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Abstract—We introduce a new multiuser diversity concept with
which multiple transmitters can communicate without causing
significant interference to each other. The new scheme called Op-
portunistic Interference Management (OIM) significantly reduces
the feedback required in distributed Multiple-Input Multi ple-
Output (MIMO) systems, and requires an encoding and decoding
complexity that is similar to that of point-to-point communica-
tions. We show that our proposed OIM scheme achieves a per-
node throughput capacity ofΘ

“

log(T (n))
√

nT (n)

”

in a wireless network

of n nodes and communication range ofT (n) = Ω(
√

log n). This
represents a gain ofΘ(log(T (n))) compared to simple point-
to-point communication. Hence, OIM provides an alternative
approach to distributed MIMO systems with significantly less
feedback requirements among nodes, which makes this approach
far more practical than distributed MIMO systems.

I. I NTRODUCTION

Since the landmark work by Gupta and Kumar [1] on the ca-
pacity of wireless ad hoc networks, considerable attentionhas
been devoted to improving or analyzing their results. Ozguret
al. [2] demonstrated that the capacity of random wireless ad
hoc network scales linearly withn by allowing nodes to co-
operate intelligently using distributed Multiple-Input Multiple-
Output (MIMO) communications. Unfortunately, distributed
MIMO techniques require significant cooperation and feed-
back information among nodes to achieve capacity gains using
multiple antenna systems. These challenges include synchro-
nization during transmission and cooperation for decoding
which makes distributed MIMO systems less practical.

As our summary of prior work in Section II indicates,
like distributed MIMO solutions, all other approaches aimed
at increasing the capacity of wireless networks have viewed
fading and interference as major impeding factors to the
scaling of wireless ad hoc networks. Prior approaches have
attempted to combat interference and fading separately. Infor-
mation theorists define interference into three categories. The
first category is when the interference signal strength is much
stronger than that of desired signal. Under this condition [3],
the interference can be first decoded by the receiver and then
subtracted using successive interference cancelation (SIC).
Once the interference is canceled, then the desired signal can
be decoded. In some applications, the interference strength is
much weaker than the desired signal. Under this condition, the
interference is treated as noise and the signal can be directly
decoded. If the strength of interference and desired signalare

comparable, a commonly used strategy is to orthogonalize the
channel by means of time division multiple access (TDMA)
or frequency division multiple access (FDMA) to separate the
signals. Such resource allocation approach provides reliable
communications for nodes in the network but decreases the
capacity significantly.

Multiuser diversity [4] was introduced as an approach to
increase the capacity of wireless cellular networks. The main
idea behind this approach is for a base station to select a
mobile station that has the best channel condition by taking
advantage of the time-varying nature of fading channels, thus
maximizing the signal-to-noise ratio (SNR). This idea was
later extended to mobile wireless ad hoc networks [5] and
MIMO cellular networks [6].

In this paper, we introduce a new multiuser diversity
scheme, which we call Opportunistic Interference Manage-
ment (OIM), where channel fading is used proactively to
mitigate interference in the network from simultaneous trans-
missions, as long as there are enough nodes in the area. Just as
important, OIM allows a distributed MIMO system to operate
with the same level of complexity of multiple Single-Input
Single-Output (SISO) systems! OIM approach is fundamen-
taly different from distributed cooperative MIMO systems.
In distributed cooperative MIMO systems, we take advantage
of MIMO systems by extending this concept to distributed
systems. Clearly, such extension requires some modifications
at the physical layer to overcome the challenges related to dis-
tributed space-time signal processing. OIM on the other hand,
is an innovative scheduling scheme that improves concurrency
in the wireless ad hoc network by allowing multiple nodes to
communicate in the same channel and location and at the same
time. It is therefore not surprising that this scheme requires
simple point-to-point signalling for encoding and decoding.
Hence, OIM is an alternative to distribued cooperative MIMO
systems for increasing the throughput capacity of wirelessad
hoc networks with lower complexity at the physical layer. As
we will explain in more details later, this goal is achieved by
proposing a newscheduling schemefor nodes in multiuser
environments.

Section IV describes OIM scheme in details. Unlike all
prior techniques that attempt to fight individually fading and
interference as impairments in wireless channels, OIM takes
advantage of one of them (fading channel) to reduce the
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negative effect of the other one (interference). By taking ad-
vantage of multiuser diversity, OIM attempts to maximize the
SNR beyond a threshold, while minimizing the interference-
to-noise ratio (INR) below another threshold, such that the
interference signal strength is no longer significant. The result
is very effective, and constitutes a powerful technique that
achieves high throughput capacity and yet requires minimum
feedback and simple point-to-point encoding and decoding
complexity for each node. Furthermore, we have shown [7],
[8] that OIM achieves dirty paper coding capacity in wireless
cellular networks. In this paper, we extend it into wireless
ad hoc networks opportunistically because of no base station
challenge.

