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REVIEW

Cause-effect analysis for sustainable development policy
Stefano Cucurachi and Sangwon Suh

Abstract: The sustainable development goals (SDGs) launched by the United Nations (UN) set a new direction for development
covering the environmental, economic, and social pillars. Given the complex and interdependent nature of the socioeconomic
and environmental systems, however, understanding the cause-effect relationships between policy actions and their outcomes
on SDGs remains as a challenge. We provide a systematic review of cause-effect analysis literature in the context of quantitative
sustainability assessment. The cause-effect analysis literature in both social and natural sciences has significantly gained its
breadth and depth, and some of the pioneering applications have begun to address sustainability challenges. We focus on
randomized experiment studies, natural experiments, observational studies, and time-series methods, and the applicability of
these approaches to quantitative sustainability assessment with respect to the plausibility of the assumptions, limitations and
the data requirements. Despite the promising developments, however, we find that quantifying the sustainability consequences
of a policy action, and providing unequivocal policy recommendations based on it is still a challenge. We recognize some of the
key data requirements and assumptions necessary to design formal experiments as the bottleneck for conducting scientifically
defensible cause-effect analysis in the context of quantitative sustainability assessment. Our study calls for the need of multi-
disciplinary effort to develop an operational framework for quantifying the sustainability consequences of policy actions. In the
meantime, continued efforts need to be made to advance other modeling platforms such as mechanistic models and simulation
tools. We highlighted the importance of understanding and properly communicating the uncertainties associated with such
models, regular monitoring and feedback on the consequences of policy actions to the modelers and decision-makers, and the
use of what-if scenarios in the absence of well-formulated cause-effect analysis.

Key words: sustainable development goals, causality, cause-effect mechanisms, quantitative sustainability assessment, sustainability
policy.

Résumé : Les buts du développement durable (BDD) initiés par les Nations Unies (ONU) établissent une nouvelle direction pour
le développement couvrant les piliers environnementaux, économiques et sociaux. Étant donné la nature complexe et inter-
dépendante des systèmes socio-économiques et environnementaux, cependant, comprendre les relations de cause à effet entre
les initiatives d’orientation et leurs conséquences sur les BDD demeure un défi. Nous fournissons une revue systématique de la
littérature d’analyse de cause à effet dans le contexte d’évaluation quantitative de durabilité. La littérature d’analyse de cause à
effet, tant dans le domaine des sciences sociales que des sciences naturelles, a significativement pris de l’ampleur et de la
profondeur et certaines des applications pionnières ont commencé à relever des défis de durabilité. Nous nous penchons sur
des études d’expériences aléatoires, des expériences naturelles, des études d’observation et des méthodes chronologiques et
l’applicabilité de ces approches à l’évaluation quantitative de durabilité en ce qui concerne la plausibilité des hypothèses, les
limitations et les exigences en matière de données. Malgré une évolution prometteuse, cependant, nous constatons que quan-
tifier les conséquences d’une initiative d’orientation sur la durabilité et fournir des recommandations de politique claires
demeure toujours problématique. Nous reconnaissons certaines des exigences clés en matière de données et les hypothèses
requises afin de concevoir des expériences formelles comme étant les obstacles majeurs afin d’effectuer l’analyse scientifique-
ment défendable de cause à effet dans le contexte d’évaluation quantitative de durabilité. Notre étude souligne le besoin d’effort
pluridisciplinaire afin de développer un cadre opérationnel pour quantifier les conséquences de durabilité des initiatives
d’orientation. En attendant, il faut poursuivre les efforts pour faire avancer d’autres plates-formes de modélisation comme des
modèles mécanistes et des outils de simulation. Nous avons mis en évidence l’importance de comprendre et de correctement
communiquer les incertitudes associées à de tels modèles, la surveillance régulière et la rétroaction sur les conséquences des
initiatives d’orientation aux modélisateurs et aux décideurs, et l’utilisation de scénarios de simulation en absence d’analyse bien
formulée de cause à effet. [Traduit par la Rédaction]

Mots-clés : buts du développement durable, causalité, mécanismes de cause à effet, évaluation quantitative de durabilité, politique
de durabilité.

1. Introduction
The Sustainable Development Goals (SDGs, hereafter) launched

on January 1, 2016 include 17 goals, 169 targets, and 303 indicators
(United Nations 2014; Malik et al. 2015), which will help frame
the agendas and policies of the United Nations’ member states

through 2030 (Hák et al. 2016). These goals are not only compre-
hensive, covering the economic, social and environmental dimen-
sions of sustainability, but also highly interconnected (International
Council for Science 2015), making it essential to understand syner-
gies, trade-offs and conflicts between them to support decisions
(Schindler and Hilborn 2015). Without such understanding, a pol-
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icy to improve on one goal could conflict with another goal. For
example, policies targeting at improving energy provision could
conflict with another goal on climate-change mitigation, or those
aiming at the protection of marine ecosystem could clash with the
provision of sustainable food for all (Laurenti et al. 2016).

Various tools and metrics have supported sustainable develop-
ment decisions, which we collectively refer to quantitative sus-
tainability assessments (QSAs) in this review. Examples of QSAs
include, but not limited to, life cycle assessment (LCA) (Guinée
2002; ISO 2006; Hellweg and Mila i Canals 2014), various footprint-
ing approaches (Wiedmann and Minx 2007; Peters 2010; Hoekstra
and Mekonnen 2012; Mancini et al. 2015; Michalsky and Hooda
2015), assessment of planetary boundaries (Rockström et al. 2009;
Hughes et al. 2013; Whiteman et al. 2013; Steffen et al. 2015),
environmental input-output models (Huppes et al. 2006; Tukker
et al. 2006; Suh 2009; Hertwich 2010; Lenzen et al. 2012; Hertwich
et al. 2014), ecosystem valuation approaches (Groot et al. 2010;
Costanza et al. 2014), and material flow analysis (MFA) (Matthews
et al. 2000; Brunner and Rechberger 2004; Haberl et al. 2007;
Fischer-Kowalski and Swilling 2011), among others [see e.g., Ness
et al. (2007)]. In particular, so called, consequential LCA (CLCA)
aims at quantifying the consequences that a certain action or a
policy decision has on the environment and natural resources
(Brander et al. 2008; Creutzig et al. 2012; Zamagni et al. 2012;
Plevin et al. 2014; Suh and Yang 2014).

The complexity and the interconnected nature of the socioeco-
nomic and environmental systems, however, poses a challenge to
QSA practitioners in modeling the consequences of a policy action
in the context of sustainable development (Cucurachi and Suh
2015). Furthermore, recent developments in economics, ecosys-
tem science, and systems biology on causality research have yet to
be embraced by QSA approaches.1 Over the past decades, the cau-
sality literature has evolved to address various conceptual and
technical issues such as endogeneity (Antonakis et al. 2014;
Kreuzer 2016) and reverse causality [see e.g., Mei-chu (1987); Chong
and Calderon (2000); Barsky and Kilian (2004); Chaumont et al.
(2012)] in parsing out causal relationships from complex phenom-
ena. For example, Angrist and Krueger (1992) test the effect of
children’s age when starting school on their eventual years of
schooling completed and on educational attainment. Using in-
strumental variables, the authors conclude that the effect of the
starting age on educational attainment is modest. Instrumental
variables have also been used to test the effects of education on
health (Cutler et al. 2008; Grossman 2008; Conti et al. 2010; Cutler
and Lleras-Muney 2010; Heckman et al. 2014), education on well-
being (Oreopoulos and Salvanes 2011; Oreopoulos and Petronijevic
2013), and social connections on well-being (Kahneman and
Krueger 2006; Fowler and Christakis 2008). However, few of such
techniques have been applied to QSAs.

This review aims at surveying the techniques of cause-effect
analysis in the context of QSAs. For each method to infer causality
(cause-effect analysis technique in the remainder of the text), we
present and review relevant applications in the field of sustain-
ability that show how cause-effect analysis techniques can allow
QSAs to increase the value of information they provide to decision-
makers. Our survey of causality literature was drawn from peer-
reviewed articles on theory and methods, causality handbooks,
and case studies applying the techniques. Based on the literature
surveyed, we classify the analytical approaches to cause-effect

analysis techniques. Each class of techniques was, in turn,
searched on the ISI Web of Science and on Google Scholar in
combination with the keywords ‘sustain*’, ‘environ*’, ‘emissions’,
‘pollut*’, ‘econ*’, ‘CO2’, and ‘GDP’.

The remainder of the review is organized as follows: the next
section presents a short chronology of causality theory; in section 3,
we start from the ideal approach to causality provided by Rubin’s
causal model, and then we analyze the techniques that are based
on observational (i.e., non-experimental) data; in section 4 we
discuss the applicability of cause-effect analysis techniques to
QSA; finally section 5 discusses outlook to close this review.

2. A brief chronology
Causality has interested philosophers and scientists since the

time of Aristotle (see Physics II 3 and Metaphysics V 2). For millennia,
however, causal problems have often rested in the realm of phil-
osophical delight rather than inspiring scientific research.

Pearl (2000a) notes that the questions on causality did not enter
into formal scientific discourses for a good part of the 19th cen-
tury. In the dawn of the 20th century, Hume (1902 sec. VII) for-
mally defined a cause as “an object followed by another, and
where all the objects, similar to the first, are followed by objects
similar to the second. Or, specifically, where, if the first object had
not been, the second never had existed”. A similar idea of cause
was also at the basis of the experimental work of Mill (1856).
However, Russell (1912) stated that causal relationships and phys-
ical equations are incompatible, describing causality as “a word
relic” and excluding the existence of causality from mathematics
and physics. In 1911, Pearson still described causality as “another
fetish amidst the inscrutable arcana of even modern science”
(Pearson 1911). Interestingly, a mechanistic view of causality also
existed in the early 20th century philosophy. For example, Laplace
thought that cause and effect can be understood perfectly given
enough knowledge and data: “We may regard the present state of
the universe as the effect of the past and the cause of the future.
An intellect which at any given moment knew all of the forces
that animate nature and the mutual positions of the beings that
compose it, if this intellect were vast enough to submit the data to
analysis, could condense into a single formula the movement of
the greatest bodies of the universe and that of the lightest atom;
for such an intellect nothing could be uncertain and the future
just like the past would be present before its eyes” (Laplace 1902).

In the 1950s, further formalizations of probabilistic causality
appeared in the philosophical literature (Salmon 1980). Good (1963)
and Suppes (1970) attempted to identify the tendency of an event
to cause another by (1) constructing causal relations on the basis of
probabilistic relations between events, (2) employing the statisti-
cal relevance as the basic concept, and (3) assuming temporal
precedence of causes [see Russo and Williamson (2007) for a de-
tailed account of probabilistic causality and of assumptions and
axioms]. Probabilistic causality “places emphasis upon the mech-
anisms of causality, primarily uses concepts of process and inter-
action, and appeals to laws of nature” (Russo 2009).

In the 70s causality still remained as “one of the most impor-
tant, most subtle, and most neglected of all the problems of
Statistic” (Dawid 1979). It is only with the pioneering work of Rubin
on the formal framework of potential outcome and counterfactual
analysis (Rubin 1974) that the statistical literature reconnects with

1For example, Weinzettel et al. (2013) use multi-linear regression and concluded that affluence drives the global displacement of land use, thus being the
main cause of biodiversity loss globally. The study does provide a strong correlation between affluence and biodiversity loss but does not univocally allow
interpretation of the results as a causal relationship. Likewise, Suweis et al. (2013, 2015) use a stochastic logistic model to assess whether the population
growth of a nation is driven (i.e. caused) by either local availability of water resources used or by import of water resources from neighboring countries. As
acknowledged by the authors, both studies do not consider a number of “other environmental, cultural, and health-related factors”, thus limiting the
interpretability of the result as a causal relationship. Some of these problems have been widely discussed and well understood in the causality literature
(Aldrich 1995; Rimer 1998; Simon and Iwasaki 1988).
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causality and establishes a statistical definition of causality. The
work of Rubin gave momentum to the development and application
of statistical models, or cause-effect analysis techniques, which in
the last decades have expanded into various applications including
the foundational statistical principles set in the early work of Wright
(1921) in the field of genetics.

3. Approaches to causality research

3.1. Correlation studies and their limitations
Cause-effect analysis techniques presented in this review en-

able answering three types of causal questions: (1) identifying
causes (i.e., why a singular event occurs), (2) assessing effects (i.e.,
the what-if type of question, referred to the change in effect of
some change in the cause), and (3) describing mechanisms [i.e.,
how some effects follow from a certain cause (Holland 2003)]. Be-
fore we begin the review of the mainstream approaches to causal-
ity research, here we provide a brief discussion on correlation
studies. As pointed out by many in the literature (Pearl 2000b),
correlation and causation should not be confused. Positive corre-
lation may be defined probabilistically for two variables, X and Y,
as follows:

(1) P(Y|X) � P(Y)P(X) � 0

meaning that the probability that X and Y occur jointly is larger
than the product of probabilities for each occurring indepen-
dently. Similarly, negative correlation, can be defined as:

(2) P(Y|X) � P(Y)P(X) � 0

and the two variables, X and Y are uncorrelated if:

(3) P(Y|X) � P(Y)P(X)

Correlation typically indicates that whenever X occurs, there is
a higher chance of observing Y. A well-known example is that
homelessness and crime rate are correlated, however, mere
correlations do not provide a scientific evidence of whether
homelessness causes crime, or that crime causes homelessness
(Sugihara et al. 2012). The underlying cause could be another vari-
able (e.g., unemployment) that may influence both.

3.2. Randomized experiment

3.2.1. Statistical differences in the outcomes of experimental
studies

Experimental randomized studies, in contrast to correlation
studies, provide an ideal means to inferring causality (Angrist and
Pischke 2008).

In randomized experiments, individuals (or units) taken from a
sufficiently large population are divided into two subgroups: one
in which individuals receive a treatment (treatment group), and
one in which individuals do not receive a treatment (control
group). Let us consider the case, in which a large number of sim-
ilar cities are randomly divided into two groups. One group en-
forces a road space rationing and the other does not. We can
define Ti = {0, 1}, for all i = 1, …, N, as a binary random variable
describing the treatment (e.g., enforcing a road space rationing or
not enforcing a road space rationing). Let us define Y as the vari-
able to be explained, or response variable, such as the urban air
quality.

The observed outcome for an individual i,Yi, can be written as:

(4)
Yi � �Y1i if Ti � 1

Y0i if Ti � 0
� Y0i � (Y1i � Y0i)Ti

In order for eq. (4) to hold, Rubin (1978, 1980) defines the so-
called stable-unit-treatment-value-assumption (SUTVA). The as-
sumption implies that “a causal effect of one treatment relative to
another for a particular experimental unit is the difference be-
tween the result if the unit had been exposed to the first treat-
ment and the result if, instead, the unit had been exposed to the
second treatment” (Rubin 1978). SUTVA rests on the idea that the
potential outcome of one participant is not affected by the treat-
ment applied to another participant. For example, one city insti-
tutionalizing a road space rationing policy does not affect another
city in the experiment. Furthermore, it assumes that for each unit
there is a single version of each treatment level (i.e., only one type
of road space rationing of equal efficacy is used by all cities under
study). The assumption introduced by Rubin (1980) holds if the
value of Y for any individual i exposed to a treatment T will be the
same no matter what mechanism is used for the assignment of T
to i for all individual participants and treatments (Rubin 1986) so
that:

(5) Yi(T1, T2, ..., Tn) � Yi(Ti)

The assumption is violated if multiple versions of the treat-
ments or interferences (e.g., communication) between individual
participants exist (Rubin 1986). The plausibility of the assumption
has been subject matter of a number of publications [we refer the
reader to e.g., Sobel (2006) for more information on the issue]. It is,
however, notable that this assumption is hardly plausible in a
policy context, where a policy instrument is often modified or
customized to the local or regional circumstances and policy out-
comes are often benchmarked or publicized widely, directly or
indirectly affecting others in the experiment. We will come back
on this issue later in this review.

In the notation introduced in eq. (4), Y0i is the potential out-
come for an individual i (e.g., air quality index, AQI for city i) had
the individual not been exposed to the treatment (e.g., road space
rationing), regardless of whether the individual is actually ex-
posed to the treatment or not; whereas Y1i is the potential out-
come had the individual been exposed to the treatment. In
general, Y1i – Y0i represents the causal effect of Ti on Yi at the
individual level. However, it is not possible to observe both poten-
tial outcomes simultaneously from any given individual (e.g., a
particular city), since an individual is either exposed to treatment
or control, not to both at the same time. Therefore, the aggregate
causal effects and, in particular, the average causal effect (i.e., the
average effect in the general population) is observed instead in
reality.

