset. The CPU service time of the

sensor function and actuator function are both set at 1ms. For the base Knative setup, we

use NGINX to coordinate the communication within the function chain.

3. Parking - image detection & charging takes snapshots of each parking spot

as input for visual occupancy (of parking spots) detection in parking lots. It detects the

vehicle’s license plate and determines whether the plate metadata is stored in the database

through a plate search function. If it is not stored, a ‘persist-metadata’ function is invoked

to store the plate metadata in the database. Finally, it charges parking fees based on the

license plate’s metadata. We consider the CNRPark+EXT image dataset collected from

a parking lot with 164 parking spaces [78]. We use the same load generator used for IoT

3The “frontend service” (Fig. 5.9 (a)) in the online boutique runs as a user function, which is distinct from
the general broker/front-end. The latter is a system component that used to mediate the communication
between functions (e.g., the Istio ingress gateway in Knative mode).
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Figure 5.9: Serverless function chains setup. The Parking workload has two function chain

invocation sequences: (Chain-1) ①→②→③→⑤→④; (Chain-2) ①→②→④
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workload to send snapshot images (150×150 pixels, ∼3KB each) through HTTP/REST

API call. Every 240-second interval, 164 snapshots are sent to the function chain. We use

NGINX to coordinate the message exchanges within the chain. We use VGG-16 as the

image detection algorithm, and the CPU service time of the image detection function is set

to 435ms [100]. The CPU service times of other functions and the sequence of functions

being called are shown in Fig. 5.9.

We use these serverless applications to quantify the performance gain brought by

each of SPRIGHT’s optimization. We evaluate it based on several metrics, including CPU

usage, RPS, and response time. To understand in detail, we show the time series and CDF

when appropriate.

Figure 5.10: RPS for online boutique: {Knative, gRPC} at 5K & {D-SPRIGHT, S-

SPRIGHT (overlap)} at 25K concurrency.

Testbed setup: The testbed is built on top of a base Knative platform, including 1) Kna-

tive serving/eventing components (v0.22.0) [61, 60]; 2) Kubernetes components (v1.19.0),

including API server, placement engine, etcd, etc [42]. We use the docker engine (v20.10.21)
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Figure 5.11: Online boutique. Top row: Knative, 5K concurrency. Mid. row: gRPC, 5K
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as the container runtime. We consider Calico CNI (Native routing mode) [68] as the underly-

ing networking solution except for the communication within the function chain of Knative.

We run the experiments on the NSF Cloudlab with two c220g5 nodes [102]. Each node has

a 40-core Intel CPU@2.2 GHz, 192GB memory, and a 10Gb NIC. We use Ubuntu 20.04

with kernel version 5.16. We configure the concurrency of both Knative and SPRIGHT

function as 32. The concurrency level of a function pod determines the # of requests it can

process in parallel.

5.4.2 Performance with Realistic Workloads

Comparing SPRIGHT, Knative, and gRPC mode We now compare D-SPRIGHT

(using DPDK’s RTE rings) and S-SPRIGHT (using SPROXY) against Knative and the

gRPC mode for several different function chains of the online boutique application. We

configure different concurrency levels (i.e., # of concurrent users) of requests from the

Locust load generator. We select two concurrency levels, 5K and 25K, to show here. To

achieve the 5K concurrency, we set the spawn rate of 200/sec. concurrent requests. The

spawn rate controls the # of concurrency steps increased every second. Above 5K, Knative’s

performance becomes highly variable with time, indicating overload (also results in very high

tail response times). Both S-SPRIGHT and D-SPRIGHT have stable performance at a 25K

concurrency level, after which they begin to show behavior indicating a slight overload. To

achieve the 25K concurrency, we set the spawn rate of concurrency at 500/sec.

Even at 5K concurrency, Knative already begins to be overloaded. From 0s to

35s (Fig. 5.10), the concurrency level of the load generator is ramping up to 5K, and the

requests/sec (RPS) increases to ∼900 req/sec. Knative begins to overload (see at 35s in
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Fig. 5.10) due to the use of sidecars and the use of the Istio ingress gateway (hereafter

referred to simply as ‘gateway’) to mediate the communication between functions. At this

5K concurrency, the gateway and sidecars consume ∼13 CPU cores (from 35s onwards),

which is 50% of the entire Knative setup. It finally leads to CPU contention with the

functions, whose CPU utilization soon reaches saturation at 62s (using up ∼13 CPU cores,

Fig. 5.11 (g)). In addition, the use of the gateway and sidecars contributes to additional

processing and queuing delays on the request’s data path, leading to the reduction in RPS

observed (see beyond 30s in Fig. 5.10). The closed-loop of workload generation and request

processing results in the RPS, resource utilization, and response times experiencing overload

cycles (occurs again between 100s - 140s).

Compared to Knative, gRPC has a more stable RPS and better overload behavior

at 5K as gRPC has no sidecars and bypasses the gateway. By removing these heavyweight

components, functions in the gRPC mode make full use of CPU resources. The shortened

request data path further reduces latency and alleviates overload and queuing problems.

As shown in Fig. 5.11 (a) and (b), the resulting tail latency of gPRC, i.e., 95%ile, of

141ms, measured across all the functions of the online boutique service, which is 4.9×

lower than Knative (whose 95%ile is 693ms). Fig. 5.11 (d) and (e) further demonstrate the

benefits of removing sidecars and the gateway. For requests sent between 35s and 75s, the

response time of Knative increases significantly while the gRPC shows a delayed overload

(only 45s onwards) and its response time during the overload (45s to 75s) is much lower

than Knative. However, as gRPC depends on the kernel protocol stack for networking and

requires serialization/deserialization. These overheads are not negligible. The entire gRPC
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setup consumes 91% of the total CPU cores available on the physical node in order to drain

the queued requests (e.g., 45s to 75s in Fig. 5.11 (h)). This pattern repeats again, e.g., in

the time period 108s - 140s. Overall, this is quite inefficient.

Table 5.3: Latency comparison at 5K and 25K concurrency

Latency @ 5K (ms) Latency @ 25K (ms)
95% 99% Mean 95% 99% Mean

Knative 693 965 382 - - -

gRPC 141 199 45.6 - - -

D-SPRIGHT 11.1 45.1 5.8 80.8 144 17.7

S-SPRIGHT 13.4 49.2 7.2 96.1 159 20.0

Note: latency is measured across all the functions of the online boutique.

Compared to Knative and gRPC, D-SPRIGHT and S-SPRIGHT both have stable

RPS throughout the experiment, for concurrency levels ranging from 5K all the way to

25K. At 5K concurrency, The 95%ile latency of D-SPRIGHT and S-SPRIGHT are 11ms

and 13ms (see Table 5.3), significantly less than Knative (690ms) and gRPC (140ms), while

utilizing far less CPU. Although D-SPRIGHT constantly consumes CPU cycles when idle,

even at maximum load, it consumes only 11 total CPU cores at a concurrency level of 5K,

which is ∼2.5× less than Knative (similar to Fig. 5.8). This again validates the benefits

of SPRIGHT’s shared memory processing, saving CPU resources by avoiding the need-

less processing overheads with Knative discussed previously in §5.2. S-SPRIGHT further

reduces CPU usage dramatically by using purely event-driven processing compared to D-

SPRIGHT. With 5K concurrency, S-SPRIGHT consumes only ∼1 CPU core, including the

gateway and all the functions, getting comparable performance (throughput, response time)

to D-SPRIGHT. We further increase the concurrency level of the load generator to 25K for
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D-SPRIGHT and S-SPRIGHT. This increases the utilization, but still maintains low tail re-

sponse times. Both D-SPRIGHT and S-SPRIGHT maintain a stable RPS of ∼5500 req/sec

(Fig. 5.10), which is 5× higher than the highest stable RPS achieved with Knative and

gRPC. Moreover, S-SPRIGHT uses far less CPU resources than D-SPRIGHT, even as the

load increases. At 25K concurrency, S-SPRIGHT consumes only ∼3.5 CPU cores, which is

3× less than D-SPRIGHT (Fig. 5.11(i)), showing the benefit of the eBPF-based event-driven

processing.

With SPROXY generating context switches and interrupts for descriptor delivery

(Table 5.2), there is some additional latency in S-SPRIGHT’s shared memory processing,

and is slightly worse than D-SPRIGHT in terms of tail latency (Fig. 5.11(c)). The 95%iles

of S-SPRIGHT, measured across all the functions, is 1.2× higher than D-SPRIGHT (more

details in Table 5.3). The additional delay for SPROXY’s descriptor delivery, adds to the

transient queueing and hence slightly longer tail latency. However, as we said in §5.3.3,

the impact of this additional latency introduced by SPROXY is quite limited. Further,

the processing time within the functions, which usually are non-trivial, will likely dwarf

the extra latency introduced by SPROXY, in relative terms. Importantly, the throughput

(RPS) of S-SPRIGHT is very close to D-SPRIGHT at high concurrency levels.

Bypassing the impact of cold start and zero scaling We set up an experiment

with zero scaling enabled in Knative to study the impact of cold start. Without incoming

requests, Knative scales functions down to zero to save resources and reduce costs. We set

the ‘grace period’ for scaling down to zero as 30 seconds. In contrast, we keep functions
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Figure 5.12: Time series of response time, and CPU utilization for motion detection work-

load - 1-hour long experiments.
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in SPRIGHT ‘warm’ by having a minimum number of active function pods, knowing that

our purely event-driven processing will not consume CPU resources when idle. We use the

motion detection workload to study the impact of cold start because of the intermittent

nature of such IoT traffic.

Fig. 5.12 (a) clearly shows the impact of cold start in Knative, with large response

times that possibly render the motion detection application ineffective and severely violate

SLOs. E.g., starting from 1950s, a number of motion events occur one after another (inter-

arrival time of a few seconds) that are sent to the currently zero-scaled function chain. The

first motion event that arrives at the gateway is queued and triggers the instantiation of

the functions. Since a serverless function pod takes some time to start, subsequent requests

have to be queued. The cascading effect during the cold start of the entire function chain

further degrades the response time [173], resulting in a long tail latency going up to 9s.

Once the function is active, Knative has a reasonably small response time when there are

consecutive incoming events (e.g., before the grace period terminates between 2000s and

2500s), which keeps the functions ‘warm’.

In contrast, SPRIGHT shows consistently low response times over the entire work-

load duration since there is always an active pod to serve the request without leaving

requests waiting in the queue (we can sidestep going down to zero-scale). More impor-

tantly, although SPRIGHT keeps one (or more) function warm, the event-driven nature

of SPRIGHT leads to negligible CPU consumption when there is no traffic. In fact, with

Knative, the higher resource usage of the sidecar proxy under load more than offsets any

benefit of Knative’s zero-scaling. E.g., in Fig. 5.12 (b), the spikes in the CPU usage for the
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sidecar proxy (e.g., at the 1500s mark), even when handling small traffic, is quite wasteful

and is eminently avoidable with SPRIGHT’s event-driven design.
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Figure 5.13: Parking image detection & charging: (a) Time series of response time of func-

tion chains; (b) Time series of aggregate CPU for function chains, sidecar proxy (Knative).

Since the ‘Parking: image detection & charging’ workload has a distinct periodic

arrival pattern (e.g., monitoring and billing every 4 minutes), we configure a ‘pre-warm’

phase for Knative functions 20 seconds before the next burst is scheduled to arrive. ‘Pre-

warming’ helps avoid the penalty of the cold start delay of serverless functions while trading

off a small amount of the resource savings of shutting down the pods in serverless computing

with zero-scaling [196]. However, as observed in Fig. 5.13 (b), the CPU usage for each

function instantiation at the pre-warming stage in fact exceeds the CPU usage consumed

by request processing (i.e., observe the CPU usage spike for the pre-warming and the

function execution 20 seconds later). Thus, while zero-scaling reduces CPU usage if the idle
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period is long, a CPU cost for frequent creation/destruction of functions must be considered.

Knative also is quite inefficient for scaling functions down to zero. When there is no traffic

for a grace period of 30s (e.g., 270s to 300s in Fig. 5.13 (b)), Knative begins scaling down

the functions to zero. But, functions remain in a ‘terminating’ state until 380s without

being really terminated or releasing CPU resources. Thus, the scaling down process lasts

as long as 80s, during which all the Knative sidecar proxies and functions are consuming

CPU resources, which is unnecessary and wasteful.

For comparison, S-SPRIGHT consumes only a small amount of CPU throughout

the entire period, in fact with slightly lower (about 16%) response time (both average

and 95%, Fig. 5.13 (a)). Overall, S-SPRIGHT saves up to 41% CPU cycles in this 700s

experiment without resorting to zero-scaling, almost doubling system capacity compared to

Knative.

5.4.3 Startup latency comparison (SPRIGHT vs. Knative)

We now quantify the improvement in startup latency of the function pods in a chain

with SPRIGHT compared to Knative. Depending on the control plane implementation

and container runtime used by SPRIGHT and Knative, the time taken by the control

plane activities and container runtime creation can be different for the two cases. To

understand the overall startup latency of a function pod, we use the same control plane

and container runtime for SPRIGHT and Knative. The common control plane components

include Kubernetes’s pod scheduler, controller manager, and API server. We use Docker

engine as the container runtime for both.
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We use the functions of online boutique [65] chain as an example to study the

startup latency of function pods. We reuse the testbed setup in §5.4.1. To measure the

latency of control plane activity, we take a timestamp as soon as the Kubernetes controller

manager (on the master node) receives the pod creation request and take another times-

tamp when the kubelet (on the worker node) is signaled by the control plane for the pod

initialization tasks, including the dataplane setup and container runtime creation, with the

difference quantified as the latency for performing control plane activities.

To measure the dataplane setup latency (tdp) of a Knative function pod, we take a

timestamp when the kubelet sends the networking setup request to the Container Network

Interface (CNI) and another timestamp when the kubelet receives an acknowledgment from

the CNI indicating the successful setup of the function pod’s dataplane. For the dataplane

setup latency (tdp) of a SPRIGHT function pod, we measure the latency of completing the

initialization of the SPROXY (Fig 5.5) and the attachment to the shared memory pool.

For both Knative and SPRIGHT, we quantify the difference between the total pod

initialization latency (tpod) and the dataplane setup latency (tdp) as the container runtime

creation latency (tc = tpod − tdp). Total pod initialization latency (tpod) is measured as

the duration starting from when the kubelet is informed by the control plane for the pod

initialization until the kubelet detects the readiness of the function pod.

When profiling the startup latency of SPRIGHT function pods, we disable the CNI

to avoid spending unnecessary latency on setting up kernel iptables and configuring veth

devices, since SPRIGHT functions do not require these. We keep the CNI plugin enabled

for the startup of SPRIGHT gateway pod as discussed in §5.3.5.
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Figure 5.14: (Left) Latency comparison of a single function pod startup between SPRIGHT

and Knative; and (Right) Latency of multiple function pods startup in SPRIGHT (startup

in parallel VS. startup in sequence). For function’s index, refer to Fig. 5.9.

Fig. 5.14 (Left) compares the startup latency of the individual functions of the

online boutique for Knative vs. SPRIGHT starting up a single function pod at a time,

sequentially. The latency spent on control plane activity is the same for both SPRIGHT

and Knative. This is not surprising, as both use the same control plane components and

policies. In addition, there is no significant latency difference for container runtime creation

between SPRIGHT and Knative, as they both use the same container runtime (Docker).