Section III introduces the models used in our analysis
and Section V provides the capacity analysis when OIM
is used in a wireless ad hoc network. We show that the
throughput capacity with OIM in wireless ad hoc networks
is C(n) = Θ

(

log(T (n))√
nT (n)

)

when T (n) = Ω
(√

log n
)

is
the transmission range. Our approach provides a gain of
Θ (log(T (n)) compared to the simple multi-hop point-to-
point communications under similar network assumptions. The
gain ranges fromΘ (log log n) to Θ (log n), depending on
the value of the transmission range, while the encoding and
decoding complexity of the new scheme is similar to that of
point-to-point communications. The increase of the capacity
is essentially because of the powerful nature of multiuser
diversity in wireless fading environments.

II. RELATED WORK

Ozgur et al. [2] demonstrated that the capacity of random
wireless ad hoc network scales linearly withn by allow-
ing nodes to cooperate intelligently using distributed MIMO
communications. The distributed cooperative MIMO system
is a physical layer solution for increasing concurrency in
wireless ad hoc networks. One of the main drawbacks with
this approach is the complexity requirement for implementing
distributed cooperative MIMO systems.

Knopp and Humblet [4] derived the optimum capacity for
the uplink of wireless cellular network taking advantage of
multi-user diversity. They proved that if the “best” channel
(i.e., the channel with the highest SNR in the network) is se-
lected, then all of the power should be allocated to this specific
user with good “channel” instead of using a water-filling power
control technique. Viswanath et al in [6] used a similar ideaon
the downlink channel using the so called “dumb antennas” by
taking advantage of opportunistic beamforming. Grossglauser
et al [5] extended this multi-user diversity concept to the case
of mobile ad hoc networks and took advantage of mobility of
nodes to scale the capacity.

Interference is a significant impediment to the scaling
of wireless networks and there are considerable efforts to
mitigate its negative effects. Interference alignment [9]has
been proposed to align interference to the desired signal such
that the interference no longer interferes with the signal.The
main idea in this approach is to use part of the degrees
of freedom available at a node to transmit the information

signal and the remaining part to transmit the interference.The
drawback of interference alignment is that the system requires
full knowledge of the channel state information (CSI). This
condition is very difficult to implement in practice, and the
feedback requirements of CSI are not practical for wirelessad
hoc networks. Sharif and Hassibi also introduced an approach
[10], [11] to search for the best SINR in a wireless cellular
network. The implementation of this approach requires random
beamforming and it is not clear whether this approach can be
applied to wireless ad hoc networks.

In this paper, we extend the OIM scheme we have proposed
previously for cellular networks [7], [8] to distributed nodes
in wireless ad hoc networks. Surprisingly, by fully taking
advantage of fading channels in multiuser environments, the
feedback requirement is proportional to a small value, while
the encoding and decoding scheme is very simple and similar
to the point-to-point communications. This is achieved by uti-
lizing an innovative scheduling scheme to allow concurrency
at the physical layer. OIM does not require any changes to the
physical layer while allowing multiple nodes to communicate
with each other in the same channel and location and at
the same time. The original multiuser diversity concept was
based on looking for the best channels, while our interference-
management approach is based on searching simultaneously
for the best and worse channels.

Xie and Kumar [12] were first to compute the information
theoretic capacity of wireless ad hoc networks when the
channel model is based on path loss exponentα. They showed
that for α > 6, the optimal throughput capacity ofΘ

(

1√
n

)

can be achieved by nearest neighbor multihop scheme. This
work was followed by others [13]–[15] to prove the optimality
of the results for all values ofα > 4. Finally, it was shown
that hierarchical MIMO cooperation [2] can provide optimum
capacity forα > 3. However, the multipath fading channel
model was not considered in any of these papers and only in
[2] the random phase was added to the channel model. Xue et
al. [16] were first to demonstrate that multipath fading does
not decrease the capacity and hence, the information theoretic
upper bound throughput capacity with fading isO

(

1√
n

)

.
Our analysis in this paper considers multipath fading for the
channel model and the capacity computation is based on the
generalized physical model criterion.

III. N ETWORK MODEL AND PRELIMINARIES

We assume a wireless network withn nodes distributed
randomly and uniformly in the network area. Our analysis is
based on the extended network model, where the density of
nodes is a constant orderΘ(1) and the area of the network is a
square with side length equal to

√
n. The capacity computation

is based on extending the physical model criterion in [1] by
adding fading effects in the signal-to-noise plus interference
ratio (SINR) computation. To simplify our analysis, we do
not consider a torus or a sphere shape for the network area.
However, the results on the order capacity are the same. We
assume that the node’s movement causes fading. However, this
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is a restricted movement such that any node only moves within
its transmission range and the network topology and routing
does not change with time. If the nodes have unrestricted
mobility in the entire network, we assume that the time
duration that causes the topology of the network to change is
always smaller than the duration for transporting information
from each source to its destination. Therefore, at any snapshot
during packet transmission from any source to its destination
in the network, the topology is static.