The observed difference in average outcome (e.g., AQI) between
the treatment group (e.g., cities enforcing road space rationing)
and control (e.g., those not) can be expressed as E[Yi|Ti = 1] –
E[Yi|Ti = 0]. For example, if the average AQI of the cities that exer-
cise road space rationing is 5 and that for those not is 2 using a
1-to-10 quality scale (least to most severe pollution), the observed
difference in average outcome becomes 3, which can be inter-
preted as a worsening effect. However, road space rationing is
likely to be introduced to the cities with heavy traffic and air
pollution in the first place, and therefore the observed difference
in the AQI between the two groups cannot be directly translated
into the causal effect of a road space rationing. This problem,
referred to as ‘selection bias’, is elaborated further in the next
section.

3.2.2. Rubin’s causal model
The expected outcome of a group of individuals who were not

exposed to the treatment can be expressed as E[Y0i|Ti = 0]. Using
the same example, this term shows the AQI of the cities that did
not use road space rationing. The expected outcome for group of
individuals that were exposed to the treatment, had the group not
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exposed to the treatment can be expressed as E[Y0i|Ti = 1]. For
example, this term would show the average severity of air pollu-
tion measured in AQI of those cities that exercise road space
rationing, if they had not taken such a measure. Suppose that a
group of cities have been using road space rationing. Suppose,
further, that one can reverse the time and let the same group
avoid using road space rationing. If this were possible, E[Y0i|Ti = 1]
would be the current average AQI of these cities after reversing
the time. However, this term is obviously not measureable. If it
were measurable and if the treatment is independent of potential
outcomes (i.e., with Ti randomly assigned), the causal effect of the
treatment, E[Y1i|Ti = 1] – E[Y0i|Ti = 1], can be written as:

(6) E[Y1i|Ti � 1] � E[Y0i|Ti � 1]
Ç

average treatment effect on the treated

� E[Yi|Ti � 1] � E[Yi|Ti � 0]
Ç

observed difference in response

� E[Y0i|Ti � 1] � E[Y0i|Ti � 0]
Ç

selection bias

The term, E[Y1i|Ti = 1] – E[Y0i|Ti = 1] represents the average causal
effect of treatment for those who were treated (e.g., the difference in
AQI as a result of using road space rationing). The term E[Y0i|Ti = 1] +
E[Y0i|Ti = 0] represents the selection bias (Angrist and Pischke 2008)
that represents the fact that those who need treatment are more
likely to seek treatment. For example, suppose that the average
AQI of the cities that actually used road space rationing if they had
not introduced road space rationing is 8, and that of those that did
not is 2. In this case, the selection bias becomes 8 − 2 = 6, and
therefore the right-hand-side of the equation becomes 3 − 6 = −3,
meaning that the average road space rationing AQI improved on
average by 3.

However, as noted earlier the term, E[Y0i|Ti = 1] cannot be di-
rectly observed or calculated. Therefore, one would have to find a
counterfactual for this term to estimate the causal effect of the
treatment in eq. (6) (Angrist and Pischke 2008). This can be ob-
tained by the random assignment of i. Under the Rubin’s causal
model, the problem of spurious correlations discussed in the pre-
vious section can only be eliminated by using randomization of
observations to the categories of a hypothesized causal factor (e.g.,
treatment versus control) or by using a method that somehow
mimics randomization process [(Morgan 2013); see section 3.3.1].
Randomization reduces the chance of intentional or unintentional
bias, and it allows for effects and errors due to ‘unaccounted-for’
variables to act randomly, rather than consistently, affecting the
response across treatments (Shaffer and Johnson 2008).

For example, random assignment, or ‘randomizing’ can be
achieved by choosing the treatment and control groups with sta-
tistically equivalent level of AQIs. Random assignment makes the
treatment Ti independent of potential outcomes. In particular, Ti
is independent of Y0i, thus allowing us to swap the terms E[Y0i|Ti = 1]
and E[Y0i|Ti = 0] in the following expression:

(7) E[Yi|Ti � 1] � E[Yi|Ti � 0] � E[Y1i|Ti � 1] � E[Y0i|Ti � 0]

� E[Y1i|Ti � 1] � E[Y0i|Ti � 1]

Given random assignment, eq. (7) can be further reduced to:

(8) E[Y1i|Ti � 1] � E[Y0i|Ti � 1] � E[Y1i � Y0i|Ti � 1] � E[Y1i � Y0i]

The relationship identified in eq. (8) contains no selection bias,
thus signifying, for example, that whether each individual city in
the population under study has instituted a road space rationing
policy or not, it does not affect the identification of the causal

effect. The effect of a randomly-assigned road policy on the city
that implemented it is, in fact, the same as the effect of the road
policy on a randomly chosen city.

3.3. Observational studies
For a while, much of the causality literature, in particular in the

epidemiological, psychological, and educational sciences (Campbell
and Erlebacher 1970), has implied that only properly randomized
experiments could lead to useful and trustable estimates of causal
effects. However, as Rubin (1974) states, such contention would be
untenable if taken as applicable to all fields of science, given that
much of the scientific development has been obtained for a big
part of the past century without using randomized experiments.
The statement still holds today, since randomized experiments
are only feasible under certain conditions, and would probably be
counterproductive in those contexts in which observational data
are not immediately available.2

Conceptually, there are two major criticisms to Rubin’s model.
First, as discussed earlier, it is impossible to detect the individual
causal effect, Y1i – Y0i, thus making the true causal effect impossi-
ble to detect (Russo et al. 2011). Putting this into a practical con-
text, the same person (or city) cannot simultaneously take and not
take a painkiller (or institute a policy) to observe the effect. In
some cases, experiments can be done for the same unit over time.
Second, Rubin’s model is confined to a Platonic heaven situation, in
which one can observe only average representations, rather than
direct causal effects (Dawid 2007, p. 510).

At a more practical level, Rubin (1974) also noted that random-
ized studies cannot be widely applied when: (a) the cost of per-
forming the equivalent randomized experiment to test for all
potential alternatives (or treatments) is prohibitive; (b) there is a
presence of ethical reasons according to which the treatments
cannot be randomly assigned; or (c) the estimates based on the
results from experiment indicate that it would require several
years to be completed (Rubin 1974).

For these reasons, researchers rely on observational data, i.e.,
data that were not generated using an experimental design. Ob-
servational data are obtained from surveys, longitudinal and
panel data, censuses, and administrative records, and can vary
both temporally and spatially (Christman 2008). Observational
data are typically inexpensive to collect and are in plentiful supply
(Iacus et al. 2012). Investigators using observational data (i.e., from
observational studies) share the common objective of devising
causal relations and, thus, face similar problems to experimenters
(Cochran 2009). Complex interactions are also present in observa-
tional studies and can greatly complicate the interpretation of
effects, although they reflect the inherent complexity of natural
systems (Shaffer and Johnson 2008).

3.3.1. Matching methods and quasi-experimental designs
In the absence of a randomized experiment and when only

observational data are available, cluster analysis techniques such
as matching (Stuart 2010) allow for harnessing the benefits of
Rubin’s model by equating (or “balancing”) the distribution of
covariates in the treatment and control groups. Well-matched
organized samples of the treatment and control groups can achieve
such goal. The methods aim to replicate as closely as possible a
randomized experiment, by pruning the observational dataset
and making sure that the empirical distributions of covariates are
similar (Ho et al. 2006; Stuart 2010). Treatment and control units
are paired based on a number of observable pre-treatment cova-
riates (i.e., observable characteristics).

The individuals in a group are paired solely for the purpose of
obtaining the best possible estimate of the effect of a causal vari-
able Ti on an observed outcome Yi. Using matching, differences in

2In their satire, Smith and Pell (2003) point out that the effectiveness of parachutes has never been proven using a randomized control trial.
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outcomes for units with different treatment levels but the same
values for pre-treatment variables can be interpreted causally
(Yang et al. 2016). For example, matching could be based on the
probability of Ti for each individual i in the population, calculated
as a function of Q ik, with k = 1, …, V, which represent the set of
background variables of interest, that is assumed to predict both
Ti and Yi (Morgan and Harding 2006). The matching procedure will
select only matched sets of treatment and control cases that con-
tain equivalent values for these predicted probabilities (Morgan
and Harding 2006). The matching algorithm allows selecting from
the joint distribution of Q ik and Yi only the information that is
related to the causal variable (or treatment variable) Ti, and the
procedure is conducted until the distribution of Q ik is equivalent
for both the treatment and control cases, thus until the data are
balanced, or matched (Morgan and Harding 2006).

Matching methods do not directly allow for making causal in-
ferences, since they are data-processing algorithms not statistical
estimators, thus they require the use of some type of causal esti-
mator to make such inferences [e.g., testing the difference in
means between Y in the treatment and control groups; see Iacus
et al. (2012)]. As Stuart (2010) points out, after the analyst has
created treatment and control groups with adequate balance, and
designed the observational study, the analysis moves to the out-
come interpretation stage. At this stage, the analysis will typically
be limited to techniques of regression adjustment using matched
samples and use regression-based techniques in combination
with the matched samples. Matching methods, in fact, are best
used in combination with regression models (see section 3.3.2),
instrumental variables models, or structural equation models
[SEM (Ho et al. 2006)].

Matching techniques have been widely used in economics
(Abadie and Imbens 2006), medicine (Christakis and Iwashyna
2003), and sociology (Morgan and Harding 2006), among other
fields of science [see also (Sekhon 2011)]. Commonly used match-
ing methods include difference-in-differences matching (Abadie
2005), multivariate matching based on the Mahalanobis distance
metric (Cochran and Rubin 1973), nearest neighbor matching
(Rubin 1973), propensity score matching (Caliendo and Kopeinig
2008), genetic matching (Diamond and Sekhon 2012), and coars-
ened exact matching (Iacus et al. 2012) [see (Stuart and Rubin 2008)
for a review]. Quasi-experimental designs using the treatment and
control duality also include difference in differences techniques
used with longitudinal data, for which we refer the reader to
Abadie (2005), Athey and Imbens (2006), Donald and Lang (2007),
and Puhani (2012).

Observational studies become relevant if performed on all
causally-important variables and on several control groups that
are each representative of a potentially different bias (Rubin 1974).
Observational studies do require the analyst to carefully study the
process of data generation and the treatment and assignment
mechanism (Iacus et al. 2012). In observational studies without
randomization the analyst uses the design phase to help with
approximating hypothetical randomized experiments. The so-
called identification strategy describes the manner in which a
researcher uses observational data not generated by a randomized
trial to approximate a real experiment (Angrist and Pischke 2008).
The use of an observational study allows estimating the average
effect on the treated (or ATT) and the average treatment effect (or
ATE), based on data availability (Stuart 2010).

3.3.2. Regression-based causality
SEM have become a core method for assessing causality in the

social sciences, especially for research questions that cannot be
tackled by experimental testing (Pearl 2009). The variables of in-
terest for causal research are for this reason also called latent
variables, because of their inaccessibility through direct measure-
ment without a substantial measurement error (Bollen 2002). In
many cases, it is impossible or too expensive to conduct con-

trolled experiments, but SEM allows for discovery of likely causal
relations from observational data (Shimizu et al. 2006).

SEM can also be combined with graphical constructs that allow
laying out the causal relationships under analysis pictorially. A
particular kind of graph used in causal analysis is the directed
acyclic graph (DAG) or Bayesian network (Pearl 1995; Morgan
2013). DAGs are visual representations of qualitative causal as-
sumptions and can be related to probability distributions linked
to the data under study and to causal frameworks.

Causal models are usually characterized by the presence of a set
of explanatory variables or covariates X (i.e., the putative causes)
and a response variable Y (i.e., the putative effect) in the form, for
instance, of a simple structural equation:

(9) Y � �X � �

where � is the causal effect on Y for a one unit difference in X,
representing the coefficient determining the extent of the influ-
ence of X on Y; and � represents the errors, unmeasured factors, or
all other influences on Y.

The interpretation of � and � is not trivial. Error terms may be
interpreted deterministically or epistemically (Russo 2009). In the
first case, we may assume that errors represent the lack of knowl-
edge of the analyst. Thus if complete knowledge would be in
hand, a precise relationship, between X and Y, could be deter-
mined without error. The SEM reports deterministic causal re-
lations. In the epistemic acceptation of the concept, the SEM
represents causal relations that are thought to be genuinely in-
deterministic, thus errors are to be modelled probabilistically
(Russo 2009). This second acceptation is the one we hold in this
review.

The parameter � has in the context of SEM a causal interpreta-
tion, thus it should quantify the extent of the causality. Thus, we
can define (Russo 2009):

(10) � � r
	X

	Y

The correlation coefficient r can be calculated as the ratio be-
tween the covariance 	XY and the variances 	X and 	Y:

(11) r �
	XY

	X	Y

Let us now consider the example below representing a generic
bivariate regression equation:

(12) Y � 
 � �X � �

where 
 is the intercept and � is the error term. In a causal inter-
pretation of eq. (12) � represents the structural causal effect that
applies to all members of the population of interest. Thus, in
addition to being linear, this equation says that the functional
relationship of interest is the same for all members of the popu-
lation. Logarithmic transformations or other functional transfor-
mations of the variables of interest in the model can be typically
considered (Baiocchi 2012). The ordinary least squares estimator
of the bivariate regression coefficient � is then (Morgan and
Winship 2007):

(13) �OLS �
	YX

	X
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The above is just an example of the application of regression
techniques for the estimation of the regressors of interest. Regres-
sion techniques provide a good estimation of the causal parame-
ters, if the error terms in SEM are uncorrelated with the regressor
(see assumptions in section 4.1). The coefficient of determination
r2 may be used to evaluate the goodness of fit of the model. Example
of regression techniques include least squares and partial least
squares techniques (Wold 1982; Angrist and Imbens 1995; Tenenhaus
et al. 2005; Esposito Vinzi et al. 2010). In the next section we focus on
the causal interpretation of regression techniques and on the in-
strumental variable approach. Further applications of regression-
based techniques include regression-discontinuity designs, for
which we refer the reader to Hahn et al. (2001, Imbens and
Lemieux (2008), and Lee and Lemieux (2010).

3.3.2.1. Causal interpretation of regressions
We focus on this section on the causal interpretation of regres-

sions as estimators of causality. We refer the reader to Berk (2004),
Gelman and Hill (2006), Morgan and Winship (2007), Angrist and
Pischke (2008), Freedman (2009), and Hansen (2015) for a complete
presentation of regression techniques and for a complete analysis
of the limitations of such approaches.

Regressions do not necessarily hold a causal interpretation,
and they can be simply interpreted as a descriptive tool or as “a
technique to estimate a best-fitting linear approximation to a
conditional expectation function that may be nonlinear in the
population” (Morgan and Winship 2007). However, regression, if
well specified, can provide information about the causal relation
between X and Y. It is the more ambitious question of when a
regression has causal interpretation that concerns us in this re-
view, due to its applicability for complex systems under study for
QSA. To arrive at a causal model from a regression model, the
analyst aims to study how one variable would respond, if one
intervened and manipulated other variables (Freedman 2009).
This implies that the causal results from a regression-based cause-
effect analysis depend on the hypothesis framework of the ana-
lyst. It is within this framework that causality can be determined.

Let us assume that Xi is a vector of covariates that are associated
in some way with a response variable Y. The conditional expectation
function (CEF) of Y is denoted as E[Y|Xi] and denoted as E[Y|Xi = x] for
any realization x of Xi [see (Angrist and Pischke 2008) for a formal
definition and proof of theorems]. Least squares regression allows
the calculation of a regression surface that is a best-fitting linear-
in-the-parameters model of E[Y|Xi], thus of the association be-
tween Y and any realization x of Xi, minimizing the average
squared differences between the fitted values and the true values
of E[Y|Xi = x] (Morgan and Winship 2007; Angrist and Pischke
2008).

A regression can be considered causal when the CEF it approx-
imates is causal, or when the CEF describes differences in average
potential outcomes for a fixed reference population (Angrist and
Pischke 2008). As discussed in section 3.2.1, experiments with ran-
dom assignments ensure that the causal variable of interest is
independent of potential outcomes, thus the groups under com-
parison are effectively comparable. A core assumption for the
causal interpretation of regression, is the conditional indepen-
dence assumption [or CIA; see (Rosenbaum 1984; Lechner 2001;
Angrist and Pischke 2008)], which is at the basis of most empirical
work in economics. The CIA is required for a regression to identify
a treatment effect. The experimental design introduced in section
3.2 ensures that the causal variable of interest is independent of
potential outcomes, which guarantees that the groups being com-
pared are truly comparable (Angrist and Pischke 2008). This no-
tion can be embodied regressions that are causally interpreted.
CIA, also called as selection-on-observables, determines that the
covariates to be held fixed are assumed to be known and observed.
As a consequence, according to this assumption the residual in
the causal model is uncorrelated with the regressors. Regression

can be used as an empirical strategy to turn the CIA into causal
effects. Under CIA the covariates Xi are held fixed for the causal
inference to be valid. These control variables (or covariates) are
assumed to be known and observed (Angrist and Pischke 2008).