The primary difference is in the dataplane setup latency. Knative spends ∼0.4s for setting

up the dataplane for a single function pod, while SPRIGHT takes only ∼0.016s for both

SPROXY initialization and shared memory pool attachment. In addition, Knative needs to

create an individual sidecar container for the function pod, which takes another ∼0.7s. This,

again, shows the benefit of SPRIGHT’s use of shared memory and event-driven proxies,

which eliminates the heavyweight sidecar container creation and slow kernel-based dataplane

setup.
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Since each SPRIGHT function chain has a dedicated SPRIGHT gateway for con-

solidated protocol processing, there is an initialization overhead for the SPRIGHT gateway,

the first time a SPRIGHT function chain is started. Compared to a SPRIGHT function

pod, the SPRIGHT gateway pod takes a longer time to set up the dataplane. As the

SPRIGHT gateway pod depends on kernel network stack to perform protocol processing,

it needs to set up the veth-pair and kernel iptables via CNI, similar to a Knative function

pod, which takes around ∼0.4s. Further, the SPRIGHT gateway pod takes an additional

∼0.3 milliseconds to attach the EPROXY to the veth-pair, which is negligible compared

to the overall startup latency. But, the startup overhead of the SPRIGHT gateway can be

overlapped by starting it in parallel with the SPRIGHT functions in the chain. More im-

portantly, the startup of the SPRIGHT gateway is a one-time task that occurs only during

the first startup of the function chain. The subsequent startup activities of functions in the

chain do not incur the startup latency for the SPRIGHT gateway.

Fig. 5.14 (Right) compares the startup latency of a complete function chain in-

volving the startup of multiple function pods in parallel. We compare this against starting

each function of the chain sequentially. We use the online boutique with a total 10 function

pods as an example. Starting up pods in parallel takes 3.3× less time than starting up

pods sequentially. Thus, when starting up a function chain in SPRIGHT, it is desirable

to have function pods started in parallel to amortize the startup penalty. Looking into

the latency breakdown of the function chain startup in SPRIGHT, both dataplane setup

in SPRIGHT and control plane activity get the benefit of parallelism. Having concurrent

dataplane setup operations and control plane activity does not contribute additional la-
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tency, and they have negligible impact on the overall startup latency. The dominant factor

in the latency for starting up multiple pods is in the container runtime creation. When

multiple container runtime creations are processed in parallel, the reduction in latency is

limited because of contention for access to the network namespace in the Linux kernel.

This forces us to sequentially create and modify the network namespaces [171, 209, 132],

which contributes to the still relatively large time taken for the container runtime creation.

We believe there is further room for improving the total container runtime creation time

further. Since SPRIGHT’s trust model assumes functions in the same chain share the same

security domain (§5.3.7), a shared network namespace for the function pods within the same

chain can seamlessly work with SPRIGHT’s security domain design. This can eliminate the

network namespace contention and reduce the container runtime creation latency for the

function pods within the same chain.

5.5 Conclusion

SPRIGHT demonstrated the effectiveness of event-driven capability for reduc-

ing resource usage in serverless cloud environments. With extensive use of eBPF-based

event-driven capability in conjunction with high-performance shared memory processing,

SPRIGHT achieves up to 5× throughput improvement, 53× latency reduction, and 27×

CPU usage savings compared to Knative when serving a complex web workload. Com-

pared to an environment using DPDK for providing shared memory and zero-copy deliv-

ery, SPRIGHT achieves competitive throughput and latency while consuming 11× fewer

CPU resources. Additionally, for intermittent request arrivals typical of IoT applica-
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tions, SPRIGHT still improves the average latency by 16% while reducing CPU cycles by

41%, when compared to Knative using ‘pre-warmed’ functions. This makes it feasible for

SPRIGHT to support several ‘warm’ functions with minimum overhead (since CPU usage

is load-proportional), sidestepping the ‘cold-start’ latency problem. Across several typical

serverless workloads, SPRIGHT shows higher dataplane performance while avoiding the in-

efficiencies of current open-source serverless environments, thus getting us closer to meeting

the promise of serverless computing. In addition, SPRIGHT saves 32% startup latency for

a single function pod compared to Knative, which is an ideal capability for serverless com-

puting. SPRIGHT is publicly available at https://github.com/ucr-serverless/spright.git
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Chapter 6

LIFL: A Lightweight, Event-driven

Serverless Platform for Federated

Learning

6.1 Introduction

Federated Learning (FL [162]) enables collaborative model training across a net-

work of decentralized devices/machines while keeping individual user data secure and pri-

vate. In FL, instead of sending raw data to a central server, models are trained on individual

devices/machines using local data, and only the model updates are shared and aggregated

to create a global model.

To support FL at scale, hierarchical aggregation is often adopted to increase the

service capacity for model aggregation [87, 133]. This can accommodate a large number
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of clients and handle a substantial volume of model updates, avoiding potential slow-down

of the aggregation process. In the process, each level performs intermediate aggregation,

combining the updates from lower-level aggregators or clients.

Existing FL frameworks (e.g., Google’s FL stack [87], Meta’s PAPAYA [126])

adopt a static, always-on1 deployment to support model aggregation. However, in a dy-

namic FL environment, it’s difficult to have a one-size-fits-all service capacity for model

aggregation. System heterogeneity (i.e., different hardware capabilities) and a dynamically

varying number of participating clients in each round require frequent adjustments of the

capacity so that the aggregation service effectively uses resources on demand and avoids

significant resource wastage.

Serverless computing promises to provide an event-driven, resource-efficient cloud

computing environment, enabling services to use resources on demand [196]. Running FL

model aggregation service as serverless functions can right-size the provisioned resources

and reduce resource waste compared to an always-on aggregation server implementation.

In addition, stateless processing by serverless functions makes it easy to support continual

updates to the aggregation hierarchy. By increasing the capacity of aggregation through

a hierarchy of serverless aggregators, model aggregation in FL can be executed in parallel,

responding to increasing loads from trainer model updates.

However, the excessive overhead in current serverless frameworks, caused by the

loose coupling of data plane components [181], is a barrier to achieving efficient and timely

aggregation, compared to a monolithic serverful design. Further, the use of individual,

constantly-running components (e.g., container-based sidecars) in current serverless frame-

1meaning that aggregators are up all the time within a round.
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works is inefficient and sacrifices much of the benefit of serverless computing. This prompts

us to create a more streamlined, responsive serverless framework that is tailored to achieve

just-in-time FL aggregation on demand.

We introduce LIFL [183], a lightweight serverless platform for FL that uses hi-

erarchical aggregation to achieve parallelism in aggregation and exploits intra-node shared

memory processing to reduce data plane overheads. LIFL also utilizes a locality-aware place-

ment policy to maximize the benefits of the intra-node shared memory data plane. Unlike

typical serverless platforms that use a heavyweight sidecar implemented as a separate con-

tainer, LIFL seeks to eliminate this wasteful overhead by taking advantage of eBPF-based

event-driven processing. This ensures that resource usage is truly load-proportional. In-

stead of depending on inaccurate, threshold-based autoscaling, LIFL uses hierarchy-aware

autoscaling to precisely adjust the capacity of model aggregation to match the incoming

load. We also use a policy of reusing runtimes to sidestep the impact of startup delay on

the model convergence time, while also improving resource efficiency of aggregation. LIFL

favors eager aggregation to enable timely aggregation, reducing the queuing time for model

updates. By harnessing the capabilities of LIFL, FL systems can achieve efficient resource

utilization and reduced aggregation time. LIFL is available at [57].

We highlight the contributions of LIFL below:

(1) LIFL’s enhanced data plane achieves 3× (compared to serverful) and 5.8× (compared

to serverless) latency reduction on transferring a relatively heavyweight ResNet-152 model

update within the aggregation hierarchy (intra-node).
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(2) LIFL’s locality-aware placement can maximize shared memory processing, achieving up

to 2.1× additional latency reduction on aggregating a batch of updates in a round (details

in §6.6). After applying hierarchy-planning, aggregator reuse, and eager aggregation, LIFL

can further obtain 1.5× latency reduction. The enhanced orchestration also helps improve

efficiency, saving up to 2× CPU consumption compared to simply using the enhanced data

plane.

(3) Our evaluation with a real FL workload using ResNet-18 and 120 simultaneous active

clients (the total number of clients used is 2,800) shows that the combination of LIFL’s

enhanced data and control planes achieve 5× and 1.8× less CPU cost and reduces 2.7×

and 1.6× on time-to-accuracy (70% accuracy level), compared to existing serverless and

even serverful FL systems. We also train a relatively heavyweight ResNet-152 model. LIFL

spends 1.68× less time to reach 70% accuracy than existing serverless FL systems, while

using 4.23× fewer CPU cycles.
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134].
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6.2 Background and Challenges

6.2.1 Basics of Federated Learning

FL aggregation: Aggregation in FL is a process of building a global model from indi-

vidually trained model updates. The aggregation goal, n specifies the expected number of

model updates to be received before the global model is updated to a new version. Thus, it

dictates the number of selected clients for training. The aggregation process is abstracted

as:

wi = f({(wk
i ,Ak

i ) | 1 ≤ k ≤ n}). (6.1)

Here f(·) is an aggregation function, wk
i is k-th local model update for global model

version i, and Ak
i is auxiliary information for aggregation. For the FedAvg algorithm [162],

f(·) =
∑n

k=1w
k
i c

k
i /Ti. Ti =

∑n
k=1 c

k
i and Ak

i is cki (the number of data samples).

Eager aggregation and Lazy aggregation: Based on the timing to trigger the aggrega-

tion, we can classify the model aggregation to be “eager” or “lazy” [134]: Eager aggregation

allows aggregation to happen whenever an update is received, leading to more flexible and

dynamic timing of the aggregation process. Lazy aggregation operates on a delayed schedule,

where model updates that arrive early are queued without being aggregated immediately.

Fig. 6.1 shows the two different aggregation methods for synchronous FL. For instance, the

eager method is feasible for FedAvg with cumulative averaging.

147



6.2.2 Anatomy of Systems for Federated Learning

Designing a system to support FL at a large scale is essential, as a larger number

of participants means a more diverse and representative dataset. It improves the model’s

ability to capture complex patterns and unseen relationships in the data. These benefits help

the model generalize in real-world deployments, e.g., Google’s FL stack has been used to

serve ∼10M devices daily and ∼10K devices participate in FL training simultaneously [87].

Fig. 6.2 depicts key architectural components that are needed to ensure the success

of FL at scale.2 These components work together to enable the collaborative and decentral-

ized training process in FL. In addition to the aggregator and the client, the coordinator

oversees the flow of FL operations. It acts as an orchestrator that facilitates seamless in-

teractions among aggregators, selectors, and clients by applying the client selection scheme

and instructing the selector to map the selected clients to backend aggregators [87]. The

selector plays two roles. First, it ensures that a diverse set of clients participate in the

FL process to capture a representative sample of the distributed data. Second, it acts

as a gateway that mediates communication (i.e., queuing, load balancing) between (leaf)

aggregators and clients [87, 126].

Need for hierarchical aggregation: The growing number of participating clients in FL

requires the system to be scalable to accommodate the computational requirements of aggre-

gating model updates from a large number of distributed clients. This primarily motivates

the use of hierarchical aggregation potentially involving multiple levels of aggregation in the

FL process [87, 133], as depicted in Fig. 6.2 (a). Essentially, hierarchical aggregation is

2We adopt the terminology of FL system components from [87] and [126].
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Figure 6.2: Generic architectures for FL systems: (a) Serverful FL systems [87, 126]; (b)

Serverless FL systems [135, 133, 94]. Note that for simplicity, we skip the hierarchy in the

diagram (b).
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structured as a single-rooted tree. Each level in the tree includes multiple parallel aggrega-

tion tasks that are executed by one of potentially multiple aggregators. The communication

during the hierarchical aggregation task takes place across multiple levels: The model up-

dates from smaller subgroups of clients are aggregated by the lower-level aggregators (i.e.,

leaf) and passed onto higher-level aggregators (i.e., top), until a global model is obtained.

This parallel aggregation at the lower levels can provide speedup and reduce queueing of

model updates.

6.2.3 Motivation and Challenges for Serverless FL

State-of-the-art FL systems [87, 126] rely on a “serverful” design that relies on a

fixed pool of dedicated resources (e.g., CPU and memory), using a pool of provisioned VMs.

Resizing the pool often takes a long time (e.g., 6 to 45 minutes on AWS [194]). Server-

less computing, on the other hand, brings fine-grained resource elasticity by provisioning

functions (typically as containers) dynamically based on demand, ensuring that the right

amount of resources is allocated only when needed.

In FL, serverless computing can be used to provide efficient model aggregation,

adapting to varying numbers of clients. It eliminates the need to maintain dedicated resource

pools for the aggregation service, thereby improving overall efficiency compared to the

current “serverful” deployments.

Prior Work on Serverless FL. A number of FL system designs have been proposed using

serverless computing [135, 133, 116]. A common abstract architecture of a serverless FL

system and its key components is shown in Fig. 6.2 (b). But, prior approaches still face the

following challenges:
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Indirect networking: Unlike a “serverful” design (Fig. 6.2 (a)), a serverless FL sys-

tem executes aggregators as serverless functions. Serverless function chaining can support

hierarchical aggregation as well as communication between aggregators. However, because

serverless functions are ephemeral and stateless (and thus unable to retain stateful informa-

tion like routes), these chains typically only support indirect networking between functions.

This raises the need for a stateful, persistent networking component (Fig. 6.2 (b)), such

as a message broker or external storage services,3 to maintain routes and exchange mes-

sages [181]. However, having such a networking component in the internal datapath between

serverless functions adds unnecessary overhead (20% added delay as in Fig. 6.9(a)).

Inefficient message queuing: In addition to supporting function chaining, the mes-

sage broker (Fig. 6.2 (b)) also acts as a message queue to buffer incoming model updates

from clients while aggregators are being spawned by the serverless control plane [135, 133].

However, the message broker and dedicated queues add overhead and delay to the aggrega-

tion service.

Heavyweight sidecar: Scheduling serverless functions typically requires metrics col-

lection, often using a sidecar. This container-based sidecar introduces additional network

processing in the datapath, requiring the interception and forwarding of model updates.

This leads to complex data pipelines (involving extra communication hops between aggre-

gators) and increased communication overheads due to the reliance on kernel-based net-

working [181].

3For consistency, we use the generic term “message broker” to denote such a networking component
throughout this paper.
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Application-agnostic, simple, autoscaling: Current serverless autoscaler designs typ-

ically rely on a simplistic threshold based on user input (e.g., request per second, concur-

rency) for scaling decisions [37, 36], often being unaware of application needs. This design,

agnostic of the hierarchical structure of FL aggregation, is limited in its ability to opti-

mize the system to maximize parallelism, i.e., the number of levels and the number of

aggregators at each level. Looking at Fig. 6.2 (a), as we go up the levels in the hierarchy,

fewer aggregators are needed. This can be leveraged to potentially reuse the lower-level

aggregators as we proceed up the hierarchy. Further, since hierarchical aggregation uses

function chaining, current “reactive” autoscaling designs lead to a cascading effect [173] of

the cold-start delays when scaling a function chain.

