UCLA Department of Statistics Papers

Title

Regression, Discriminant Analysis, and Canonical Correlation Analysis with Homals

Permalink https://escholarship.org/uc/item/6z11h4d6

Author Leeuw, Jan de

Publication Date 2009-08-20

Peer reviewed

REGRESSION, DISCRIMINANT ANALYSIS, AND CANONICAL CORRELATION ANALYSIS WITH HOMALS

JAN DE LEEUW

ABSTRACT. It is shown that the homals package in \underline{R} can be used for multiple regression, multi-group discriminant analysis, and canonical correlation analysis. The homals solutions are only different from the more conventional ones in the way the dimensions are scaled by the eigenvalues.

1. MORALS

Suppose we have m + 1 variables, with the first *m* being *predictors* (or *independent variables*), and the last one the *outcome* (or *dependent variable*). In homals [De Leeuw and Mair, 2009] we use ndim=1, sets=<u>list(1:m,m+1), rank</u>=1 which means the loss function looks like

$$\sigma(x,a,q) = (x - a_{m+1}q_{m+1})'(x - a_{m+1}q_{m+1}) + (x - \sum_{j=1}^{m} a_j q_j)'(x - \sum_{j=1}^{m} a_j q_j)$$

with q_j the quantified or transformed variables. This must be minimized over a, x, qunder the conditions that $u'x = u'q_j = 0$ and $x'x = q'_jq_j = 1$, and of course that $q_j \in \mathcal{K}_j$, the appropriate set of admissible transformations.

Write

$$Q = \begin{bmatrix} q_1 & \cdots & q_m \end{bmatrix}$$

and $b = (a_1, \dots, a_m)$. Also write $s = a_{m+1}$ and $y = q_{m+1}$. Then

$$\sigma(x,a,q) = (x-sy)'(x-sy) + (x-Qb)'(x-Qb).$$

It follows that

$$s = x'y,$$

$$b = (Q'Q)^{-1}Q'x,$$

Date: Sunday 26th April, 2009 — 1h 8min — Typeset in TIMES ROMAN.

as well as

$$x = \frac{sy + Qb}{\|sy + Qb\|}.$$

Also *x* is the normalized eigenvector corresponding with the largest eigenvalue of K = yy' + P, where $P = Q(Q'Q)^{-1}Q'$. But the non-zero eigenvalues of *K* are the squares of the non-zero singular values of

$$\begin{bmatrix} y & \mid & Q(Q'Q)^{-\frac{1}{2}} \end{bmatrix}$$

and these are the same as the non-zero eigenvalues of

$$H = \begin{bmatrix} 1 & y'Q(Q'Q)^{-\frac{1}{2}} \\ (Q'Q)^{-\frac{1}{2}}Q'y & I \end{bmatrix}$$

Define the usual regression quantities $\beta = (Q'Q)^{-1}Q'y$ and $\rho^2 = y'Q(Q'Q)^{-1}Q'y$. The eigenvalues of *H* are $1 + \rho$, $1 - \rho$, and 1 with multiplicity m - 1. An eigenvector corresponding with the dominant eigenvalue is

$$\begin{bmatrix} \rho \\ (Q'Q)^{-\frac{1}{2}}Q'y \end{bmatrix}.$$

It follows that an eigenvector corresponding with the dominant eigenvalue of *K* is $(Q(Q'Q)^{-1}Q' + \rho I)y$, and

$$x = \frac{1}{\rho \sqrt{2(1+\rho)}} (Q(Q'Q)^{-1}Q' + \rho I)y.$$

Thus

$$b = \frac{1}{\rho} \sqrt{\frac{1+\rho}{2}} \beta,$$
$$s = \sqrt{\frac{1+\rho}{2}}.$$

The vector of regression coefficient β is thus proportional to b, and the two are identical if and only if $\rho = 1$. The minimum loss function value is $1 - \rho$. Thus, ultimately, we find transformations q_j of the variables in such a way that the multiple correlation is maximized.

MORALS, CRIMINALS, CANALS

2. CRIMINALS

Again we have m + 1 variables, with the first m being *predictors* and the last one the *outcome*. But now the outcome is a categorical variable with k categories. In homals we use ndim=p, sets=<u>list(1:m,m+1), rank</u>=c(<u>rep(1,</u> m),p) where p < k. The loss function is

$$\sigma(X,A,Q,Y) = \operatorname{tr} (X - GY)'(X - GY) + \operatorname{tr} (X - QA)'(X - QA),$$

where *G* is the indicator matrix of the outcome, and where we require u'X = u'Q = 0 and $X'X = \operatorname{diag}(Q'Q) = I$. Now we must have at the minimum

$$Y = (G'G)^{-1}G'X,$$

$$A = (Q'Q)^{-1}Q'X.$$

Thus X are the normalized eigenvectors corresponding with the p largest eigenvalues of $K = G(G'G)^{-1}G' + Q(Q'Q)^{-1}Q'$. And X also are the normalized left singular vectors of

$$\begin{bmatrix} G(G'G)^{-rac{1}{2}} & \mid & \mathcal{Q}(\mathcal{Q}'\mathcal{Q})^{-rac{1}{2}} \end{bmatrix}.$$

We can find the right singular vectors as the eigenvectors of

$$H = \begin{bmatrix} I & (G'G)^{-\frac{1}{2}}G'Q(Q'Q)^{-\frac{1}{2}} \\ (Q'Q)^{-\frac{1}{2}}Q'G(G'G)^{-\frac{1}{2}} & I \end{bmatrix}.$$