Let us consider a generic causal model:

(14) fi(B) � 
 � �B � �i

where B is a variable that can take on more than two values. The
equation is linear and assumes the functional relationship under
consideration being the same for all individuals in the population
under study. Unlike the factor �i that captures all unobserved
factors determining the outcome for each specific individual B is
not indexed per individual. The causal model, therefore, tells us
the extent of B for any value of B and not for a specific realization
Bi. We can further specify the causal model for the individual case,
thus we consider that the causal relationship between putative
causes and response is likely to be different for each individual, as in:

(15) Yi � 
 � �Bi � �i

A classic example is that Bi could be the number of years of
schooling for a certain individual and Yi could represent the cur-
rent salary for that individual (Angrist and Krueger 1992). Equa-
tion (15) is similar to a bivariate regression model. However, it is
eq. (14) that explicitly associates in the model constructed by the
analyst the coefficients in eq. (15) with a causal relationship, thus
establishing the causal association. The causal model determines
that Bi may be correlated with fi(B) and the residual term �i.

We can, then, consider the vector of covariates Xi
′. The random

residual part of eq. (15) �i can be decomposed under CIA into a
linear function of observable characteristics Xi

′ and an error term i:

(16) �i � Xi
′� � i

where � is a vector of population regression coefficients that sat-
isfies the relationship E[�i|Xi] = Xi

′�. The vector � is defined by the
regression of �i on Xi, thus the residual i and Xi

′ are uncorrelated
by construction [see (Angrist and Pischke 2008) for further details
and proof of concept]. By virtue of CIA, we can define (Angrist and
Pischke 2008):

(17) E[ fi(B)|Xi,Bi] � E[ fi(B)|Xi] � 
 � �B � E[�i|Xi] � 
 � �B � Xi
′�

We can re-write the causal model as:

(18) Yi � 
 � �Bi � Xi
′� � i

The residual in the causal model is uncorrelated with the re-
gressors Bi and Xi, thus � effectively represents the causal effect of
interest, allowing for the attribution of causal meaning to the
regression. The selection of the right set of control variables is the
subject of an extensive literature. We refer the reader to Angrist
and Krueger (2001) and Angrist and Pischke (2008) for a detailed
analysis of the matter.

3.3.2.2. Instrumental variables and causality
We have just seen how regressions can be causally interpreted

within the boundaries of a specific model. A major complication
is the possibility that regressors and errors [e.g., Bi, Xi

′, and i in the
example in eq. (18)] are correlated, thus undermining the statisti-
cal validity of the model. Under such condition, regression esti-
mates would lose their causal interpretation. For the causal
interpretation to hold, the regressors have to be asymptotically
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uncorrelated with the errors or residuals. The potential inconsis-
tency is determined by the fact that changes in Bi are not only
associated with changes in Yi but also with changes in i.

We consider that the potential outcomes can be written as
(Angrist and Pischke 2008):

(19) Yi � 
 � �Bi � Ai
′� � i

Here Ai
′ is a vector of control variables, which unlike Xi

′ in the
example in eq. (18) is unobserved. Instrumental variable methods
(Heckman and Vytlacil 2001; Newey and Powell 2003; Firebaugh
2008; Bollen 2012) allow the analyst to introduce an instrumental
variable, say Zi, that is correlated with the causal variable of inter-
est Bi, and uncorrelated with both Ai

′ and i, such that E[Zii] = 0.
Such a condition is a special case of CIA introduced in the previous
section. In this case it is the instrumental variable Zi that is inde-
pendent of potential outcomes, rather than the variable of inter-
est Bi. It follows then that the causal effect � can be expressed as
(Angrist and Pischke 2008 chap. 4):

(20) � �
	YiZi

	Zi
/ 	BiZi

	Zi

The equality in eq. (20) is verified if:

• Zi has a clear effect on Bi;
• Zi affect Yi only by means of the causal variable Bi;
• Zi is independent of potential outcomes, so it is as good as if

randomly assigned.

The consideration of instrumental variables allows for the
causal interpretation of �. Instrumental variables are identified
case by case from the processes determining the variable of inter-
est. For the example of the relationship between schooling level
and earnings, Angrist and Krueger (1992) used the school start age
of pupils as an instrumental variable. Instrumental variables solve
the problem of missing or unknown controls. In many cases, in
fact, the necessary control variables are typically unmeasured or
simply unknown. In the absence of suitable instrumental vari-
ables in the system the causal framework does not hold.

There are some recognized pitfalls of the instrumental variable
approach (Morgan and Winship 2007). In some cases the assump-
tion that the instrumental variable does not have a direct effect on
the response variable may be too strong. Even when such condi-
tion is verified, an instrumental variables estimator is biased in
a finite sample (Morgan and Winship 2007). These pitfalls may
influence the possibility of drawing causal inference from the
results of a study (see section 4.1). The limitations of regression-
based methods should be carefully considered for the causal anal-
ysis to be valid. A causal regression may be invalidated by
omitting variables that both affect the dependent variable and are
correlated with the variables that are studied in the causal regres-
sion model, by the way missing data are handled, and by the
presence of potential biases determined by measurement errors
(Allison 1999).

3.3.3. Applications
We survey here the application of regression-based techniques

and combined matching and regression techniques in the field of
sustainability.

Empirical analyses using causal regression techniques have
been widely applied to study the relationship between trade open-
ness, economic development and environmental quality (Stern
2004; Copeland and Taylor 2013). In the Environment Kutznets
Curve literature, a considerable amount of studies deal with this
relationship, treating environmental degradation measures as

the dependent variables and income as the independent variable,
and providing mixed results (Soytas et al. 2007).

Antweiler et al. (1998) find that international trade, although
altering the pollution intensity of countries, creates small changes in
pollution concentrations, especially of SO2. The authors find evi-
dence that both environmental regulations and capital-labor
endowments determine SO2 concentrations and conclude that
openness and freer trade appear to be good for the environment.
The study concludes that if an increase in trade openness gener-
ates a 1% increase in income and output then, as a result of scale
and technology pollution does fall by approximately 1%. Cole and
Elliott (2003) confirm both environmental regulation effects and
capital-labor effects for SO2 and suggest that these results do not
necessarily hold for other pollutants, such as NOx, biochemical
oxygen demand (BOD), and CO2, for which an increase in emis-
sions is likely to happen as a result of freer trade.

Frankel and Rose (2005) study the effect of trade on the environ-
ment and use exogenous geographic determinants (i.e., lagged
income, population size, rate of investment, and human capital
formation) as instrumental variables to account for the endoge-
neity of trade. The authors conclude that trade appears to have a
beneficial effect on some measures of environmental quality. In
particular, they conclude that trade significantly tends to reduce
the concentrations of SO2 and NO2. Managi et al. (2009) find that
trade is beneficial for OECD countries, while it has detrimental
effects on SO2 and CO2 concentrations in non-OECD countries.
A lower BOD is found in non-OECD countries. The detrimental
impact is found to be larger in the long term, rather than in the
short term.

A bulk body of research regards the accumulation of green-
house gases (GHGs) in the atmosphere leading to climate change.
Regression techniques of econometric inspiration are commonly
applied for the study of the influence of climate change on a
number of endpoints. The matter of adaptation under climate
change is analyzed using nonlinear regression in Schlenker and
Roberts (2009). The author controls for precipitation, technologi-
cal change, soils, and location-specific unobserved factors, and the
results show a nonlinear relationship between temperature and
soil yields. The relationship between mortality and changes in
daily temperatures is described using regression techniques in
Barreca et al. (2013). The authors document a remarkable decline
in the mortality effect of temperature extremes in the 20th cen-
tury in the United States, and point to air conditioning as a central
determinant in the reduction of mortality risks associated with
extreme temperatures. The exposure to extreme temperatures
determined by climate change is linked to deleterious effects on
fetal health, the decrease in birth weight, and an increase in the
probability of low birth weight in Deschenes et al. (2009 p. 216).
The analysis rests on a number of strong assumptions about data,
including that the climate change predictions used in the regres-
sion model are correct. In a similar fashion, climate policy has been
linked to increase in mortality and migration (Deschenes and Moretti
2009), fluctuations in the labor markets (Deschenes 2010), and re-
duced profits from agriculture in the United States (Deschenes
and Greenstone 2007) and in California (Deschenes and Kolstad
2011). Conflicts and social instability have also been associated
with climate change (Homer-Dixon 1991). Earlier studies have
shown that random weather events, such as drought and pro-
longed heat waves, might at times be correlated with armed con-
flict in Africa (Miguel et al. 2004; Smith and Vivekananda 2007;
Burke et al. 2009). Hsiang et al. (2011) show that a causal link
between temperature and conflict does exist at various scales for
relatively richer countries as well. The issue of causal links be-
tween climate and conflict is contentious (Cane et al. 2014;
Raleigh et al. 2014). Buhaug (2010 p. 16480) investigated the scien-
tific base of the claims and concluded that “a robust correlational
link between climate variability and civil war do not hold up to
closer inspection” when alternative statistical models and alter-
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native measures of conflict are used. Hsiang and Meng (2014)
reproduced the analysis of Buhaug (2010) and corrected the statis-
tical procedure for model comparison. The study concludes that
the claim of Buhaug (2010) is inconsistent with the evidence pre-
sented, thus climate change does affect conflicts in Africa (Hsiang
and Meng 2014).

The potential sustainable impacts of fair trade, eco-certification,
and eco-labelling have been amply studied using matching tech-
niques in combination with regression techniques. Ruben et al.
(2009) use data from coffee and banana co-operatives in Peru and
Costa Rica and find, using propensity score matching, that fair
trade improves access of farmers to credit and investments, and
also affects their attitude towards risk. The participation in a fair
trade system improved employment, as well as their bargaining
power and trading conditions. The difference-in-differences iden-
tification strategy is used by Hallstein and Villas-Boas (2013) to test
the efficacy of eco-labels in promoting sustainable seafood con-
sumption. The study finds evidence that in a sample of ten stores
in the San Francisco Bay area the implementation of an eco-label
led to a significant decline in sales in the range of 15%-40% of
certain classes of products with limited environmental sustain-
ability. Miller et al. (2011) use difference-in-differences to test the
impact of a scheme of cash transfer on food security in Malawi.
The study presents evidence that food security is improved by the
transfer of cash by the government to rural households in Malawi.
Eco-certification is also the subject of the study of Blackman and
Naranjo (2012). The study uses propensity score matching to con-
trol for selection bias and tests the impact of eco-certification on a
high-value agricultural commodity, organic coffee from Costa
Rica. The study finds that organic certification improves the envi-
ronmental performance of coffee growers by reducing the use
of chemicals and improving the environmental performance of
management practices.

Matching techniques have been used also to check progress on
poverty reduction and on other goals in the Millennium Develop-
ment Goals (MDGs) (Sachs and McArthur 2005). Maertens et al.
(2011) use a variety of matching techniques to test the impact of
globalization on poverty reduction in Senegal. The study finds a
significant positive impact of globalization on poverty reduction
through employment creation and labor market participation.
Setboonsarng and Parpiev (2008) test the impact of microfinance
on the MDGs using data from a microfinance institution in Paki-
stan. Using difference-in-differences, the study finds that the lend-
ing program of the institution contributed to income generation
activities that have a beneficial impact on the MDGs. Arun et al.
(2006) use propensity score matching to test whether microfi-
nance reduces poverty in India and show that microfinance insti-
tutions have a significantly positive effect on poverty reduction.
Arnold et al. (2010) draw on the potential outcome model for
causal inference and use a matched cohort to test the relation-
ship between health and development. In a matched sample of
25 villages in rural India the study finds a positive influence on
health from new toilet construction, while no impact was found
from height-for-age.

In the field of sustainable fisheries, Costello et al. (2008) apply
propensity score matching to evaluate the benefits of tradable
harvest quotas (i.e., catch shares) on preventing the collapse of
global fish resources. The study finds that the implementation of
catch shares halts, and even reverses, the global trend toward
widespread collapse of fish resources. The results are confirmed
using propensity score matching by the same research group
(Costello et al. 2010).

Quasi-experimental designs have been used to evaluate the bio-
diversity and social impacts of conservation and protection prac-
tices. Linkie et al. (2008) evaluate the impact of protected area on
the conservation of species in a large protected area in Indonesia.
The study uses propensity score matching to compare the defor-
estation rates in villages around the protected area and villages

not around the area. The study finds no evidence of a positive
effect of the protected area on the reduction of deforestation.
Nelson and Chomitz (2011) test the impact of protected areas in
reducing fires in tropical forests in various regions. The study
finds that protected areas substantially reduced fire incidence in
Latina America, Asia, and Africa. Matching criteria in this study
included the distance to road network, distance to major cities,
elevations and slope, and rainfall. Andam et al. (2008) apply
matching methods to evaluate the impact on deforestation of
Costa Rica’s renowned protected-area system between 1960 and
1997. The institution of protected areas reduces deforestation and
10% of forests would have disappeared without being protected.
Ferraro and Hanauer (2014) use a quasi-experimental design to
study the mechanisms through which the policies of establishing
protected areas affect social and environmental outcomes. The
authors analyze the causal effects of ecosystem conservation pro-
grams on environmental and social outcomes, by focusing on the
mechanisms determining variations that arise in a certain area
after land-use restrictions have been put in place. The study uses
an asset-based poverty index developed by Andam et al. (2010) and
investigates the effect of protected areas on this index. Therefore,
the population is divided into treatment and treated groups, re-
spectively the causal effect of protected areas and the people
living around protected areas. After controlling for potential con-
founding variables and biases, the authors conclude that two-
thirds of the poverty reduction in Costa Rica can be causally
attributed to opportunities afforded by tourism, while changes in
infrastructure or land cover had a little causal influence on the
outcome.

3.4. Time-series methods

3.4.1. Granger causality
The vast availability of time-series data has given rise to a pleth-

ora of methods aimed at understanding complex systems through
studying their evolution in time. Time-series refer to data ob-
served over a number of discrete time-steps. In such cases, one
may assume that causes both precede and help predict their ef-
fects. We credit Wiener (1956) with the intuition that the causality
of a (time-series) variable in relation to another can be measured
by how well one variable helps to predict the other. We can say
that variable Y ‘causes’ variable X if the ability to predict X is
improved by incorporating information about Y in the prediction
of X. The concept was later formulated by Granger (1969), leading
to the establishment of the Wiener-Granger framework of ‘cau-
sality’. Geweke made several other important contributions to the
concept (Geweke 1982, 1984).

Let us consider two variables X and Y. We can say that X does not
cause Y if the conditional distribution of the effect Y only depends
on the past history of Y itself and not on the past history of the
putative cause X.

Let us consider the history of X and Y, respectively {X} and {Y}

(21)
{Xt} � (Xt, Xt�1, Xt�2, ..., XL)
{Yt} � (Yt, Yt�1, Yt�2, …, YL)

with L representing the number of time lags.
According to Granger causality (GC) we say that X does not

Granger-cause Y if Yt only depends on its history but not on the
history of X, alternatively expressed as (Granger 1969):

(22) P(Yt|Xt�1, Yt�1) � P(Yt|Yt�1)

No relevant information can be extracted from the history of X
to assess the effect Y, thus the predictability of Y does not increase
if X is part of the universe of possible causative variables. Con-
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versely, if X Granger-causes Y, one can generally say that the past
of X contains information that helps predict the future of Y.

GC models typically use vector auto-regression (VAR) models to
analyze multivariate time-series. VAR models are simple construc-
tions in which the value of a variable at a particular time is mod-
eled as a linear weighted sum of its own past and of the past of a
set of other variables. Each variable is a vector stochastic process
representing a time-series. The structure of the VAR model pro-
vides information about the forecasting ability of a variable or of
a group of variables. Therefore, GC does not directly imply true
causality, but rather only implies forecasting ability (Zivot and
Wang 2006).

Operationally, GC analysis rests on estimating and comparing
the VAR models, given a set of time-series data. Let us expand our
example, consider a third variable Z together with X and Y. We are
still interested in measuring whether X Granger-causes Y. The
analysis starts with the joint estimation of a full VAR model for all
the variables. A prediction/estimation error is computed for all
the variables in the set (Seth et al. 2015). A second VAR model
is then estimated, omitting X from the universe of all possible
causative variables. For each remaining variable a new set of
prediction or estimation errors is calculated. If the prediction or
estimation error for Y is significantly smaller for the full regres-
sion including X, then we may confidently state that X Granger-
causes Y, conditioned on Z. As reported in Seth et al. (2015), the
magnitude of the GC is given by the ratio of the variance of the
prediction-error terms for the reduced regression and the full
regressions.