Locality-agnostic placement: Intra-node communication can be faster than inter-

node communication by avoiding a lot of networking overheads [178] and using state-of-the-

art serverless data plane designs with shared memory [197, 181, 223]. However, leveraging

the benefits of shared memory effectively can be challenging when dealing with a large

hierarchy of aggregators that cannot be accommodated within a single node. This requires

careful function placement by taking into account the impact of communication between

aggregators. Inter-node communication typically still uses kernel-based networking.

6.3 LIFL Overview

We aim to address the aforementioned limitations (§6.2.3) and develop LIFL—a

high-performance, lightweight, and elastic serverless platform for FL, utilizing hierarchical

aggregation. We focus on the following innovations of LIFL:
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Figure 6.3: The overall architecture of LIFL.

(1) High-performance intra-node dataplane: LIFL incorporates shared memory pro-

cessing to provide a zero-copy communication channel between FL aggregators placed on the

same node (§6.4.1). This avoids heavyweight kernel networking overheads, especially data

copies [90], as model updates are often large, e.g., a model update from ResNet-152 [124]

is ∼230 MBytes. Shared memory can also eliminate other overheads such as protocol pro-

cessing, serialization/de-serialization, kernel/userspace boundary crossing, and interrupts.

(2) In-place message queuing: We extensively leverage shared memory in LIFL to offer

“in-place” message queuing (§6.4.2). Messages (i.e., model updates) from selected clients

are directly buffered in shared memory and can be instantly accessed by the aggregators

when they are ready. This eliminates dedicated message queues and their associated queuing

delays.

(3) Lightweight eBPF-based sidecar: We incorporate the extended Berkeley Packet

Filter (eBPF [39]) into LIFL to build a lightweight sidecar (§6.4.3) to provide important
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functionality, e.g., metrics collection. Unlike a container-based sidecar, LIFL’s sidecar runs

as eBPF code attached at in-kernel hooks, avoiding the need for dedicated resources. We

further utilize the eBPF-based sidecar to support direct networking between aggregators

(§6.4.4), completely replacing the message broker.

(4) A cost-effective orchestration heuristic: LIFL orchestrates the model aggrega-

tion to fully exploit the improved serverless dataplane by employing several strategies: (1)

locality-aware placement that partitions levels with large traffic into node-affinity groups to

make the best use of shared memory processing (§6.5.1); (2) hierarchy-aware scaling that

dynamically adjusts the configuration of hierarchical aggregation (§6.5.2), and (3) oppor-

tunistic reuse of the aggregator runtime from a lower level (§6.5.3).

Architectural overview of LIFL: Fig. 6.3 shows the overall architecture of LIFL. LIFL

maintains a shared memory object store on each worker node to enable zero-copy com-

munication between aggregators. To support in-place message queuing, LIFL introduces

a gateway on each worker node that receives model updates from remote clients. The

gateway performs a consolidated, one-time payload processing to queue the received model

updates to shared memory. Each aggregator in LIFL has attached to it an eBPF-based

sidecar for lightweight metrics collection. Aggregators in LIFL are stateless, so new ones

start without state synchronization upon an aggregator failure. LIFL detects client fail-

ures with keep-alive heartbeats and enhances resilience by over-provisioning the number of

clients. In the control plane, a LIFL agent is deployed on each worker node to manage the

lifecycle (e.g., creation, termination) of aggregators, following instructions from the LIFL

control plane. The LIFL coordinator, a cluster-wide control plane component, is used for

interactions between the FL job designer (ML engineer) and the serverless control plane
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(e.g., autoscaler, placement engine).4 It works with the serverless control plane to execute

LIFL’s orchestration flow (§6.5).

6.4 Optimizing the Serverless Data-Plane in LIFL

6.4.1 Shared Memory for Hierarchical Aggregation

0 50 100 150 200 250Time (s)
Top
NH

One round Network Agg. Eval.

0 50 100 150 200 250Time (s)

LF1
LF2
LF3
LF4
Top
WH

Figure 6.4: Impact of data plane performance on hierarchical aggregation. (upper fig.:)

No hierarchy(NH); (lower fig.:) With hierarchy(WH). Top: top aggregator; LF: leaf aggre-

gator. “Network” denotes the data transfer tasks of model updates; “Agg.” denotes the

aggregation tasks; “Eval.” denotes the evaluation tasks.

Assessing data plane with hierarchical aggregation: We now assess the importance

of a high-performance data plane to truly deliver on the promise of hierarchical aggregation.

We consider a baseline (denoted NH) with a single aggregator without hierarchy. We evaluate

the hierarchical aggregation service that has one top aggregator and four leaf aggregators

4Note: Even though the serverless control plane has serverful, always-on components (e.g., autoscaler,
placement engine), are shared and their overheads are amortized across multiple workloads, especially at
scale.
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(denoted WH). All aggregators are placed on the same node. We consider eight trainers to

train a ResNet-152 model using FEMNIST dataset. Note that we always deploy trainers

on separate nodes, to both be realistic (trainers are remote) and to avoid contention for

resources on the node.

Fig. 6.4 shows the execution times for the representative FL stages under different

settings. Note that we only show the receiving part of the networking task (“Network”

in Fig. 6.4) to simplify the figure. Compared to the baseline (NH), WH does not exhibit

a significant improvement overall, though it uses hierarchical aggregation. The average

completion time per round with WH is 57 seconds, while for NH is 59.8 seconds. This is

mainly because of the contention for network processing between leaf aggregators when they

send/receive intermediate model updates to/from the top aggregator. This highlights the

critical need for a high-performance and streamlined data plane for hierarchical aggregation.

LIFL incorporates shared memory processing when the serverless aggregator functions are

co-located on the same node. This enables fast and efficient communication, mitigating

the impact of networking on hierarchical aggregation (demonstrated in Fig. 6.9). Working

jointly with our locality-aware placement scheme (§6.5.1), LIFL can minimize the need for

inter-node model update transfers. Consequently, LIFL maximizes the advantages of our

efficient intra-node shared memory data plane that substantially reduces communication

overheads.

Shared memory object store: The LIFL agent is responsible for the allocation, recy-

cling, and destruction of the shared memory buffer in the object store. In addition, LIFL

only allows immutable (read-only) objects to guarantee the safe sharing of model updates,
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eliminating the need for locks. The agent periodically checkpoints the model parameters to

an external persistent storage service to ensure data persistence and potential recovery in

case of failures. The checkpointing occurs after the aggregator completes the aggregation

of specified model updates, where the aggregator submits a request to the LIFL agent to

perform model checkpoints asynchronously in the background. This prevents checkpoint

delays from being added to the aggregation completion time.

6.4.2 In-place Message Queuing

Representative message queuing solutions: Fig. 6.5 enumerates message queuing so-

lutions for various serverful and serverless alternatives. In the monolithic serverful setup

(used in [126]), the model update is directly buffered into an in-memory queue residing in

the aggregator, deployed as a persistent and stateful application. Another serverful setup,

used in [87], deploys aggregators as ephemeral, stateless microservices, requiring an addi-

tional persistent, stateful message broker to buffer model updates from clients before being

consumed by the stateless aggregator. Switching to the basic serverless setup (used in [133]),

model updates are also buffered at a message broker, as the aggregator is now deployed as

an ephemeral, stateless serverless function. Before being consumed by the aggregator, the

model update has to pass through the sidecar. Finally, in LIFL, the gateway buffers the

model update directly into the shared memory, which can then be seamlessly accessed by

the aggregator. The distinct data pipelines between the client, message queue, and aggre-

gator impose varying degrees of overheads. Our evaluation (details in §6.6.1) shows that

LIFL’s in-place message queuing achieves the best efficiency and performance (equivalent

to a monolithic, serverful design) among all alternatives in Fig. 6.5.
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Figure 6.5: Message queuing solutions.

Message queuing pipeline in LIFL: The gateway at each worker node is address-

able/accessible by FL clients. It receives model updates from clients or from the gateway on

another worker node, and performs necessary network processing (e.g., protocol processing,

serialization, deserialization, data type conversion, etc) before writing the model updates

into shared memory. This avoids duplicate processing when local aggregators access model

updates in shared memory.

On the receive (RX) path, protocol processing by the kernel TCP/IP stack is first

performed. The gateway running in userspace receives the raw L7 payload from the kernel

and then extracts the model updates (encoded as tensor data type), depending on the

adopted L7 protocol (e.g., gRPC, MQTT). We convert the model update from tensor data

type to NumpyArray before writing it to shared memory, as Python’s multiprocessing

module does not support manipulation of the tensor data type. On the transmit (TX)

path, the reverse payload processing is done.
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We apply vertical scaling of the gateway by dynamically adjusting the number

of assigned CPU cores based on the load level. This avoids the gateway becoming the

dataplane bottleneck and impacting the aggregation speed.

6.4.3 eBPF-based Sidecar

LIFL’s eBPF-based sidecar is built with a set of eBPF programs attached to

each aggregator’s socket interface, using its in-kernel SKMSG hook [188]. The execution of

the eBPF-based sidecar is triggered by the invocation of the send() system call, which is

captured by the SKMSG hook as an eBPF event. This ensures that the eBPF-based sidecar

is strictly event-driven and consumes no CPU resources when idle. We use the eBPF-based

sidecar to collect necessary metrics (e.g., execution time of the aggregation task) to facilitate

the orchestration in LIFL (§6.5).

Metrics collection: Upon invocation, the eBPF-based sidecar collects and stores metrics

to an eBPF map (metrics map) on the local worker node. The eBPF map is an in-kernel,

configurable key-value table that can be accessed by the eBPF program during execu-

tion [38]. The LIFL agent, on the other hand, periodically retrieves the latest metrics from

the metrics map and feeds the metrics back to the metrics server (Fig. 5.3) in the serverless

control plane.

6.4.4 Direct Routing with Hierarchical Aggregation

Direct networking between functions is not allowed in existing serverless envi-

ronments because serverless functions are considered to be stateless and ephemeral. This

implies that there are no long-lived, direct connections between a pair of function instances.
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Figure 6.6: Intra-/inter-node direct routing within hierarchical aggregation.

As a result, they use an intermediate networking component (e.g., message broker) to act

as a stateful, persistent component to manage state, i.e., routes between functions. How-

ever, the main drawback is that it adds unnecessary overhead by involving the additional

networking component(s) in the datapath, making indirect networking between functions

heavyweight.

LIFL improves serverless networking within hierarchical aggregation by allowing

direct routing between aggregators, both within a node and between nodes. The key is

to offload the stateful processing to eBPF, using the sockmap [188] to support flexible

intra-node routing exploiting shared memory, and inter-node routing with the help of the

per-node gateway, as depicted in Fig. 6.6. The sockmap is a special eBPF map (BPF MAP

TYPE SOCKMAP [188]) that maintains references to the registered socket interfaces. We take

the approach from [181] to implement intra-node direct routing in LIFL, as described below.

Intra-node routing: LIFL makes full use of its shared memory support to facilitate zero-

copy exchange of model updates between aggregators. The shared memory object in LIFL

is addressed by the object key, which is a 16 byte string randomly generated by the shared

memory manager when it initializes shared memory objects. We also assign each aggregator
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a unique ID. The zero-copy data exchange between aggregators depends on delivering the

object key, as the data is kept in place in shared memory.

LIFL utilizes eBPF’s SKMSG (integrated in the eBPF-based sidecar), combined with

eBPF’s sockmap [188], to pass the object key between aggregators on the same node. Upon

receiving the object key, the SKMSG program uses the ID of the source aggregator as the key

to look up the sockmap to find the socket interface of the destination aggregator so that

the object key may be delivered to it for access of the shared memory object.

Inter-node routing: When the source aggregator communicates with a destination ag-

gregator on a different node, it sends the object key to the local gateway first. The local

gateway uses the object key to retrieve the model update from shared memory and performs

the necessary payload transformation. It then uses the source aggregator ID to look up the

inter-node routing table to obtain the destination aggregator ID and the IP address of the

remote node hosting the destination aggregator. The model update is sent through the re-

mote node’s gateway to the destination aggregator. The remote gateway stores the received

model update in shared memory and uses SKMSG to notify the destination aggregator, along

with the local object key.

Online hierarchy update: LIFL re-configures intra-/inter-node routes each time the hier-

archy is updated. The routing manager in the LIFL agent takes the DAG input (generated

by the TAG, §6.4.5) from the control plane that describes the connectivity between aggre-

gators, and correspondingly updates routes into the inter-node routing table in the gateway

and in-kernel sockmap, using the userspace eBPF helper, bpf map update elem() [48]. The

TAG describes the cross-level data dependency between aggregators.
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6.4.5 Abstraction for fine-grained control

To facilitate fine-grained control of LIFL’s orchestration, we treat an aggregator

process within a sandboxed runtime (e.g., container) as the atomic unit for management.

The control plane needs a generic means to describe connectivity between components and

placement affinity. We make use of Topology Abstraction Graph (TAG) in Flame [98] to

describe the aggregator-to-aggregator connectivity and aggregator-client connectivity. Each

node in such a graph is associated with a “role” metadata, denoted as either aggregator

or client. A “channel” metadata denotes the underlying communication mechanism (e.g.,

intra-node shared memory, inter-node kernel networking) used for connectivity.

We configure the placement-affinity to facilitate locality-aware placement through

the groupBy attribute in the channel abstraction, which accepts a string as a label to specify

a group. Therefore, keeping the same label in the attribute allows us to cluster roles into

a group. The LIFL coordinator enables necessary orchestration decisions, e.g., runtime

reuse and locality-aware placement, through manipulation of these abstractions (role and

channel).

aggregator
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Agg. Send

model 
updates

…

1
2

I
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Dequeue

Figure 6.7: Step-based processing model.
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6.4.6 Step-based Processing Model

The basic processing model of an LIFL aggregator can be abstracted as a multiple-

producer, single-consumer pattern, as shown in Fig. 6.7. Multiple upstream producers

(clients or aggregators) are mapped to a single consumer (aggregator only). The single

consumer gathers model updates from assigned producers and computes the aggregated

model update.

Looking deeper into the aggregator, LIFL adopts a step-based processing model.

At the core of this design is a processing pipeline of three steps: (1) Recv: Receive model

updates from all assigned producers. The received model update is enqueued in a FIFO

queue. In LIFL, the object key of the model update is enqueued as the actual model update

resides in shared memory; (2) Agg: Aggregator dequeues a model update from the FIFO

queue in Recv and then aggregates it. The Agg step checks if the aggregation goal is met

after the dequeued update is aggregated. If the aggregation goal is not met, Agg is repeated

until the aggregation goal is met, before moving to Send; and (3) Send: sends the final

model update to the designated consumer. The execution of Recv and Agg overlaps to

enable eager aggregation, i.e., once the Recv step receives a model update, it immediately

passes the model update to Agg step for aggregation.