Let Xi and XR(i) denote the locations of nodei and its
receiving nodeR(i) respectively. LetPiR(i) be the received
signal power at nodeR(i). The wireless channel is subject to
fading as described below. We defineP as the transmit power
at nodei and |Xi −XR(i)| as the Euclidean distance between
nodesi andR(i). PiR(i) is modeled as

PiR(i) = |HiR(i)|2
P

(|Xi − XR(i)|)α
(1)

whereHiR(i) is a random variable that incorporates the chan-
nel fading andα is the path-loss exponent whose typical values
are between 2 and 6. Under Rayleigh fading model,HiR(i)

and |HiR(i)|2 have Rayleigh and exponential distributions
respectively.

Definition 3.1: Generalized Physical Model
In this analysis, the data rate between the transmitter-receiver
pair i andR(i) in bits/second is defined as

CiR(i) = W log
(

1 + SINRiR(i)

)

, (2)

whereW is the bandwidth and SINRiR(i) between the trans-
mitting nodeXi and the receiving nodeXR(i) is defined as

SINRiR(i) =

P
(|Xi−XR(i)|)α |HiR(i)|2

N +
∑

k 6=i
P

(|Xk−XR(i)|)α |HkR(i)|2
, (3)

whereN is the ambient noise power andXk ’s(k 6= i) are the
interfering nodes. Note that the channel model consists of large
scale fluctuation|Xi − XR(i)|−α and small scale fluctuation
|HkR(i)|2.

The throughput ofC(n) bits per second for each node
is feasible if there is a spatial and temporal scheme for
scheduling transmissions, such that, by operating the network
in a multi-hop fashion and buffering at intermediate nodes
when awaiting transmission, every node can sendC(n) bits
per second on average to its destination node.C(n) is said to
be of orderΘ(f(n)) bits/second if there existsc2 > c1 > 0
such thatc1f(n) < C(n) < c2f(n).

To simplify the analysis, we assume the node density is
equal to unity. Hence, if|S| denotes the area of space regionS,
the expected number of the nodes,E(NS), in this area is given
by E(NS) = |S|. Let Nj be a random variable defining the
number of nodes inSj . Then, for the family of variablesNj,
we have the following standard results known as the Chernoff
bound [17].

P [|Nj − |Sj || > δ|Sj |] < e−θ|Sj|, (4)

whereθ is some constant value dependingδ andδ is a positive
arbitrarily small value close to zero.

All nodes in the network are endowed with a single antenna.
In some area, there areK transmitters which want to transmit
information while the rest of the nodes around them are the
potential receivers. If the total number of transmitters and
receivers ism, then the channel matrixH is a (m−K)×K
matrix with elementshji for j ∈ [1, 2, · · · , m − K] and
i ∈ [1, 2, · · · , K] are the receiver and transmitter index re-
spectively. We consider block fading model where the channel
coefficients are constant during coherence interval ofT. Then
the received signalY(m−K)×1 can be expressed as

Y = Hx + n, (5)

wherex is K×1 transmit signal vector andn is (m−K)×1
noise vector. The noise at each of the receivers is i.i.d. with
CN (0, σ2

n) distribution.

IV. OPPORTUNISTICINTERFERENCEMANAGEMENT

(OIM)

A. Scheduling Protocol

Fig. 1 illustrates the system involved in OIM. Without loss
of generality, we assume that the receiverR(i) = i for i ∈
[1, 2, . . . , K] in Fig. 1. In this figure, solid line and dotted line
represent a strong and weak channel between transmitters and
receivers respectively.

…...
Receiver 1

…...

[ ]( )m K K- ´
H

…...
Transmitter 1 Transmitter 2 Transmitter K

Receiver 2 Receiver x Node m-K

…...
Transmitter x

…...

Fig. 1. Opportunistic Interference Management System Model

We assume that, for each node, there is always some traffic
demand to any other neighbor node at any time slot. Each
packet is either destined for a particular neighbor node or is
relayed through a route that need the node to relay.

For any time slotT, there arex potential transmitters out of
K that satisfy the OIM condition, wherex is a random variable
with mean value ofD = E(x). We will define subsequently
the probability distribution function ofx and the relationship
betweenD, K and the rest of the nodesm−K. In practice, we
selectK transmitter nodes who are close by in order to make
coordination easier. During the first phase of communication,
the K transmitters sequentially transmitK pilot signals. In
this period, all the otherm − K nodes listen to these known
messages. After the last pilot signal is transmitted, all ofthe
other nodes evaluate the SNR for each transmitter. If the
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SNR for only one transmitter is greater than a pre-determined
threshold SNRtr and below another pre-determined threshold
of INRtr for the remainingK − 1 transmitters, that particular
receiver selects that particular transmitter. In the second phase
of communication, these receivers notify the transmittersthat
they have the required criterion to receive packets during the
remaining time period ofT. If appropriate values for SNRtr
and INRtr are chosen, such that SNRtr ≫ INRtr, then the
transmitters can transmit different packets to different receivers
concurrently. The receivers only receive their perspective pack-
ets with strong signal and can treat the rest of packets as noise.
The value of SNRtr (or INRtr) can be selected as high (or low)
as required for a given system as long asm is large enough.
We will show their relationship in details later.