The standard test of GC developed by Granger (Granger 1969) is
based on a linear regression model:

(23) Yt � a0 � �
k�1

L

b1kYt�k � �
k�1

L

b2kXt�k � �t

where �t are uncorrelated random variables with zero mean and
variance 	2, L is again the specified number of time lags, and the
time is t = L + 1, …, S. The null hypothesis that Xt does not Granger-
cause Yt is supported when b2k = 0 for k = 1, …, L, thus allowing
eq. (23) to reduce to:

(24) Yt � a0 � �
k�1

L

b1kYt�k � �t

Test statistics that can be applied to test the hypothesis are
reported in Hlaváčková-Schindler et al. (2007).

GC has a number of useful properties [see e.g., (Geweke 1982;
Seth et al. 2015)], including that VAR models may be estimated
using relatively simple computation algorithms (e.g., ordinary
least squares). Furthermore, the analyst needs to make only min-
imal assumptions about the underlying physical mechanisms
linking the variables under study as long as they rest on data that
is suitable for VAR modelling. GC is based on the comparison of
model errors; therefore, the analysis is applicable only to the case
of stochastic variables, i.e., variables that can be modelled as hav-
ing random variations, and to data that have variance and mean
that are stable over time (Geweke 1984).

A number of limitations, including those identified by Granger
himself (Granger 1969), are applicable to GC. Strictly speaking,
what GC establishes is the fact that one event happens before
another, which may or may not provide an evidence of a cause-
effect relationship between them (Hu et al. 2011). GC is typically a
bivariate procedure in 2-dimensional systems. In the presence of a
third variable that commonly causes changes in the two variables
with a different time-lag, the model may falsely recognize the
relationship between the two variables as a GC. Limitations of the

approach also include the inapplicability of GC in the presence of
nonlinear, contemporaneous causal links (Russo 2009). A number
of approaches have been developed to test for the strength of GC
[see e.g., (Dolado and Lütkepohl 1996; Zapata and Rambaldi 1997;
Clarke and Mirza 2006)].

3.4.2. Convergent cross mapping in dynamic nonlinear systems
A number of methods extended the Granger’s concept to non-

linear cases [see e.g., Ancona et al. (2004) for nonlinear bivariate
time series; Baek and Brock (1992), Hiemstra and Jones (1994) for
non-parametric GC]. We refer to Hlavácková-Schindler et al. (2007)
for a thorough analysis of these methods and to Hu et al. (2011) for
further methodological expansions that address limitations of GC.

GC may also give ambiguous results in deterministic settings,
especially for dynamic systems with weak to moderate coupling
(Sugihara et al. 2012). The assumption of separability (see section
4.1) is not satisfied in such systems. In this case, as noted by
Sugihara et al. (2012), if X is a cause for Y, information about X will
be redundantly present in Y and, as a consequence of Takens’
theorem (Takens 1981), removing X from the universe of all possi-
ble causative variables would not remove the information carried
by X.

Work from Sugihara and co-authors (Deyle and Sugihara 2011;
Sugihara et al. 2012; Clark et al. 2015) addresses the limitations of
GC for the case of (1) non-separable systems, (2) weakly coupled
variables, and (3) a presence of interactions among variables from
external driving variables (e.g., ecological variables such as spe-
cies from temperature, precipitation, and upwelling). The appli-
cations demonstrated in Sugihara et al. (2012) are particularly
interesting to understand causality in dynamic systems that are
common in ecology (e.g., predator-prey systems).

For the case of dynamic systems, time-series variables can be
considered causally linked if they belong to the same dynamic
system (Takens 1981; Deyle and Sugihara 2011; Sugihara et al.
2012). Under such consideration, each variable can identify the
state of the other, thus information about the past of one variable
can be recovered from the time-series of the other, and vice versa
(Sugihara et al. 2012).

Let us consider again two time-series of length L:

(25)
{Xt} � (Xt, Xt�1, Xt�2, ..., XL)
{Yt} � (Yt, Yt�1, Yt�2, …, YL)

X and Y are said to be causally linked if they share the same
common attractor manifold M, thus if they are part of the same
dynamic system (Sugihara et al. 2012). The manifold can be de-
fined as the system of coordinates constructed from lagged coor-
dinates of the time-series variables, of X and Y using the history of
the variables as defined in eq. (25). Following Takens’ theorem
(Takens 1981), we can reconstruct the value of the manifold M
from a single observation variable of the system. Thus, we can
generate a system of coordinates in the attractor manifold built
from X, MX, and a system of coordinates built from Y, MY. The
convergent cross mapping [CCM; see (Sugihara et al. 2012; Clark
et al. 2015; Ye et al. 2015) for a thorough analysis] approach tests
for causality by measuring the extent to which the historical re-
cord of Y values can reliably estimate states of X. Using CCM, the
analyst can test at a time t whether points located closely (i.e., with
similar coordinates in the manifold) in MY can be used to identify
closely-located points in MX (Sugihara et al. 2012). Using a nearest-
neighbor algorithm (Sugihara and May 1990) CCM allows attribut-
ing weights to points in the manifold MX and estimating the value
of Y using these weights, thus estimating the quantity Y|MX. Fi-
nally, the causal effect can be estimated by measuring the corre-
lation between Y and Y|MX (McCracken and Weigel 2014). If high
correlation is measured, the analyst may confidently use Y to
estimate X or vice versa. Time-series variables that are mutually
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coupled, in fact, allow for cross-mapping estimations in both di-
rections, thus each variable can be estimated from the other.

CCM can also accommodate for the case of time-series variables
that do not interact with each other, but which are both driven by
a common variable. Information about the common cause, e.g., Z,
can still be recovered from X and Y. Such application is of partic-
ular interest for the study of non-dynamic and chaotic variables.
Increasingly data availability estimates improve in accuracy, thus
implying convergence in CCM and declining estimation error
when cross-mapped estimates are calculated (Sugihara et al. 2012).

3.4.3. Causality as information flow through transfer entropy
As described in the previous sections, GC measures causal influ-

ence statistically based on prediction by means, e.g., of a VAR in
stochastic systems with separability, and CCM deals with dynam-
ical systems where causal variables have synergistic effects. More
recently, transfer entropy [TE; (Schreiber 2000a; Runge et al. 2012;
Gencaga et al. 2015; Gómez-Herrero et al. 2015)] has gained trac-
tion, finding application in a wide range of fields [see e.g., (Katura
et al. 2006; Wibral et al. 2013; Lehnertz and Dickten 2015)]. TE is an
information-theoretic measure of the time-directed information
flows between jointly dependent processes (Barnett and Seth 2014).
Of particular interest is the application of TE to quantify the in-
formation flow or information transfer within complex and dy-
namic systems (Runge 2015). The application of TE is especially
suitable for systems for which only time-series of measurements
are available and for which the underlying mechanisms that
would be needed to directly infer causal relations are poorly un-
derstood.

Still bearing in mind the idea of Wiener earlier reported, one
would expect the relationship between two variables X and Y to be
asymmetric and that the information flows in a direction from the
source Y to the target X (Razak and Jensen 2014). TE is a measure of
such directed information transfer between joint processes. TE is
asymmetric, so that TE(X ¡ Y) ≠ TE(Y ¡ X). The difference indi-
cates a direction of information flow, which can be considered as
a measure of potential causation from X to Y (Boba et al. 2015). In
contrast with GC, TE is not framed in terms of prediction but in
terms of resolution of uncertainty (Barnett et al. 2009). Therefore,
TE(Y ¡ X) is the degree to which Y provides information to disam-
biguate the future of X (i.e., to reduce the level of uncertainty on
the future of X) beyond the degree to which X already disambigu-
ates its own future (Barnett et al. 2009).

At the basis of TE is the concept of differential entropy for a
continuous random variable introduced by Shannon (Shannon
2001). Shannon’s theorem is a very general way of characterizing
the statistical dependency or shared information between two
variables. Following the theorem, differential entropy is defined
as:

(26) H(Xi � x) � ��p(x)log2p(x)dx

The discrete version of eq. (26) can be defined for a discrete
random variable X with a domain of definition DX, having possible
values x with probability p = p(x) (Boba et al. 2015). The value of the
entropy H(X) measures the average amount of information gained
from a measurement that specifies one particular value x:

(27) H(Xi � x) � � �
x�DX

p(x)log2(p(x))

The entropy of X can be seen as a measure of the uncertainty of
X (Hlaváčková-Schindler et al. 2007). We use log2 and log inter-
changeably hereafter.

Let us consider again two random variables, X and Y, whose
probability distributions are px and py, and whose outcomes are
from a set DÍ DX � DY. The interdependence between X and Y can
be calculated using the Kullback–Leibler divergence (Kullback
and Leibler 1951):

(28) DKL(pX|pY) � �
x�D

pX(x)log
pX(x)

pY(x)

The concept of entropy rate Hr of a process was developed by
Schreiber (Schreiber 2000b) to include a direction of the informa-
tion flow and a chronological ordering. As in Boba et al. (2015), we
may assume that time intervals � are equidistant and use counters
like nÍ [t/�] to enumerate the time points. Hr can be, then, defined as:

(29) Hr � � �
xn�1,xn

m

p�xx�1, xn
m�log�p�xx�1|xn

m��

In the formulation, xn
m is an m-tuple of measurements at time

steps n, n–1, …, n – m + 1. Let us employ the same history length m
for both data sets xn and yn, and, thus, define TE as (Schreiber
2000b):

(30) TE(Y ¡ X) � �p�xx�1, xn
m, yn

m�log
p�xx�1|xn

m, yn
m�

p�xx�1|xn
m�

According to Lizier and Prokopenko (2010), TE can be viewed as
‘a conditional mutual information, […] the average information
in the source about the next state of the destination that was not
already contained in the destination’s past states’. TE is a direc-
tional, dynamic measure of information transfer, but still re-
mains a measure of observed (conditional) correlation rather than
direct effect (Lizier and Prokopenko 2010). TE can be considered as
a nonlinear generalization of GC for the case of Gaussian variables
(i.e., normally-distributed), and a formal link between GC and TE
can be found in Barnett et al. (2009). Conversely, one can define
GC as an approximation to TE (Schreiber 2000a), which is exact for
Gaussian variables. The equivalence between GC and TE means
that the former can be interpreted in terms of information-
theoretic bits-per-unit-time (Barnett et al. 2009).

3.4.4. Applications

3.4.4.1. Granger causality
The study of the GC between energy consumption, income and

climate in countries of the globe is a well-studied topic (Wagner
et al. 2016). The application of the method allows for using a
time-series approach to study the dynamic link between CO2

emissions and income. The approach allows for including in the
analysis the temporal component of the relationship between the
emissions and economic growth, unlike the case previously intro-
duced on causal regression-based techniques. Methodological is-
sues and inconsistencies with the application of GC in this context
are well-documented (Bruns et al. 2014).

Omri et al. (2014) test the causality between CO2 emissions,
economic growth, and foreign direct investment (FDI) using panel
data for a global panel of 54 countries over the period 1992–2011.
The authors prove a bidirectional GC between FDI and CO2 for all
countries, except for those in Europe and North Asia. The study
also finds a unidirectional GC between CO2 and economic growth,
except for the analyzed countries in the Middle East, North Africa,
and sub-Saharian Africa, for which a bidirectional causality can-
not be rejected. Pao and Tsai (2011a) analyze the period between
1992 and 2007 for the causality between CO2 emissions, energy
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consumption, FDI, and GDPin Brazil, Russian Federation, India,
and China. The authors suggest that emissions are highly respon-
sive to change in both energy consumption and GDP, but not in
FDI. Furthermore, the authors find a unidirectional causality from
energy consumption to emissions and a bidirectional GC between
emissions and FDI.

Soytas et al. (2007) use a time-series of data for the period 1960–
2004 and show that income does not Granger-cause carbon emis-
sions in the US in the long run, but energy use does, thus revealing
that a decreased energy use can reduce carbon emissions. Chiou-Wei
et al. (2008) use linear and nonlinear GC to test the relationship
between energy consumption and economic growth for a sample
of Asian newly industrialized countries and the US. The study
supports the neutrality hypothesis for the US, Thailand, and
South Korea. A unidirectional causality from economic growth to
energy consumption is found between the Philippines and Sin-
gapore, while energy consumption may have affected growth
in Taiwan, Hong Kong, Malaysia, and Indonesia. Menyah and
Wolde-Rufael (2010) examine the causal relationship among CO2
emissions, renewable and nuclear energy consumption, and real
GDP for the US during the period 1960–2007. The test results
indicate no causality from renewable energy to CO2 emissions and
a unidirectional causality from nuclear energy consumption to
CO2 emissions.

For the case of Central America, Apergis and Payne (2009) show
that energy consumption and economic growth Granger-cause
CO2 emissions, and that there is a bivariate causality between
energy consumption and CO2 emissions. Long et al. (2015) investi-
gate the relationships between energy consumption, carbon emis-
sions and economic growth in China from 1952 to 2012. The study
finds a bivariate causality between GDP and CO2 emissions and
between GDP and coal, gas, and electricity consumption, thus
suggesting that a change in the energy consumption structure of
China would be required to meet climate goals. Acaravci and
Ozturk (2010) show that there is evidence of a causal relationship
between energy consumption, income and carbon emissions in
Denmark, Germany, Greece, Iceland, Italy, Portugal, and Switzer-
land. Halicioglu (2009) indicates that, for the case of the country of
Turkey, GC runs in both directions between CO2 emissions and
income both in the short term and long term. The authors, thus,
state that it is possible to forecast the future levels of these vari-
ables from the past levels of each other. Ang (2008) confirms the
existence of a causality running from economic growth to energy
consumption growth, both in the short run and the long run, for
the country of Malaysia. GC is verified in this context also for
the case of ASEAN-5 countries [Malaysia, Indonesia, Singapore, the
Philippines, and Thailand (Chandran and Tang 2013)], Tunisia
(Fodha and Zaghdoud 2010), India (Ghosh 2009), and Brazil (Pao
and Tsai 2011b).

A number of studies used GC to test the relationship between
urbanization and carbon emissions. Hossain (2011) finds no evi-
dence of causality in the short and long run for nine emerging
industrialized countries for the period 1971–2007. Al-mulali and
Sab (2012) study 19 countries and find a positive causal relation-
ship between urbanization and CO2 emissions in 84% of the cases.
The same groups confirm these results for the middle eastern and
north African countries in the MENA group for the years 1980–
2009 (Al-mulali et al. 2013). Long-run bidirectional causality is
found between urbanization and electricity consumption in a
study by Liddle and Lung (2014) on 105 countries for the period
1971–2009. Wang et al. (2016a) find that urbanization Granger-
causes carbon emissions in the long and short run for the ASEAN
countries and for the BRICS (i.e., Brazil, Russia, India, China, and
South Africa) countries (Wang et al. 2016b) within the period 1985–
2014.

GC has found applications also in the field of climatology. GC is
here used to test the connection between atmospheric CO2 con-
centrations and global mean temperature. Young et al. (1991)

show a causal relationship between atmospheric CO2 concentra-
tions and global sea surface temperatures. Sun and Wang (1996)
suggest that global surface temperature Granger-causes global
CO2 emissions, but past temperatures do not significantly im-
prove the predictability of current CO2 concentrations. Tol and
De Vos (1998) demonstrate that there is a robust statistical rela-
tionship between the records of the global mean surface air tem-
perature and the atmospheric concentration of CO2 over the
period 1870–1991. Stern and Kaufmann (2013) find that both nat-
ural and anthropogenic forcing cause temperature change and
also that temperature causes greenhouse gas concentration
changes. The causal link between temperature and CO2 concen-
tration is tested in 2013 using ice core data from 800 000 to
6000 years ago. The authors show strong evidence that CO2 con-
centration Granger-causes temperature, as well as that tempera-
ture Granger-causes carbon dioxide concentration. Triacca (2005)
shows the limits of the applications of GC in this context and
proves that past observations of CO2 concentration do not signif-
icantly improve the predictability of current temperature. Fur-
ther discussions on the application of GC to these systems are
available in the literature (Palus and Vejmelka 2007; Kampen
2010; Smirnov and Mokhov 2015).

3.4.4.2. Convergent cross mapping
Sugihara et al. (2012) apply CCM and find causal evidence of the

influence of climate forcing on populations of sardines and an-
chovies in the California Current. Clark et al. (2015) further ex-
pand the concept to include spatial variation in time-series data to
accommodate for the case of limited availability of data for a
specific location. CCM has been applied also in the field of climate
science. van Nes et al. (2015) applied CCM and found a marked
positive feedback effect from temperature variability on greenhouse-
gas concentrations. Tsonis et al. (2015) studied the association be-
tween cosmic rays and global temperature in the 20th-century
observational record without finding measurable evidence of a
causal effect linking cosmic rays to the overall 20th-century
warming trend. The authors, however, do find a significant causal
effect of cosmic rays on short-term variability in global tempera-
tures. The reproduction of the study by Luo et al. (2015) could not
reproduce and confirm the findings.