6.5 LIFL’s Control Plane Design

6.5.1 Locality-aware Placement and Load Balancing

The placement of aggregators can lead to different routing behaviors: When aggre-

gators with cross-level data dependencies are placed on the same node, the shared memory
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processing and eBPF-based sidecar can facilitate intra-node routing. When these aggrega-

tors are placed across different nodes, the gateway has to perform inter-node routing. To

minimize the transfer of model updates in LIFL, we take a data-centric strategy like [223]

that is aware of the locality of model updates and places the aggregator close to the model

updates. As such, the in-place message queuing (§6.4.2), which is, in fact, the result of

load balancing (clients to worker node mapping), directly affects the effectiveness of the

locality-aware placement of the aggregators.

Our objective of load balancing involves two crucial criteria: (1) Minimizing inter-

node communication while maximizing the utilization of shared memory within each node.

(2) Ensuring the residual service capacity of the worker node meets the demand; the residual

service capacity (RCi,t) of worker node i at time t is determined by RCi,t = MCi − (ki,t ×

Ei,t). Here, MCi represents the maximum service capacity, denoting the maximum number

of model updates that can be aggregated simultaneously on worker node i. The value of

ki,t is the arrival rate of model updates directed to worker node i at time t, and Ei,t is the

average execution time required to aggregate a model update on node i. We can also get a

coarse-grained estimate on the queue length (Qi,t = ki,t × Ei,t) of node i at time t.

LIFL actively monitors both Ei,t and the arrival rate ki,t using the sidecar in §6.4.3.

We determine the value of MCi offline. We incrementally increase the arrival rate ki to

node i. Let k′i and E′
t denote the arrival rate and average execution time at the point we

observe a significant increase in Ei. This indicates that node i is becoming overloaded and

we estimate MCi as k
′
i × E′

i.
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We approach the load balancing task as a bin-packing problem, aiming to allocate

model updates from clients to a minimal number of worker nodes, while ensuring that

the residual service capacity of each worker node is not exceeded. This naturally reduces

the inter-node communication as much as possible, since the communication between a

particular pair of worker nodes only happens once. We use BestFit for the bin-packing,

as it concentrates load onto the fewest nodes possible, to reduce inter-node traffic and

maximize shared memory use. In contrast, WorstFit spreads the load across more nodes,

similar to the “Least Connection” policy in Knative (§6.6.1). Furthermore, FirstFit focuses

on reducing search complexity without being locality-aware.
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Figure 6.8: Control plane orchestration in LIFL: The autoscaler periodically re-plans the

hierarchy based on the arrival rate of each worker node. The LIFL coordinator applies

reusing of aggregators.

6.5.2 Planning the Hierarchy for Aggregation

The goal of hierarchy-aware autoscaling is to maximize the parallelism of aggrega-

tion at each level, given the number of model updates to be aggregated. This can minimize

the completion time of each level and thus minimize the aggregation completion time (ACT)
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for hierarchical aggregation. We plan a hierarchical aggregation structure within each node,

tailored to the number of pending model updates (Qi,t) in the message queue. Every node

produces an intermediate model update that is dispatched to the node chosen to have the

top aggregator that updates the global model. This approach significantly reduces the need

for cross-node transfers for intermediate model updates.

LIFL periodically adjusts (i.e., scales) the hierarchy on node i, guided by our

estimates of Qi,t. To prevent excess resource allocation due to short-term spikes in Qi,t,

we employ the Exponentially Weighted Moving Average (EWMA) to smooth Qi,t: Qi,t =

α × Qi,t−1 + (1 − α) × Qi,t, where α is the EWMA coefficient. We set α = 0.7 based

on it yielding the best results in our experiments. Our current implementation supports

a two-level k -ary tree hierarchy on each node, comprising a “central” middle aggregator

responsible for aggregating model updates from Qi,t/I leaf aggregators, where I is the

number of model updates of clients per leaf aggregator. Given that the steps within a

LIFL aggregator (Fig. 6.7) are executed sequentially, we want to maximize the parallelism

by having a limited I to be small (e.g., at 2), ensuring that a leaf aggregator experiences

minimal waiting time after receiving the initial update from the first client.

LIFL re-plans the hierarchy on each worker node periodically. This involves esti-

mating Qi,t across the worker nodes and creates/terminates aggregators accordingly. The

LIFL control plane updates the routes between aggregators based on the renewed hierarchy

(details in §6.4.4).
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6.5.3 Opportunistic Reuse of Aggregator Instances

The scaling policy in LIFL incorporates an opportunistic “reuse” scheme to maxi-

mize the utilization of warm aggregator instances since aggregators in LIFL use homogenized

runtimes (Fig. 6.7) with the same code and libs. This sidesteps the cascading effect [173]

when starting up a hierarchy of aggregators (in fact function chains).

Given a hierarchy of aggregators selected on the node, LIFL picks a leaf aggregator

that has already completed its aggregation task and is idle. LIFL converts its role to a middle

aggregator on that node. No further change is required as LIFL’s aggregator runtime is

stateless. LIFL selects the first middle aggregator that completes its local aggregation

task and converts it to be the top aggregator responsible for updating the global model.

This minimizes the need to start up new instances for higher-level aggregators, and avoids

additional startup delays.

6.5.4 Eager aggregation in LIFL

LIFL employs eager aggregation (Fig. 6.1) leveraging its more flexible and dynamic

timing of the aggregation process. Eager aggregation performs timely aggregation as model

updates arrive, even if it triggers the cold start of an aggregator (when no idle-but-warm

aggregator is available). This takes advantage of the overlap between the start-up delay

and transfers of model updates, allowing eager aggregation to mask cold starts up until the

last model update. It also mitigates congestion that can occur when trying to aggregate all

model updates simultaneously. In contrast, lazy aggregation aggregates all model updates

in a batch when the aggregation goal is reached. But, the arrival of local model updates

from trainers can be spread over a relatively long duration. Our evaluation shows eager
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aggregation achieves a 20% reduction on ACT (Fig. 6.11(a)). We implement eager aggrega-

tion in LIFL following the step-based processing model described in §6.4.6. LIFL updates

the version of the global model whenever the aggregation goal is achieved.

6.6 Evaluation & Analysis

We quantify the performance gain and resource savings by using LIFL, starting

with analyzing a set of microbenchmarks to understand the different design considerations

of LIFL, including shared memory processing, the effectiveness and overheads of LIFL’s

orchestration scheme. We then demonstrate the benefits of LIFL from a system-level per-

spective using real FL workloads.

Baseline Systems: We implement several baseline FL systems for LIFL to compare

against. (1) “Serverful system” (SF): The “serverful system” is implemented follow-

ing the design described in [87] and [126]. Both of them adopt the architecture depicted

in Fig. 6.2 (a). (2) “Serverless system” (SL): The baseline “serverless system” is im-

plemented following the design described in FedKeeper [94] and AdaFed [133] that uses

the architecture depicted in Fig. 6.2 (b). We choose Knative [59] as the serverless frame-

work to build these alternatives. We utilize the open-source Flame platform [57] to provide

necessary FL components, e.g., coordinator, selector, aggregator, and client.

Implementation of LIFL: We implement LIFL based on SPRIGHT [181], a lightweight,

high-performance serverless framework. LIFL includes object store support, model check-

points, and routing support for hierarchical aggregation. LIFL uses Python’s multipro-

cessing package to implement the shared memory pool instead of the DPDK-based shared
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memory pool used in the original implementation of SPRIGHT. The current implementa-

tion of LIFL only supports synchronous FL. Supporting asynchronous FL is part of our

future work.

Testbed setup: We leverage the NSF Cloudlab [102]. The nodes we used have

a 64-core Intel Cascade Lake CPU@2.8 GHz, 192GB memory, and a 10Gb NIC. We use

Ubuntu 20.04 with kernel version 5.16.
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Figure 6.9: Data plane improvement for hierarchical aggregation: Serverful (SF), Serverless

(SL), and LIFL. SL’s latency includes contributions of +SC (sidecar) and +MB (message

broker).
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6.6.1 Microbenchmark Analysis

Data plane improvement for hierarchical aggregation: To understand the improve-

ments in data plane performance of hierarchical aggregation with LIFL’s shared memory

processing, we use the same aggregation hierarchy as in §6.4.1, comprising one top aggre-

gator and four leaf aggregators. All aggregators are placed on the same node.

We consider the following serverful and serverless alternatives: (1) The serverful

setup (SF) establishes direct networking channels (based on gRPC) between leaf aggregators

and the top aggregator; (2) the serverless setup (SL) uses indirect networking to connect

leaf aggregators and the top aggregator, through a message broker on the same node. Each

aggregator has a container-based sidecar to mediate inbound and outbound traffic; (3) the

LIFL setup uses shared memory for communication between aggregators. We consider three

ML models with distinct sizes: ResNet-18 (∼44MB), ResNet-34 (∼83MB), and ResNet-152

(∼232MB).

Fig. 6.9(a) shows the latency breakdown of a single model update transfer between

the leaf aggregator and top aggregator for different model sizes. We specially mark the share

of sidecar (+SC) and message broker (+MB) for the serverless setup. SL consistently results in

2× and 6× higher latency than SF and LIFL, respectively. The significant CPU usage of SL

(Fig. 6.9(b)) clearly shows the poor efficiency and performance of the indirect networking

used in the serverless setup, caused by its use of the message broker and heavyweight sidecar.

We see that LIFL is considerably better than SF and SL in terms of both CPU usage and

latency.
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Fig. 6.9(c) shows the timing of various FL processing tasks during hierarchical

aggregation when using LIFL’s data plane. It is clear that LIFL’s shared memory processing

helps reduce the overhead and improve the performance of the data plane with hierarchical

aggregation. LIFL completes each round in just 44.9 seconds compared to 57 seconds

on average even for the serverful setup in Fig. 6.4. Further, through careful placement,

aggregators in LIFL can fully exploit the high-speed intra-node data plane over shared

memory, as discussed next.

M1 M2 M3
0.0

0.2

0.4

0.6

0.8

CP
U

 U
til

iz
at

io
n 

(%
)

SF-mono
LIFL
SF-micro
SL-B

(a) CPU cost

M1 M2 M3
0

1

2

3

N
or

m
. M

em
 C

os
t

SF-mono
LIFL

SF-micro
SL-B

(b) Memory cost

M1 M2 M3
0.0

0.2

0.4

0.6

0.8

La
te

nc
y 

(s
)

SF-mono
LIFL

SF-micro
SL-B

(c) End-to-end delay

Figure 6.10: Message queuing overheads.

In-place message queueing benefitWe examine LIFL’s in-place message queuing through

a comparison with the serverful and serverless alternatives depicted in Fig. 6.5, including

the monolithic serverful setup (denoted as SF-mono), the microservice-based serverful setup

(denoted as SF-micro), and the basic serverless setup (denoted as SL-B). We quantify the

overheads of message queuing for a single model update transfer between the client to the

aggregator. We consider three metrics: (1) the total memory consumed for queuing the
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model update along the data pipeline; (2) the CPU cycles spent in the data pipeline; and

(3) the end-to-end networking delay from the client to the aggregator. Note that we ex-

clude the overhead on the client-side. We consider three ML models with distinct sizes:

(M1) ResNet-18 (∼44MB), (M2) ResNet-34 (∼83MB), and (M3) ResNet-152 (∼232MB).

Fig. 6.10 shows the results of CPU, memory cost and end-to-end networking de-

lay. The memory consumption in SF-mono is mainly from the in-memory queue inside the

aggregator. For LIFL it is primarily consumed by the shared memory used to buffer the

model update. But, SL-B consumes 3× more memory than SF-mono and LIFL. The extra

memory consumption of SL-B comes from the use of sidecar and message broker, both of

which need to locally buffer the model update. SF-micro, on the other hand, saves one

queuing stage at the sidecar, but still incurs the queuing at the message broker and consum-

ing extra memory. LIFL’s in-place message queuing totally eliminates these unnecessary

queuing stages.

Looking at the CPU consumption, LIFL is ∼1.5× and ∼1.9× less than SL-B and

SF-micro, respectively. In terms of the end-to-end networking delay (client to aggregator),

LIFL is ∼1.3× and ∼1.7× less than SL-B and SF-micro, respectively. LIFL’s improvement

in CPU cost and networking delay, compared to SL-B and SF-micro, are also a result of

the elimination of the sidecar and message broker from the data pipeline, and the message

queuing if far more efficient. This illustrates the benefits of LIFL’s in-place message queuing,

achieving the equivalent efficiency and performance of a monolithic, serverful design (with

far less resource consumption as we see for typical FL applications).

Stateful “tax” in LIFL The per-node gateway is a key component that enables a number
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of data plane functionalities in LIFL, including in-place message queuing and inter-node

data transfer. Unlike stateless aggregators, the gateway is deployed as a stateful, persistent

component on every LIFL worker node. This raises the concern about the stateful “tax”,

i.e., the CPU/memory cost of having stateful components in the FL system.

On the other hand, a stateful “tax” of some form commonly exists in serverful and

serverless alternatives, as shown in Fig. 6.5. The stateful component in a monolithic server-

ful setup is the aggregator itself, running as an “always-on” monolith. In the microservice-

based serverful setup, the message broker is the stateful component, as is the case for the

basic serverless setup. We quantitatively compare the stateful “tax” of LIFL’s gateway with

serverful and serverless alternatives in Fig. 6.5. The result in §6.4.2 shows that stateful “tax”

in LIFL is the lowest.

Improved orchestration in LIFL: We now quantify the benefits of LIFL’s orchestration

in improving hierarchical aggregation. We demonstrate the effectiveness of LIFL by ap-

plying: 1○ locality-aware placement (§6.5.1), 2○ hierarchy-planning (§6.5.2), 3○ aggregator

reuse (§6.5.3), and 4○ eager aggregation (§6.5.4) step-by-step. We use five nodes for this

experiment. The maximum service capacity (MCi) of each node in our testbed is 20.5 We

focus on two aspects: resource consumption and Aggregation Completion Time (ACT) to

aggregate a given number of model updates. In this experiment, we assume the estimated

Qi,t is equal to the actual queue length on each active node. We focus on the importance

of having warm aggregators based on the pre-planned hierarchy, to avoid the cold start

penalty.

5Our testbed nodes are homogeneous, hence all MCi are the same. With heterogeneous nodes, MCi may
vary.
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Figure 6.11: Improvement with LIFL’s orchestration, with i○ being additions to baseline

LIFL; x-axis is the number of model updates arriving at the aggregation service concurrently.
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We compare LIFL against a baseline serverless control plane using hierarchical

aggregation (SL-H in Fig. 6.11). SL-H employs LIFL’s shared memory data plane (so both

have the same data plane) with Knative’s “Least Connection” load balancing strategy [166]

that assigns newly arrived model updates to the node with the smallest queue length. The

aggregators in SL-H use lazy aggregation by default. The ML model used is ResNet-152.

Note that the latency to transmit a single model update of ResNet-152 across nodes (on

the current testbed) is ∼4.2 seconds.