In the following analysis, our objective is that for any
given number of nodesm, fading parameterσ, and SINRtr

requirement, we compute the value ofD = E(x).

B. Theoretical Analysis

Let’s define SNRiR(i) and INRjR(i) as the signal-to-noise
ratio and interference-to-noise ratio between transmitter i,
other transmitterj, j 6= i and i’s corresponding receiverR(i)
respectively. Note that we only consider fading (small scale
fluctuation of channel) for the analysis of OIM as explained
earlier. The objective of OIM is to findx receiver nodes out
of m−K choices to satisfy the following criteria. Sincex is
a random variable, we use the average value ofx receiver
that satisfies OIM requirement, i.e.,D = E(x). Then for
any associate transmitteri, i ∈ 1, 2, · · · , K, i’s corresponding
receiverR(i) and other transmitterj, j ∈ 1, 2, · · ·K, j 6= i,
there has

SNRiR(i) ≥ SNRtr, i ∈, 1, 2, · · · , K, R(i) ∈ 1, 2, · · · , x

INRjR(i) ≤ INRtr, j ∈ 1, 2, · · · , K, j 6= i (6)

The above condition states that each one of thex receiver
nodes has a very good channel to a single transmitter node
and weak channel (strong fading) to the otherK − 1 receiver
nodes as shown in Fig. 1.

Then, we define SINRiR(i) as

SINRiR(i) =
SNRiR(i)

∑K−1
j=1,j 6=i INRjR(i) + 1

, (7)

and SINRtr as

SINRtr =
SNRtr

(K − 1)INRtr + 1
. (8)

respectively.
Hence, supposing we can findD = E(x) transmitter-

receiver pairs satisfying Eq. (6), then the sum rate can be

written as

Cproposed =

D
∑

i=1

log
(

1 + SINRiR(i)

)

,

=

D
∑

i=1

log

(

1 +
SNRiR(i)

∑K−1
j=1,j 6=i INRjR(i) + 1

)

,

≥ D log

(

1 +
SNRtr

(K − 1)INRtr + 1

)

,

= D log(1 + SINRtr) (9)

In the following, we will prove that for any given value of
SINRtr, there exists a relationship betweenm andD that will
satisfy Eq. (9). To prove the existence of this algorithm, we
need to prove that there areD = E(x) transmitter-receiver
pairs that satisfy Eq. (6) on average.

To prove the condition in Eq. (9), we assume that the
channel distribution is Rayleigh fading channel. However,any
time-varying channel model can be utilized for the following
derivations. Note that for a Rayleigh fading channelH distri-
bution, the probability distribution of SNR is given by [18]

p(z) =







1

σ
exp

(

− z

σ

)

, z > 0

0, z ≤ 0
(10)

where z is the SNR (or INR) value andEH(z) = σ,
VarH(z) = σ2. Equivalently,

√

σ/2 is the parameter for
Rayleigh fading distribution which shows the strength of the
fading channel.

Assuming the probability distribution function, expected
value and variance ofx are Pr(x), D = E(x) and ∆2 =
Var(x) respectively. Note that by selecting the average value
of x, in practice the actual number of nodes satisfying OIM
is either larger or smaller than this average value. Therefore,
we may decide to choose a constant value such that with a
probability arbitrarily close to zero, the actual number ofnodes
satisfying OIM criterion is always smaller than this value.By
utilizing Chebyshev’s inequality, we have

Pr(|x − D| ≥ c0∆) ≤ 1

c2
0

. (11)

This equation implies that for any givenc0, the value ofx is
smaller thanD + c0∆ with probability greater than1 − 1

c2
0
.

Clearly this probability can be selected arbitrarily closeto one.
The practical price is increase in transmission of pilot signals
during the first phase of communications. In the followings,
we will prove thatD = Θ(K).

V. CAPACITY ANALYSIS OF AD HOC NETWORKS WITH

OPPORTUNISTICINTERFERENCEMANAGEMENT

Our achievable bound for the capacity analysis is based
on the TDMA scheme that was originally introduced in [19].
In this approach, the network is divided into smaller square
cells each one with an area such that all the nodes inside
each cell are connected. Therefore, each square cell has an
area ofT 2(n)/2 which makes the diagonal length of square
equal toT (n) as shown in Fig. 2. Under this condition, if
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( )T n

( )

2

T n
L ×

n

O ( )

2

T n

( )

2

T n

Fig. 2. The cell construction in extended wireless ad hoc network

the transmission range is at mostT (n) for each hop, then all
nodes inside a cell are within cooperation range of each other.
We build a cell graph over the network that are occupied with
at least one vertex (node) [19]. We organize cells into groups
such that simultaneous transmissions within each group does
not violate the OIM condition for successful communication.
Let L represent the minimum number of cell separations
in each group of cells that communicate simultaneously. In
every 1/L2 time slots, each cell receives one time slot to
communicate. In an active cell, each transmitter node either
sends a packet to one of the nodes inside the cell or a
node in adjacent cells. Fig. 2 shows a group of active cells
with cross symbol inside the cells. Note that the distance
between interfering cells is at leastqT (n)L/