3.4.4.3. Transfer entropy
TE has found limited application in the sustainability sciences.

Kumar and Ruddell (2010) use the technique to identify feedbacks
between vegetation and climate components, using observations
from a network of monitoring towers across North America. The
study finds that the relationship between variability and informa-
tion production leads to the emergence of ordered organization in
the overall system.

4. Cause-effect analysis techniques in the context
of QSA

The ability for causal models to answer these questions in the
context of QSA largely depends on whether (1) the assumptions
used by the technique are relevant in the context of QSA, and
(2) whether it is viable to construct the model considering data
availability. Different causal models may exhibit strengths and
weaknesses for particular QSA applications depending on the rel-
evance of the assumptions and the availability of data, requiring
the modelers to carefully evaluate the most suitable ones consid-
ering the objectives and constraints of the study at hand.

4.1. Evaluation of major assumptions of cause-effect
analysis techniques for QSA

Table 1 lists the major assumptions used for cause-effect analysis
techniques introduced in section 3 [see also Russo (2009)].
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4.1.1. Linearity
The assumption of linearity needs to be carefully considered

when applying the techniques in the context of QSAs, and when
interpreting the results of the analysis. The impossibility of build-
ing complex nonlinear models does not fully impede to explain
complex systems and provide interpretable causal mechanisms.
Linear models, in fact, can also support exploratory science and
help identify trends and dynamics in systems that are complex in
reality [see also Hofman et al. (2017) on predictive models accu-
racy]. QSA typically deals with highly-nonlinear phenomena, thus
the assumption of linearity would question the strength of the
causal-effect relationship measured assuming a linear relation-
ship. The application of QSA to the SDGs, for example, will likely
require the analysis of complex nonlinear interconnected systems
of policy interventions and effects. Understanding such actions
and their consequences under this condition requires incorporat-
ing all potential non-linearities into the causal model.

In the context of SDGs, SDG number 14, which states “Conserve
and sustainably use the oceans, seas and marine resources for
sustainable development”, includes the specific target of “reduc-
ing the loss of marine species” (target 14.2 in the SDGs). The loss of
marine species is determined by numerous factors and by inter-
species relationships that can only be partially grasped using
linear relationships. When time-series data are available, GC
assumes linearity, while CCM is shown to be applicable to dy-
namic, nonlinear systems, thus avoiding the necessity to linearize
relationships that are not linear in the real world. The applicabil-
ity of this technique in the context of QSA needs to be further
tested. Therefore, ES, linear OS, and GC have limited applicability
for the QSAs of a system that involves significant nonlinear pro-
cesses.

The assumption of separability and additivity regards the appli-
cation of OS for causal inference. Under this assumption, the
changes in the whole system under study can be understood as a
sum of the changes by single constituents of the system. This
assumption may not always be verified in the context of QSA,
since individual constituents of a system that is being studied
under a QSA may present specific properties that would result in
a different behavior of the whole system if combined with other
constituents. In the context of sustainability policy, for instance,
government may decide to support a cleaner technology by means
of tax rebates, which in turn would typically have a beneficial
effect on the penetration of the technology in the market. Said
rebates may be successful in promoting the diffusion of this more

environmentally desirable technology, while they may totally fail
in some cases. This can be due, for instance, to the strong and
stable presence of a dominant alternative technology that has
already reached maturity, or to the lower cost of another alterna-
tive technology because of the contingent low cost of raw materi-
als, or to the irrational preference of consumers towards another
preferred technology. The consideration in the analysis of ele-
ments, such as market dynamics and irrationality of decision-
making, may bring upon the system unpredictable changes and
unexpected behaviors that stem from the interaction between
these components over time. These interactions and changes
could not be anticipated by simply integrating the single elements
into the analysis.

4.1.2. Separability and additivity
The assumptions of separability and additivity also relate to the

assumption of no omitted variables and no systematic measure-
ment errors to which all techniques are bound. Due to the com-
plexity and the type interactions considered in QSA that often
involve socioeconomic transformations, it is likely that the anal-
ysis may have one or more unaccounted factors. For example, SDG
number 7 states “Ensure access to affordable, reliable, sustainable
and modern energy for all”. A goal like this cuts across various
socioeconomic and technological variables of our society includ-
ing population, income, energy technologies, natural resource
availability, price, social welfare, pollution, public health, legal
systems, and their changes and interactions with each other, to
name just a few (see section 3.4.1, where energy consumption is
connected to the emission of pollutants such as SO2, NOx). The
existence and directionality of such causal relationships were
measured in most cases by means of GC (see section 3.4.1). When
using such studies for the purpose of predicting future emissions
of pollutants, however, the existence of other intervening factors
such as the existence of emission standards, regulations and their
level of stringency, or availability and affordability of emission
mitigation technologies in those countries may come into play,
depending on their significance in explaining the relationships
between energy consumption and pollutant emissions. Similarly,
ES, OS, CCM, and TE should possibly include these factors if used
to predict future changes.

4.1.3. Stable-unit-treatment-value
Earlier in this review, we have stressed the importance of ex-

tending the causal relationship between variables from a single

Table 1. Set of assumptions of cause-effect analysis techniques.

Cause-effect analysis
technique

Assumption Definition ES OS GC CCM TE

Linearity Causal relationships are linear in the parameters and in the explanatory variable X
and the response variable Y.

x (x)† x

Separability and
additivity

The response variable Y is the sum of explanatory variables X and the errors �. x

No omitted variables and
no systematic
measurement errors

The analyst assumes that the factors considered in the analysis sufficiently represent
the causal relationship at stake, and the measurement errors in the variables are
random (i.e., not systematic) and are within a tolerable range. Under the
hypothetical condition that expected � is equal to zero, the causal effect Y is
explained by the explanatory variables Xs.

x x x x x

Stable-unit-treatment-
value-assumption

The potential outcome of one individual of a population is not affected by the
treatment applied to another individual of the population.

x x x x x

No correlation within and
between explanatory
variables and errors

Explanatory variables and errors are not correlated with each other. x x

Cause inclusiveness A cause contains unique information about an effect not available elsewhere. x x x

Note: ES, experimental design based on Rubin’s model; OS, observational designs based matching and regression techniques; GC, Granger-causality;
CCM, convergent cross mapping; TE, transfer entropy.

†In the case of nonlinear regression, linearity assumption does not apply to OS.
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case or unit in a system to a population of individuals or units,
thus to the entire system under assessment. These criteria fall
within SUTVA. The assumption is necessary to all techniques con-
sidered, but is especially relevant for the causal interpretation of
regressions. The assumption of stability ensures that the causal
factor is supposed to operate homogenously in the population of
interest. The size of the sample directly relates to the data avail-
ability for QSA (see section 4.2). A sufficient sample size is, thus,
fundamental to generalize the findings for any of the techniques
that we presented. State-level policies on sustainability and their
outcomes are limited by the fact that there are only about a couple
of hundred states in the world and that the circumstances under
which those states operate, in terms of population, climate, en-
dowment of wealth and resources, etc. are very different. This
problem is exacerbated when considering the fact that much of
the sustainability-related policies have been experimented mostly
in high-income countries, leaving few empirical evidences associ-
ated with low-income countries. This problem can be mitigated by
the virtue of ‘natural experiments’ (Hsiang et al. 2011; Gans et al.
2013; Hanna and Oliva 2015), while identifying a natural experi-
ment that is directly applicable to the question at hand is often
challenging.

The behavior of the entire population cannot be understood by
the behavior of individual constituents in the presence of interac-
tions among them (see section 3.2.1), which may display emergent
properties at the system’s level (Odum and Barrett 1971; Bar-Yam
1997). A failure to recognize that a certain system has properties
that are emergent can lead to a fallacious identification of a cause-
effect relationship. In this case, it is recommended to explore
other approaches such as quantitative systems modelling, socio-
technical transition analysis, and initiative-based learning as elab-
orated in Turnheim et al. (2015).

4.1.4. Parameters and error term
In regression-based causal models, the error term is uncorre-

lated with the regressors, allowing the analyst to interpret how
much of the causal impact is escaping her control due to the factor
�. This assumption applies to ES and OS techniques. This assump-
tion for QSA means that all unknowns may be referred to the
error term, without the risk of missing, e.g., a third screening
factor Z when analyzing variable X and the related outcome Y. For
the case of techniques that use time-series data, the core assump-

tion is that a variable X includes unique useful data to predict the
state of a latent variable Y, so that variable X is causally linked to
Y. The assumption entails that no other variable should be rele-
vant to describe such cause-effect chain, thus the potential bias
from unobservable variables can only be identified if all potential
other influential variables are considered.

Techniques that involve the use of time-series, namely GC,
CCM, and TE, can be used for causality assessments under the
assumption that the cause contains unique information about the
effect under study that could not be possibly obtained studying
the time-series data of another potential cause. Such assumption
would mean that it could be possible to univocally relate effects to
a single cause. Such assumption may prove difficult to test in the
general context of application of QSA, in which before identifying
a single cause-effect relationship a number of time-series should
be simultaneously tested to check for the potential information
transfer and causal links between them. For this reason, the ap-
plicability of these cause-effect analysis techniques should be
tested in practical case studies, e.g., related to the SDG. Practical
applications would show the extent to which the assumption of
causal inclusion could be always demonstrated.

4.2. Applicability
Applicability of a technique should give a due consideration to

the relevance of the assumptions that they require. Even if the
assumptions used in the presented cause-effect analysis tech-
niques are relevant for the particular problems with which a QSA
is concerned, a technique may show limited applicability due to
other limitations, such as data availability. As seen in section 3.2.1,
Rubin’s model, for example, is an ideal approach to cause-effect
analysis. The model shows that causality can be inferred from
a well-designed randomized experiment (Holland 1986a). Even
though such experimental design would be preferable, the appli-
cability of Rubin’s model in the context of QSA is limited due to
the data requirement that any large-scale sustainability problem
require to consider (see Table 2).

The data required to conduct and experiment in the fashion
suggested by Rubin’s approach is often prohibitive, due to the
difficulty of easily assigning individuals to treatment and control
groups, and also due to the difficulty of verifying alternative ver-
sions of the world that the counterfactual nature of Rubin’s model
assumes. Unlike typical treatments considered in empirical stud-

Table 2. Synthesis of cause-effect analysis techniques for QSA research.

Cause-effect
analysis
technique

Data
requirements Advantages Disadvantages

ES High • Most trusted approach • Cost of implementation
• Quantifiable strength of the causal

relationship
• Complexity of systems under analysis
• Limited possibility of integrating assumptions in QSA
• Limited possibility of replicating a study

OS Medium • Good alternative to experimental designs • Risk of data manipulation
• Ease of application • Limited possibility of randomization for certain variables
• Ease of access to data • Limited possibility of generalizing findings from sample

to the full population
GC Medium • Extensive literature

• Ease of application
• Ease of access to time-series data

• Inapplicability in the presence of nonlinear, contemporaneous
causal systems

• Ambiguous results for dynamic systems with weak to
moderate coupling

CCM Low • Short time-series data • Limited application to contexts with multiple causal variables
• Applicability to dynamic systems • Untested application in the sustainability realm
• Applicability to nonlinear, contemporaneous

causal systems
TE Medium • Applicability to dynamic systems

• Easy to model
• It is only a measure of observed (conditional) correlation

rather than direct effect
• Untested application in the sustainability realm

Note: ES, experimental design based on Rubin’s model; OS, observational designs based on matching and regression techniques; GC, Granger causality;
CCM, convergent cross mapping; TE, transfer entropy.
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ies, in the context of sustainability policy, we have earlier noted
that policy actions tend to evolve after they are launched, thus
limiting the possibility of guarantying that the sample data under
study is stable throughout the experimental design.

Also, in Rubin’s model only the factors that are treated in
an experiment can be considered as legitimate potential causes
(Bhrolcháin and Dyson 2007). This implies that in all those
contexts in which attributes need to be taken into account the
potential outcome model cannot be applied. This interpreta-
tion would rule out personal attributes such as sex, or volun-
tary actions, such as deciding to start recycling waste, as
potential causes. In other words, there would be “no causation
without manipulation” (Holland 1986b p. 959), so only factors
that could, in principle, be manipulated should be considered
as potential causes. By ruling out factors that are not treated in
an experiment from the pool of potential causes, the claim may
confuse the factors that can be causes with those that can be
shown to be causes experimentally (Bhrolcháin and Dyson 2007).
Many phenomena that are thought to be potential causes in
QSAs sciences, in fact, cannot be manipulated. And even if an
intervention of the analyst would be possible, it would still be
difficult, if not impossible, to find a counterfactual that could be
selected as a control. Such a specification would rule out experi-
mentation from QSA, as well as from the social and natural sci-
ences. For this reason, the concept of causality is not dependent
upon conditions of manipulability (Russo et al. 2011), and the
capacity of an analyst to manipulate a cause is irrelevant to
whether a factor is or could be a cause in an experimental setting.
Using a truly experimental design in QSA context comes with
challenges as we have highlighted. The absence of an experimen-
tal design like Rubin’s does not render the identification of cau-
sality impossible. We explored a set of techniques that can be used
to assess causality and sustain causal claims also in cases in which
Rubin’s model is unsuitable.

4.2.1. Observational studies and QSA
Methods based on observational data, such as matching tech-

niques and causal regressions, under the analyzed set of assump-
tions can provide an alternative means of assessing causality in
the context of QSA. We presented a number of examples that
show that a well-defined causal regression allows for cause-effect
analysis even under the absence of an experimental design. The
“no causation without manipulation” criteria, again, would seem
to rule out causal inference from observational studies (Angrist
and Pischke 2008). Over the years, many have questioned this
standpoint. Glymour (1986), for instance, finds the statement an
unnecessary restriction, and objections can be found in the de-
mography (Bhrolcháin and Dyson 2007) and economic literature
(Angrist and Pischke 2008). Pearl (2009) argues that the essential
ingredient for causation is the capacity of some variable to re-
spond to variation in other variables, regardless of the manip-
ulation restriction imposed on the analyst. There certainly is,
according to Pearl, causation without manipulation, such as
the gravitational force of the moon that causes tides [see also
Goldthorpe (2001); Pearl (2009)]. In the systems typically under
assessment in QSA, manipulation does not rule out, then, the use
of observational studies. Moreover, observational data are increas-
ingly available and global efforts to collect and classify data are
undergoing. Applications of OS should be further tested.

Time-series techniques benefit from a vast availability of time-
series data also in the QSA domain. GC has found wide application
to study the GDP-energy-pollution nexus (Wagner et al. 2016).
When interpreting the results of GC in the context of QSA, one
should remember that the technique poorly performs in the
presence of nonlinear, contemporaneous causal systems, and its
results are ambiguous when dynamic systems with weak to mod-
erate coupling are under assessment (Sugihara et al. 2012). This
element does pose some factual limitations in the use of GC for

QSA, also given the number of interconnected systems that are
typically under scrutiny.

The applicability of CCM should be further tested for QSA, since
it would allow for the consideration of dynamic, strongly coupled
systems also under conditions of limited data availability. In the
context of sustainable energy of interest for SDG number 7, for
instance, such approach could be beneficial to test the relation-
ship between renewable energy deployment and climate-change
mitigation using the relatively limited data available for renew-
able energy sources, which have been monitored only in the last
two decades. Similarly, TE could support such assessments, since
it is easily applicable in the context of complex dynamic systems;
however, the limited application in real cases does not allow for
total appreciation of the full potential of TE for QSA at the current
stage of knowledge.

In order for cause-effect analysis techniques to be applicable for
QSA, causal explanations should not be derived with statistical
methods alone (Goldthorpe 2001). The role of the analyst in the
form of background knowledge and theories, otherwise consid-
ered a subject-matter input, is key to design a causality study for
QSA. To this end, all methods come with limitations and in all
cases the caveat of the presence of strong assumptions is valid, as
we have pointed out for each method in the previous section. In
some cases, little evidence is available to the analyst when the
claim is made that a causal model accurately estimates causal
effects, and sometimes causal models can be wrong. We hold here
the definition that of Berk et al. (2013) coined for SEM, stating that
a causal model is “a quantitative theory of how the data were
generated, in which a statistical formalization for random vari-
ables is combined with a causal account derived from subject-
matter knowledge”. For QSA, the statistical properties of the
observed data model and the assumptions need to be carefully
scrutinized before inferring causal relationships to avoid spurious
results (Hlaváčková-Schindler et al. 2007). Global tests of model fit
(e.g., the likelihood ratio �2 test) should be combined with local
tests [e.g., partial correlations and tetrad tests (Bollen and Ting
2000)], which allow for a more accurate model diagnosis and fine-
tuning (Bollen and Pearl 2013). Also, more replications of causal
models should be then combined as needed in different settings
and among different populations to strengthen the causal claims
(Brand and Thomas 2013).