By using locality-aware placement, LIFL also achieves 2.1× and 1.13× ACT re-

duction than SL-H (for 20 and 60 model updates in Fig. 6.11(a)). This improvement is

attributed to LIFL’s bin-packing strategy, which effectively consolidates aggregators onto

the same node to fully exploit shared memory processing. Applying hierarchy-planning and

reusing warm aggregator instances (+ 1○+ 2○+ 3○) further reduce ∼1.22× ACT of LIFL,

as keeping aggregators warm mitigates the cold start delay that exists in both SL-H and

(+ 1○). Further, after enabling eager aggregation (+ 1○+ 2○+ 3○+ 4○), LIFL allows higher-

level aggregators to consume and aggregate the model updates in a timely manner, effec-

tively avoiding the intermediate model updates (produced by the lower-level aggregators)

being queued up at the higher-level aggregators. This saves ∼1.2× in ACT compared to

(+ 1○+ 2○+ 3○) that uses lazy aggregation.

While being effective in reducing ACT, LIFL also helps to reduce costs. Just

using locality-aware placement (+ 1○ in Fig. 6.11(b)), LIFL can save considerable CPU

overhead by reducing inter-node data transfers (with 20 and 60 model updates). Enabling

aggregator reuse saves additional CPU cycles, as it avoids having the CPU initialize new
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aggregators. For 100 model updates though, the service capacity of all five nodes would

be maxed out, reaching the limit of the benefit of LIFL’s orchestration. However, the data

plane improvement of LIFL can still make it outperform the basic serverful and serverless

setups, as demonstrated in Fig. 6.9.

As shown in Fig. 6.11(c), LIFL reduces the number of aggregators created, by

packing more aggregators into fewer nodes. After we apply locality-aware placement to

LIFL (+ 1○), LIFL can also reduce the number of nodes used considerably (see Fig. 6.11(d)):

Given 20, 60, and 100 model updates, LIFL’s locality-aware placement efficiently packs them

into 1, 3, and 5 nodes, respectively. This avoids repeatedly creating a middle aggregator on

each of the 5 nodes (except when the service capacity of all 5 nodes is fully consumed). On

the other hand, SL-H uses all 5 nodes throughout, uniformly distributing model updates

across all 5 available nodes. This will lead to additional cross-node data transfers, regardless

of available model updates. Note that the service capacity of all 5 nodes is fully consumed

for 100 model updates.

Orchestration overhead of LIFL: We evaluate the orchestration overhead of LIFL, given

a different number of clients. The time for completing the locality-aware placement in LIFL

is less than 17 milliseconds, even with 10K clients, which is the maximum number of client

settings observed in Google’s production FL stack [87]. Compared to the ACT, which

takes several tens of seconds with a large amount of clients, this overhead for locality-aware

placement is negligible. The EWMA estimator for hierarchy-planning takes 0.2 milliseconds

per estimate, which is also negligible compared to the 2-minute cycle time used by LIFL

to re-plan the hierarchy on each worker node. The aggregator reuse and eager aggregation
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incur almost no overhead, as they do not require active involvement of the LIFL control

plane.
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Figure 6.12: ResNet-18: (a) Time-to-accuracy and (b) Cost-to-accuracy; ResNet-152:

(c) Time-to-accuracy and (d) Cost-to-accuracy.

6.6.2 FL Workloads Setup

Our aim is to demonstrate the generality of LIFL in improving performance and

reducing the cost of FL from a system-level perspective. We consider synchronous FL (using

FedAvg [162]) to justify LIFL’s design. We use Stochastic Gradient Descent on the client.

Clients are configured with a batch size of 32 in a local training epoch, with the learning

rate set to 0.01.

177



0.0 0.5 1.0 1.5
Wall-clock time (hours)0

20
40
60
80

100
Ar

ri
va

l r
at

e
pe

r m
in

ut
es

ResNet-18 (a)

(a) Update arrival rate

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

15
30
45
60

# 
of

 a
ct

iv
e 

ag
g.

ResNet-18 (b)

SF SL LIFL

(b) # of active aggregators

0 20 40 60 80Rounds0
500100015002000

Cu
m

ul
at

iv
e 

CP
U

tim
e 

pe
r r

ou
nd

ResNet-18 (c)

SF SL LIFL

(c) Cumul. CPU time (seconds)

per round

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

10

20

30

Ar
ri

va
l r

at
e

pe
r m

in
ut

es

ResNet-152 (d)

(d) Update arrival rate

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

3

6

9

# 
of

 a
ct

iv
e 

ag
g.

ResNet-152 (e)

SF SL LIFL

(e) # of active aggregators

0 20 40 60 80Rounds0
200
400
600

Cu
m

ul
at

iv
e 

CP
U

tim
e 

pe
r r

ou
nd

ResNet-152 (f)
SF SL LIFL

(f) Cumul. CPU time (seconds)

per round

Figure 6.13: ResNet-18 (a, b, c), ResNet-152 (d, e, f): Time series of arrival rate,

number of active aggregators, and cumulative CPU time (seconds) per round.

Benchmark selection: We consider image classification, training ResNet [124]

models with the FEMNIST dataset [221]. We use non-IID datasets from FedScale [145]

(with its real client-data mapping) to keep the setting realistic with different data distribu-

tions across the client population.

Configuration of clients: We consider two distinct client setups: (ResNet-18

setup) We use the client in this setup to train a ResNet-18 model. Clients are considered

to be mobile devices with limited computing capacity, available only when each has battery

power and is connected to a data (e.g., WiFi) network. This results in high variability in

the number of mobile devices available to perform training tasks. As such, we let each client

hibernate for a random interval within [0, 60] seconds to emulate the dynamic availability

of typical mobile device behavior. This generates varying loads over time, as shown in

Fig. 6.13(a), justifying the need for scaling with a serverless framework as well as LIFL.
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(ResNet-152 setup) The client in this setup trains the relatively heavyweight ResNet-152

model. The client is considered to be a server with substantial computing capacity and is

highly available. As such, we keep clients in this setup always-on. This results in a more

stable arrival pattern of model updates, as shown in Fig. 6.13(d).

We use a total of 20 physical nodes with 5 nodes used to run aggregators. We use 4

nodes as leaf/middle aggregators and dedicate one node to be the top aggregator. To deliver

the benefits of a “serverful system” (SF), we always maximize the resource allocation to the

aggregators and keep them warm throughout the experiment. For the serverless setup (SL

and LIFL), we create aggregators on demand.

We use the remaining 15 physical nodes to run the clients. In the ResNet-18

setup, since we consider clients to be compute-constrained mobile devices, we run eight

clients on the same physical node, so each client only gets a small share of the compute

capacity of the physical node. Therefore, in the ResNet-18 setup, we can keep 120 simul-

taneously active clients in each round. In the ResNet-152 setup, we treat the client as a

server node, so we dedicate a physical node for a ResNet-152 client. In this ResNet-152

setup, we keep 15 simultaneously active clients in each round. The active clients are selected

from a total of 2,800 real clients provided by FedScale [145].

6.6.3 Putting It All Together

(ResNet-18 ) Time to Accuracy: We compare the time-to-accuracy of LIFL against SL

and SF. To reach 70% accuracy of ResNet-18 (Fig. 6.12 (a)), LIFL takes only 0.9 hours

(wall clock time), which is 1.6× faster than SF (1.4 hours). Compared to SL which takes 2.4

hours, LIFL is 2.7× faster. The improvement with LIFL can be attributed to the shared
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memory data plane and the improved orchestration to effectively utilize resources, thereby

reducing ACT (see §6.6.1).

The time spent by the SL aggregation service increases due to a combination of

factors including sidecar overhead, function chaining, and simplistic orchestration. Frequent

start-up of the aggregators in SL (Fig. 6.13(b)) adds delays to the aggregation (for the first

arrival update in a round). This increased aggregation time of SL eventually hurts the

time-to-accuracy (70%), making it even slower than SF.

(ResNet-18 ) Cost savings with LIFL: LIFL achieves significant cost savings compared

to SF and SL. We focus on the cumulative costs (CPU time) consumed by the aggregation

service to achieve a certain model accuracy. To reach the 70% accuracy level of ResNet-18

(Fig. 6.12 (b)), LIFL consumes 4.5 CPU hours, which is 1.8× less than SF (8 CPU hours).

Further, SF, with its simplistic fixed resource allocation, keeps aggregators “always-on”,

constantly occupying its CPU allocation (Fig. 6.13(b)). LIFL adapts well to the arrival

rate of model updates and re-plans (scales) the hierarchy accordingly, using resources to

match demand. Also note that the LIFL’s aggregator, when deployed as a Kubernetes pod

or container, is also cheaper (smaller resource allocation) than SF, as LIFL requires less

CPU to complete the same amount of aggregation tasks (Fig. 6.13(c)).

In contrast, SL consumes much more CPU (26 CPU hours) to achieve the 70%

accuracy level of ResNet-18 (Fig. 6.12 (b)) compared to LIFL (4.5 CPU hours). Although

SL has relatively fewer active aggregators over time (Fig. 6.13(b)), its data plane and sidecar

overheads, and the CPU consumed for start-up results in SL having more than 5× the

CPU consumption of LIFL. This higher CPU time cost per round (for the same amount
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of aggregation work completed) requires the cloud service provider to allocate far more

resources to the aggregator (e.g., as a pod), making a single aggregator in SL much more

expensive than both SF and LIFL.

(ResNet-152 ) Time to Accuracy: Fig. 6.12 (c) shows the time-to-accuracy of the dif-

ferent alternatives for RestNet-152. To reach 70% accuracy, LIFL takes 1.9 hours (wall

clock time), which is 1.15× faster than SF (2.2 hours). Comparatively, SL takes 3.2 hours.

LIFL is 1.68× faster than SL. The heavy-weight sidecar, slow function chaining, function

startup delays, and simplistic orchestration, are responsible for the larger time-to-accuracy

of SL for ResNet-152, just as we saw with the ResNet-18 workload, as well as with the

microbenchmark analysis.

(ResNet-152 ) Cost savings with LIFL: As Fig. 6.12 (d) shows, LIFL again achieves

significant cost savings (on cumulative CPU time) compared to SF and SL. To reach the 70%

accuracy level of the ResNet-152 model, LIFL consumes 4.76 CPU hours, which is 1.43×

less than SF (6.81 CPU hours). In contrast, SL consumes much more CPU (20.4 CPU hours)

to achieve the same 70% accuracy level compared to LIFL. This again is consistent with

what we observed from the ResNet-18 workload, highlighting the advantage of LIFL.

Summary: LIFL takes advantage of the fine-grained elasticity of serverless to

scale the aggregation service based on load changes, saving CPU consumption compared

to serverful alternatives. When comparing LIFL with SL, LIFL is even more compelling,

with far lower CPU consumption because of LIFL’s orchestration scheme and lightweight

data plane (as we saw from the microbenchmark analysis). Thus, LIFL shows that it truly

leverages the elasticity promise of the serverless computing paradigm.

181



6.7 Conclusion

LIFL is an optimized serverless FL system aimed at making FL more efficient

and significantly lowering its operational cost. LIFL adopts hierarchical aggregation to

support FL at scale. Its serverless infrastructure leverages shared memory processing to

offer high-speed yet efficient intra-node data plane and event-driven sidecar functionality

to facilitate communication within hierarchical aggregation. LIFL’s orchestration scheme

adjusts the aggregation hierarchy based on load and, maximizes the utilization of shared

memory through intelligent placement and reuse of aggregation function instances, thus

saving the cost. Our evaluation shows that LIFL’s optimized data and control planes

improve the resource efficiency of the aggregation service by more than 5×, compared to

existing serverless FL systems, with 2.7× reduction on time-to-accuracy for ResNet-18.

LIFL also achieves 1.8× better efficiency and 1.6× speedup on time-to-accuracy than a

serverful system. In training ResNet-152 to reach 70% accuracy, LIFL is 1.68× faster than

an existing serverless FL system, while reducing CPU costs by 4.23×.
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Chapter 7

High-performance,

3GPP-compliant 5G and Beyond

Systems

7.1 Introduction

The demand for 5G and beyond technologies is being driven by the emergence of

applications like the Internet of Things (IoT) and connected vehicles, which rely heavily

on cellular networks for ubiquitous access and low latency. Further, the deployment of 5G,

especially the 5GC and (soon) the Radio Access Network (RAN), in cloud infrastructure

has been instrumental in its widespread implementation as well as its scalability. Cloud-

based 5G core networks allow for efficient resource provisioning, using seamless scaling to

accommodate the diverse demands of connected User Equipment (UE) and applications.
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The disaggregated 5GC architecture represents a transformative approach to im-

plementing 5G core networks, moving away from the monolithic, tightly integrated network

elements of previous approaches to build the cellular core to a flexible and scalable ap-

proach based on microservices. The various components of the 5GC are implemented as

software-based Network Functions (NFs), interconnected as a chain to accomplish the re-

quired functionality. Each NF is implemented as an individual microservice, focusing on

a specific task, such as Access and Mobility Management, Session Management, Authen-

tication, etc. The use of microservices enables fine-grained control and allows for rapid

deployment and upgrades of individual components without affecting the entire 5G system.

Additionally, this disaggregated approach enables resource optimization, since NFs can be

dynamically scaled based on traffic demand.

For a seamless end-to-end low-latency user experience, both the radio access and as

well as the core components of 5G cellular networks have to improve. Advancements in radio

access technology, such as millimeter wave, have reduced access network latency to approx-

imately the order of a few milliseconds (possibly 1 ms [176]). The recent effort shows that

electronic mmWave beam alignment and link acquisition can be completed within 1-10 ms,

allowing a UE’s connection establishment with the gNodeB to be completed quickly [122].

In addition, the advent of disaggregated 5GC has spurred significant efforts to re-architect

the data plane to meet the stringent requirements of performance and scalability. A variety

of optimizations have been explored to enhance the 5GC data plane, including DPDK [130],

eBPF [175], SmartNIC [172], and offloading to hardware switches using P4 [161].
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Furthermore, to address the challenge of achieving low-latency communication in

the 5GC control plane, efforts have been made to explore innovative approaches that har-

ness high-performance shared memory I/O (i.e., data exchange) for information exchange

between NFs implementing microservices in the 5GC. By leveraging shared memory pro-

cessing, the 5G control plane can significantly reduce the delays caused by data copies and

protocol processing, resulting in improved response times and a more seamless user expe-

rience. In [130], we discussed L25GC, a state-of-the-art 5G control plane design developed

on top of OpenNetVM [226], a high-performance shared-memory NFV platform. L25GC

utilizes shared memory processing among the 5G control plane components, which reduces

the completion time of control plane events (e.g., UE registration, handover, paging) by

almost 50% on average [130].

Despite architectural advancements, limitations persist in both the control and

data planes of the 5GC design in achieving the high performance goals:

1. The control plane still contributes substantially to the overall high latency observed

in the 5GC. One major contributor is the potential for increased mobility handovers,

driven by the wide adoption of millimeter-wave cells [216], which have smaller cell

sizes as well as limited coverage, leading to more frequent handover events. These

handovers have to be handled by the 5G control plane. Additionally, with the need to

conserve energy in batteries on UEs like mobile phones as well as IoT devices, there

will likely be much more idle-active transitions among the UEs. The proliferation

of 5G UEs (e.g., mobile phones, IoT devices, autonomous vehicles) further increases

the load on the 5G control plane. The completion times of control plane events, for
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instance, a handover process taking 1.9 seconds [154], directly influence the delay and

packet loss encountered by the data packets transmitted to an end-user device.

2. A crucial implementation feature of the 5G control plane is the Service-based In-

terface (SBI) recommended by 3GPP, which has been the de-facto communication

standard used for communication between disaggregated 5G control plane NFs, re-

lying on HTTP/REST-based communication. However, the use of SBI introduces a

number of overheads, such as data copies, protocol processing, and user-kernel space

boundary crossings [130, 131, 182]. These overheads can result in increased latency,

apart from the penalty due to the traditional cellular control plane core procedures

(details in §3.4).

3. The data plane faces challenges to efficiently perform packet classification, particularly

for emerging cellular use cases involving an increasing number of packet detection rules

(PDRs).

Although, the state-of-the-art 5GC design, L25GC [130], delivers significant per-

formance improvement in the 5GC control plane, L25GC’s control plane only supports

a limited number of user sessions due to a rather limited implementation of the shared

memory I/O to replace the SBI.1 L25GC chose to use raw shared memory I/O provided

by DPDK, which operates asynchronously between caller (source) and callee (destination).

For asynchronous data exchange, the caller typically continues with other tasks without

being blocked and does not wait for a response from the callee. However, this is incom-

patible with the HTTP/REST-based SBI, which primarily operates synchronously between

1Based on examining the source code [45] of L25GC at the latest commit hash 74cb035.
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caller and callee, i.e., the caller sends a request to the callee and waits until a response

is returned. The mismatch between L25GC’s asynchronous shared memory I/O and syn-

chronous SBI makes it hard to harmonize them, unfortunately increasing the complexity of

code development and the difficulty of code maintenance and updates of L25GC. Further,

L25GC’s shared memory I/O only supports stateless processing. This lack of capability to

preserve connection context makes L25GC’s shared memory I/O connection-agnostic and

not able to distinguish between different user sessions. The implementation complexity and

the statelessness of L25GC’s shared memory I/O eventually impede L25GC’s ability to scale

up, supporting multiple user sessions.

In addition to the mismatch between synchronous and asynchronous I/O, another

challenge comes from programming language incompatibility. L25GC is adapted from our

earlier work on a 3GPP-compliant 5GC implementation, free5GC [58]. For the purpose

of functionality and development velocity, free5GC chose to use Golang, a high-level pro-

gramming language, in its implementation. On the other hand, L25GC’s asynchronous

shared memory I/O is developed with the C-based DPDK libraries for high-performance

networking. This leads to a need for substantial re-factoring of code when porting the

3GPP-compliant free5GC to L25GC to reduce the control plane latency.

As we look ahead to the potential of 5G wireless environments, it is imperative

to address the above limitations. We thoroughly examine these constraints and propose

L25GC+ [159, 182], an enhancement to L25GC. L25GC+ takes advantage of our newly de-

signed shared memory I/O interface, X-IO [184], and tackles the pain points of L25GC we

have outlined above, including limited user session support and the need for complex code
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refactoring when porting free5GC’s (or other traditional SBI-based) control plane imple-

mentation, while retaining the performance benefits of L25GC’s shared memory processing.

To achieve this, we re-design the shared-memory-based networking stack in L25GC to sup-

port synchronous I/O between control plane NFs. This avoids heavyweight kernel-based

networking used in HTTP/REST-based SBI, while being strictly 3GPP-compliant. To sup-

port multiple user sessions simultaneously in shared memory processing, L25GC+ introduces

necessary connection establishment and teardown procedures. Important connection states,

such as caller and callee ID2 are kept in a state map maintained in L25GC+’s shared mem-

ory networking stack. This enables L25GC+’s shared memory I/O to be aware of distinct

connections, on top of which L25GC+ can distinguish different user sessions, unlike L25GC.

Our contributions encompass:

• Enhancing PDR Rule Lookups: We explore innovative packet classification mecha-

nisms to expedite PDR lookups and update operations in the UPF, going beyond the

linear search approach recommended by 3GPP.

• Evolving to a High-performance SBI: L25GC+ utilizes shared memory processing to

offer a low-latency data path for exchanging control plane messages. L25GC+ adds

synchronous I/O support on top of asynchronous shared memory I/O designed

primarily for Layer-2 NFs, ensuring our high-performance SBI is still compliant with

3GPP standards.

• Being strictly 3GPP-compliant: To speed up the development velocity when porting

free5GC to L25GC+, we expose the equivalent SBI APIs from L25GC+’s networking

2Similar to kernel-based TCP/IP stack, L25GC+ uses IP and port numbers to differentiate between NFs
using shared memory communication.
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stack. By leveraging the cross-language support offered by the CGo interface [49], we

mitigate the programming language incompatibility between the lower-layer shared

memory transport (developed with C-based DPDK libraries) and upper-layer Golang-

based SBI APIs. This allows us to seamlessly replace the kernel-based SBI APIs for

existing free5GC control plane NFs, while keeping the NF implementation unchanged,

thus greatly reducing porting efforts and being 3GPP-compliant.

To gain a solid understanding of how L25GC+ actually performs, we evaluate L25GC+

on a commercial testbed with an increasing number of UEs. We select several representative

control plane events, including UE registration, PDU session establishment, to evaluate

L25GC+ against a popular 5GC implementation, free5GC [58], which uses kernel-based SBI

in the control plane. Results demonstrate the performance improvement of L25GC+’s shared

memory SBI, especially when there are multiple user sessions operating concurrently in the

5GC control plane. We have an open-source 5GC implementation that incorporates some of

these proposed L25GC+ components at https://github.com/nycu-ucr/L25GC-plus.git

7.2 Background and Motivation

7.2.1 Evolving the Architecture of the Cellular Core Network

The cellular core network forms the heart of an operator’s cellular network. A

cellular network’s packet processing functions are typically divided between the RAN and

the core network. Figure 7.1 exemplifies the typical architecture of the 5GC adopted by

implementations of the 3GPP standard [130]. The RAN manages wireless channel resources

and processing at the cellular base stations, to connect UEs (i.e., typically mobile client
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devices) and the cellular core. A 5GC is further split into the data/user and control planes.

The User Plane Function (UPF) is a key NF in the 5GC data plane, which connects UEs

to the Data Network (DN) to access data (e.g., Internet) services.

It is useful to understand the evolution of the core across generations of the cellular

network. Instead of purpose-built hardware appliances of the past, recent generations of

the core have been primarily built as a set of disaggregated NFs, following the microservice

paradigm. A number of crucial control plane NFs play distinct, but important roles, includ-

ing the Access and Mobility Function (AMF), Network Repository Function (NRF), Service

Management Function (SMF), and Authentication Server Function (AUSF). However, this

disaggregated design requires networking to interconnect NFs, following a cloud-native,

service-based architecture. A 3GPP-compliant 5GC typically adopts the service-based in-

terface (SBI) with HTTP/REST APIs for seamless inter-service communication. As we

look to the future, it is critical that we avoid some of the overheads of such an interface,

including data copying, context switching, and notification overheads. This will reduce la-

tency and CPU consumption, which are important to meet the needs of future applications

and scalability.

7.2.2 Emerging 5G application needs

Typical advanced use cases include multi-player online gaming, augmented reality

(AR), autonomous vehicles (AV), and other low-latency applications that require ubiqui-

tous wireless connectivity. Furthermore, with the widespread use of cellular networks as

replacements for traditional fixed wireline infrastructure, such as cable and fiber networks,
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Figure 7.1: The architecture of 5GC control and data planes. The 5G UPF performs PDR

lookup (based on linked list) to enable data packet forwarding between the RAN and data

network.

we anticipate challenges arising from complex firewalls and home gateways associated with

future cellular networks.

Emerging applications such as AR and AV can be very helpful [95], enhancing

the perception of the real world with virtual holograms. These applications need high

bandwidth and have stringent constraints on latency [114]. It is critical therefore that the

cellular core also support the bandwidth needs of all the connected UEs without being a

dataplane bottleneck. It is equally critical that the cellular network not introduce significant

latency, both in the data and control planes [79].

Multi-player games often have many application flows that need differentiated

treatment of throughput and latency-sensitive sub-flows. A game streamer may also be

sending each of her control data, video, and voice streams separately. Messaging video,
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audio, and text between users (usually mediated by a server) may also need to be treated

differently and even routed differently through the network. All of these suggest the need

for more fine-grained packet detection and handling of each distinct flow, using appropriate

Differentiated Services Code Point markings, rather than treating all flows of a UE in the

same way.

In the future, a single UE (or a cellular home gateway) may have multiple con-

currently active IP flows. Thus, we would need a flow-specific firewall. Flows may have

different security and QoS levels, requiring different PDRs in the UPF to support their

processing. Having the UPF support feature-rich firewall rules to handle packet filtering

for specific traffic, while desirable, can lead to increasing demand for PDRs for a single

user session. A cellular home gateway will likely increase the number of PDRs for a single

user session. A 5G home gateway that connects multiple mobile devices would behave as

a “virtual” UE that registers many PDRs for the multiple concurrent flows of each user

session.

These use cases will inevitably increase the number of PDRs registered in the UPF

for an individual user session, increasing search complexity if it is based on a linked-list-

based PDR-lookup.

7.2.3 Limitations of 3GPP Cellular Core

Slow 3GPP SBI: Industry direction has been the disaggregation of the cellular core

network components. For example, AT&T’s mobile core network spans more than 60 cloud-

native virtual NFs from 15 different vendors [120]. Several distinguishing characteristics of

the cellular environment present challenges for such a disaggregation: (1) tight coupling
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and timing constraints between the control and data planes; (2) frequent and increasing

control plane activities that impact data plane handling, driven by emerging use cases

such as IoT and frequent handovers, especially with small cells. Further, using the SBI for

communication involves using JSON as the serialization format, which makes control actions

(e.g., GTP tunnel setup, state synchronization) very expensive. To provide low-latency

access, it is crucial to accelerate control plane procedures by minimizing communication

overheads among different NFs.

Poor scalability - PDR Rule Lookup: As shown in Figure 7.1, following the 3GPP

specification, the UPF organizes the registered PDRs in a linked list [130], in descending

order of priority. For each user session in the UPF, a PDR list defines the packet processing

criteria (e.g., forwarding, buffering) of flows in user sessions. The UPF traverses the PDR

list for that session to classify each packet. The matching PDR provides pointers to sub-

sequent rules, e.g., FARs (Forwarding Action Rules) and QERs (QoS Enforcement Rules),

which together determine the action to be taken on the packet.

The current design may be adequate for common 5G use cases, where each user

session typically only has a few PDRs. The complexity of the PDR search is minimal.

However, as cellular networks further evolve (e.g., 6G), more advanced use cases may sig-

nificantly increase the number of PDRs to tens or even hundreds of entries for a single

user session, leading to long PDR search delays, thus increasing data plane latency. It is

important to have faster PDR lookup mechanisms.
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7.3 Improved Control Plane Design in L25GC+

We begin with an overview of the L25GC+ and describe the key building blocks for

developing a high-performance communication paradigm using shared-memory processing,

while providing the necessary synchronous I/O primitives to replace the kernel-based 3GPP

SBI. We then discuss in detail how to build an SBI on shared memory from the bottom-

up. This includes asynchronous shared-memory processing over the DPDK, a POSIX-like

synchronous I/O interface, and how we can use the POSIX-like APIs to build a shared-

memory-based SBI. We then implement a seamless port of the 5GC control plane NFs from

the baseline free5GC code-base to L25GC+.

We describe concurrent user session support in the L25GC+, including connection

establishment, connection tear down, and user session management during data transfer

between control plane NFs in L25GC+.

7.3.1 Overview of L25GC+’s SBI

Fig. 7.2 depicts the architecture of L25GC+’s control plane and SBI, which takes

advantage of shared memory processing in userspace for data sharing between control plane

NFs. This avoids expensive CPU data copy overheads, protocol processing, context switch,

serialization, and deserialization, which are all incurred by the currently recommended

3GPP SBI. In the userspace of each worker node, L25GC+ dedicates a shared memory pool

and adopts an NF manager to support shared memory processing. Information exchange

is performed by message descriptor delivery between NFs. The per-node NF manager is

responsible for managing shared memory (e.g., initialization and removal) and interacts with
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the protocol stack to provide a “one-time”, consolidated protocol processing when inter-node

communication is needed. Our current implementation utilizes the kernel protocol stack for

inter-node communication as it is robust and proven. However, high-performance inter-node

transport protocols, such as RDMA, may be desirable and is the subject of our future work.
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Figure 7.2: An architectural overview of L25GC+’s control plane and SBI. Each control plane

NF can support multiple user sessions (each represented as a distinct thread) concurrently.

Each L25GC+ NF uses our newly developed I/O stack [184] for shared memory

communication between other NFs that are located on the same node. The stack provides a

shared memory I/O interface with a set of asynchronous communication primitives, utilizing

DPDK [50]. A packet handler in the I/O stack deals with incoming/outgoing messages

(essentially descriptor exchanges). L25GC+ also exploits the lock-free communication of X-

IO [184] to avoid the need for any potential locks for multiple-producer, multiple-consumer

communication. Such a communication pattern commonly exists in 5GC control plane.
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Connection handling (e.g., establishment/teardown) messages are processed by

the packet handler for connection management tasks. These are important extensions in

L25GC+ that help us to support scalable user sessions going beyond the capability of the

previous L25GC implementation. A local connection table in the I/O stack maintains the

connection state. The connection related to a data message is identified by looking up the

connection table based on the IP 4-tuple (source IP and port number, destination IP and

port number). The packet handler directs the message to the right connection endpoint

(i.e., the corresponding user thread) in this I/O stack.

The primitives exposed for asynchronous shared memory I/O by the I/O stack in

L25GC [130] are not 3GPP-compliant. Therefore, it requires extensive refactoring of the

baseline free5GC [58] implementation. Thus, we seek to overcome this deficiency. L25GC+

introduces an API library (API lib for short), to provide the necessary synchronous I/O

primitives, enabling the interface to be compliant with 3GPP.

As shown in Fig. 7.2, the top layer NF code performs several control plane tasks

across the SBI, using synchronous I/O. This then interacts with the asynchronous I/O

stack below using the API lib, which includes a socket interface to directly interact with

the underlying I/O stack for shared memory communication. A set of HTTP/REST APIs

are provided on top of the socket interface. L25GC+ utilizes these APIs to create a 3GPP-

compliant SBI. L25GC+’s SBI using shared memory has the same semantics as the 3GPP’s

SBI, just like free5GC [58], for easy portability to L25GC+.
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7.3.2 Shared memory management in L25GC+

L25GC+ depends on the NF manager to manage the shared memory pool. During

the initialization of the L25GC+ environment, an NF manager is created on a designated

worker node. The NF manager then creates a certain number of buffers within the shared

memory pool to be utilized as shareable backends for exchanging control plane messages

between L25GC+ NFs.