√
2 − T (n)/

√
2

for q = 1, 2, · · · , centered around any active cell.
Our analysis is based on computing SINR for two cases

of interference within a cell and interference from outsidethe
cell. We denote the former one as SINRinner and the latter as
SINRouter. Note that in general, the SNR can be computed as

SNRiR(i) =

P
|Xi−XR(i)|α |HiR(i)|2

N
≥ SNRtr. (12)

The lower bound is derived based on the OIM condi-
tion. If we assume|HiR(i)|2 ≥ c3, then c3 can be se-

lected asc3 = SNRtrN
|Xi−XR(i)|α

P . To compute the lower
bound for SINRouter, we note thatE[|HkR(i)|2] = σ and
Var[|HkR(i)|2] = σ2 because of the characteristic of expo-
nential distribution|HkR(i)|2 for any k in Eq. (10). Due to
|Xi − XR(i)| ≤ T (n) for neighbor cell, then

SINRouter =

P
|Xi−XR(i)|α |HiR(i)|2

N +
∑

k 6=i
P

|Xk−XR(i)|α |HkR(i)|2

≥
c3P

(T (n))α

N +
∑∞

q=1 8q P
(qT (n)L/

√
2−T (n)/

√
2)α

|HqR(i)|2

=

c3P
(
√

2)α

N
(

T (n)√
2

)α

+ 8P
Lα

∑∞
q=1

q
(q− 1

L )α |HqR(i)|2
(13)

where, we need to prove the second term of denominator
bounded provided thatP increases withT (n) in extended

networks. We defineSq = q
(q− 1

L )α . The sumS =
∑∞

q=1 Sq is
bounded by a constantc4 as follows [20] whenα > 2.

S =

∞
∑

q=1

1

(q − 1
L)α−1

+
1

L

∞
∑

q=1

1

(q − 1
L )α

≤ 1

(1 − 1
L )α−1

+

∫ ∞

1− 1
L

1

xα−1
dx

+
1

L

(

1
(

1 − 1
L

)α +

∫ ∞

1− 1
L

1

xα
dx

)

= c4

(14)

When L is selected sufficiently large, then the ef-
fect of interference from outside cells can be reduced to
any desired value based on Eq. (13). Next we need to
prove that S =

∑∞
q=1 Sq|HqR(i)|2 is bounded. Because

|HqR(i)|2 is a random variable, then we should prove

Pr
(

∑∞
q=1 Sq|HqR(i)|2 → ∞

)

= 0.

Let’s defineE
[

|HqR(i)|2
]

= σ, then

µ = E

[ ∞
∑

q=1

Sq|HqR(i)|2
]

=

∞
∑

q=1

SqE[|HqR(i)|2] ≤ c4σ. (15)

From Chebyshev’s inequality,

Pr

(∣

∣

∣

∣

∣

∞
∑

q=1

Sq|HqR(i)|2 − µ

∣

∣

∣

∣

∣

≥ α

)

≤ V 2

α2
(16)

where, V = Var

[

∑∞
q=1 Sq|HqR(i)|2

]

. Because ofS2
q ≤

Sq, ∀q, thenV =
∑∞

q=1 S2
qVar

[

|HqR(i)|2
]

≤ c4σ
2 provided

that |HqR(i)| are i.i.d for different values ofq in extended
network model. Clearly, ifα → ∞, then

Pr

( ∞
∑

q=1

Sq|HkR(i)|2 → ∞
)

= 0 (17)

Thus, the Eq. (13) is bounded as

SINRouter ≥ SINRtr(outer) (18)

where, SINRtr(outer) is a constant term derived from Eq. (13)
that is defined based on the communication requirements for
each node. From Eq. (8), the lower bound for SINRinner is
given by

SINRinner ≥ SINRtr = SINRtr(inner). (19)

Combining Eq. (18) and Eq. (19), SINR is given by

SINRiR(i) =
Signal

N + Interferenceouter+ Interferenceinner
,

≥ Signal

N + Signal
SINRtr(outer) − N + Signal

SINRtr(inner) − N
,

≥ 1
1

SINRtr(outer) + 1
SINRtr(inner)

= SINRtr(total)(20)

Next, we derive the relationship betweenD = E(x), K and
m = Θ(T 2(n)) in order to compute the throughput capacity
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for each cell. Based on Eq. (9), the order capacity for each
cell can be computed.

Let’s define eventA is for a receiver node that satisfies the
condition in Eq. (6), and assume that the channels between the
transmitter and receiver nodes are i.i.d. in extended network
model, then this probability can be derived as

Pr(A) =

(

K

1

)∫ ∞

SNRtr

p(z)dz

(∫ INRtr

0

p(z)dz

)K−1

.