4.2.2. Dynamic and temporal inconsistencies
The causal models we described typically deal with historical

data, and try to map causal mechanisms based on relationships
between inputs and outcomes that have typically matured over a
stretch of time in the past. However, the preferences of decision-
makers measured at one point in time are not fixed, and they are
not necessarily representative of future preferences. The so-called
dynamic or temporal inconsistency (Thaler 1981; Loewenstein and
Prelec 1992) refers to the apparent disagreement between deci-
sions taken or preferences expressed at a certain time, and that
change at a later stage. This incongruence of behavior determines
a situation in which plans that are made (or policy that are devel-
oped) at one point in time may not attain the same level of out-
come later (Pearce et al. 2003). This is true for the case of
individuals, and even more for the case of societies that are usu-
ally satisfied with weaker rationality and congruence conditions
than individuals (Pearce et al. 2003). In the context of QSA, the
issue of dynamic inconsistencies is especially relevant, as the tem-
poral dimension involved tends to be a longer-term future, over
which causal relationships may change. The existence of dynamic
inconsistency indicates that policy recommendations based on a
QSA that uses a causal relationship need to be re-evaluated over
time to fully account for the changes in preference over time.
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5. Outlook: causality for quantitative sustainability
assessment

The ability to identify causality between policy instruments and
sustainability performance indicators, including those listed un-
der the SDGs, provides decision-makers with a powerful tool. We
surveyed a number of cause-effect analysis techniques and their
applications in the field of sustainability (in section 3, and also see
Appendix A for a synthesis). Our review demonstrates that in the
field of QSAs causality could provide a means to understand phe-
nomena and their causes, as well as to investigate the effective
policy measure to achieve desired outcomes. The use of cause-
effect analysis techniques has important benefits also in analyz-
ing the effect of a policy option (e.g., the level of air pollution
abatement due to the introduction of road space rationing in a
city). Such techniques can be used by decision-makers to prioritize
policy options, and understand the expected outcomes and poten-
tial unintended consequences.

We used SDGs to contextualize causal research and its applica-
bility in QSA. In this context, we showed the challenges of under-
standing how various processes in the systems under study by
QSA are connected and how specific policy or management ac-
tions can help address SDGs. Our review also discussed a number
of caveats when applying cause-effect analysis techniques to QSA.
The application of cause-effect analysis techniques is still a chal-
lenge in the field of sustainable development. Existing frame-
works are confined to limited idealistic and isolated cases that are
still far from the breadth of analysis that is required by the SDGs.
Existing frameworks, as they stand, therefore, may offer limited
insights for the questions as complex as SDGs. Overcoming such
barriers would require a cross-disciplinary effort to develop an
operational framework for quantifying the sustainability conse-
quences of policy actions addressing the needs of QSA, discussed
in this review. In the meantime, it is inevitable that QSA practi-
tioners will have to make use of the imperfect information on
causality from for example, mechanistic models or from the use
of the cause-effect analysis techniques presented in this review
under the assumptions used and the limitations associated with
them.

The application of causality for QSA also poses a number of
challenges that relate to both the assumptions and the data re-
quirement. Assumptions need to be tested, and the related uncer-
tainties should be analyzed in order for a cause-effect analysis to
be valid (Maxim and van der Sluijs 2011). The results should be
carefully interpreted in light of the assumptions.

In relation to data availability, we discussed both experimental
and observational techniques. Although experimental studies are
always the preferred option, they are often impractical, and ana-
lysts may be reliant on observational studies alone. Formal exper-
iments are of limited application for many of the most pressing
questions of social relevance such as those directly related to cli-
mate change, large-scale agricultural intensification or habitat
loss (Stephens et al. 2014). When it comes to irreversible, large-
scale changes that SDGs and corresponding policy actions are
interested in, obviously, experiments are neither practical nor
desirable. Furthermore, deriving an unbiased estimate using indi-
rect approaches, such as natural experiments, comes with its own
challenges and limitations (Cucurachi and Suh 2015). Adequate
non-experimental settings are, then, required to avoid these ques-
tions remaining elusive in the absence of experimental evidence.
Sufficient survey data and time-series data are available for
regression-based causality and time-series cause-effect analysis
techniques, respectively, and new methodological developments,
such as CCM and TE, allow for dealing with causality under those
circumstances in which the analyst faces dearth of data.

Non-experimental cause-effect analysis techniques are power-
ful but do have limitations and need to accurately be interpreted
before causal claims can be safely held to the test. Robust and

unambiguous results are difficult to obtain, and many causal
claims are yet to be tested with an experimental or quasi-
experimental design. Simple correlation at times is taken as a
direct measure of the strength of the causal mechanism, or a
certain driver X is identified as determinant for a certain response
Y (e.g., international trade as a driver of biodiversity loss) without
testing the relationship using a formal cause-effect analysis tech-
nique. The latter does not exclude any complex model from pro-
viding valuable information to decision-makers, but only suggests
caution when causal claims are not supported by experimental
models or carefully designed causal models fitted on observa-
tional data with all the related assumptions and limitations.

We acknowledge that the framework of hypotheses, assump-
tions, limitations and the boundaries of the causal analysis matter
when claiming the existence of a causal relationship, or when an
analysis aims at verifying the existence of causal mechanisms.
Still, new avenues of research can open opportunities for the
development of improved cause-effect analysis techniques that
build upon the body of knowledge that we have analyzed in this
review.

We highlighted the difficulty of framing cause-effect research
at the country level, due to the limited number of countries avail-
able as a sample, and due to the sheer differences that exist
among them. A more promising level of analysis could have cities,
instead, at the core. Socio-technical transitions that work at a
single city level can be more easily compared with other cities
with similar characteristics. To this end, the phenomenon of ur-
ban experimentation (Bulkeley and Broto 2013; Rijke et al. 2013;
Voytenko et al. 2016) that has been gaining momentum in the last
years does have the potential to support change at the global level
in the context of SDGs (see also SDG number 9 on resilient cities).
New datasets are being compiled based on the local experience of
cities, and further efforts should be supported to collect and cat-
egorize this information. These data can be used to set up causal
quasi-experimental and observational designs to support decision-
making for sustainability and the SDGs.

The increased availability of data to which urban experimenta-
tion contributes joins the possibility to access and use large data
sets. The challenges to causally analyze the so-called Big Data to
reveal patterns, trends, and associations, especially related to hu-
man behavior and interactions, are enormous (Shiffrin 2016). The
task is daunting and requires efforts across multiple disciplines,
from the economics to all the sub-disciplines of the sustainability
sciences (Athey 2017). Machine learning techniques, among oth-
ers, have been suggested as a promising joint topic from which
such effort could begin (Varian 2016).

QSA sciences, such as industrial ecology, should combine the
benefits of an increased availability of data (Xu et al. 2015) with the
benefits of understanding causality. Qualitative approaches such
as causal loop diagrams (Asif et al. 2015; Laurenti et al. 2015;
Efroymson et al. 2016) should be combined with quantitative tech-
niques, and also QSA scientists should reach to other disciplines
to contribute to perfect the existing cause-effect analysis tech-
niques. Until new techniques and a new framework for causality
in QSA would be available, scientists would still have to resort
to alternative techniques (e.g., agent-based modelling) that, al-
though useful and at times sufficient for single assessments, can-
not provide a substantive basis for causal inference at the level
required by the SDGs.

In the sub-field of LCA (Hellweg and Mila i Canals 2014), causal-
ity is of particular interest in the context of the consequential
approach to LCA (Zamagni et al. 2012). Following the consequen-
tial approach, the LCA analyst defines changes in a product sys-
tem and models how the physical and social processes will be
triggered by such changes in the system (Earles and Halog 2011). In
short, consequential LCA assumes that changes to some parts of
the life cycle inventory system lead to a series of consequences
through chains of cause-effect relationships (Curran et al. 2005).
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Concepts borrowed from economic modelling, such as elasticities
of supply and demand or general and partial equilibrium models,
have been proposed in existing consequential LCA studies or have
been recommended for inclusion to simulate responses to
changes in the system (Ekvall and Andrae 2006). Practical applica-
tions that include these theories in LCA are still limited (Suh and
Yang 2014), and only recently alternative solutions have been pro-
posed, for instance using optimization techniques to anticipate
changes in a system (Duchin and Levine 2011). We add to the
research agenda of the consequential LCA community the neces-
sity to study cause-effect relationships by means of causality the-
ory and methods, thus contributing to increasing the value of the
results.

The adoption of causality in all QSAs and the necessity to con-
trol causal dynamics and mechanisms requires involvement of
experts from a variety of disciplines that can help disentangle
those mechanisms and design appropriate causal studies. Collab-
orations among multiple disciplines will help development of
new computational models, methods, and tools to tackle the var-
ious aspects of sustainability (Gomes 2009; Marvuglia et al. 2015).
Such effort will progressively allow for understanding of the in-
terconnections between SDGs and the results of QSAs beyond the
sole use of indicators (Mirshojaeian and Kaneko 2012).

Acknowledgements
This article was developed under Assistance Agreement No.

83557901 awarded by the US Environmental Protection Agency to
University of California Santa Barbara. It has not been formally
reviewed by EPA. The views expressed in this document are solely
those of the authors and do not necessarily reflect those of the
Agency. The authors thank Professor Olivier Deschenes (UCSB)
and Jessica Perkins (UCSB) for helpful comments on an earlier
version of this manuscript.

References
Abadie, A. 2005. Semiparametric difference-in-differences estimators. Rev. Econ.

Stud. 72(1): 1–19. doi:10.1111/0034-6527.00321.
Abadie, A., and Imbens, G.W. 2006. Large sample properties of matching esti-

mators for average treatment effects. Econometrica, 74(1): 235–267. doi:10.
1111/j.1468-0262.2006.00655.x.

Acaravci, A., and Ozturk, I. 2010. On the relationship between energy consump-
tion, CO2 emissions and economic growth in Europe. Energy, 35(12): 5412–
5420. doi:10.1016/j.energy.2010.07.009.

Aldrich, J. 1995. Correlations genuine and spurious in Pearson and Yule. Stat. Sci.
10: 364–376.

Allison, P. 1999. Multiple regression: A primer. Edited by P.F. Press.
Al-mulali, U., and Sab, C. 2012. The impact of energy consumption and CO2

emission on the economic and financial development in 19 selected coun-
tries. Renew. Sustain. Energy Rev. 16: 4365–4369. doi:10.1016/j.rser.2012.05.
017.

Al-mulali, U., Fereidouni, H., Lee, J.Y.M., and Sab, C.N. 2013. Exploring the rela-
tionship between urbanization, energy consumption, and CO2 emission in
MENA countries. Renew. Sustain. Energy Rev. 23: 107–112. doi:10.1016/j.rser.
2013.02.041.

Ancona, N., Marinazzo, D., and Stramaglia, S. 2004. Radial basis function
approach to nonlinear Granger causality of time series. Phys. Rev. E, 70(5):
56221. APS. doi:10.1103/PhysRevE.70.056221.

Andam, K., Ferraro, P., Pfaff, A., Sanchez-Azofeifa, G.A., and Robalino, J.A. 2008.
Measuring the effectiveness of protected area networks in reducing deforesta-
tion. Proc. Natl. Acad. Sci. 105(42): 16089–16094. doi:10.1073/pnas.0800437105.
PMID:18854414.

Andam, K.S., Ferraro, P.J., Sims, K.R.E., Healy, A., and Holland, M.B. 2010. Pro-
tected areas reduced poverty in Costa Rica and Thailand. Proc. Natl. Acad. Sci.
U.S.A. 107(22): 9996–10001. doi:10.1073/pnas.0914177107. PMID:20498058.

Ang, J. 2008. Economic development, pollutant emissions and energy consump-
tion in Malaysia. J. Policy Model. 30: 271–278. doi:10.1016/j.jpolmod.2007.04.
010.

Angrist, J.D., and Imbens, G.W. 1995. Two-stage least squares estimation of
average causal effects in models with variable treatment intensity. J. Am.
Stat. Assoc. 90(430): 431–442. [Taylor & Francis.] doi:10.1080/01621459.1995.
10476535.

Angrist, J.D., and Krueger, A.B. 1992. The effect of age at school entry on educa-
tional attainment: an application of instrumental variables with moments
from two samples. J. Am. Stat. Assoc. 87(418): 328–336. [Taylor & Francis
Group.] doi:10.1080/01621459.1992.10475212.

Angrist, J.D., and Krueger, A.B. 2001. Instrumental variables and the search for
identification: From supply and demand to natural experiments. J. Econ.
Perspect. 15: 69–85. doi:10.1257/jep.15.4.69.

Angrist, J.D., and Pischke, J.-S. 2008. Mostly harmless econometrics: An empiri-
cist’s companion. Princeton University Press.

Antonakis, J., Bendahan, S., Jacquart, P., and Lalive, R. 2014. Causality and
endogeneity: Problems and solutions. The Oxford Handbook of Leadership
and Organizations, Oxford University Press, New York. pp. 93–117.

Antweiler, W., Copeland, B., and Taylor, M. 1998. Is free trade good for the
environment? Am. Econ. Rev. 91: 877–908.

Apergis, N., and Payne, J.E. 2009. Energy consumption and economic growth in
Central America: Evidence from a panel cointegration and error correction
model. Energy Econ. 31(2): 211–216. doi:10.1016/j.eneco.2008.09.002.

Arnold, B., Khush, R., Ramaswamy, P., London, A.G., Rajkumar, P., Ramaprabha, P.,
Durairaj, N., Hubbard, A.E., Balakrishnan, K., and Colford, J.M. 2010. Causal infer-
ence methods to study nonrandomized, preexisting development interven-
tions. Proc. Natl. Acad. Sci. 107(52): 22605–22610. doi:10.1073/pnas.1008944107.
PMID:21149699.

Arun, T., Imai, K., and Sinha, F. 2006. Does microfinance reduce poverty in India?
Propensity score matching based on a national-level household data. In Eco-
nomics Discussion Paper, The University of Manchester.

Asif, F., Rashid, A., Bianchi, C., and Nicolescu, C. 2015. System dynamics models
for decision making in product multiple lifecycles. Resour. Conserv. Recycl.
101: 20–33. doi:10.1016/j.resconrec.2015.05.002.

Athey, S. 2017. Beyond prediction: Using big data for policy problems. Science,
355(6324): 483–485. doi:10.1126/science.aal4321. PMID:28154050.

Athey, S., and Imbens, G. 2006. Identification and inference in nonlinear
difference-in-differences models. Econometrica, 74(2): 431–497. doi:10.1111/j.
1468-0262.2006.00668.x.

Baek, E., and Brock, W. 1992. A general test for nonlinear Granger causality:
Bivariate model. Iowa State University and University of Wisconsin at Madison.
Working Paper.

Baiocchi, G. 2012. On dimensions of ecological economics. Ecol. Econ. 75: 1–9.
doi:10.1016/j.ecolecon.2012.01.016.

Barnett, L., and Seth, A.K. 2014. The MVGC multivariate Granger causality tool-
box: A new approach to Granger-causal inference. J. Neurosci. Methods, 223:
50–68. [Elsevier B.V.] doi:10.1016/j.jneumeth.2013.10.018. PMID:24200508.

Barnett, L., Barrett, A.B., and Seth, A.K. 2009. Granger causality and transfer
entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103: 1–10.
doi:10.1103/PhysRevLett.103.238701.

Barreca, A., Clay, K., Deschenes, O., Greenstone, M., Shapiro, J.S., and Deschenes, O.
2013. Adapting to climate change: the remarkable decline in the US
temperature-mortality relationship over the 20th century. NBER Working
Paper [January.], 46. doi:10.3386/w18692.

Barsky, R., and Kilian, L. 2004. Oil and the macroeconomy since the 1970s. NBER
Working Paper No. 10855.

Bar-Yam, Y. 1997. Dynamics of complex systems. Vol. 213. Addison-Wesley, Reading,
Mass.

Berk, R.A. 2004. Regression analysis: A constructive critique. Sage Publishing.
Berk, R., Brown, L., George, E., and Pitkin, E. 2013. What you can learn from

wrong causal models. In Handbook of causal analysis for social research.
pp. 403–424.

Bhrolcháin, M.N., and Dyson, T. 2007. On causation in demography: Issues
and illustrations. Popul. Dev. Rev. 33(1): 1–36. [JSTOR.] doi:10.1111/j.1728-
4457.2007.00157.x.

Blackman, A., and Naranjo, M. 2012. Does eco-certification have environmental
benefits? Organic coffee in Costa Rica. Ecol. Econ. 83: 58–66. doi:10.1016/j.
ecolecon.2012.08.001.

Boba, P., Bollmann, D., Schoepe, D., Wester, N., Wiesel, J., and Hamacher, K.
2015. Efficient computation and statistical assessment of transfer entropy.
Front. Phys. 3(March): 1–9. doi:10.3389/fphy.2015.00010.