We extensively use DPDK’s libraries [50] to implement shared memory manage-

ment in L25GC+. For lifecycle management (i.e., creation/recycle/destroy) of the shared

memory buffer, we utilize DPDK’s Mempool Library [52]. To enforce access control of

the shared memory pool and to prohibit unauthorized access, we leverage the security do-

main design that is widely adopted in DPDK-based shared memory frameworks [130, 181,

185, 225], depending on DPDK’s Environment Abstraction Layer [56] and multi-process

support [53] to provide the necessary memory isolation.
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Otherwise, it represents the steps of Read() procedure (right half).
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7.3.3 Message descriptor delivery in L25GC+

A lock-free descriptor delivery mechanism is the key element to derive the value of

shared memory communication in L25GC+. As shown in the overview figure (Fig. 7.2), each

NF is assigned a pair of producer/consumer rings in its I/O stack. The producer/consumer

rings of the NF are only shared with the NF manager, thus ensuring a strict single-producer,

single-consumer communication pattern, avoiding the need for locks. On the other side, the

NF manager forwards the descriptor (based on IP 4-tuples) between the I/O stacks of

different NFs.

7.3.4 Building the SBI over shared memory: detailed design

We establish L25GC+’s 3GPP-compliant SBI starting from the asynchronous shared

memory I/O adopted by L25GC, which is neither 3GPP-compliant nor scalable. We build

an asynchronous shared memory I/O interface associated with a lock-free descriptor delivery

mechanism into the I/O stack, thus offering these as raw I/O primitives to leverage shared

memory processing.

We first introduce L25GC+’s API libs that add synchronous I/O support on top of

the asynchronous I/O stack. The API libs adopt a layered design: (1) the bottom-layer of

the library provides a set of POSIX-like socket APIs that directly interact with L25GC+’s

I/O stack to leverage shared memory processing, while also providing basic synchronous

I/O primitives; (2) the middle-layer library abstracts HTTP/REST APIs from the socket

APIs, (3) these are then leveraged by the top-layer library to construct a 3GPP-compliant

SBI.
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This design choice was made primarily to facilitate ease of implementation and

avoids re-implementing the entire stack — the implementation of upper-layer HTTP/REST

APIs and 3GPP SBI can be ported from existing solutions (e.g., free5GC) by simply re-

placing the lower-layer socket APIs, without being re-implemented from scratch.

Asynchronous shared memory I/O over DPDK: We construct the asynchronous

shared memory I/O in L25GC+ (also in L25GC) using DPDK’s RTE RING [54] and Mempool

APIs [52]. The basic I/O primitives that we use from DPDK to enable asynchronous shared

memory processing include rte mempool get(), rte mempool put(), rte ring enqueue(), and

rte ring dequeue().

rte mempool get() and rte mempool put() are obtained from DPDK’s Mempool lib.

We use rte mempool get() to retrieve an empty memory buffer from the shared memory pool

and return a descriptor (pointing to the retrieved buffer) to the caller NF. rte mempool

put(), on the other hand, is used for recycling the buffer back to the shared memory pool.

rte ring enqueue() and rte ring dequeue() are obtained from DPDK’s RTE Ring

lib. rte ring enqueue() is specifically used for enqueuing the descriptor into the producer

(TX) ring, while rte ring dequeue() is used for retrieving the descriptor from the consumer

(RX) ring.

The asynchronous access mainly comes from the non-blocking nature of rte ring

enqueue() and rte ring dequeue() APIs. The call to these APIs immediately returns, leading

to a mismatch in the synchronous communication required by the upper-layer SBI.

Synchronous shared memory I/O: Following the design of X-IO [184], we abstract the

synchronous I/O primitives of L25GC+ into two socket APIs, Write() and Read(), maintain-
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ing strict alignment with the POSIX-like socket APIs. We further add synchronous access

by enforcing a blocking call to Write() and Read(), i.e., the caller of the Write() and Read()

API is blocked until the requested I/O task is accomplished.

The synchronous nature of the Write() API is achieved by blocking the caller

thread until the message is moved from the send buffer (provided by caller thread) into

the shared memory buffer. Fig. 7.3 (left half) shows how the Write() API interacts with

the I/O stack to accomplish the transmission of a message: 1○ The caller thread initiates

the Write() call with a send buffer input; 2○ The Write() call passes the send buffer to

the packet handler in the I/O stack; 3○ the packet handler then copies the message from

the send buffer to the shared memory buffer. Note that, beforehand, the packet handler

obtains an empty memory buffer and associated descriptor using rte mempool get() API;

4○ The packet handler enqueues the descriptor to the producer (TX) ring; and then the

packet handler 5○ unblocks the Write() call to return control to the caller thread.

The synchronous Read() API is achieved by blocking the caller thread until the

message is moved from the shared memory buffer to the receive buffer of the caller thread.

We take advantage of the approach designed by X-IO [184] to enable the blocking Read()

over the asynchronous shared memory I/O. There are two essential elements to block the

caller of the Read(), including a condition variable [71] and a receive queue. Note that each

user thread owns a dedicated condition variable as well as a receive queue for the sake of

concurrent user session operations (§7.3.5).

The condition variable is utilized to suspend the caller thread of the Read() until

its state is updated. Note that the condition variable is in effect only when its state is TRUE.
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We use the receive queue to buffer descriptors whose message payload has not yet been

transferred from the shared memory buffer to the receive buffer of the caller thread.

These two elements in the Read() interact with the asynchronous packet handler

in the I/O stack to accomplish the blocking receive, as depicted in Fig. 7.3 (right half): (1.)

When the caller thread initiates the Read() call, (2.) it is blocked on the condition variable

(now set as TRUE). Subsequently, (3.) the I/O stack receives a descriptor from the NF on

the other side, and (4.) enqueues the descriptor into the receive queue of the caller thread.

(5.) The I/O stack updates the condition variable to FALSE to unblock the Read() call.

(6.) The Read() call then dequeues the descriptor from the receive queue and it (7.) copies

the message from the shared memory buffer to the receive buffer of caller thread. Finally,

(8.) control returns to the caller thread. Note that Fig. 7.3 (right half) shows only the case

when there is a single user session. Details of message reception for concurrent user sessions

are given in §7.3.5.

Connection management: Similar to a POSIX-like socket interface (e.g., socket APIs,

HTTP/REST APIs, 3GPP SBI), the synchronous I/O interface in L25GC+ also requires

pre-established connections to facilitate data transmission. We adopt the approach from X-

IO [184] to manage the lifecycle of connections, including their establishment and teardown.

Each NF’s I/O stack maintains a local connection table, as shown in Fig. 7.2, which records

essential connection-specific information, such as the IP 4-tuple of the source and destination

NFs. Introducing the notion of a connection is a key extension of L25GC+ beyond its

predecessor, L25GC, which allows L25GC+ to distinguish different user sessions, as described

in §7.3.5.
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Implementation of HTTP/REST APIs and 3GPP SBI in L25GC+: Our intention is

to port the implementation of a 3GPP-compliant implementation like free5GC to L25GC+,

to ensure that L25GC+ also conforms to the specifications, leveraging free5GC’s development

effort. As such, we choose Golang [70] to develop the API libs in L25GC+. Golang was the

primary programming language that free5GC’s control plane NFs are written in.

Since we take a layered design approach for our API libs, we only re-implement

the POSIX-like socket interface in order to interact with our asynchronous shared memory

I/O stack. We keep the upper layer HTTP/REST APIs and 3GPP SBI unchanged. This is

achieved by replacing the imported Golang’s “net” [63] package3 with L25GC+’s socket API

package. Since our socket APIs keep the same semantics as Golang, the porting is seamless.

The cross-language support is described next.

Cross-language support: The I/O stack in each L25GC+ NF is developed in C language,

ensuring optimal performance and reliability. Seamless interaction between the C-based I/O

stack and the higher-layer API libs (in Golang) is achieved through Golang’s built-in CGo

interface [49]. The C-to-Go boundary crossing incurs minimal additional latency (approxi-

mately 70ns in our testbed), showcasing negligible impact on data exchange performance.

7.3.5 Concurrent user session support

Thread-based concurrency is commonly used in representative implementations of

5GC control plane NFs that support multiple simultaneous user sessions. Each user session

is handled by a dedicated thread in the control plane NF instance (typically deployed as a

Linux process within a virtualized sandbox, e.g., container) to accomplish certain control

3Golang’s “net” [63] package is the official package that offers various POSIX interface for network I/O.
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plane procedures (e.g., UE registration, handover). In order to differentiate user sessions

during control plane messaging between NFs, we bind a specific connection for each user

session. As shown in Fig. 7.4, (1) when the destination NF receives a message descriptor,

(2) it looks up its local connection table in the I/O stack and finds the correct connection,

i.e., user session, to refer to. Subsequently, (3) the I/O stack can enqueue the descriptor

to the connection’s receive queue, thus ensuring that the message is correctly directed to

the appropriate user session thread. This multiplexing/de-multiplexing allows seamless

concurrent processing of messages in L25GC+’s control plane.

Concurrency control: L25GC+ adopts the implementation of 5GC from free5GC [58],

which relies heavily on Golang as the primary programming language for the control plane

NFs. The concurrency support in Golang is implemented by goroutines [41], which are es-

sentially lightweight threads managed by the Go runtime. With the connection abstraction

in L25GC+, we can support multiple user sessions using thread-based concurrency.

However, we observe that certain 5GC control plane events (e.g., PDU session

establishment) incur very frequent context switches. This is caused by the CPU ‘thrashing’

between multiple user sessions when they complete the same 5GC control plane events

concurrently using a limited number of CPU cores on the node. Since each user session

requires a dedicated thread for each of the 5GC NFs to accomplish the control plane event-

related tasks, it results in frequent thread context switches. This adds additional delay

to the event completion time. As L25GC+ and free5GC share the same control plane NF

implementation, they both suffer from this performance loss.
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To overcome the effect of ‘thrashing’, we introduce a concurrency control mech-

anism to limit the number of concurrent execution of certain events (e.g., PDU session

establishment) that are processed simultaneously by the 5GC control plane using the avail-

able CPU cores on the node. We implement a rate limiter at the AMF, which is the ingress

point of the 5GC control plane. After the concurrency threshold is reached, additional

PDU session establishment requests are queued at the AMF. We note that the threshold

will likely depend on the number of available CPU cores and their capability, the complex-

ity of the operations, and likely the mix of operations. We experimentally determined the

suitable concurrency level of 16 in our current testbed.
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Read()
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3. User-1’s thread
User 

session 
table
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Figure 7.4: Concurrent user session support in L25GC+. Control plane messages to different

user sessions are de-multiplexed at the I/O stack after user session table lookup.

7.3.6 Deployment strategy of L25GC+

L25GC+ adopts the same placement and scaling strategy as its predecessor, L25GC [130].

To harness the benefits of intra-node shared memory processing to minimize the latency of

the 5GC control plane, it is important for L25GC+ NFs to be co-located on the same node.

In scenarios where inter-node communication becomes necessary (e.g., when re-

source constraints prevent NF consolidation on a single node), L25GC+ relies on NF man-

204



agers to facilitate communication, by offering consolidated protocol processing. This can

be achieved by using a kernel-based protocol stack or by employing a high-performance

inter-node communication solution, such as RDMA with zero-copy data transfer primitives.

This is part of our ongoing effort. This approach helps minimize the impact of kernel-based

networking when inter-node communication is required.

It is important to note that the hybrid communication mode of L25GC+ (combining

intra-node shared memory processing and inter-node kernel-based networking) ensures that

the lower bound of performance remains no worse than a complete kernel-based networking

solution. On the other hand, the typical as well as the upper bound performance of the

hybrid communication mode of L25GC+ far outperforms kernel-based networking, especially

when we consider node affinity to strategically place NFs, thus fully exploiting the benefits of

shared memory processing. This hybrid approach offers a flexible and efficient solution that

optimizes performance based on the specific deployment scenario and resource availability.

7.4 Fast and Scalable Packet Classification in L25GC+’s User

Plane Function

7.4.1 Partitioning-based Versus Decision-tree-based Packet Classifiers

The PDR processing in the UPF is a packet classification problem. In order

to achieve faster PDR lookup & updates for new cellular network use cases, we consider

advanced packet classification mechanisms as alternatives to the linked list approach. We

can extend existing packet classification mechanisms designed for routers to classify packets

based on PDR Information Elements (IEs) without being limited to IP 5 tuples. We follow
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the same packet processing pipeline suggested by 3GPP (Fig. 7.1) but replace the linked-

list-based PDR lookup step with advanced packet classification mechanisms.

Typical packet classification mechanisms can be broadly classified into partitioning-

based and decision-tree-based classifiers. Both achieve better performance than a linked-

list-based approach since their search complexity is less than O(n). Partitioning-based

classifiers partition a set of PDRs into multiple sub-tables based on specific criteria, e.g.,

a typical partitioning-based classifier, Tuple Space Search (TSS [201]), partitions PDRs

with the same number of prefix bits in each IE field by combining them into the same

sub-table. Therefore, the search complexity can be reduced. However, the classification

time of partitioning-based classifiers may not be optimal because the number of partitioned

sub-tables shows randomness. Given n PDRs, partitioned sub-tables ranges from 1 to n.

In the worst case, n sub-tables need to be searched before finding a matched PDR, which

results in the same search complexity as the linked list approach. In addition, partitioning-

based classifiers (e.g., TSS) typically organize each sub-table into a key-value hash table.

Performing a lookup in a sub-table requires software hashing, which often takes more time

than a lookup in a linked list. In the worst case, partitioning-based classifiers have a much

higher classification latency than the linked list due to the overhead of software hashing.

Unlike partitioning-based classifiers, decision-tree-based classifiers show less vari-

ability in packet classification performance. The key for such decision-tree-based classifiers

is to generate multidimensional classification trees, given a set of PDRs. Various greedy

heuristics have been explored to generate efficient multidimensional classification trees (with

logarithmic search time) to support high-speed packet classification [199, 186]. However,
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decision-tree-based classifiers suffer from long rule update latency [222]. When construct-

ing a multidimensional classification tree, the classifier cuts nodes starting from the ‘root’,

which contains all the given PDRs. The classifier recursively splits the PDRs in each node

until the number of PDRs within each leaf node is under a predefined threshold. Since

different PDRs may intersect in some dimensions, splitting intersecting PDRs into different

nodes is infeasible, resulting in a PDR being copied and added to multiple nodes. Multiple

updates must be performed on each copy to ensure consistency among multiple copies of

the same PDR, resulting in long delays for PDR updates. This vulnerability of decision-

tree-based classifiers is avoidable in partitioning-based classifiers, as partitioning PDRs into

multiple sub-tables does not lead to multiple copies of a PDR, thus achieving faster PDR

updates.

7.4.2 PDR Lookup and Update in L25GC+

We examine different PDR management approaches (e.g., Linear Search (PDR-

LL), TSS (PDR-TSS) and ParititionSort (PDR-PS)) to reduce the searching complexity

of large-scale PDR lookups in UPF-U, which we see as being critical for future-proofing

the 5GC. Although PDR-TSS reduces the search complexity by partitioning rules into

multiple rule sets (i.e., sub-tables). It does not guarantee to reduce the number of resulting

rule sets to be searched to find a match. This random behavior of PDR-TSS, combined

with needing a software hash for searching a rule set, implies variable and potentially high

overhead. PDR-PS avoids the weakness of PDR-TSS: (1) PDR-PS does not rely on hashing

to search for a partitioned rule set (binary tree lookup). (2) PDR-PS, with PartitionSort’s

online ruleset partitioning, eliminates randomness and results in fewer partitioned rule sets,

207



yielding more consistent performance [222]. In addition, L25GC+’s UPF-U seeks to meet

important requirements of operators, e.g., avoiding DoS attacks [97]. PartitionSort helps

to avoid TSS’s vulnerability to DoS attack. We studied other state-of-the-art alternatives,

e.g., NeuroCuts [155], but lacking production data-sets for learning, we seek to use the

option with the highest performance providing the needed flexibility. To accommodate a

packetized 5GC, we employ a number of PDI IEs (up to 20) in the PDR to support rich

functionality needed, including firewalls, NATs, and per-flow QoS treatment.

7.5 Evaluation

We evaluate the improved performance of L25GC+ using a real 5G testbed built

using 3GPP-compliant commercial base stations, a variety of UEs (laptops with 5G don-

gles) and the L25GC+ running on commercial off-the-shelf (COTS) servers. We also consider

a simulated 5G UE & RAN to evaluate the performance of L25GC+ as we scale up to more

UEs. We compare L25GC+ with free5GC [58], an open-source, 3GPP-compliant 5GC imple-

mentation that has been used in many consortium-based 5G frameworks, e.g., Magma [121],

SD-CORE [44], and Aether [35].

7.5.1 Control Plane Evaluation with commercial UEs and RAN

Commercial testbed setup: Fig. 7.5 shows the experimental setup of our real testbed,

including the UE, RAN, and 5G core network (CN). Our 5G RAN contains an RU and

a commercial CU/DU system built on an off-the-shelf computer system. We use a ‘bare-

metal’ server to run the 5G core network, including both the control plane and data plane.
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Figure 7.5: (Top) The logical topology, and (Bottom) a snapshot of commercial testbed

setup in L25GC+. RU: Radio Unit; DU: Distributed Unit; CU: Central Unit; CN: Core

Network; PoE: Power over Ethernet; 5 laptops as UEs with 5G dongles
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The CU/DU system connects to the 5GC control plane via the 3GPP N2 interface. The

CU/DU system connects to the 5GC data plane (i.e., UPF) via the 3GPP-specified N3

interface. The UPF of the 5GC connects to the data network via the N6 interface.

We choose the 5G small cell from Alpha Networks Inc. [67] as the RU. We use the

commercially available CU/DU from AEWIN Technologies [66]. The server running the

5GC contains a 16-cores Intel Core i7 13700 CPU and 16G memory. We install two NICs

on the 5GC server: a 10Gbps Intel X520-DA2 NIC used for N3 and N6 interface in the data

plane, and a 2.5Gbps Realtek RTL8125BG NIC for the N2 interface in the control plane.

We choose the 10Gbps NIC for the data plane for its higher bandwidth. We use a total of

5 laptops to emulate multiple UEs. Each laptop is equipped with an Apal 5G Dongle [51]

to communicate with the RU in 5G RAN.
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Figure 7.6: Latency from 5G CN, tested with commercial UEs and RAN.

Tested control plane events: We select a pair of representative control plane events to

evaluate, including UE registration and the PDU (Packet Data Unit) session establishment

that follows. During registration, the UE establishes its presence and identity on the 5GC
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before accessing 5G services. A PDU session represents a logical connection between the UE

and the 5GC for data communication. The PDU session establishment creates a dedicated

data path between the UE and the 5GC data plane (i.e., UPF) for handling data traffic.

We evaluate L25GC+ with a single UE and also with 5 UEs running concurrently on the

testbed to understand the ability of L25GC+ to support multiple user sessions in the 5G

control plane (unlike L25GC which had limited support).
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Figure 7.7: Total latency (including core network and UE/RAN) of control plane events

tested with commercial UEs and RAN.

Fig. 7.6 shows the contribution to end-end latency by the 5G core network. The

result demonstrates the performance benefits of L25GC+’s shared-memory-based SBI in a

commercial testbed: When handling a single UE, L25GC+ has 1.51× lower latency than

free5GC to complete a UE registration. L25GC+ also achieves 2× latency improvement

compared to free5GC for PDU session establishment. When 5 UEs register simultaneously,

L25GC+ saves 1.29× latency on average. L25GC+ lowers latency by 1.61× on average to

complete 5 PDU session establishment events concurrently. These improvements come
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mainly from the use of shared memory processing in L25GC+, which incurs much lower

communication overheads for control plane NFs to exchange messages, compared to the

kernel-based SBI of free5GC.

In addition, we measure the “total” latency for different control plane events (in

Fig. 7.7). This includes the latency contributed by the core network (named “CN”) and

the part contributed by the commercial UE/RAN. The somewhat slower UE and the disag-

gregated RAN system in our testbed reduces the relative impact of L25GC+’s improvements

to this “total” latency. However, with higher-speed UEs (e.g., smart-phones) and improved

RAN implementations, the significant reduction of the 5GC latency (the “CN” latency) due

to our improvements will lower the overall cellular control plane latency.

7.5.2 Control Plane Evaluation with simulated UEs and RAN

We use the UE & RAN simulator from L25GC [130] to simulate user events, which

allows us to scale up testing with more UEs. Throughout, we seek to understand the

improved scalability of L25GC+ compared to the kernel-based SBI in free5GC, in handling

multiple user sessions. We additionally evaluate the latency for paging events in the 5G

control plane, where a UE transitions from idle to active state. A UE typically moves into

an idle state to conserve (battery) energy, which is important for mobile devices and UEs

such as IoT devices. When either a packet arrives at the 5GC or the UE has to transmit

a (first) packet, the UE is “paged” to wake up the UE. The time it takes for the 5GC to

complete this task and have the UE transition from idle to active has a direct impact on

the latency experienced by that first packet. L25GC+ seeks to improve this latency in its

control plane implementation. We vary the number of UEs from 4 to 64 and report the
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total latency (as in Fig. 7.7) that includes the total latency contributed by both the core

network and the simulated UE/RAN.
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Figure 7.8: Total latency of various control plane events with simulated UEs and RAN.

x-axis: number of UEs.

Fig. 7.8 shows the total completion latency of different control plane events when

multiple user sessions operate concurrently in the 5GC control plane. Compared to the

kernel-based SBI in free5GC, L25GC+’s shared memory SBI shows a consistent reduction in

latency as the number of UEs increases up to 64. L25GC+ reduces UE registration latency

by 1.87× on average. L25GC+ also reduces the average PDU session establishment latency

by 2.1× and average paging latency by 1.6×.

7.5.3 Data Plane Evaluation

We measure the performance improvements of L25GC+’s PDR classifier on our

testbed, and compare it with free5GC. We show the improvement in data plane latency and

throughput against the linked-list-based PDR classifier.
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Experiment Setup: Our evaluation testbed consists of three Intel® Xeon® CPU E5-2697

v3 @ 2.60GHz servers running Ubuntu 20.04 with kernel 5.4.0-33-generic. Each server has

an Intel 82599ES 10G Dual Port NIC. Server-1 and server-3 are configured as the RAN/UE

and DN, respectively. Server-2 runs the L25GC+ core, including all the NFs in Fig. 7.1. We

use MoonGen [105] on server-1 and server-3 for generating uplink and downlink traffic.

2 10 20 30 40 50
# of PDRs

0.0

0.2

0.4

0.6

La
te

nc
y 

(u
s)

PDR-LL
PDR-TSS_Best
PDR-PS

2 10 20 30 40 50
# of PDRs

0

2

4

6

Th
ro

ug
hp

ut
 (G

bp
s) PDR-PS   PDR-

TSS_Best PDR-LL   PDR-
TSS_Worst

Figure 7.9: PDR lookup comparison: (a) PDR lookup latency with increasing # of PDR

rules; (b) Throughput with increasing # of PDR rules (Packet size 68 bytes)

PDR lookup comparison

We compare the lookup performance between PDR-TSS, PDR-PS, and PDR-LL, with

an increasing number of PDRs registered in the UPF-U. We extend ClassBench [208] to

generate PDRs (including a total of 20 PDI IEs) for evaluation. Two different scenarios

of PDR-TSS are studied: Best case (PDR-TSS Best) and Worst case (PDR-TSS Worst). For

PDR-TSS Best, given N PDR rules, only one sub-table is created, which indicates all the N

PDRs are inserted to a single sub-table. One hash table lookup finds the target PDR. For

PDR-TSS Worst, the number of sub-tables equals the number of PDRs, which means each

sub-table has only one PDR inserted. At most N sub-table lookups have to be performed to
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find the matched PDR. In the PDR-TSS Worst, we assume the match is in the last sub-table.

For PDR-LL, we assume the packet randomly matches one of last 50% PDR entries in the

list.

The comparison of PDR lookup latency and throughput is shown in Fig. 7.9(a)

and 7.9(b). We omit the line “PDR-TSS Worst” from Fig. 7.9(a) as it scales poorly, going

up to 5.08us for 50 rules. This poor performance is primarily because of the heavyweight

software hashing, and having to go through a number of PDR sub-tables. However, even

with the increased number of PDRs installed in UPF-U, PDR-TSS Best has a constant

latency of ∼ 0.26us. It also has much a lower latency than PDR-LL, which increases linearly

with the number of rules. When there are 2 PDRs per session, PDR-LL may be acceptable

as its throughput and latency are competitive. However, as we evolve to a packet-oriented

environment, concerns about throughput degradation can be a major issue as the number

of PDRs per session grows. PDR-PS achieves the best performance of all, for both latency

and throughput. There is little degradation even with this growth in the number of PDRs

per session. PDR-PS has the functionality of PDR-TSS, without its weaknesses. We have

chosen to adopt PDR-PS classifier in L25GC+ for its superior performance.

PDR update comparison

Updating the PDR table is also a consideration, for session modification event,

etc. We compare the PDR update performance of PDR-TSS, PDR-PS, and PDR-LL. We

measure the average latency for a single PDR update with 50 repetitions. PDR-LL achieves

an update latency of 0.38µs, which is lower than PDR-TSS (1.41µs) and PDR-PS (6.14µs).

Although PDR-TSS and PDR-PS have a higher update latency than PDR-LL, the difference
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is not substantial. We choose PDR-PS for its reduced forwarding overhead and thereby the

improved throughput, as seen in Fig. 7.9(b).

7.6 Conclusion

We presented L25GC+, a low-latency 5G control plane implementation. L25GC+ is

an enhancement to our previous effort L25GC developed on top of OpenNetVM, a high-

performance shared-memory NFV platform. L25GC+makes several key extensions to L25GC,

including support for concurrent user sessions using a 3GPP-compliant shared memory SBI.

These two capabilities significantly improve the applicability of shared memory processing of

the 5GC control plane, allowing 3GPP-compliant 5GC implementations such as free5GC to

be seamlessly ported to L25GC+, while retaining the performance benefits of shared memory

processing. Our evaluation using a testbed with commercial 5G UE and RAN components

shows that L25GC+, with the help of its shared memory SBI, outperforms a kernel-based SBI

implementation. L25GC+ significantly reduces the control plane latency for UE registration

and PDU session establishment by 1.29× and 1.61×, respectively, with 5 commercial UEs

operating concurrently.
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Chapter 8

Conclusions

High-performance cloud computing frameworks are critical for serverless comput-

ing and 5G systems to ensure quality of service to end users. However, serverless computing

and 5G systems face different challenges when deploying high-performance cloud-based ap-

plications and need to be optimized for specific application requirements.

In our design of a high-performance, event-driven, and fair serverless computing

framework, we first dissect the networking overheads that exists in current serverless frame-

works. We studied the Container Network Interface (CNI), the defacto networking solution

that has been widely used in various popular serverless platforms. Our analysis shows that

kernel stack dominants the networking overheads between serverless function, while the

in-kernel iptables accounts for more than 60% of the network packet processing cycles. Us-

ing eBPF can considerably speedup serverless networking compared to fully depending on

heavyweight kernel protocol stack. This motivates us to design SPRIGHT, an event-driven

serverless framework with a more streamlined network model and better scalability.
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SPRIGHT demonstrated the effectiveness of event-driven capability for reduc-

ing resource usage and improving serverless function chaining in serverless cloud envi-

ronments. With extensive use of eBPF-based event-driven capability in conjunction with

high-performance shared memory processing, SPRIGHT achieves up to 5× throughput im-

provement, 53× latency reduction, and 27× CPU usage savings compared to Knative when

serving a complex web workload. Compared to an environment using DPDK for providing

shared memory and zero-copy delivery, SPRIGHT achieves competitive throughput and la-

tency while consuming 11× fewer CPU resources. Additionally, for intermittent request ar-

rivals typical of IoT applications, SPRIGHT still improves the average latency by 16% while

reducing CPU cycles by 41%, when compared to Knative using ‘pre-warmed’ functions. This

makes it feasible for SPRIGHT to support several ‘warm’ functions with minimum over-

head (since CPU usage is load-proportional), sidestepping the ‘cold-start’ latency problem.

Across several typical serverless workloads, SPRIGHT shows higher dataplane performance

while avoiding the inefficiencies of current open-source serverless environments, thus getting

us closer to meeting the promise of serverless computing. In addition, SPRIGHT saves 32%

startup latency for a single function pod compared to Knative, which is an ideal capability

for serverless computing. In addition, our proposed placement engine in Mu can ideally ac-

count for heterogeneity and fairness across competing serverless functions, ensuring overall

resource efficiency, and minimizing resource fragmentation. Results show that it improves

fairness by more than 2× over the default Kubernetes placement engine.

The rapidly growing field of Federated Learning heavily relies on the cloud for

its computational resources. LIFL demonstrates that an enhanced control plane design for
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serverless computing can enable FL model aggregation to benefit from the cloud’s elasticity

while efficiently utilizing its resources. Additionally, LIFL’s improved data plane design,

which incorporates eBPF-based shared memory processing from SPRIGHT, accelerates

networking within a hierarchy of serverless aggregators. Evaluation shows that LIFL is

nearly 3× faster than the baseline serverless FL setup (using Knative) in achieving 70%

model accuracy when training the ResNet-18 model. Additionally, LIFL is almost 6× more

efficient than the baseline serverless FL setup.

To address the excessive networking overheads in current 5GC control plane that

uses kernel-based SBI, we propose L25GC+, a low-latency 5G control plane implemen-

tation. L25GC+ is developed on top of OpenNetVM, a high-performance shared-memory

NFV platform. L25GC+ makes several key enhancements, including support for concurrent

user sessions using a 3GPP-compliant shared memory SBI. These two capabilities signif-

icantly improve the applicability of shared memory processing of the 5GC control plane,

allowing 3GPP-compliant 5GC implementations such as free5GC to be seamlessly ported to

L25GC+, while retaining the performance benefits of shared memory processing. Our eval-

uation using a testbed with commercial 5G UE and RAN components shows that L25GC+,

with the help of its shared memory SBI, outperforms a kernel-based SBI implementation.

L25GC+ significantly reduces the control plane latency for UE registration and PDU session

establishment by 1.29× and 1.61×, respectively, with 5 commercial UEs operating concur-

rently. We also explored different ways to improve the packet classification mechanisms

in the UPF, minimizing PDR lookup and update latency. We compare the PartitionSort-

based PDR classifier in the 5G UPF with two alternatives: a linked-list-based classifier and
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a TSS-based classifier. The PartitionSort-based PDR classifier consistently achieves the

lowest latency and highest throughput of all.
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