= Ke−
SNRtr

σ

(

1 − e−
INRtr

σ

)K−1

. (21)

Note that Pr(A) is the probability of a receiver node
satisfying condition in Eq. (6) for any one of the transmitter
nodes. Our objective is to maximize this probability based
on network parameters. Maximizing Pr(A) will maximize
the number of OIM nodes which is a function of the total
number of nodesm. Note that among all network parameters
m, SNRtr, INRtr, and σ, the values ofm and σ are really
related to the physical properties of the network and are not
design parameters. Further, the parameters SNRtr and INRtr

can be replaced with a single parameter SINRtr using Eq. (8).
Rememberx is a random variable that denotes the number

of receiver nodes satisfying the OIM condition, i.e., each re-
ceiver node has a very strong channel with any one transmitter
node and very weak channel (deep fade) with all otherK − 1
transmitter nodes. Note that it is possible that two receiver
nodes satisfy OIM condition for the same transmitter. Thus,
we definey is the random variable satisfying satisfying Eq.
(6).

The event thaty = d receiver nodes satisfy the OIM
constraint satisfies binomial distribution as follows:

Pr(y = d) =

(

m − K

d

)

(Pr(A))
d
(1 − Pr(A))

m−K−d
. (22)

Note that there is some probability that for the difference
receivers, they are associated with the same transmitter. We
will use the following approach to compute the lower bound
of the capacity we achieved. We will see it does not affect the
order of the capacity. The probability that the first receiver
associated to any of the antennas at the base station is Pr(A),
and this probability for the second receiver isK−1

K Pr(A). This
probability can be similarly computed for all other receivers.
The probability for the last receiverdth to satisfy Eq. (6) is
K−d+1

K Pr(A) > 1
K Pr(A). From this argument, it is clear that

these probabilities are lower bounded as1
K Pr(A).

The lower bound for the expected value ofx is given by

D = E(x) ≥ m − K

K
Pr(A). (23)

It is noteworthy to mention again that the number of
receivers that satisfy OIM conditionx is a random variable
and D is simply the average value of this random variable.
Thus,

m ≤ K(D (Pr(A))
−1

+ 1). (24)

Note that m is upper bounded by the inverse of Pr(A).
Therefore, in order to minimizem, it is necessary to minimize

(Pr(A))
−1 given SINRtr condition in Eq. (8).

minimize (Pr(A))−1 (25)

subject to SINRtr =
SNRtr

(K − 1)INRtr + 1
(26)

This optimization problem can be rewritten as

min
Eq.(26)

(

(Pr(A))−1
)

=
1

K
min

Eq.(26)







e
SNRtr

σ

(

1 − e−
INRtr

σ

)K−1






,

(a)
=

1

K
e

SINRtr
σ min

INRtr







e(K−1) SINRtrINRtr
σ

(

1 − e−
INRtr

σ

)K−1






,

(b)
=

1

K
e

SINRtr
σ σK−1 min

INRtr

(

e(K−1) SINRtrINRtr
σ

(INRtr)
K−1

)

. (27)

We derive the equality (a) by replacing SNRtr with INRtr and
SINRtr using Eq. (8). Since in practice a successful com-
munication occurs when we have a predetermined minimum
value for SINR, therefore we fix the value of SINRtr and
attempt to optimize the above equation based on INRtr. The
limitation in (b) is derived by assumingINRtr

σ → 0 and the
fact that limx→0 (1 − exp(−x)) = x. Note that the unique
characteristic of this new scheme is to take advantage of strong
fading and clearly, under that circumstance the value ofINRtr

σ
is small.

The minimum value of

(

e
(K−1)SINRtr

σ
INRtr

INRK−1
tr

)

can be derived by

taking its first derivative with respect to INRtr and making it
equal to zero.

e
(K−1)SINRtr

σ INRtr ×
(

(K − 1)SINRtr

σ
INRK−1

tr − (K − 1)INRK−2
tr

)

= 0 (28)

The solution for INR∗tr is

INR∗
tr =

σ

SINRtr
. (29)

Then with optimum value for(Pr(A))−1 using Eq. (27), the
optimumm is derived from Eq. (24) as

m ≤ K + De
SINRtr

σ (SINRtre)
K−1

. (30)

This value is derived by replacing the optimum value of INR∗
tr

into Eq. (27) and using the limitation (b) in this equation.
Now we investigate the asymptotic behavior of the network

( i.e. m → ∞) and try to compute the maximum achievable
capacity and scaling laws for this scheme. Note thatσ rep-
resents the strength of fading channel and as this parameter
increases or equivalently the channel experience more severe
fade, then the value ofD increases. The main reason is the
fact that fading environment helps to combat interference.

Now we investigate the asymptotic behavior of the network
(i.e. n → ∞) and try to compute the maximum achievable
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capacity and scaling laws for this scheme. From Eq. (30), if
we selectD = Θ(K), then we have

m = O
(

DeK
)

= O
(

KeK
)

= O
(

e2K
)

(31)

Thus, whenm = Θ
(

T 2(n)
)

,

D = Θ(K) = Θ(log m) = Θ(log T (n)) (32)

Then by utilizing Eq. (9), the scaling laws of OIM scheme for
each cell is

E (Cproposed) = Θ (D log (1 + SINRtr))

= Θ (log T (n)) (33)

It is worthy to point out that whenσ tends to zero, this
technique cannot achieve the optimum value ofK. Equiva-
lently, this condition occur when the channel fading is not
strong. This is contrary to the current belief for point-to-point
communications that fading reduces the network capacity. In
a multi-user environment, fading actually is very helpful.Our
proposed multi-user diversity scheme also is different from
the original scheme that requires the transmitter to searchfor
the node with the best channel condition. As we have shown,
fading is very important and when the channel fading strength
increases, we can achieve better capacity performance in the
network.

Next we prove that whenn nodes are distributed uniformly
over a square area, each cell containsΘ(T 2(n)) nodes w.h.p..
The objective is to find an achievable bound using the Chernoff
bound, such that the distribution of the number of nodes in
each cell space is sharply concentrated around its mean.

Lemma 5.1:The square cells of side lengthT (n)/
√

2 for
concurrent transmission containsΘ(T 2(n)) nodes w.h.p., and

is uniformly distributed for allj cells,1 ≤ j ≤
⌈

n
(LT (n)/

√
2)2

⌉

,

whenT (n) = Ω
(√

log n
)

.
Proof: The statement of this lemma can be expressed as

lim
n→∞

P







l

n
(LT (n)/

√

2)2

m

⋂

j=1

|Nj − E(Nj)| < δE(Nj)






= 1, (34)

whereNj andE (Nj) are the random variables that represent
the number of nodes in the square cell with diagonal distance
of T (n) centered around cellj and the expected value of this
random variable respectively, andδ is a positive arbitrarily
small value close to zero.

From the Chernoff bound in Eq. (4), for any given
0 < δ < 1, we can findθ > 0 dependingδ such that
P [|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj). Thus, we can con-
clude that the probability that the value of the random variable
Nj deviates by an arbitrarily small constant value from the
mean tends to zero asn → ∞. This is a key step in showing

that when all the events
⋂

‰

n

(LT(n)/
√

2)2

ı

j=1 |Nj − E(Nj)| <
δE(Nj) occur simultaneously, then allNj ’s converge uni-
formly to their expected values. Utilizing the union bound,
we arrive at

P

2

6

6

4

‰

n
(LT (n)/

√

2)2

ı

\

j=1

|Nj − E(Nj)| < δE(Nj)

3

7

7

5

≥ 1 −

‰

n
(LT (n)/

√

2)2

ı

X

j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1 −
‰

n

(LT (n)/
√

2)2

ı

e−θE(Nj). (35)

Given thatE(Nj) = T 2(n)
2 , then we have

lim
n→∞

P







l

n
(LT (n)/

√

2)2

m

⋂

j=1

|Nj − E(Nj)| < δE(Nj)







≥ 1 − lim
n→∞

⌈

n

(LT (n)/
√

2)2

⌉

e−θT 2(n)/2 (36)

If T (n) ≥
√

2 log n/θ, limn→∞
ne−θT 2(n)/2

T 2(n) → 0, which
completes the proof.

Next we discuss the routing scheme to achieve the achiev-
able lower bound capacity which is similar with the routing
scheme in [20]. We extend this routing scheme from the
dense-network model into the extended-network model to
accommodate fading. According to the model, each node
i, 1 ≤ i ≤ n, generates data packets at a rateC(n) with each
destination chosen as the node nearest to a randomly chosen
locationYi. Denote byXdest(i) the node nearest toYi, and by
Li the straight-line segment connectingXi andYi (see Fig. 3).
The packets generated byXi are forwarded towardXdest(i)

in a multi-hop fashion, from cell to cell in the order that they
are intersected byLi. In each hop, the packet is transmitted
from one cell to the next cell intersectingLi. Any node in
the cell can be chosen as a receiver. Finally, after reachingthe
cell containingYi, the packet will be forwarded toXdest(i)

in the next active slot for that cell. This can be done because
Xdest(i) is within a range ofT (n) to any node in that cell.
There is a bound on the number of routes each cell needs to
serve, which means we bound the probability that a line will
intersect a particular cell.

For completeness, we present the following two lemmas for
the extended network.

Lemma 5.2:For every lineLi and cellSk0,j0 ,

Pr{Line Li intersectsSk0,j0} = p = O

(

T (n)√
n

)

(37)

Proof: We defineSk0,j0 as the cell which is contained in
a disk of radiusT (n)/2 centered atD as shown in Fig. 3.
SupposeXi is at distancex from the disk. We extend the two
tangent lines originating fromXi equally such that|XiA| =
|XiB| and |XiC| =

√
2n, whereC is the mid-point ofAB.

ThenLi intersectsSk0,j0 only if Yi is in the shaded area. Its
area is less than the minimum ofn and the area of the triangle,

which is
√

2n ×
√

2n T (n)
2√

(x+T (n)/2)2−(T (n)/2)2
< nT (n)/x.
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dx

n

Fig. 3. Routing scheme proof

The location ofXi is uniformly distributed, therefore, the
probability density function thatXi is at distancex from the
disk is a ring that is bounded byO

(

x+T (n)/2
n dx

)

. Hence,

Pr{Line Li intersectsSk0,j0},

= O

(

1

n

∫

√
2n

T (n)/2

(min(nT (n)/x, n))

(

x + T (n)/2

n

)

dx

)

,

= O

(

T (n)√
n

)

. (38)

Based on the above lemma, we can show the following
uniform bound on the number of routes served by each cell.