Bollen, K.A. 2002. Latent variables in psychology and the social sciences. Annu.
Rev. Psychol. 53(1): 605–634. [Annual Reviews 4139 El Camino Way, P.O. Box
10139, Palo Alto, CA 94303-0139, USA.] doi:10.1146/annurev.psych.53.100901.
135239. PMID:11752498.

Bollen, K.A. 2012. Instrumental variables in sociology and the social sciences.
Annu. Rev. Sociol. 38: 37–72. [Annual Reviews.] doi:10.1146/annurev-soc-
081309-150141.

Bollen, K.A., and Pearl, J. 2013. Eight myths about causality and structural equa-
tion models. In Handbook of causal analysis for social research. Springer.
pp. 301–328.

Bollen, K., and Ting, K. 2000. A tetrad test for causal indicators. Psychol. Methods,
5(1): 3–22. doi:10.1037/1082-989X.5.1.3. PMID:10937320.

Brand, J., and Thomas, J. 2013. Causal effect heterogeneity. In Handbook of
causal analysis for social research. pp. 189–213.

Brander, M., Tipper, R., Hutchison, C., and Davis, G. 2008. Consequential and
attributional approaches to LCA: a guide to policy makers with specific ref-
erence to greenhouse gas LCA of biofuels. Econometrica Press (April).
pp. 1–14.

Brunner, P., and Rechberger, H. 2004. Practical handbook of material flow analysis.
Int. J. Life Cycle Assess. 9(5): 337–338. doi:10.1007/BF02979426.

Bruns, S., Gross, C., and Stern, D. 2014. Is there really Granger causality between
energy use and output? Energy J. 35(4): 101–134. doi:10.5547/01956574.35.4.5.

Cucurachi and Suh 373

Published by NRC Research Press

E
nv

ir
on

. R
ev

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

Sa
nt

a 
B

ar
ba

ra
 (

U
C

SB
) 

on
 0

8/
30

/1
7

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

http://dx.doi.org/10.1111/0034-6527.00321
http://dx.doi.org/10.1111/j.1468-0262.2006.00655.x
http://dx.doi.org/10.1111/j.1468-0262.2006.00655.x
http://dx.doi.org/10.1016/j.energy.2010.07.009
http://dx.doi.org/10.1016/j.rser.2012.05.017
http://dx.doi.org/10.1016/j.rser.2012.05.017
http://dx.doi.org/10.1016/j.rser.2013.02.041
http://dx.doi.org/10.1016/j.rser.2013.02.041
http://dx.doi.org/10.1103/PhysRevE.70.056221
http://dx.doi.org/10.1073/pnas.0800437105
http://www.ncbi.nlm.nih.gov/pubmed/18854414
http://dx.doi.org/10.1073/pnas.0914177107
http://www.ncbi.nlm.nih.gov/pubmed/20498058
http://dx.doi.org/10.1016/j.jpolmod.2007.04.010
http://dx.doi.org/10.1016/j.jpolmod.2007.04.010
http://dx.doi.org/10.1080/01621459.1995.10476535
http://dx.doi.org/10.1080/01621459.1995.10476535
http://dx.doi.org/10.1080/01621459.1992.10475212
http://dx.doi.org/10.1257/jep.15.4.69
http://dx.doi.org/10.1016/j.eneco.2008.09.002
http://dx.doi.org/10.1073/pnas.1008944107
http://www.ncbi.nlm.nih.gov/pubmed/21149699
http://dx.doi.org/10.1016/j.resconrec.2015.05.002
http://dx.doi.org/10.1126/science.aal4321
http://www.ncbi.nlm.nih.gov/pubmed/28154050
http://dx.doi.org/10.1111/j.1468-0262.2006.00668.x
http://dx.doi.org/10.1111/j.1468-0262.2006.00668.x
http://dx.doi.org/10.1016/j.ecolecon.2012.01.016
http://dx.doi.org/10.1016/j.jneumeth.2013.10.018
http://www.ncbi.nlm.nih.gov/pubmed/24200508
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.3386/w18692
http://dx.doi.org/10.1111/j.1728-4457.2007.00157.x
http://dx.doi.org/10.1111/j.1728-4457.2007.00157.x
http://dx.doi.org/10.1016/j.ecolecon.2012.08.001
http://dx.doi.org/10.1016/j.ecolecon.2012.08.001
http://dx.doi.org/10.3389/fphy.2015.00010
http://dx.doi.org/10.1146/annurev.psych.53.100901.135239
http://dx.doi.org/10.1146/annurev.psych.53.100901.135239
http://www.ncbi.nlm.nih.gov/pubmed/11752498
http://dx.doi.org/10.1146/annurev-soc-081309-150141
http://dx.doi.org/10.1146/annurev-soc-081309-150141
http://dx.doi.org/10.1037/1082-989X.5.1.3
http://www.ncbi.nlm.nih.gov/pubmed/10937320
http://dx.doi.org/10.1007/BF02979426
http://dx.doi.org/10.5547/01956574.35.4.5


Buhaug, H. 2010. Climate not to blame for African civil wars. Proc. Natl. Acad.
Sci. 107(38): 16477–16482. doi:10.1073/pnas.1005739107. PMID:20823241.

Bulkeley, H., and Broto, V.C. 2013. Government by experiment? Global cities and
the governing of climate change. Trans. Inst. 38: 361–375. doi:10.1111/j.1475-
5661.2012.00535.x.

Burke, M.B., Miguel, E., Satyanath, S., Dykema, J.A., and Lobell, D.B. 2009. Warm-
ing increases the risk of civil war in Africa. Proc. Natl. Acad. Sci. U.S.A.
106(49): 20670–20674. doi:10.1073/pnas.0907998106. PMID:19934048.

Caliendo, M., and Kopeinig, S. 2008. Some practical guidance for the implemen-
tation of propensity score matching. J. Econ. Surv. 22(1): 31–72. doi:10.1111/j.
1467-6419.2007.00527.x.

Campbell, D.T., and Erlebacher, A. 1970. How regression artifacts in quasi-
experimental evaluations can mistakenly make compensatory education
look harmful. Compensatory education: a national debate. Vol. 3. pp. 185–210.
[Brunner/Mazel New York.]

Cane, M.A., Miguel, E., Burke, M., Hsiang, S.M., Lobell, D.B., Meng, K.C., and
Satyanath, S. 2014. Temperature and violence. Nat. Clim. Change, 4(April):
234–235. doi:10.1038/nclimate2171.

Chandran, V., and Tang, C. 2013. The impacts of transport energy consumption,
foreign direct investment and income on CO2 emissions in ASEAN-5 econo-
mies. Renew. Sustain. Energy Rev. 24: 445–453. doi:10.1016/j.rser.2013.03.054.

Chaumont, A., Nickmilder, M., Dumont, X., Lundh, T., Skerfving, S., and
Bernard, A. 2012. Associations between proteins and heavy metals in urine at
low environmental exposures: evidence of reverse causality. Toxicol. Lett.
210(3): 345–352. doi:10.1016/j.toxlet.2012.02.005. PMID:22353377.

Chiou-Wei, S., Chen, C., and Zhu, Z. 2008. Economic growth and energy con-
sumption revisited—evidence from linear and nonlinear Granger causality.
Energy Econ. 30(6): 3063–3076. doi:10.1016/j.eneco.2008.02.002.

Chong, A., and Calderon, C. 2000. Causality and feedback between institutional
measures and economic growth. Econ. Polit. 12(1): 69–81. doi:10.1111/1468-
0343.00069.

Christakis, N.A., and Iwashyna, T.J. 2003. The health impact of health care on
families: A matched cohort study of hospice use by decedents and mortality
outcomes in surviving, widowed spouses. Soc. Sci. Med. 57: 465–475. doi:10.
1016/S0277-9536(02)00370-2. PMID:12791489.

Christman, M.C. 2008. Statistical modeling of observational data with spatial
dependencies. J. Wildl. Manage. 72(1): 23–33. doi:10.2193/2007-295.

Clark, A.T., Ye, H., Isbell, F., Deyle, E.R., Cowles, J., Tilman, G.D., and Sugihara, G.
2015. Spatial convergent cross mapping to detect causal relationships from
short time series. Ecology, 96(5): 1174–1181. doi:10.1890/14-1479.1. PMID:
26236832.

Clarke, J., and Mirza, S. 2006. A comparison of some common methods for
detecting Granger noncausality. J. Stat. Comput. 76(3): 207–231. doi:10.1080/
10629360500107741.

Cochran, W. 2009. Planning and analysis of observational studies. Vol. 232. John
Wiley & Sons.

Cochran, W.G., and Rubin, D.B. 1973. Controlling bias in observational studies:
a review. Sankhya Ind. J. Stat. Ser. A, 35(4): 417–446.

Cole, M., and Elliott, R. 2003. Determining the trade–environment composition
effect: the role of capital, labor and environmental regulations. J. Environ.
Econ. 46(3): 363–383. doi:10.1016/S0095-0696(03)00021-4.

Conti, G., Heckman, J., and Urzua, S. 2010. The education-health gradient. Am.
Econ. Rev. 100(2): 234–238. [NIH Public Access.] doi:10.1257/aer.100.2.234.
PMID:24741117.

Copeland, B., and Taylor, M. 2013. Trade and the environment: Theory and
evidence. Princeton University Press.

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J.,
Kubiszewski, I., Farber, S., and Turner, R.K. 2014. Changes in the global value
of ecosystem services. Glob. Environ. 26: 152–158. doi:10.1016/j.gloenvcha.
2014.04.002.

Costello, C., Gaines, S., and Lynham, J. 2008. Can catch shares prevent fisheries
collapse? Science, 321(5896): 1678–1681. doi:10.1126/science.1159478. PMID:
18801999.

Costello, C., Lynham, J., Lester, S., and Gaines, S. 2010. Economic incentives and
global fisheries sustainability. Ann. Rev. Resour. Econ. 2: 299–318. doi:10.1146/
annurev.resource.012809.103923.

Creutzig, F., Popp, A., Plevin, R., Luderer, G., Minx, J., and Edenhofer, O. 2012.
Reconciling top-down and bottom-up modelling on future bioenergy deploy-
ment. Nat. Clim. Change, 2(5): 320–327. [Nature Publishing Group.] doi:10.
1038/nclimate1416.

Cucurachi, S., and Suh, S. 2015. A moonshot for sustainability assessment. Environ.
Sci. Technol. 49: 9497–9498. doi:10.1021/acs.est.5b02960. PMID:26230673.

Curran, M.A., Mann, M., and Norris, G. 2005. The international workshop on
electricity data for life cycle inventories. J. Clean. Prod. 13(8): 853–862.
[Elsevier.] doi:10.1016/j.jclepro.2002.03.001.

Cutler, D.M., and Lleras-Muney, A. 2010. Understanding differences in health
behaviors by education. J. Health Econ. 29(1): 1–28. [Elsevier.] doi:10.1016/j.
jhealeco.2009.10.003. PMID:19963292.

Cutler, D.M., Lleras-Muney, A., and Vogl, T. 2008. Socioeconomic status and
health: dimensions and mechanisms. NBER Working Paper No. 14333.

Dawid, A. 2007. Counterfactuals, hypotheticals and potential responses: a phil-
osophical examination of statistical causality. In Causality and probability in
the Sciences. Edited by F. Russo and J. Williamson. pp. 503–532.

Dawid, A.P. 1979. Conditional independence in statistical theory. J. R. Stat. Soc.
Ser. B, 41(1): 1–31.

Deschenes, O. 2010. Climate policy and labor markets. Bus. Econ. 45(3): 152–157.
Deschenes, O., and Greenstone, M. 2007. The economic impacts of climate

change: evidence from agricultural output and random fluctuations in
weather. Am. Econ. Rev. 102(7): 3761–3773. doi:10.1257/aer.102.7.3761.

Deschenes, O., and Kolstad, C. 2011. Economic impacts of climate change on
California agriculture. Clim. Change, 109: 365–386. doi:10.1007/s10584-011-
0322-3.

Deschenes, O., and Moretti, E. 2009. Extreme weather events, mortality, and
migration. Rev. Econ. Stat. 91(4): 659–681. doi:10.1162/rest.91.4.659.

Deschenes, O., Greenstone, M., and Guryan, J. 2009. Climate Change and Birth
Weight. Am. Econ. Rev. Pap. Proc. 99(2): 211–217. doi:10.1257/aer.99.2.211.

Deyle, E.R., and Sugihara, G. 2011. Generalized theorems for nonlinear state
space reconstruction. PLoS ONE, 6(3): e18295. doi:10.1371/journal.pone.
0018295. PMID:21483839.

Diamond, A., and Sekhon, J.S. 2012. Genetic matching for estimating causal
effects: a general multivariate matching method for achieving balance in
observational studies. Rev. Econ. Stat. 95(3): 932–945. doi:10.1162/REST_
a_00318.

Dolado, J., and Lütkepohl, H. 1996. Making Wald tests work for cointegrated VAR
systems. Econom. Rev. 15(4): 369–386. doi:10.1080/07474939608800362.

Donald, S., and Lang, K. 2007. Inference with difference-in-differences and other
panel data. Rev. Econ. Stat. 89(2): 221–233. doi:10.1162/rest.89.2.221.

Duchin, F., and Levine, S. 2011. Sectors may use multiple technologies simulta-
neously: The rectangular choice-of-technology model with binding factor
constraints. Econ. Syst. Res. 23: 281–302. doi:10.1080/09535314.2011.571238.

Earles, J.M., and Halog, A. 2011. Consequential life cycle assessment: a review.
Int. J. Life Cycle Assess. 16(5): 445–453. doi:10.1007/s11367-011-0275-9.

Efroymson, R., Kline, K., Angelsen, A., Verburg, P., Dale, V.H., Langeveld, J.W.A.,
and McBride, A. 2016. A causal analysis framework for land-use change and
the potential role of bioenergy policy. Land Use Pol. 59: 516–527. doi:10.1016/
j.landusepol.2016.09.009.

Ekvall, T., and Andrae, A. 2006. Attributional and consequential environmental
assessment of the shift to lead-free solders (10 pp). Int. J. Life Cycle Assess.
11(5): 344–353. doi:10.1065/lca2005.05.208.

Esposito Vinzi, V., Chin, W.W., Henseler, J., and Wang, H. 2010. Handbook of
partial least squares: Concepts, methods and applications. Springer, Heidel-
berg, Dordrecht, London, New York.

Ferraro, P.J., and Hanauer, M.M. 2014. Quantifying causal mechanisms to deter-
mine how protected areas affect poverty through changes in ecosystem ser-
vices and infrastructure. Proc. Natl. Acad. Sci. U.S.A. 111(11): 4332–4337. doi:
10.1073/pnas.1307712111. PMID:24567397.

Firebaugh, G. 2008. Seven rules for social research. ERIC.
Fischer-Kowalski, M., and Swilling, M. 2011. Decoupling: natural resource use

and environmental impacts from economic growth. United Nations Environ-
ment Programme.

Fodha, M., and Zaghdoud, O. 2010. Economic growth and pollutant emissions in
Tunisia: an empirical analysis of the environmental Kuznets curve. Energy
Pol. 38: 1150–1156. doi:10.1016/j.enpol.2009.11.002.

Fowler, J.H., and Christakis, N.A. 2008. Dynamic spread of happiness in a large
social network: longitudinal analysis over 20 years in the Framingham Heart
Study. BMJ, 337: a2338. [BMJ Publishing Group Ltd.] doi:10.1136/bmj.a2338.
PMID:19056788.

Frankel, J.A., and Rose, A.K. 2005. Is trade good or bad for the environment?
Sorting out the causality. Rev. Econ. Stat. 87(1): 85–91. doi:10.1162/
0034653053327577.

Freedman, D.A. 2009. Statistical models: theory and practice. Cambridge University
Press.

Gans, W., Alberini, A., and Longo, A. 2013. Smart meter devices and the effect of
feedback on residential electricity consumption: Evidence from a natural
experiment in Northern Ireland. Energy Econ. 36: 729–743. doi:10.1016/j.
eneco.2012.11.022.

Gelman, A., and Hill, J. 2006. Data analysis using regression and multilevel/
hierarchical models. Cambridge University Press.

Gencaga, D., Knuth, K., and Rossow, W. 2015. A recipe for the estimation of
information flow in a dynamical system. Entropy 17(1): 438–470. [Multidisci-
plinary Digital Publishing Institute.] doi:10.3390/e17010438.

Geweke, J. 1982. Measurement of linear dependence and feedback between
multiple time series. J. Am. Stat. Assoc. 77(378): 304–313. doi:10.1080/01621459.
1982.10477803.

Geweke, J.F. 1984. Measures of conditional linear dependence and feedback
between time series. J. Am. Stat. Assoc. 79(388): 907–915. doi:10.1080/01621459.
1984.10477110.