Now let $U\Psi V'$ be the singular value decomposition of $(G'G)^{-\frac{1}{2}}G'Q(Q'Q)^{-\frac{1}{2}}$. Then $\begin{bmatrix} U \\ V \end{bmatrix}$ are the eigenvectors of H corresponding with the largest eigenvalues $I + \Psi$. Take the eigenvectors $\begin{bmatrix} U_p \\ V_p \end{bmatrix}$ corresponding with the p largest singular values Ψ_p . The corresponding left singular vectors are $\tilde{X} = G(G'G)^{-\frac{1}{2}}U_p + Q(Q'Q)^{-\frac{1}{2}}V_p$. Because $\tilde{X}'\tilde{X} = 2(I + \Psi_p)$ we find

$$X = 2^{-\frac{1}{2}} (G(G'G)^{-\frac{1}{2}} U_p + Q(Q'Q)^{-\frac{1}{2}} V_p) (I + \Psi_p)^{-\frac{1}{2}}.$$

Thus

$$\begin{split} Y &= 2^{-\frac{1}{2}} (G'G)^{-\frac{1}{2}} U_p (I + \Psi_p)^{\frac{1}{2}}, \\ A &= 2^{-\frac{1}{2}} (Q'Q)^{-\frac{1}{2}} V_p (I + \Psi_p)^{\frac{1}{2}}, \end{split}$$

and

$$X = (GY + QA)(I + \Psi_p)^{-1}.$$

JAN DE LEEUW

Also note that $Y'G'GY = A'Q'QA = \frac{1}{2}(I + \Psi_p)$, while $Y'G'QA = \frac{1}{2}\Psi_p(I + \Psi_p)$. The minimum value of the loss function is $p - \mathbf{tr} \Psi_p$.

Now let us compare these computations with the usual canonical discriminant analysis. There we compute the projector $P = G(G'G)^{-1}G'$ and the between-groups dispersion matrix B = Q'PQ and we solve the generalized eigenvalue problem $BZ = TZ\Lambda$, where T = Q'Q is the total dispersion. The problem is normalized by setting Z'TZ = I. Thus, using the *p* largest eigenvalues, $Q'G(G'G)^{-1}G'QZ_p =$ $Q'QZ_p\Lambda_p$. This immediately gives $\Lambda_p = \Psi_p^2$. Also $(Q'Q)^{\frac{1}{2}}Z_p = V_p$ or $Z_p = \sqrt{2}A(I +$ $\Psi_p)^{-\frac{1}{2}}$. For the group means $M_p = (G'G)^{-1}G'QZ_p$ we find $M_p = \sqrt{2}Y(I + \Psi_p)^{-\frac{1}{2}}$. Thus both Z_p and M_p are simple rescalings of *A* and *Y*. homals find the transformations of the variables that maximizes the sum of the *p* largest singular values of $(G'G)^{-\frac{1}{2}}G'Q(Q'Q)^{-\frac{1}{2}}$.

3. CANALS

Canonical correlation analysis with homals has m1 + m2 variables, and we use ndim=p,sets=<u>list(1:m1,m1+(1:m2)),rank</u>=c(<u>rep(1,m1+m2)</u>). The loss is

$$\sigma(X,A,Q) = \mathbf{tr} (X - Q_1 A_1)'(X - Q_1 A_1) + \mathbf{tr} (X - Q_2 A_2)'(X - Q_2 A_2).$$

Since our analysis of discriminant analysis in homals never actually used the fact that G was an indicator, the results are exactly the same as in the previous section (with the obvious substitutions).

In classical canonical correlation analysis the function tr $R'Q'_1Q_2S$ is maximized over $R'Q'_1Q_1R = I$ and $S'Q'_2Q_2S = I$. This means solving

$$Q_1'Q_2S = Q_1'Q_1R\Phi,$$

$$Q_2'Q_1R = Q_2'Q_2S\Phi.$$

From homals, as before,

$$A_{1} = 2^{-\frac{1}{2}} (Q'_{1}Q_{1})^{-\frac{1}{2}} U_{p} (I + \Psi_{p})^{\frac{1}{2}},$$

$$A_{2} = 2^{-\frac{1}{2}} (Q'_{2}Q_{2})^{-\frac{1}{2}} V_{p} (I + \Psi_{p})^{\frac{1}{2}}.$$

In canonical analysis $\Phi = \Psi$ and

$$R = (Q'_1 Q_1)^{-\frac{1}{2}} U_p = \sqrt{2} A_1 (I + \Psi_p)^{-\frac{1}{2}},$$

$$S = (Q'_2 Q_2)^{-\frac{1}{2}} V_p = \sqrt{2} A_2 (I + \Psi_p)^{-\frac{1}{2}}.$$

Again we see the same type of rescaling of the canonical weights.

Note that homals does *not* find the transformations that maximize the sum of the *squared* canonical correlations, which is the target function in the original CANALS approach [Young et al., 1976; Van Der Burg and De Leeuw, 1983]. Maximizing the square of the canonical correlations means maximizing a different *aspect* of the correlation matrix [De Leeuw, 1988, 1990].

REFERENCES

- J. De Leeuw. Multivariate Analysis with Linearizable Regressions. *Psychometrika*, 53:437–454, 1988.
- J. De Leeuw. Multivariate Analysis with Optimal Scaling. In S. Das Gupta and J. Sethuraman, editors, *Progress in Multivariate Analysis*, Calcutta, India, 1990. Indian Statistical Institute.
- J. De Leeuw and P. Mair. Homogeneity Analysis in R: the Package homals. Journal of Statistical Software, (in press), 2009.
- E. Van Der Burg and J. De Leeuw. Non-linear Canonical Correlation. *British Journal of Mathematical and Statistical Psychology*, 36:54–80, 1983.
- F. W. Young, J. De Leeuw, and Y. Takane. Regression with Qualitative and Quantitative Data: and Aletrnating Least Squares Approach with Optimal Scaling Features. *Psychometrika*, 41:505–529, 1976.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu