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ABSTRACT OF THE DISSERTATION 

 

Fabrication and Characterization of Lithographically Patterned Nanostructured Mesoscale 

Optical Materials 

 

By 

 

Han Wai Millie Fung 

 

Doctor of Philosophy in Chemistry 

 

 University of California, Irvine, 2019 

 

Professor Robert Corn, Chair 

 

 

 

This dissertation presents the study of lithographically patterned nanostructured 

mesoscale optical materials with potential applications in biomedical devices, chemical sensing, 

and energy storage. We describe the fabrication and characterization of two types of 

nanostructured mesoscale surfaces: periodic nanocone arrays and diffraction gratings. The first 

part of the dissertation focuses on our research on periodic nanocone arrays. Using a straight-

forward fabrication process, periodic nanocone arrays are created through oxygen plasma etching 

of hexagonally close-packed polystyrene bead monolayers on polymer surfaces. The periodicity 

and the height of the nanocone arrays are controlled by the polystyrene bead diameter and the 

overall etching time, due to the differential etching rates of the bead and the polymer surface 

underneath. These nanocone arrays exhibit broadband antireflectivity over a wide spectral range 

(450 – 800 nm) at various angles of incidence (8° ≤ θ ≤ 67.5°). In Chapter 2, we present the 

interesting electrochemically modulated optical properties shown by periodic nanocone arrays 

composed of the electroactive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). 

Electrochemical modulation of the oxidation state of PEDOT nanocone arrays was used to 
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change both its optical absorption (electrochromism) and reflection (electroreflectivity). In 

Chapter 3, we demonstrate that nanocone arrays modified with a nanostructured zinc oxide 

(ZnO) thin film on the surface exhibited a very low broadband reflectivity of less than 0.1% at a 

wide range of incident angles. The ultra-antireflective ZnO-coated nanocone array surfaces also 

exhibited an enhanced photoreactivity for the oxidative degradation of methylene blue, 

suggesting their potential as self-cleaning antireflective surfaces. The final chapter of this 

dissertation shifts focus to mesoscale diffraction gratings. Electrodiffractive and electrochromic 

properties were investigated from a novel two-component composite nanostructured 

electrodeposited grating that incorporated both ZnO and either tungsten oxide (WO3) or PEDOT. 

The sequential electrodeposition of these two materials through a photopatterned photoresist 

layer onto a fluorine-doped tin oxide (FTO) coated glass substrate created a grating structure that 

exhibited optical diffraction that could be modulated electrochemically. While the 

nanostructured ZnO is non-absorbing, its high refractive index and large surface area redirect 

light into the electrochromic grating and create a four-fold enhancement in the grating’s 

electrodiffractive response. 
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Chapter 1 

Introduction 

 

 

 

 

 

 

 

1.1 Dissertation Overview 

The plethora of unique optical effects presented by nanostructured materials have led to 

applications in several fields such as biomedical devices,1-4 chemical sensing,5-8 and energy 

storage.9-12 For example, biomolecule-functionalized gold nanoparticles have long been used in 

ultrasensitive surface plasmon-based biosensing schemes.13-16 In addition, sub-wavelength 

silicon nanopillars are often incorporated in high-efficiency solar panels to minimize the energy 

lost through reflection.17-21 In recent years, however, there has been increased interest in 

examining the collective effects of nanomaterials at the mesoscale dimensions.22-23 The 

mesoscale ranges from the nanometer (~10 nm) to the micrometer (~10 µm) dimensions. This is 
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the domain where ensemble effects and properties relevant to macroscopic phenomena emerge, 

and generally can no longer be described by atomic and molecular behavior alone. At the 

mesoscale, defects, interfaces, and heterogeneous structures are common, and these collective 

interactions can result in novel properties that are not found in the nano- or macroscale 

dimensions alone. Mesoscale materials are often synthesized via the assembly of atomic or 

nanoscale building blocks. Examples include composite materials, optical metamaterials, self-

assembled nanoparticles, and biological membranes.24-28 

The interest in nanostructured mesoscale materials has called for the development of 

simple, inexpensive, and high-throughput processes for the fabrication of arrays composed of a 

large number of materials. While electron beam lithography (EBL) can be used to create 

nanostructures on the scale of tens to hundreds of microns,29-30 the time and cost required to 

fabricate arrays over larger areas (on the squared cm scale) using EBL is not feasible. 

Alternatively, patterned nanostructures have been fabricated using methods such as nanochannel 

glass replica membranes, colloidal lithography, and evaporative self-assembly.31-34 The Corn Lab 

has presented novel methods to create a variety of nanostructured surfaces over large areas (on 

the squared cm scale) via a combination of colloidal lithography, oxygen plasma etching, 

photolithography, and electrochemistry.4, 35-38  

In this dissertation, we describe the interesting optical effects exhibited by large-area 

nanocone array surfaces and two-component composite diffraction gratings that exhibit both 

nanoscale and mesoscale dimensions. In Chapter 2, we discuss the broadband electrochemically 

modulated reflectivity of sub-wavelength electroactive nanocone arrays. Next, Chapter 3 details 

the fabrication and characterization of ultra-antireflective electrodeposited composite nanocone 

arrays. Finally, Chapter 4 describes the fabrication of mesoscale composite diffraction gratings 
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that exhibit optical coupling between a non-absorptive high refractive index material and an 

absorptive host material.  

 

1.2 Broadband Antireflective Nanocone Array Surfaces 

Antireflective coatings can reduce reflection and increase the quality of optical systems. 

They are found in a variety of applications ranging from camera manufacturing, flat screen 

displays, high performance lenses, and photovoltaic devices. For example, antireflective surfaces 

on solar cells can improve their efficiency as less light is lost from reflection. The basic concept 

of reflectivity can be explained by a transition in the medium in which light is travelling. The 

medium (glass, water, air, and others) is characterized optically by the refractive index (n) which 

quantifies the speed of light in the current medium with respect to the speed of light in vacuum. 

As light travels, our eyes can spot an optical disturbance if there is a change in refractive index. 

The Fresnel equations represent the basic mathematical model of reflectivity in relation to the 

refractive indices of the media39. At normal incidence, the intensity of the light reflected (R) is 

described by Equation 1:  

 

 

                                                𝑅 =  [
𝑛1− 𝑛2

𝑛1+𝑛2
]

2
                                                          (1)                                             

 

 

where n1 = refractive index of air 

n2 = refractive index of the surface 

When n1 = n2, R = 0, indicating reflection is completely suppressed.  
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To improve antireflective surfaces, researchers have looked to nature for inspiration. Periodic 

nanostructures are commonly found in nature, and their unique properties have inspired scientists 

to create biomimetic nanostructures for practical applications. For example, moths possess 

cornea that are 0.1% reflective in the visible spectral range. The low reflectivity of the corneal 

surface allows for improved light transmission so that moths can see better in the dark. Scanning 

electron microscopy (SEM) demonstrates that the corneal surface of moth eyes are comprised of 

cone-like structures with sub-wavelength height protuberances, typically ~200 nm in diameter 

and ~300 nm apart from each other.39,40 

The broadband antireflective properties of these nanocone structures are attributed to the 

gradual refractive index change between air and the surface. In this case, the reflectivity of 

nanocone array surface can be viewed as a resultant of an infinite series of reflection at each 

incremental change in refractive index at various depths of each individual nanocone. If there is 

an optical distance of  
𝜆

2
  between the incident light at various depths of the nanocone, there will 

be destructive interference, and reflectivity will be suppressed.41,42 

Multiple fabrication methods have been developed to replicate biomimetic nanocone 

arrays. Notably, “top-down” technologies, such as electron-beam etching and nanoimprint 

lithography, have been applied to fabricate periodic nanocone arrays. Although these techniques 

allow precise control of the nanocone array dimensions, these methods are costly, slow, and very 

limited in the obtainable nanostructured areas (typically on the square µm scale). Alternatively, 

"bottom-up" method combining colloidal lithography and reactive ion etching has also been 

explored.43,44 In this method, a colloidal monolayer is used as an etching mask, which allows for 

fabrication of nanostructured arrays on a larger scale.  

Recently, the Corn group developed a simple, two-step method to fabricate two-
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dimensional, periodic nanocone arrays on flexible Teflon films over large surface areas (on the 

square cm scale). As shown in Figure 1.1, in our approach, oxygen plasma etching of a colloidal 

monolayer of polystyrene (PS) beads on a Teflon film is employed. The simultaneous 

competitive differential etching of the PS beads and the Teflon is responsible for creating the 

nanocone arrays. 

 

 

Figure 1.1. Schematic of the two-step fabrication process7. a) Formation of a polystyrene (PS) 

bead monolayer on a flexible Teflon film via spincoating. b), c) Formation of nanocone arrays via 

simultaneous plasma etching of PS beads and Teflon film. d) Vapor deposition of gold thin film 

on the Teflon nanocone array. e) The flexible gold-coated Teflon nanocone array surface appears 

black visually. 

 

 

 

In this versatile fabrication scheme, PS bead diameter and etching time control the 

periodicity and height, respectively, of the Teflon nanocone arrays. Subsequent modification of 

these nanocone arrays with a plasmonic material allow for the tunability of the surface’s optical 

properties. For example, after 50 nm of gold was vapor deposited onto the Teflon nanocone 

arrays, a combination of diffractive scattering loss and localized plasmonic absorption attributed 

to the gold nanocone arrays’ reflectivity of less than 1% over a wide spectral range (400–900 

nm) at a wide range of incident angles (0–65°).36 In Chapter 2, we present the interesting 

electrochemically modulated optical properties shown by periodic nanocone arrays composed of 

the electroactive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Then, Chapter 3 

describes ultra-antireflective ZnO-coated nanocone array surfaces that exhibit a very low 
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broadband reflectivity of less than 0.1% at a wide range of incident angles. 

 

1.3 Optical Enhancement using Zinc Oxide 

Zinc oxide’s (ZnO) well-documented optical properties have been utilized for a variety of 

light-based applications. For example, its wide band gap (3.37 eV) has made ZnO a popular 

semiconductor material for photosensitized dyes with enhanced photovoltaic efficiency.45-47 In 

addition to its semiconductor capabilities, ZnO has been observed to enhance the optical 

properties within various systems. ZnO was reported to improve the light trapping capabilities of 

solar cells both as a thin film on an absorbing material48 and as a nanopatterned surface.49-50 

In our lab, we create nanostructured ZnO films on nanocone arrays and micron size gratings to 

create broadband ultra-antireflecive surfaces and enhanced electrochemically modulated 

diffraction gratings, respectively. These mesoscale structures present striking optical effects: 

while ZnO has no absorptive properties itself, it seems to enhance those of the host material 

beneath. As discussed in Chapters 3 and 4, we believe the enhanced optical effects observed in 

composite nanocone arrays and diffraction gratings are a result of optical coupling between the 

nanostructured ZnO and absorptive host material underneath. 

 

1.4 Electrochemically Modulated Optical Properties 

Electrochromic materials have the ability to change their optical properties as a result of 

redox reactions induced by an electric field charge intercalation.51-53 With the ability to modulate 

transmittance, absorbance, and reflectivity, electrochromic materials have found applications in 

the development of optical devices such as smart windows, anti-glare displays, and sensors.54-58 



7 

 

Typically, the switching between redox states results in the generation of different visible region 

electronic absorption bands, thus a color change is observed upon an applied electric field.51-53 

Both organic and inorganic compounds have been utilized as electrochromic materials, but we 

will focus on the organic conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and 

the inorganic material tungsten oxide (WO3) in this dissertation. PEDOT has been widely studied 

due to its high stability, moderate band gap, and low reduction potential. Typically, PEDOT 

undergoes a color change between a dark blue color in its neutral state and a lighter blue color in 

its oxidized state.59-62 As seen in Figure 1.2, the absorption band of an electrodeposited PEDOT 

thin film shifts under different applied potentials. This is responsible for the visible color 

changes of the film, as shown in the photos of Figure 1.2.  

 

 

Figure 1.2. Electrochromic behavior of PEDOT thin films. UV-Vis absorption spectra of PEDOT 

thin films removed from solution after 20 s under potentiostatic control at three potentials: −1.0 V 

(blue spectrum), 0.0 V (black spectrum) and +1.0 V (red spectrum) vs. Ag/AgCl. The two inserted 

photographs show the different colors of PEDOT at −1.0 V (dark-blue/black) and +1.0 V (blue). 
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Similarly, WO3 has also been one of the most extensively studied electrochromic 

materials due to its highly desired physical properties: strong coloration contrast, fast color 

switching kinetics, and stability. The optical effect is created through an electrochemical ion 

intercalation and redox process expressed in Equation 2:  

 

                                                          WO3 + xM+ + xe- ↔ MxWO3                                              (2) 

where M+ denotes intercalated cations 

 

Under the application of an external electric field, the ions move into and out of WO3 and 

a color change is observed. Since the edge- and corner-sharing WO6 octahedra in WO3 form 

periodic structures with openings in interstitial sites, ion motion and intercalation into WO3 is 

made possible. When WO3 is cathodically charged, intercalated cations M+ (typically small ions 

such as H+ or Li+) are compensated by injected electrons, which reduce tungsten cations from 

W6
+ to W5

+. This leads to a change in electron density of WO3, causing a shift in its band gap 

and optical absorption. As a result, WO3 transforms from a transparent/pale-yellow color to a 

blue color upon reduction.54, 63-65 

While most research has focused on the tunability of the transmittance of PEDOT of 

WO3 thin films for electrochromic surfaces, in Chapter 2, we explore the electrochemical 

modulation of reflectivity of a nanostructured PEDOT surface. By combining the electrochromic 

nature of PEDOT and the antireflective nature of sub-wavelength nanocone arrays, we fabricated 

and characterized nanostructured surfaces with broadband antireflectivity that could be 

controlled by electrochemical modulation. Then, in Chapter 4, we discuss electrochemically 

modulated diffraction in mesoscale electrodeposited PEDOT and WO3 gratings. 
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1.5 Diffraction Gratings for Electrodiffraction Measurements 

In Chapter 4, we shift our focus from nanocone arrays to mesoscale electroactive 

diffraction gratings in order to measure electrochemically modulated diffraction. Using a 

straight-forward fabrication process that combines photolithography and electrochemistry, we 

are able to create diffraction gratings with micron wide, centimeter long stripes with nanoscale 

heights. As shown in the schematic in Figure 1.3, a layer of positive photoresist in spincoated 

onto a conductive fluorine-doped tin oxide (FTO) glass substrate. Then, the photomask with 

micron wide chromium lines and glass spacings is placed flushed onto the substrate. The 

photoresist is exposed through the photomask using UV light, and the substrate is patterned and 

developed. Next, electrodeposition is performed to create a patterned surface composed of a 

variety of organic and inorganic materials. As long as the surface remains conductive, 

electrodeposition can be performed multiple times to create composite diffraction gratings. 

Finally, the photoresist is removed using acetone. 

 

 

Figure 1.3. The fabrication scheme for creating large scale (on the squared centimeter scale) 

diffraction grating surfaces using a combination of photolithography and electrodeposition. 
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As electrodeposition is an inexpensive and versatile method for creating squared 

centimeter scale surfaces composed of a variety of organic and inorganic materials,37,66-68 our lab 

has taken advantage of creating multi-component composite diffraction gratings. These 

diffraction gratings with both nanoscale and mesoscale dimensions exhibit unique optical 

properties, as they will be utilized to examine enhanced optical effects due to optical coupling 

between the various components. 

In Chapter 4, we quantitatively characterized the optical coupling between ZnO (a high 

refractive index, but non-absorptive material) and an absorptive material (either tungsten oxide 

(WO3) or poly(3,4-ethylenedioxythiophene) (PEDOT)). Electrodiffractive and electrochromic 

properties were investigated from a novel two-component composite nanostructured 

electrodeposited grating that incorporated both ZnO and either WO3 or PEDOT. The sequential 

electrodeposition of these two materials through a photopatterned photoresist layer onto a 

fluorine-doped tin oxide (FTO) coated glass substrate created a grating structure that exhibited 

optical diffraction that could be modulated electrochemically.  
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Chapter 2 

Fabrication of PEDOT Nanocone Arrays 

with Electrochemically Modulated 

Broadband Antireflective Properties 

 

 

2.1 Introduction 

 
Periodic nanocone arrays are unique nanostructured surfaces with very useful 

antireflective and hydrophobic properties that have been incorporated into both natural systems, 

such as moths’ eyes and lotus leaves,1–3 and also modern technological devices, such as solar 

cells and self-cleaning windows.4–6 Recently, we have developed a very simple method for 

fabricating polymeric two-dimensional hexagonal nanocone arrays over large areas (square cm) 

by the simultaneous oxygen plasma etching of a colloidal monolayer of polystyrene (PS) beads 

and an underlying polymer substrate. For the case of flexible fluorinated ethylene propylene 

(FEP) substrates, we fabricated FEP nanocone arrays and then coated them with a 50 nm gold 

thin film to create a plasmonic nanocone surface that was highly antireflective7 and also 
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exhibited tunable superhydrophobic properties.8 In this paper, we demonstrate that our nanocone 

array fabrication strategy can be used to create nanocone arrays from thin films of the 

electroactive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Thin PEDOT films have 

been studied extensively for their transmissive electrochromic properties;9–13 we show here that 

PEDOT nanocone arrays formed by the oxygen plasma etching of an electrodeposited PEDOT 

thin film coated with a hexagonally closed packed (hcp) PS bead monolayer exhibit excellent 

broadband antireflectivity. Moreover, the oxidation state of the PEDOT nanocone array film can 

be modulated electrochemically and remains fixed when removed under potentiostatic control. 

Both the absorption spectrum and reflectivity spectrum are found to vary with film oxidation 

state, but each in a different manner due to different optical effects. Changes in the reflectivity 

spectrum of the PEDOT nanocone arrays with oxidation state were completely opposite to those 

observed from unmodified PEDOT thin films; this difference is attributed to the unique 

dependence of the PEDOT nanocone array reflectivity on the complex interfacial refractive 

index. 

 

2.2 Experimental Section 

2.2.1 Fabrication of PEDOT Thin Film 

The fluorine-doped tin oxide coated glass (FTO-glass; ~7 Ω/sq, Sigma-Aldrich) was 

degreased by sonication in deionized water, acetone and methanol and then dried with a nitrogen 

jet. Additionally, FTO glass was treated by oxygen plasma cleaning (PDC-32G, Harrick Plasma) 

for 3min. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, 1.0 wt. % in 

H2O, Sigma-Aldrich) was mixed with isopropyl alcohol and ethylene glycol (ratio 85:10:5) to 

enhance electronic conductivity and improve wetting.1,2 Uniform and thin PEDOT:PSS layer was 
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coated on FTO by spincoating at 3000 rpm for 20 s. The sample was dried for 30 min on a hot 

plate at 130°C. Chronoamperometry was used to electrodeposit PEDOT films on the 

PEDOT:PSS coated FTO surface. The PEDOT electrodeposition were performed with a 

potentiostat (Autolab) at a constant potential of +1.0 V for 75 s to make 450 nm thick film with a 

Pt counter electrode, a Ag/AgCl reference electrode, and an aqueous electrolyte consisted with 

0.02 M 3,4-ethylenedioxythiophene (EDOT, 97%, Sigma-Aldrich), 0.1M sodium dodecyl sulfate 

(SDS) and 0.1 M lithium perchlorate (LiClO4, 99.5%, Alfa). 

2.2.2 Fabrication of PEDOT Nanocone Arrays 

A solution of polystyrene beads with a diameter of 0.2 µm (Polybead carboxylate, 2.6 

w/v %, Polyscience) were centrifuged and transferred to a mixture containing ethanol and 

methanol with a 2:1 ration. Surfactant Triton X-100 (TX100, Fischer Scientific) was added to the 

solution at 7.5 mM.  The concentration of PS beads was adjusted to about 5 w/v %. The PS beads 

were spincoated on PEDOT thin film with 650 rpm for 20 s, and allowed to dry at dried at room 

temperature. The PEDOT film with PS beads sample was etched by oxygen plasma (50W, 

200mTorr, South Bay Technology) for 1 min 30 s. To remove any remaining PS beads, the 

sample was cleaned with tetrahydrofuran (THF, EMD) for 2h. 

2.2.3 Characterization 

For morphological characterization, a field-emission scanning electron microscope (FEI 

Magellan 400) was used. For UV-Vis measurements, a Hewlett Packard 8453 UV-Visible 

spectrophotometer was used. For reflectivity measurements, a halogen lamp was used as a white 

light source (7 V, DC regulated power supply, BK Presicion). The emitted light from a halogen 

light was coupled into an optical fiber (M25L01, Thorlabs), collimated with an achromatic lens (f 

= 50 mm, AC254-050-A-ML, Thorlabs), then aligned incident to the sample surface. The 
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reflected or transmitted light was coupled into an optical fiber (P1000-2-VIS/NIR, Ocean Optics) 

with an achromatic lens (f = 30 mm, AC254-030-A-ML, Thorlabs), then characterized with a 

UV-Vis spectrometer (USB4000, Ocean Optics). To measure the ex situ UV-vis spectra and 

reflectivity spectra, the samples applied potential for 20 seconds before removing the film from 

solution. 

 

2.3 Results and Discussion 

2.3.1 Fabrication of PEDOT Nanocone Array Surfaces 

PEDOT nanocone arrays were fabricated from the simultaneous oxygen plasma etching 

of electrodeposited PEDOT thin films coated with a hcp PS bead monolayer. The formation of a 

PEDOT thin film through the electropolymerization and electrodeposition of 3,4-

ethylenedioxythiophene (EDOT) has been demonstrated previously for films up to 300 nm in 

thickness.12,14–16 To create stable thick PEDOT films, we developed a slightly modified 

electrodeposition process in which a very thin PEDOT:PSS layer was first spincoated onto a 

transparent FTO conductive substrate prior to the EDOT electropolymerizaton. The thickness of 

the electrodeposited PEDOT thin films was controlled by the electrodeposition time and set to a 

value of 450 nm as measured by SEM. (A plot of electrodeposition current density vs. time and 

the PEDOT film thickness are shown in Supporting Information in Appendix A.) A PS bead 

monolayer was then deposited onto the PEDOT thin film by spincoating in an ethanolic solution. 

As shown in the scheme in Figure 2.1, exposure of this surface to oxygen plasma etching created 

the PEDOT nanocone array. The PS bead monolayer initially protects the PEDOT thin film, but 

as the plasma etching constantly reduces the bead size, the amount of protected surface 

constantly decreases as the nanocone array is formed. The spacing of the nanocones within the 
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array is controlled by the original PS bead diameter, and the height of the nanocones is 

controlled by both the size of the PS beads and the thickness of the electrodeposited PEDOT thin 

film, as well as the differential bead/film etching rate. Two SEM images of a typical PEDOT 

nanocone array surface are shown in Figures 2.1b and 2.1c. The nanocones in this array were 

formed by 90 s of oxygen plasma etching of a 450 nm PEDOT thin film coated with a hcp 

monolayer of 200 nm diameter PS beads. The resultant nanocone array had an average height of 

350 nm, and a small amount of residual PS can be seen on the nanocones in Figure 2.1c. To 

ensure removal of this residual PS, the films were thoroughly rinsed with tetrahydrofuran after 

etching. 

 

 

Figure 2.1. (a) Schematic diagram for the fabrication of PEDOT nanocone arrays (height: 350 nm, 

spacing: 200 nm) by oxygen plasma etching of a 450 nm electrodeposited PEDOT film on FTO 

glass coated with a 200 nm hcp PS bead monolayer. (b) SEM image of PEDOT nanocone arrays 

with low magnification and (c) detailed SEM image of PEDOT nanocones with high magnification 

and a tilted view. 
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2.3.2 Antireflective Nature of PEDOT Nanocone Array Surfaces 

The PEDOT nanocone array surfaces created by this plasma etching process exhibited a 

very low reflectivity over a wide wavelength range. The reflectivity spectrum of the PEDOT 

nanocone array at a nearly normal incident angle of 8° is shown in Figure 2.2 (blue spectrum).  

 

 

Figure 2.2. Reflectivity spectra at an incidence angle of 8° for a PEDOT nanocone array film (blue 

spectrum), an unmodified PEDOT thin film (black spectrum) and a plasmonic gold nanocone array 

thin film (red spectrum). The FEP-Au-nanocone array film was fabricated as described in Ref. 7. 

 

 

The PEDOT nanocone array reflectivity is relatively featureless and less than 1.5%R over the 

entire wavelength range of 550 nm to 800 nm. For comparison, the reflectivity spectrum of an 

unmodified 450 nm thick electrodeposited PEDOT film (black spectrum) is also shown in Figure 

2.2. In addition, similar reflectivity spectra were also observed at higher incident angles, as shown 

by reflectivity spectra obtained at incident angles of 45° and 67.5° in Figure 2.3. 
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Figure 2.3. Reflectivity spectrum at an incidence angle of 45° (black spectrum) and 67.5° (blue 

spectrum) for a (a) PEDOT nanocone array film and (b) an unmodified PEDOT film. 

 

 

(a) PEDOT Nanocone

(b) PEDOT Film
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The PEDOT nanocone array surface had lower percent reflectivity values at all wavelengths 

throughout the visible and near infrared for all incident angles as compared to the unmodified 

PEDOT thin film spectrum, and most noticeably did not show the strong reflectivity increase 

feature at 570 nm that was observed for the unmodified film. Additionally, a plasmonic gold-

coated FEP nanocone array (red spectrum)7 is also shown in the Figure. We deduce that the 

mechanism for the broadband antireflectivity of the PEDOT nanocones is the same as in the case 

of the plasmonic gold nanocone arrays, although as can be seen in the Figure the PEDOT 

nanocone arrays are not as antireflective as the gold-coated FEP nanocones. Silicon nanocone 

array surfaces described previously by other authors also show similar broadband antireflection 

properties.17–19 The reflectivity of nanocone array surfaces has been modeled previously as a 

combination of graded refractive index and enhanced thin film absorption.17,20,21 The higher 

aspect ratio of the gold-coated FEP nanocone arrays and their better absorptive properties are the 

two reasons why the antireflectivity is better for those surfaces.7 

 

2.3.3 Electrochromism of PEDOT Nanocone Array Surfaces 

Like all other previous studies of electrodeposited PEDOT thin films, the PEDOT 

nanocone array films were found to exhibit reversible electrochromism due to the modulation of 

the PEDOT film oxidation state with electrode potential in a LiClO4 solution.12,22 In addition to 

observing the in situ PEDOT electrochromic behavior in an electrochemical cell, the PEDOT 

films could be removed from solution under potentiostatic control to examine both their 

absorption spectrum and antireflective properties in air. Figure 2.4 plots the absorption spectra of 

the PEDOT nanocone arrays after removal from solution at three different potentials: +1.0 V, 0.0 

V and −1.0 V vs. Ag/AgCl (all potentials were held for 20 s before removal from solution). As 
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shown previously by other researchers, the electrochromic behavior of PEDOT arises from 

changes in the electrochemical doping of the thin film, with the more reduced state (−1.0 V) 

being highly colored and the more oxidized state (+1.0 V) being less absorptive.9,13,16 This can be 

seen both in the ex situ absorption spectra as well as in the two photographs of the PEDOT 

nanocone array film at +1.0 V and −1.0 V that are also shown in Figure 2.4. These spectra are 

qualitatively similar to spectra obtained from an unmodified PEDOT thin film removed at the 

same potentials (see Supporting Information in Appendix A). 

 

 
 

Figure 2.4. Ex situ UV absorption spectra of PEDOT nanocone arrays (inset: photographs at 

oxidized and reduced state) at three applied potentials vs. Ag/AgCl: -1.0 V (blue), 0.0 V (black) 

and +1.0 V (red). 
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2.3.4 Electrochemically Modulated Reflectivity of PEDOT Nanocone Array Surfaces 

In contrast, the variations in the ex situ reflectivity spectra for PEDOT nanocone arrays 

removed at different electrode potentials were surprisingly different as compared to unmodified 

PEDOT thin film surfaces. Figures 2.5a and 2.5b show reflectivity spectra from a PEDOT 

nanocone array and an unmodified PEDOT thin film respectively after being removed from 

solution at the same three applied potentials as in Figure 2.4 (−1.0 V, 0.0 V and +1.0 V). The 

most dramatic differences are between spectra taken at −1.0 V to +1.0 V, where the reflectivity 

has significantly increased at all wavelengths for the PEDOT nanocone array film, but has 

decreased for the unmodified PEDOT thin film. The largest effect occurs at approximately 650 

nm, where the PEDOT nanocone array reflectivity increases five-fold (from 0.67%R up to 

4.14%R) whereas the unmodified PEDOT thin film reflectivity decreases four-fold (from 7.6%R 

down to 2.0%R). The featureless reflectivity spectrum of the PEDOT nanocone array in Figure 

2.5a does not change significantly at the three different applied potentials, whereas there are 

significant band shifts in the spectrum of the unmodified PEDOT thin film in Figure 2.5b. 
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Figure 2.5. Electrochemically modulated reflectivity spectra for (a) PEDOT nanocone arrays and 

(b) unmodified PEDOT thin films which were removed from solution after 20 s at three different 

applied potentials: -1.0 V (blue spectrum), 0.0 V (black spectrum) and +1.0 V (red spectrum). The 

angle of incidence for the reflectivity spectra was 8°. 
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Additionally, when comparing changes in the reflectivity spectra from films removed at 0.0 V 

and +1.0 V, a proportional increase in the reflectivity spectrum was observed for the PEDOT 

nanocone array, whereas only relatively small reflectivity changes were observed for the 

unmodified PEDOT thin film. It is clear from the spectra in Figure 2.5 that the optical 

mechanism for the broadband electroreflectivity observed from the PEDOT nanocone array film 

must be very different to the mechanism for the electroreflectivity observed from the unmodified 

PEDOT film. To try to understand this effect, we performed three phase Fresnel reflectivity 

calculations (air/film/substrate, n1/n2/n3), as described in Figure 2.6, to show that an increase in 

film absorption (as modeled by an increase in the imaginary component of the film RI, n2 = 1.5 

+ x i, where x goes from 0 to 0.5) leads to a higher specular reflectivity at all angles. 

 

 
 

Figure 2.6. Three phase Fresnel reflectivity calculation (air; n1=1/film; n2=1.5+xi/substrate; 

n3=1.5) and plot of Reflectivity vs. theta (incident angle). An increase in PEDOT film absorption 

as modeled by an increase in the imaginary component of the film RI from zero to 0.5 leads to a 

higher specular reflectivity at all incident angles. 
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This is what we observed for the unmodified PEDOT films. In contrast, the PEDOT nanocone 

films showed the opposite behavior: an increase in nanocone absorptivity actually resulted in a 

decrease in the specular reflectivity. This effect has been observed previously in both the gold 

plasmonic nanocone arrays7 and in silicon nanocone array surfaces.17–19 The presence of highly 

absorbing nanocones on the surface results in a combination of multiple internal reflection, 

absorption and scattering processes that lead to a reduced reflectivity at all incident angles. 

 

 

2.4 Conclusions 

In summary, we have demonstrated that the fabrication process used previously to create 

gold plasmonic nanocone arrays also can be used with thin films of the electroactive polymer 

PEDOT to create electroreflective nanocone arrays over large areas. The PEDOT nanocone array 

surfaces exhibited a good broadband antireflectivity throughout the visible and near infrared 

wavelength regions due to the graded interfacial complex refractive index created by the PEDOT 

nanocones. Additionally, the broadband antireflectivity of the nanocone array surface could be 

controlled by the electrochemical modulation of the oxidation state of the PEDOT nanocones.  

The changes observed in the ex situ reflectivity spectra of the PEDOT nanocone arrays with 

oxidation state were opposite to those observed from unmodified PEDOT thin films; we attribute 

this marked difference to the unique optical behavior (a combination of broadband reflection, 

scattering and absorption) of the air-nanocone array interface for the case where the nanocone 

complex refractive index has a significant imaginary component. In this work, the 

electroreflectivity of the PEDOT nanocone arrays was probed with ex situ spectra; in future work 

we will further characterize the reversible in situ electroreflective behavior with real-time 

reflectivity measurements. The antireflective and electrochromic PEDOT semiconductor 
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nanocone array films described here should find applications in solar energy cells, optical 

sensors, and optical devices. 
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Chapter 3 

Ultra-Antireflective Electrodeposited 

Plasmonic and PEDOT Nanocone Array 

Surfaces 

 

 
 

 

3.1 Introduction 

 
 Nanostructured array surfaces can provide excellent broadband antireflectivity over a 

wide range of optical wavelengths and incident angles, and have been incorporated as optical 

coatings into various devices such as solar cells,1,2 photodetectors,3 and electroreflective 

windows.4 Traditionally, arrays of transparent zinc oxide nanostructures have been fabricated by 

chemical vapor deposition5-7 or electrochemical methods8-11 to create a graded interfacial 

refractive index coating that increases the transmittance of silicon solar cell devices by reducing 

the reflectivity of the device surface down to approximately 2-5%.12-14 However, when a 

transparent nanostructured ZnO coating is used in a hierarchical fashion with a subwavelength 

periodic array of an absorbing material,15,16 an even better broadband antireflective surface can 
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be created. Recently, we have demonstrated the fabrication of periodic absorptive nanocone 

arrays of gold-coated fluorinated ethylene propylene (FEP)17 and the electroactive polymer 

poly(3,4-ethylenedioxythiophene) (PEDOT);18 our large area fabrication process employs the 

oxygen plasma etching of a square centimeter scale polymer substrate or thin film that has been 

covered with a colloidal monolayer of polystyrene (PS) beads. The resultant plasmonic gold and 

PEDOT nanocone array surfaces both exhibited excellent broadband antireflectivity; for the gold 

surfaces a reflectivity of less than 1% was observed from 475 nm to 800 nm over a wide range of 

incident angles.17 In this paper, we show that the reflectivity for both the gold and PEDOT 

nanocone arrays can be reduced even further by the electrodeposition of a nanostructured ZnO 

coating; for the PEDOT nanocone arrays, up to a 10-fold reduction in reflectivity is observed 

with the surface being 0.1% to 0.2% reflective from 475 nm to 800 nm while transmitting from 

2% to 10% in the same spectral region. In addition, we demonstrate that the antireflective nature 

of the ZnO-coated nanocone arrays can be explained using 11-phase Fresnel calculations to 

model the graded refractive index and absorption changes at the air/nanocone interface. To the 

best of our knowledge, no one has fabricated surfaces with lower reflectivities than our 

broadband ultra-antireflective ZnO nanostructured surfaces. The ultra-antireflective ZnO-coated 

nanocone array surfaces are characterized with SEM, XRD, and XPS, and additionally are shown 

to be photocatalytic with potential as self-cleaning surfaces. Moreover, the PEDOT nanocone 

arrays are electro-reflective and thus can be incorporated into electro-optical devices.18 These 

ultra-antireflective surfaces are extremely useful in applications where reflections must be 

absolutely minimized; examples include laser optics19,20 and anti-glare coatings for mirrors 

displays, cameras, and lenses.21,22 
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3.2 Experimental Section 

3.2.1 Fabrication of FEP-Au Nanocone Array Surfaces 

 A FEP substrate with a 0.005″ thickness (CS Hyde Company) was cleaned by rinsing 

with ethanol and MilliQ water followed by O2 plasma cleaning (PDC-32G, Harrick Plasma) for 3 

minutes. A solution of PS beads with a diameter of 1 µm (Polyscience Polybead® carboxylate, 

2.6% w/v) was centrifuged and transferred to a mixture containing ethanol and methanol in a 2:1 

ratio with 0.2% volume Triton X-100 surfactant, adjusted to a PS concentration of about 5%. To 

form the PS colloidal mask monolayer, the PS beads were spincoated onto the FEP substrate at 

650 rpm for 15 seconds, and left at room temperature for a few minutes to dry the solvent. The 

PS bead/FEP substrate was then etched by O2 plasma for 6 minutes to form periodic FEP 

nanocone arrays. The FEP nanocone arrays were finally coated with 50 nm of gold by thermal 

evaporation. 

3.2.2 Fabrication of PEDOT Thin Film 

A fluorine-doped tin oxide coated glass slide substrate (FTO glass; ~30 Ω/sq, Sigma-

Aldrich) was cleaned by sonication in a 0.2% volume aqueous TX-100 solution, followed by 

sonication in ethanol, then dried under a nitrogen stream, and finally cleaned by O2 plasma 

cleaning (PDC-32G, Harrick Plasma) for 3 minutes. A layer of PEDOT:PSS (2.0 wt % in H2O, 

high conductivity grade, Sigma-Aldrich) was spincoated at 2000 rpm for 45 seconds onto the 

FTO substrate to improve wetting and conductivity. The sample was dried for 20 minutes in a 

90°C oven. PEDOT thin film was then deposited electrochemically onto the FTO substrate using 

an aqueous plating solution consisting of 2.5 mM EDOT (97%, Sigma-Aldrich) and 12.5 mM 

LiClO4 (99.5%, Alfa) via cyclic voltammetry. The electrodeposition was performed using a 
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potentiostat (Metrohm Autolab PGSTAT12) sweeping from +1.045 V to +0.9 V at 0.01 V/s for 

10 cycles, with a Ag/AgCl reference electrode and a Pt counter electrode. 

3.2.3 Fabrication of PEDOT Nanocone Array Surfaces 

A solution of PS beads with a diameter of 1 µm (Polyscience Polybead® carboxylate, 

2.6% w/v) was centrifuged and transferred to a mixture containing ethanol and methanol in a 2:1 

ratio with 0.2% volume TX-100 surfactant, adjusted to a PS concentration of about 5%. To form 

the PS colloidal mask monolayer, the PS beads were spincoated onto the PEDOT film at 750 

rpm for 15 seconds, and left at room temperature for a few minutes to dry the solvent. The PS 

bead/PEDOT sample was then etched by O2 plasma for 2.5 minutes to form periodic PEDOT 

nanocone arrays. 

3.2.4 Fabrication of ZnO-Coated Nanocone Array Surfaces 

An aqueous solution of 0.1 M Zn(NO3)2·6H2O (98%, Sigma-Aldrich) at pH 4 heated to 

70°C was used as the plating solution. Electrodeposition was performed using a potentiostat 

(PGSTAT12, Metrohm) in a 3-electrode setup. The working electrode of either Au or PEDOT 

nanocone array surfaces was exposed to the plating solution for 150 seconds at an anodic 

potential of −0.9 V against a Ag/AgCl reference electrode and in the presence of a Pt counter 

electrode. 

3.2.5 Characterization 

SEM images were obtained on a FEI Magellan 400 field-emission scanning electron 

microscope at an accelerating voltage of 5 kV. Grazing incidence XRD measurements were 

performed on a Rigaku SmartLab X-ray Diffractometer, with the X-ray generator operating at 40 

kV and 44 mA with Cu Kα irradiation. XPS measurements were performed using a Kratos 

Analytical AXIS Supra surface analysis instrument at an emission current of 15 mA. For 
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reflectivity and transmittance measurements, a halogen lamp was used as a white light source (10 

V, B&K Precision DC regulated power supply). The emitted white light was coupled to an 

optical fiber (Thorlabs M25L01), collimated using an achromatic lens (f = 50 mm, Thorlabs 

AC254-050-A-ML), then made incident to the sample surface. The reflected or transmitted light 

from the sample surface is coupled to an optical fiber (Ocean Optics P1000-2-VIS/NIR) with an 

achromatic lens (f = 30 mm, Thorlabs AC254-030-A-ML), then measured with a UV-Vis-NIR 

spectrometer (Ocean Optics USB4000). Reflectivity measurements were calibrated with a silver 

mirror reference, whereas transmittance measurements were calibrated using air as reference. 

3.2.6 Photocatalytic Degradation of Methylene Blue 

1 mL of a 50 µM aqueous methylene blue (MB) solution and a 1 square cm photocatalytic 

surface (either ZnO-coated nanocone arrays or planar ZnO thin film) were added in a quartz 

cuvette. The cuvette was exposed to a UV lamp source (50 W, Oriel Instruments Hg(Xe) arc 

lamp) while stirring to ensure contact between the ZnO surface and the MB. The relative 

concentration of MB remaining was determined after the following time intervals: 0, 2, 4, 6, 8, 

10, 12, and 14 minutes. Relative MB concentrations were determined from the absorbance 

measurement at λ = 664 nm using UV-Vis spectroscopy (Hewlett Packard 8453 UV-Visible 

spectrometer). 

 

 

 

3.3 Results and Discussion 

3.3.1 Fabrication of ZnO-Coated Nanocone Array Surfaces 

Large scale periodic ZnO-coated nanocone array surfaces (areas on the order of square 

cm) were fabricated using a combination of colloidal lithography, plasma etching, vapor 

deposition, and electrochemistry. As shown in the scheme in Figure 3.1, the simultaneous 
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oxygen plasma etching of a hexagonally closed packed monolayer of PS bead colloidal mask 

spincoated onto either a FEP substrate or a PEDOT thin film created periodic nanocone arrays; 

nanocone formation occurs due to the simultaneous etching of both the PS colloidal mask and 

the polymer underneath.  

 

 

Figure 3.1. Schematic illustration of the fabrication of ultra-antireflective ZnO-coated nanocone 

arrays using (a) FEP-Au nanocone arrays and (b) PEDOT nanocone arrays. 

 

 

 

The aspect ratio of the resultant nanocones can be optimized: the size of the PS beads 

controls the distance between the nanocones, while the O2 plasma etching time controls the 

height of the nanocones. In this paper, PS beads with a 1 µm diameter were used as the colloidal 

mask. In the next step, the FEP nanocone arrays were made conductive via vapor deposition of a 

50 nm layer of gold, whereas the PEDOT nanocone arrays were already conductive. Finally, an 

additional nanostructured ZnO coating was created using electrochemistry. In this approach, 0.1 

M of aqueous zinc nitrate (Zn(NO3)2) at pH 4.0 was used as the plating solution, and 

electrodeposition occurred at 70°C for 150 seconds at an cathodic potential of −0.9 V against a 
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Ag/AgCl reference electrode. The mechanism of the ZnO electrodeposition process is described 

as follows: At a sufficiently negative applied potential, NO3
- ions are reduced to generate OH- 

ions (Eqn. (1)). The OH- and the Zn2+ ions then result in the precipitation of ZnO onto the Au or 

PEDOT nanocone array working electrode (Eqn. (2)).8-11  

                                           NO3
- + H2O +2e- → NO2

- + 2OH-                                                 (1) 

                                             Zn2+ + 2OH- → ZnO ↓ + H2O                                                     (2) 

 

 

3.3.2 Characterization of ZnO-Coated Nanocone Array Surfaces 

Nanostructured polycrystalline ZnO films were formed directly from this facile 

electrodeposition method, without the need for a subsequent thermal annealing step. The 

electrodeposition process was monitored by chronoamperometry of the working electrode (either 

the Au or PEDOT nanocone arrays), as shown in Supporting Information in Appendix B. The 

initial increase and the subsequent gradual decrease of the absolute current density over time 

indicated that the conductive nanocone array surfaces became slightly passivated with the 

addition of a ZnO thin film. 

The morphology of the ZnO-coated nanocone arrays was characterized using a 

combination of scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray 

photoelectron spectroscopy (XPS). SEM images from Figure 3.2 and Figure 3.3 show top-down 

and tilted views of the nanostructured ZnO thin film on Au and PEDOT nanocone arrays, 

respectively. 
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Figure 3.2. SEM images of ZnO-Au nanocone arrays from top-down (a, b) and tilted (c) views. 

(d) SEM image of Au nanocone arrays is shown for comparison. 

 

 

 

 

 
 

Figure 3.3. SEM images of ZnO-PEDOT nanocone arrays from top-down (a, b) and tilted (c) 

views. (d) SEM image of PEDOT nanocone arrays is shown for comparison. 
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From Figure 3.2a, c and Figure 3.3a, c, it can be seen that hexagonally closed packed ZnO-

coated nanocones were created on a large scale, extending over an area of several square 

microns. Comparing the heights of the ZnO-coated nanocones with Au and PEDOT nanocones 

from Figure 3.2d and Figure 3.3d, respectively, using SEM measurements, we determined that a 

25 nm of ZnO coating was formed during electrodeposition. Figure 3.2b and Figure 3.3b showed 

a high magnification image of an individual ZnO-coated Au and PEDOT nanocone, respectively, 

where we could see the individual ZnO nanostructures formed on the surface. 

XRD analysis (see Supporting Information in Appendix B) revealed a polycrystalline 

wurzite crystal structure that grew primarily in the <002> direction, which is consistent with 

previous work in ZnO electrodeposition.9,10 We also confirmed that ZnO was formed on both the 

Au and PEDOT nanocone array surfaces via XPS (see Supporting Information in Appendix B). 

 

3.3.3 Photocatalytic Activity of ZnO-Coated Nanocone Array Surfaces 

The photocatalytic activity of the ZnO-coated nanocone arrays was also characterized via the 

oxidative degradation of a methylene blue (MB) dye under UV conditions. As shown in Figure 

3.4a, we evaluated the relative concentration of MB over time using UV-Vis spectroscopy under 

the following catalytic conditions: exposure to a ZnO-coated nanocone array surface, planar ZnO 

thin film surface, and no catalyst. 
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Figure 3.4. (a) UV-Vis absorbance spectra of methylene blue in the presence of the ZnO-coated 

nanocone array catalyst. The inset shows that the methylene blue is fully degraded after 14 

minutes, thus losing all its color. (b) Confirmation of the increased surface area of the ZnO 

nanocone arrays via their improved photocatalytic performance in the degradation of methylene 

blue dye. 

 

 

 

As shown in Figure 3.4b, 11±1% of the MB remained in solution after 14 minutes of exposure to 

a planar ZnO thin film surface, whereas 0±1% of the MB remained in solution after 14 minutes 

of exposure to a ZnO-coated nanocone array surface. It should be noted that the planar ZnO thin 

film surface used in this study is microscopically much smoother than the ZnO-coated nanocone 

array surface, as shown by the comparison of their SEM images in Supporting Information in 

Appendix B. For the planar ZnO thin film, the ZnO crystals are packed tightly in the <002> 

direction,9,10 which drastically reduces the surface roughness factor compared to the periodic 

ZnO-coated nanocone arrays. This demonstrates that since the high surface area of the ZnO-

coated nanocone arrays allowed for increased UV absorption,23,24 the ZnO-coated nanocone 

array surface performed better as a photocatalyst compared to a planar ZnO thin film surface 

during MB degradation, and may find applications as self-cleaning surfaces. 
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3.3.4 Light Absorption of ZnO-Coated Nanocone Array Surfaces 

Optical characterization revealed that the ZnO-coated nanocone array surfaces became 

more light absorbing and more antireflective than just Au and PEDOT nanocone arrays over a 

wide range of optical wavelengths from 475 nm to 800 nm. In Figure 3.5, the percent 

transmittance measurements of the ZnO-coated nanocone arrays compared to just Au and 

PEDOT nanocone arrays are shown. For all transmittance measurements, a halogen lamp was 

used as a white light source. The light was directed onto the nanocone array surface at a normal 

angle of incidence, and the transmitted light from the nanocone array surface was measured 

using a UV-Vis spectrometer. As shown in Figure 3.5a, the transmittance measurements of the 

Au nanocone arrays were T = 10% or less across the 475 nm to 800 nm spectral range, indicating 

strong light absorption. However, the transmittance measurements of the ZnO-Au nanocone 

arrays were T = 3% in the same spectral range, indicating up to a 3-fold improvement in the light 

absorbing ability of the Au nanocone arrays when they are decorated with ZnO nanostructures on 

the surface. Similarly, the transmittance measurements for the PEDOT nanocone arrays were T = 

10% across the 475 nm to 800 nm spectral range, but decrease to T = 2% for the ZnO-PEDOT 

nanocone arrays from λ = 650 nm to 800 nm, indicating up to a 5-fold improvement in the light 

absorbing ability of the ZnO-PEDOT nanocone arrays across a wide range of optical 

wavelengths. A possible explanation for the increased light absorbance of the ZnO-coated 

nanocone arrays is that the ZnO nanostructures on the surface are acting as optical couplers. 

Although ZnO itself does not absorb in the 475 nm to 800 nm wavelength range, the ZnO 

nanostructures on the nanocone array surfaces act as subwavelength scattering components that 

result in the increased effective optical path length of incident light via coupling and trapping 

freely propagating plane waves between the ZnO nanostructures and the light absorbing material 
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underneath (either Au or PEDOT). Thus, the nanostructured ZnO surface enhances the light 

trapping capacity of the nanocone arrays and increases their effective absorption bands.25,26,27 

 

 

Figure 3.5. Transmittance spectra for (a) Au and ZnO-Au nanocone arrays and (b) PEDOT and 

ZnO-PEDOT nanocone arrays. The decrease in transmittance for the ZnO-coated nanocone arrays 

indicates the ZnO enhances the performance of the light absorbing material underneath (Au or 

PEDOT). The inserted schematic shows the optical setup used for transmittance measurements. 
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3.3.5 Ultra-Antireflective Properties of ZnO-Coated Nanocone Array Surfaces 

The most striking effect of the addition of a nanostructured ZnO thin film onto the nanocone 

arrays was a significant increase in broadband antireflectivity of these surfaces. In our previous 

papers, we fabricated Au nanocone array surfaces that are less than 0.7% reflective (R < 0.7%) at 

a nearly normal angle of incidence (θ = 8°) from λ = 475 nm to 800 nm,17 and we also recently 

fabricated PEDOT nanocone array surfaces that were less than 3% reflective (R < 3%) over the 

same wavelength range.18 The antireflective behavior of the ZnO-coated nanocone arrays are 

shown in Figure 3.6 and Figure 3.7. For the reflectivity measurements, the optical setup with a 

halogen lamp white light source at either angle of incidence θ = 8°, 45°, or 67.5° was used as 

shown in the inset of Figure 3.7, and a silver mirror was used as reference calibration. In Figure 

3.6a, reflectivity measurements are shown for ZnO-Au nanocones in comparison to Au and FEP 

nanocone arrays at θ = 8°. The FEP nanocone arrays, visually matte white as seen in the 

photograph from Figure 3.6b, exhibited broadband antireflective properties at 2% reflective (R = 

2%) from λ = 475 nm to 800 nm. The addition of a 50 nm light absorbing gold thin film on the 

FEP nanocone arrays created a visually dark Au nanocone array surface (photograph shown in 

Figure 3.6c); the percent reflectivity decreased to R < 0.7% over the same spectral range, as seen 

in Figure 3.6a. Electrodeposition of a nanostructured ZnO film created ZnO-Au nanocone arrays 

that were visually even blacker than the Au nanocone arrays (Figure 3.6c), and the reflectivity 

measurements for the ZnO-Au nanocone arrays were reduced to R < 0.3% from 450 nm to 750 

nm, with Rmin = 0.05%. We attribute the very low reflectivity exhibited by the ZnO-Au nanocone 

array surfaces to (i) increased light scattering by the ZnO nanostructures, and (ii) an 

enhancement in the graded interfacial complex refractive index created by addition of the 

nanostructured ZnO film to the nanocones.28-31 To better understand the mechanism responsible 
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for the ultra-antireflective property of the ZnO nanocone arrays, we performed 11-phase Fresnel 

calculations to model the graded refractive index and absorption changes at the air/nanocone 

interface32 (n1 = air, n11 = bulk Au or ZnO-Au, and n2, n3, … , n10 = the effective refractive index 

calculated by averaging the refractive indices of air and the nanocone structure as a function of 

the distance away from the bottom of the nanocone). As shown in Figure 3.6, we performed 

these Fresnel calculations for Au nanocone arrays and ZnO-Au nanocone arrays, and the 

simulated reflectivity measurements match closely to our reflectivity measurements over a wide 

spectral range. 

 

 

Figure 3.6. (a) Reflectivity spectra for various nanocone array structures composed of a FEP 

substrate. Reflectivity measurements are shown for incident light hitting the nanocone array 

surfaces at a nearly normal angle of incidence (θ) at 8°. Simulated reflectivity measurements 

obtained from 11-phase Fresnel calculations are also shown for Au and ZnO-Au nanocone arrays. 

The simulated and experimental reflectivity measurements match well and reveal that ZnO-Au 

nanocone array surfaces exhibit enhanced antireflective properties. Photographs of (b) FEP 

nanocone array surface, as well as (c) Au and ZnO-Au nanocone array surfaces, are shown. The 

scale bars on the lower left-hand corners represent 1 cm. 
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These calculations reveal that most of the observed decrease in reflectivity for the ZnO-Au 

nanocone arrays is due to the addition of a significant real refractive index component to the 

graded Au film (e.g., at 600 nm, nAu = 0.24 + 3.10i, nZnO = 2.00 + 0i, and ZnO-Au is modeled 

using nZnO-Au = 2.00 + 3.10i). The complete Igor Pro macro for the aforementioned 11-phase 

Fresnel calculations is listed in Supporting Information in Appendix B.  

Even more striking results were obtained for the PEDOT nanocone array surfaces. Visually, we 

observed once again from the photograph shown in Figure 3.7c that the ZnO-PEDOT nanocone 

arrays were blacker than the PEDOT nanocone arrays. 

 

 

Figure 3.7. Reflectivity spectra for various nanocone array structures composed of a PEDOT 

substrate. The ZnO-PEDOT nanocone array surfaces exhibit enhanced antireflective properties. 

The inserted schematic shows optical setup used for reflectivity measurements. Reflectivity 

measurements are shown for incident light hitting the surfaces at a nearly normal angle of 

incidence (θ) at 8°. Photographs of (b) a planar PEDOT thin film surface, as well as (c) PEDOT 

and ZnO-PEDOT nanocone array surfaces, are shown. The scale bars on the lower left-hand 

corners represent 1 cm. 
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In Figure 3.7a, reflectivity measurements showed that while the PEDOT nanocone arrays were 

less than 3% reflective (R < 3%) from 450 nm to 800 nm at θ = 8°, the ZnO-PEDOT nanocone 

arrays were more than an order of magnitude less reflective at R < 0.2% over the same spectral 

range. Furthermore, a comparison between the reflectivity measurements of ZnO 

electrodeposited on a planar PEDOT thin film surface (R < 5%) and the ZnO-PEDOT nanocone 

arrays (R < 0.2%) reveals that the periodicity of the nanocone arrays, as opposed to just the 

roughness created by the ZnO crystals, is critical in suppressing reflectivity. Since the reflectivity 

spectra for both the ZnO-Au and ZnO-PEDOT nanocone arrays are very similar, the mechanism 

for the suppressed reflectivity of the ZnO-PEDOT nanocone arrays must be similar and thus can 

also be explained by increased light absorption and increased light scattering of the ZnO 

nanostructured surface. Finally, a very similar decrease in broadband reflectivity was also 

obtained for both ZnO-Au and ZnO-PEDOT nanocone arrays at higher angles of incidence (θ = 

45° and θ = 67.5°), as shown in Figure 3.8. To the best of our knowledge, no one has fabricated 

surfaces with lower reflectivity than our broadband ultra-antireflective ZnO nanostructured 

surfaces. 
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Figure 3.8. Reflectivity spectra for (a) ZnO-Au nanocone arrays and (b) ZnO-PEDOT nanocone 

arrays at various angles of incidence (θ), at 8° (black), 45° (red), and 67.5° (blue). The inserted 

schematic shows the optical setup used for reflectivity measurements. 
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3.4 Conclusions 

We have demonstrated that electrodeposition of nanostructured ZnO films onto both FEP-Au and 

PEDOT periodic nanocone arrays creates excellent broadband antireflective surfaces that are less 

than 0.2% reflective over a large optical wavelength range of 475 nm to 800 nm. These surfaces 

are up to 10 times more antireflective than the nanocone arrays without the ZnO film. The 

nanostructured ZnO coating enhances (i) light scattering and (ii) the graded interfacial complex 

refractive index created by the Au or PEDOT nanocone array structures that is responsible for 

broadband antireflectivity. The ZnO nanostructures created from this process also increase the 

surface area of the nanocone arrays, resulting in a higher surface reactivity for potential 

photocatalytic applications. As these ZnO-coated nanocone array surfaces are easy to fabricate 

over large surface areas on flexible substrates, they should be easily implemented in various 

potential applications such as highly antireflective self-cleaning surface coatings for displays and 

solar panels. 

 

 

3.5 Acknowledgments 

This work was supported by the National Science Foundation through grant CHE-1403506. 

SEM, XRD, and XPS analyses were performed at the Irvine Materials Research Institute (IMRI) 

at UC Irvine.  

 

 

 

 



51 

 

3.6 References 

1. Chen, Y.; Xu, Z.; Gartia, M. R.; Whitlock, D.; Lian, Y.; Liu, G. L. Ultrahigh Throughput 

Silicon Nanomanufacturing by Simultaneous Reactive Ion Synthesis and Etching. ACS Nano 

2011, 5, 8002–8012. 

 

2. He, J.; Gao, P.; Liao, M.; Yang, X.; Ying, Z.; Zhou, S.; Ye, J.; Cui, Y. Realization of 13.6% 

Efficiency on 20 um Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced 

Nanotexturing and Surface Recombination Suppression. ACS Nano 2015, 9, 6522–6531. 

 

3.  Fujii, T.; Gao, Y.; Sharma, R.; Hu, E. L.; DenBaars, S. P.; Nakamura, S. Increase in the 

Extraction Efficiency of GaN-Based Light-Emitting Diodes via Surface Roughening. Appl. 

Phys. Lett. 2004, 84, 855–857. 

 

4. Araki, S.; Nakamura, K.; Kobayashi, K.; Tsuboi, A.; Kobayashi, N. Electrochemical Optical-

Modulation Device with Reversible Transformation Between Transparent, Mirror, and Black. 

Adv. Mater. 2012, 24, OP122–OP126. 

 

5. Wu, J. J.; Liu, S. C. Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical 

Vapor Deposition. Adv. Mater. 2002, 14, 215–217. 

 

6. Peiro, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.; O’Brien, P.; Bradley, D. D. C.; 

Nelson, J.; Durrant, J. R. Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar 

Structures. J. Mater. Chem. 2006, 16, 2088–2096.  

 

7. Montenegro, D. N.; Souissi, A.; Martinez-Tomas, C.; Munoz-Sanjose, V.; Sallet, V. 

Morphology Transitions in ZnO Nanorods Grown by MOCVD. J. Cryst. Growth 2012, 359, 

122–128. 

 

8. Wahab, R.; Ansari, S. G.; Kim, Y. S.; Seo, H. K.; Kim, G. S.; Khang, G.; Shin, H.-S. Low 

Temperature Solution Synthesis and Characterization of ZnO Nano-Flowers. Mater. Res. 

Bull. 2007, 42, 1640–1648. 

 

9. Illy, B. N.; Cruickshank, A. C.; Schumann, S.; Da Campo, R.; Jones, T. S.; Heutz, S.; 

McLachian, M. A.; McComb, D. W.; Riley, D. J.; Ryan, M. P. Electrodeposition of ZnO 

Layers for Photovoltaic Application: Controlling Film Thickness and Orientation. J. Mater. 

Chem. 2011, 21, 12949–12957.  

 

10. Sun, S.; Jiao, S.; Zhang, K.; Wang, D.; Gao, S.; Li, H.; Wang, J.; Yu, Q.; Guo, F.; Zhao, L. 

Nucleation Effect and Growth Mechanism of ZnO Nanostructures by Electrodeposition from 

Aqueous Zinc Nitrate Baths. J. Cryst. Growth 2012, 359, 15–19. 

 

11. Klochko, N. P.; Khrypunov, G. S.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; 

Klepikova, K. S.; Lyubov, V. M.; Kopach, A. V. Electrodeposited Zinc Oxide Arrays with 

the Moth-Eye Effect. Semiconductors 2014, 48, 531–537. 

 



52 

 

12. Tsui, K.; Lin, Q.; Chou, H.; Zhang, Q.; Fu, H.; Qi, P. Low-Cost, Flexible, and Self-Cleaning 

3D Nanocone Anti-Reflection Films for High-Efficiency Photovoltaics. Adv. Mater. 2014, 

26, 2805–2811. 

 

13. Leem, J. W.; Kim, S.; Lee, S. H.; Rogers, J. A.; Kim, E.; Yu, J. S. Efficiency Enhancement 

of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned 

PDMS Film. Adv. Energy Mater. 2014, 4, 1–7. 