Ghosh, S. 2009. Electricity supply, employment and real GDP in India: evidence
from cointegration and Granger-causality tests. Energy Pol. 37(8): 2926–2929.
doi:10.1016/j.enpol.2009.03.022.

Glymour, C. 1986. Comment: Statistics and metaphysics. J. Am. Stat. Assoc.
81(396): 964–966. [Taylor & Francis.] doi:10.2307/2289067.

Goldthorpe, J.H. 2001. Causation, statistics, and sociology. Eur. Sociol. Rev. 17(1):
1–20. [Oxford University Press.] doi:10.1093/esr/17.1.1.

Gomes, C. 2009. Why health information technology doesn’t work. Bridge,
39(4): 5.

374 Environ. Rev. Vol. 25, 2017

Published by NRC Research Press

E
nv

ir
on

. R
ev

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

Sa
nt

a 
B

ar
ba

ra
 (

U
C

SB
) 

on
 0

8/
30

/1
7

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

http://dx.doi.org/10.1073/pnas.1005739107
http://www.ncbi.nlm.nih.gov/pubmed/20823241
http://dx.doi.org/10.1111/j.1475-5661.2012.00535.x
http://dx.doi.org/10.1111/j.1475-5661.2012.00535.x
http://dx.doi.org/10.1073/pnas.0907998106
http://www.ncbi.nlm.nih.gov/pubmed/19934048
http://dx.doi.org/10.1111/j.1467-6419.2007.00527.x
http://dx.doi.org/10.1111/j.1467-6419.2007.00527.x
http://dx.doi.org/10.1038/nclimate2171
http://dx.doi.org/10.1016/j.rser.2013.03.054
http://dx.doi.org/10.1016/j.toxlet.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22353377
http://dx.doi.org/10.1016/j.eneco.2008.02.002
http://dx.doi.org/10.1111/1468-0343.00069
http://dx.doi.org/10.1111/1468-0343.00069
http://dx.doi.org/10.1016/S0277-9536(02)00370-2
http://dx.doi.org/10.1016/S0277-9536(02)00370-2
http://www.ncbi.nlm.nih.gov/pubmed/12791489
http://dx.doi.org/10.2193/2007-295
http://dx.doi.org/10.1890/14-1479.1
http://www.ncbi.nlm.nih.gov/pubmed/26236832
http://dx.doi.org/10.1080/10629360500107741
http://dx.doi.org/10.1080/10629360500107741
http://dx.doi.org/10.1016/S0095-0696(03)00021-4
http://dx.doi.org/10.1257/aer.100.2.234
http://www.ncbi.nlm.nih.gov/pubmed/24741117
http://dx.doi.org/10.1016/j.gloenvcha.2014.04.002
http://dx.doi.org/10.1016/j.gloenvcha.2014.04.002
http://dx.doi.org/10.1126/science.1159478
http://www.ncbi.nlm.nih.gov/pubmed/18801999
http://dx.doi.org/10.1146/annurev.resource.012809.103923
http://dx.doi.org/10.1146/annurev.resource.012809.103923
http://dx.doi.org/10.1038/nclimate1416
http://dx.doi.org/10.1038/nclimate1416
http://dx.doi.org/10.1021/acs.est.5b02960
http://www.ncbi.nlm.nih.gov/pubmed/26230673
http://dx.doi.org/10.1016/j.jclepro.2002.03.001
http://dx.doi.org/10.1016/j.jhealeco.2009.10.003
http://dx.doi.org/10.1016/j.jhealeco.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19963292
http://dx.doi.org/10.1257/aer.102.7.3761
http://dx.doi.org/10.1007/s10584-011-0322-3
http://dx.doi.org/10.1007/s10584-011-0322-3
http://dx.doi.org/10.1162/rest.91.4.659
http://dx.doi.org/10.1257/aer.99.2.211
http://dx.doi.org/10.1371/journal.pone.0018295
http://dx.doi.org/10.1371/journal.pone.0018295
http://www.ncbi.nlm.nih.gov/pubmed/21483839
http://dx.doi.org/10.1162/REST_a_00318
http://dx.doi.org/10.1162/REST_a_00318
http://dx.doi.org/10.1080/07474939608800362
http://dx.doi.org/10.1162/rest.89.2.221
http://dx.doi.org/10.1080/09535314.2011.571238
http://dx.doi.org/10.1007/s11367-011-0275-9
http://dx.doi.org/10.1016/j.landusepol.2016.09.009
http://dx.doi.org/10.1016/j.landusepol.2016.09.009
http://dx.doi.org/10.1065/lca2005.05.208
http://dx.doi.org/10.1073/pnas.1307712111
http://www.ncbi.nlm.nih.gov/pubmed/24567397
http://dx.doi.org/10.1016/j.enpol.2009.11.002
http://dx.doi.org/10.1136/bmj.a2338
http://www.ncbi.nlm.nih.gov/pubmed/19056788
http://dx.doi.org/10.1162/0034653053327577
http://dx.doi.org/10.1162/0034653053327577
http://dx.doi.org/10.1016/j.eneco.2012.11.022
http://dx.doi.org/10.1016/j.eneco.2012.11.022
http://dx.doi.org/10.3390/e17010438
http://dx.doi.org/10.1080/01621459.1982.10477803
http://dx.doi.org/10.1080/01621459.1982.10477803
http://dx.doi.org/10.1080/01621459.1984.10477110
http://dx.doi.org/10.1080/01621459.1984.10477110
http://dx.doi.org/10.1016/j.enpol.2009.03.022
http://dx.doi.org/10.2307/2289067
http://dx.doi.org/10.1093/esr/17.1.1


Gómez-Herrero, G., Wu, W., Rutanen, K., Soriano, M., Pipa, G., and Vicente, R.
2015. Assessing coupling dynamics from an ensemble of time series. Entropy,
17(4): 1958–1970. [Multidisciplinary Digital Publishing Institute.] doi:10.3390/
e17041958.

Good, I.J. 1963. A causal calculus. Br. Soc. Philos. Sci. 197(4869): 753–753. doi:10.
1038/197753a0.

Granger, C.W.J. 1969. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica, 37: 424–438. doi:10.2307/1912791.

Groot, R., De Fisher, B., Christie, M., and Aronson, J. 2010. Integrating the eco-
logical and economic dimensions in biodiversity and ecosystem service val-
uation. In (TEEB): Ecological and Economic Foundations. Earthscan.

Grossman, M. 2008. The relationship between health and schooling. East. Econ. J.
34(3): 281–292. [Nature Publishing Group.] doi:10.1057/eej.2008.13.

Guinée, J. 2002. Handbook on life cycle assessment operational guide to the ISO
standards. Int. J. Life Cycle Assess.

Haberl, H., Erb, K., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C.,
Gingrich, S., Lucht, W., and Fischer-Kowalski, M. 2007. Quantifying and map-
ping the human appropriation of net primary production in earth’s terres-
trial ecosystems. Proc. Natl. Acad. Sci. U.S.A. 104(31): 12942–12947. PMID:
17616580.

Hahn, J., Todd, P., and Van der Klaauw, W. 2001. Identification and estimation of
treatment effects with a regression-discontinuity design. Econometrica,
69(1): 201–209. doi:10.1111/1468-0262.00183.

Hák, T., Janoušková, S., and Moldan, B. 2016. Sustainable Development goals: A
need for relevant indicators. Ecol. Indic. 60: 565–573. doi:10.1016/j.ecolind.
2015.08.003.

Halicioglu, F. 2009. An econometric study of CO2 emissions, energy consump-
tion, income and foreign trade in Turkey. Energy Pol. 37(3): 1156–1164. doi:
10.1016/j.enpol.2008.11.012.

Hallstein, E., and Villas-Boas, S. 2013. Can household consumers save the wild
fish? Lessons from a sustainable seafood advisory. J. Environ. Econ. 66: 52–71.

Hanna, R., and Oliva, P. 2015. The effect of pollution on labor supply: Evidence
from a natural experiment in Mexico City. J. Public Econ. 122: 68–79. doi:10.
1016/j.jpubeco.2014.10.004.

Hansen, B.E. 2015. Econometrics. University of Wisconsin.
Heckman, J.J., and Vytlacil, E.J. 2001. Instrumental variables, selection models,

and tight bounds on the average treatment effect. Springer.
Heckman, J.J., Humphries, J.E., Veramendi, G., and Urzua, S.S. 2014. Education,

health and wages. NBER Working Paper No. 19971.
Hellweg, S., and Mila i Canals, L. 2014. Emerging approaches, challenges and

opportunities in life cycle assessment. Science, 344(6188): 1109–1113. doi:10.
1126/science.1248361. PMID:24904154.

Hertwich, E. 2010. Assessing the environmental impacts of consumption and
production: priority products and materials. IRP UNEP.

Hertwich, E.G., Gibon, T., Bouman, E.A., Arvesen, A., Suh, S., Heath, G.A.,
Bergesen, J.D., Ramirez, A., Vega, M.I., and Shi, L. 2014. Integrated life-cycle
assessment of electricity-supply scenarios confirms global environmental
benefit of low-carbon technologies. Proc. Natl. Acad. Sci. 112: 6277–6282.
doi:10.1073/pnas.1312753111. PMID:25288741.

Hiemstra, C., and Jones, J.D. 1994. Testing for linear and nonlinear Granger
causality in the stock price-volume relation. J. Finance, 49(5): 1639–1664.
[Wiley Online Library.] doi:10.1111/j.1540-6261.1994.tb04776.x.
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Appendix Table A1 appears on the following pages.
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Table A1. Synthesis of studies surveyed.

Author Country/Region Results

Regression-based causality
Antweiler et al. (1998) Multi-regional Environmental regulations and capital-labor endowments determine SO2

concentrations and conclude that openness and freer trade appear to be good
for the environment

Cole and Elliott (2003) Multi-regional Environmental regulations effects and capital-labor effects determine SO2

concentration. The results are not confirmed for other pollutants, such as NOx,
biochemical oxygen demand (BOD) and CO2, for which an increase in
emissions is likely to happen as a result of freer trade

Frankel and Rose (2005) Multi-regional Trade appears to have a beneficial effect on some measures of environmental
quality (e.g. concentrations of SO2 and NO2)

Managi et al. (2009) Multi-regional Trade has detrimental effects on SO2 and CO2 in non-OECD countries
Schlenker and Roberts (2009) Multi-regional Nonlinear relationship between climate change and yields
Barreca et al. (2013) United States Decline in the mortality effect of temperature extremes in the 20th century in

the United States
Deschenes et al. (2009) United States GHG have deleterious effects on fetal health, decrease birth weight and increase

the probability of low birth weight
Deschenes and Moretti

(2009)
United States Climate policy increases mortality and migration

Deschenes (2010) United States Climate change determines fluctuations in the labor markets
Deschenes and Greenstone

(2007)
United States Climate change reduces profits from agriculture

Deschenes and Kolstad (2011) California Climate change reduces profits from agriculture
Hsiang et al. (2011) Multi-regional A causal link between climate change and conflict does exist at various scales,

also for relatively richer countries
Buhaug (2010) Multi-regional There is no causal link between climate and social conflict
Hsiang and Meng (2014) Africa Climate change affect conflicts in Africa
Ruben et al. (2009) Peru and Costa Rica Fair trade improves access of farmers to credit, investments and affects their

attitude to risk
Hallstein and Villas-Boas

(2013)
United States Eco-label led to a significant decline in the range of 15%-40% of the consumption

of products with limited environmental sustainability
Miller et al. (2011) Malawi Food security is improved by the transfer of cash by the government to rural

households
Blackman and Naranjo (2012) Costa Rica Organic certification improves the environmental performance of coffee growers
Maertens et al. (2011) Senegal Significant positive impact of globalization on poverty reduction through

employment creation and labor market participation
Setboonsarng and Parpiev

(2008)
Pakistan Micro-credit initiatives reduce poverty

Arun et al. (2006) India Positive influence on health determined by new toilet construction. No impact
was found on height-for-age

Costello et al. (2008, 2010) Global Catch shares prevent the collapse of global fish resources
Linkie et al. (2008) Indonesia No evidence of a positive effect of the protected area on the reduction of

deforestation
Nelson and Chomitz (2011) Global Protected areas substantially reduced fire incidence in Latin America, Asia, and

Africa
Andam et al. (2008) Costa Rica Protected areas reduce deforestation
Ferraro and Hanauer (2014) Costa Rica Protected areas cause poverty reduction
Time-series causality using Granger-causality
Omri et al. (2014) 54 countries Bidirectional GC between foreign direct investment (FDI) and CO2 for all

countries, except for those in Europe and North Asia. The study finds a
unidirectional GC between CO2 and economic growth, except for the analyzed
countries in the Middle East, North Africa, and sub-Saharian Africa, for which
a bidirectional causality cannot be rejected

Pao and Tsai (2011a) Brazil, Russian Federation,
India, and China

CO2 emissions are highly responsive to change in both energy consumption and
GDP, but not in FDI. The authors also find a unidirectional causality from
energy consumption to emissions and a bi-directional GC between emissions
and FDI

Soytas et al. (2007) United States Income does not Granger-cause carbon emissions in the US in the long run.
Energy use Granger-cause carbon emissions

Chiou-Wei et al. (2008) Sample of newly
industrialized Asian
countries; United
States

Neutral GC between energy consumption and economic growth for United
States, Thailand, and South Korea. Unidirectional causality from economic
growth to energy consumption for Philippines and Singapore, evidence that
energy consumption may have affected economic growth for Taiwan, Jong
Kong, Malaysia, and Indonesia

Menyah and Wolde-Rufael
(2010)

United States No causality from renewable energy to CO2, and a unidirectional causality from
nuclear energy consumption to CO2 emissions
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Table A1 (concluded).

Author Country/Region Results

Apergis and Payne (2009) Central America Energy consumption and economic growth Granger-cause CO2 emissions. There
is a bivariate causality between energy consumption and CO2 emissions

Long et al. (2015) China Bivariate causality between GDP and CO2 emissions, and between GDP and coal,
gas, and electricity consumption

Acaravci and Ozturk (2010) Denmark, Germany,
Greece, Iceland, Italy,
Portugal and
Switzerland

There is evidence of a causal relationship from energy consumption, income and
carbon emissions

Halicioglu (2009) Turkey GC runs in both directions between CO2 emissions and income both in the short
term and long term

Ang (2008) Malaysia The study confirms the existence of a causality running from economic growth
to energy consumption growth, both in the short run and the long run

Chandran and Tang (2013) Malaysia, Indonesia,
Singapore, the
Philippines, and
Thailand

Causality running from economic growth to energy consumption growth

Fodha and Zaghdoud (2010) Tunisia Causality running from economic growth to energy consumption growth
Ghosh (2009) India Causality running from economic growth to energy consumption growth
Pao and Tsai (2011b) Brazil Causality running from economic growth to energy consumption growth
Hossain (2011) 9 emerging

industrialized
countries

No evidence of causality in the short and long run between urbanization and
carbon emissions

Al-mulali and Sab (2012) 19 countries Positive causal relationship between urbanization and CO2 emissions in 84% of
the cases

Al-mulali et al. (2013) MENA countries Positive causal relationship between urbanization and CO2 emissions in 84% of
the cases

Liddle and Lung (2014) 105 countries Long-run bidirectional causality is found between urbanization and electricity
consumption

Wang et al. (2016a) ASEAN countries Urbanization Granger-causes carbon emissions in the long and short run
Wang et al. (2016b) BRICS countries Urbanization Granger-causes carbon emissions in the long and short run
Young et al. (1991) Global Causal relationship between atmospheric CO2 concentrations and global sea

surface temperatures
Sun and Wang (1996) Global Global surface temperature Granger-causes global CO2 emissions
Tol and De Vos (1998) Global There is a causal relationship between global mean surface air temperature and

the atmospheric concentration of CO2

Stern and Kaufmann (2013) Global Both natural and anthropogenic forcing cause temperature change. Temperature
causes greenhouse gas concentration changes

Kang and Larsson (2013) Global Carbon dioxide concentration Granger-causes temperature, as well as that
temperature Granger-causes carbon dioxide concentration

Convergent cross mapping
Sugihara et al. (2012) California The study finds causal evidence of the influence of climate forcing on

populations of sardines and anchovies
van Nes et al. (2015) Multi-regional Marked positive feedback effect from temperature variability on GHG

concentrations
Tsonis et al. (2015) Global No measurable evidence of the link between cosmic rays and global

temperature. Significant causal effect of cosmic rays on short-term variability
in global temperatures

Luo et al. (2015) Global No measurable evidence of the link between cosmic rays and global temperature
Transfer entropy
Kumar and Ruddell (2010) North America The relationship between variability and information production leads to the

emergence of ordered organization in an ecosystem
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