Lemma 5.3:It can be proved that

lim
n→∞

Pr

(

sup
(k,j)

{Number of linesLi intersectingSk,j}

= O
(√

nT (n)
)

)

= 1. (39)

Proof: First we derive the bound for the number of
routes served by one particular cellSk0,j0 . Define i.i.d. random
variableIi, i ≤ i ≤ n, as follows.

Ii =

{

1, if Li intersectsSk0,j0

0, if not
(40)

Let Pr(Ii = 1) = p ∀i, wherep is defined in Lemma 5.2.
DenoteZn the total number of routes served bySk0,j0 . Then
Zn := I1+I2+· · ·+In. Using Chernoff bound, for all positive
values ofb anda, Pr(Zn > b) ≤ E[eaZn ]

eab . Since1 + x ≤ ex,
we have

E[eaZn ] = (1 + (ea − 1)p)n ≤ exp(n(ea − 1)p),

= O(exp((ea − 1)
√

nT (n))). (41)

Now by choosingb = c
√

nT (n)) for any constantc > 1,
we get Pr(Zn = Ω(

√
nT (n))) = O(exp(−√

nT (n))) if a is
small enough.

Thus by the union bound, we have

Pr
(

Some cell intersectsΩ(
√

nT (n)) lines
)

≤
∑

k,j

Pr(Cell Sjk intersectsΩ(nT (n)) lines )

= O

(

n

T 2(n)
exp

(

−√
nT (n)

)

)

(42)

The right hand side tends to zero for any value ofT (n).
From earlier discussion, we know that there exists a trans-

mission schedule such that in everyL2 (L is a constant)
time slots, each cell receives one time slot to transmit at rate
CproposedW bits/second as shown in Eq. (33) with maximum
transmission distanceT (n). So the rate at which each cell
can transmit islog (T (n))W/L2. From Lemma 5.3, each cell
needs to transmit at rateO (C(n)

√
nT (n)) whereC(n) is the

throughput capacity of the network. This can be accommo-
dated by all cells if

C(n)
√

nT (n) = Θ
(

log (T (n))W/L2
)

(43)

Note that in each cell, the traffic passing through that cell
can be handled by any designated node in that cell. The
following theorem describes the main result of this paper.

Theorem 5.4:In extended wireless ad hoc networks, the
unicast throughput capacity in multipath fading environment
with multi-hop communication when nodes utilize OIM is

C(n) = Θ

(

log (T (n))√
nT (n)

)

, (44)

whereT (n) = Ω
(√

log n
)

.
Next theorem presents the throughput capacity of this net-

work in the absence of OIM.
Theorem 5.5:In extended wireless ad hoc networks, the

unicast throughput capacity with multi-hop point-to-point
communication is

C(n) = Θ

(

1√
nT (n)

)

, (45)

whereT (n) = Ω
(√

log n
)

.
The proof procedure for this theorem is very similar to that

of Theorem 5.4 except that we do not consider the OIM effect
in Eq. (6). Also note that because there is no OIM, there is
only a single transmission in each cell.

When T (n) = Ω
(√

log n
)

, C(n) = Θ
(

log log n√
n log n

)

for

fading channel utilizing OIM withΘ(log log n) gain compared
to point-to-point communications and whenT (n) = Θ (

√
n),

C(n) = Ω
(

log n
n

)

for fading channel utilizing OIM with

Θ(log n) gain compared to point-to-point communications.
The capacity of these two schemes are illustrated in Fig. 4.

Next figure demonstrates theoretical and simulation results
for the capacity of wireless ad hoc networks with and without
OIM. The results clearly show that our theoretical results
matches simulation results. The simulation has been done with
104 nodes in the network. Note that by increasingσ, or by
decreasing SINRtr or transmission rangeT (n), the throughput
capacity increases as predicted by our analysis.
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Fig. 4. The throughput capacity with and without OIM in extended wireless
ad hoc network with fading channel
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Fig. 5. The throughput capacity simulation with and withoutOIM as a
function of σ, SINRtr, andT (n).

VI. CONCLUSION

We introduced a new scheme called Opportunistic Inter-
ference Management (OIM) that allows multiple nodes to
communicate cooperatively with each other with minimum
feedback requirements. The new scheme reduces the encoding
and decoding complexity of this cooperation to that of simple
point-to-point communications. The new technique is an alter-
native to distributed MIMO systems, but with very practical
feedback requirements. This scheme takes advantage of fast
fluctuations of the channel due to the fading environment. We
have also proved that increasing fading actually enhances the
performance of the OIM scheme and increases the capacity
of wireless ad hoc networks significantly compared to simple
point-to-point communications.
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