 

14. Wang, Y.; Lu, N.; Xu, H.; Shi, G.; Xu, M.; Lin, X.; Li, H.; Wang, W.; Qi, D.; Lu, Y., et al. 

Biomimetic Corrugated Silicon Nanocone Arrays for Self-Cleaning Antireflection Coatings. 

Nano Res. 2010, 3, 520–527. 

 

15. Garnett, E.; Yang, P. Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical 

Absorption. Nano. Lett. 2010, 10, 1082–1087. 

 

16. Wilson, S. J.; Hutley, M. C. The Optical Properties of ‘Moth Eye’ Antireflection Surfaces. 

Opt. Acta 1982, 29, 993–1009. 

 

17. Toma, M.; Loget, G.; Corn, R. M. Fabrication of Broadband Antireflective Plasmonic Gold 

Nanocone Arrays on Flexible Polymer Films. Nano Lett. 2013, 13, 6164–6169. 

 

18. So, S.; Fung, H. W. M.; Kartub, K.; Maley, A. M.; Corn, R. M. Fabrication of PEDOT 

Nanocone Arrays with Electrochemically Modulated Broadband Antireflective Properties. J. 

Phys. Chem. Lett. 2017, 8, 576–579.  

 

19. Li, Y.; Zhang, J.; Zhu, S.; Dong, H; Jia, F.; Wang, Z.; Sun, Z.; Zhang, L.; Li, Y.; Li, H., et al. 

Biomimetic Surfaces for High-Performance Optics. Adv. Mater. 2009, 21, 4731–4734. 

 

20. Busse, L. E.; Florea, C. M.; Frantz, J. A.; Shaw, L. B.; Aggarwal, I. D.; Poutous, M. K.; 

Joshi, R.; Sanghera, J. S. Anti-Reflective Surface Structures for Spinel Ceramics and Fused 

Silica Windows, Lenses and Optical Fibers. Opt. Mater. Express 2014, 4, 2504–2515. 

 

21. Nuiis, A. M.; Horikx, J. J. Diffraction and Scattering at Antiglare Structures for Display 

Devices. Appl. Opt. 1994, 33, 4058–4068. 

 

22. Tulli, D.; Hart, S. D.; Mazumder, P.; Carrilero, A.; Tian, L.; Koch, K. W.; Yongsunthon, R.; 

Piech, G. A.; Pruneri, V. Monolithically Integrated Micro- and Nanostructured Glass Surface 

with Antiglare, Antireflection, and Superhydrophobic Properties. ACS Appl. Mater. 

Interfaces 2014, 6, 11198–11203. 

 

23. Shen, W.; Li, Z.; Wang, H.; Liu, Y.; Guo, Q.; Zhang, Y. Photocatalytic Degradation for 

Methylene Blue using Zinc Oxide Prepared by Codeposition and Sol-Gel Methods. J. 

Hazard. Mater. 2008, 152, 172–175. 

 



53 

 

24. Jang, Y. J.; Simer, C.; Ohm, T. Comparison of Zinc Oxide Nanoparticles and its Nano-

Crystalline Particles on the Photocatalytic Degradation of Methylene Blue. Mater. Res. Bull. 

2006, 41, 67–77. 

 

25. Voss, T.; Svacha, G. T.; Mazur, E.; Konjhodzic D.; Marlow, F. High Order Waveguide 

Modes in ZnO Nanowires. Nano Lett. 2007, 7, 3675–3680. 

 

26. Kim, S. K.; Song, K. D.; Kempa, T. J.; Day, R. W.; Lieber, C. M.; Park, H. G. Design of 

Nanowire Optical Cavities as Efficient Photon Absorbers. ACS Nano 2014, 8, 3707–3714. 

 

27. Chang, Y.-M.; Lin, M.-L.; Lai, T.-Y.; Chen, C.-H.; Lee, H.-Y.; Lin, C.-M.; Wu, Y.-C. S.; 

Lin, Y.-F.; Juang, J.-Y. Broadband Omnidirectional Light Trapping in Gold-Decorated ZnO 

Nanopillar Arrays. ACS Appl. Mater. Interfaces 2017, 9, 11985–11992. 

 

28. Tian, Y.; Hu, C.; Xiong, Y.; Wan, B.; Xia, C.; He, X.; Liu, H. ZnO Pyramidal Arrays: Novel 

Functionality in Antireflection. J. Phys. Chem. C 2010, 114, 10265–10269. 

 

29. Robak, E.; Kotkowiak, M.; Drozdowski, H. Nanostructured Zinc Oxide Systems with Gold 

Nanoparticle Pattern for Efficient Light Trapping. J. Phys. D: Appl. Phys. 2016, 49, 045104. 

 

30. Xu, S.; Adiga, N.; Ba, S.; Dasgupta, T.; Wu, C. F. J.; Wang, Z. L. Optimizing and Improving 

the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments. 

ACS Nano 2009, 3, 1803–1812. 

 

31. Jheng, B.-T.; Liu, P.-T.; Wang, M.-C.; Wu, M.-C. Effects of ZnO-Nanostructure 

Antireflection Coatings on Sulfurization-Free Cu2ZnSnS4 Absorber Deposited by Single-Step 

Co-Sputtering Process. Appl. Phys. Lett. 2013, 103, 052904. 

 

32. Bond, W. L. Measurement of the Refractive Indices of Several Crystals. J. Appl. Phys. 1965, 

36, 1674-1677. 
 

 

 

 

 

 

 

 

 



54 

 

Chapter 4 

Quantitative Characterization of Optical 

Coupling in Nanoporous ZnO-WO3 and 

ZnO-PEDOT Composite 

Electrodeposited Gratings using 

Electrodiffraction Measurements 

 

 

4.1 Introduction 

 
Zinc oxide’s (ZnO) well-documented optical properties have been utilized for a variety of 

light-based applications. For example, its wide band gap (3.37 eV) has made ZnO a popular 

semiconductor material for photosensitized dyes with enhanced photovoltaic efficiency.1-3 In 

addition to its semiconductor capabilities, ZnO has been observed to enhance the optical 

properties within various systems. ZnO was reported to improve the light trapping capabilities of 
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solar cells both as a thin film on an absorbing material4 and as a nanopatterned surface.5-6 Within 

our lab, we observed that ZnO nanostructures used in a hierarchical fashion on Au and PEDOT 

nanocone array surfaces enhanced the antireflective properties of the nanocone arrays via optical 

coupling.7 This is striking because while ZnO has no absorptive properties itself, it seemed to 

enhance those of the host material beneath. To further our understanding of the optical 

enhancement of ZnO, we extend our previous work on ZnO nanocone arrays and turn to optical 

diffraction gratings made of composite electrodeposited ZnO and electrochromic WO3 or 

PEDOT in order to quantify the optical coupling effects. 

Optical diffraction gratings that split, redirect, and disperse light are fundamental optical 

elements that have been incorporated into a myriad of optical devices including laser barcode 

scanners, optical switches, and spectrometers.8-16 Their simple design only requires a surface or 

thin film material with an optical response that varies periodically on the order of the wavelength 

of light in order to exhibit optical diffraction. If we define the linear optical response in terms of 

the complex refractive index 𝑛 = 𝜂 + 𝑖𝜅, then periodic variations in 𝜅 are typically called 

absorptive gratings, while periodic variations in 𝜂 are described as phase gratings.17-23 Within our 

own system, ZnO is known to have a large 𝜂 value (𝜂 = 1.998 at 633 nm), but no 𝜅. Therefore 

we theorize that any changes observed in 𝜅 in the presence of ZnO must be due to coupling of 

the ZnO with the absorptive components within the gratings.  

In order to probe the absorptive effects (𝜅) in addition to the refractive effects (𝜂) of our 

optical gratings, electrochromic materials were selected as an absorptive host material. 

Electrochromic thin films are a unique class of materials with a complex refractive index that can 

be varied reversibly by either oxidation or reduction reactions induced by changes in an applied 

potential in an electrochemical cell. The electrochromism of these thin films specifically refers to 
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the electrochemically induced color changes. Considering that any changes to the absorptive 

properties of a material implies a change to the imaginary part of the refractive index, 

electrochromic thin films demonstrate a potential dependence of 𝜅; however, changes in 𝜂, the 

real part of the complex refractive index, can also occur. Two of the most well-studied 

electrodeposited electrochromic thin film materials are tungsten oxide (WO3)
24-27 and poly(3,4-

ethylenedioxythiophene) (PEDOT).28-32 Typical potential dependent variations of 𝜅 for these two 

materials are ±0.09 and ±0.07, respectively, in the visible region at 600 nm.33-34 Due to the 

potential dependence of 𝜂 and 𝜅 for electrochromic thin films, diffraction gratings that are 

fabricated from these materials also exhibit a diffraction efficiency that varies with applied 

potential. This effect has been observed previously and has been denoted as either 

"electrochemically modulated diffraction"22, 35-37 or "electrotunable diffraction",38-39 but in this 

paper, we will denote this phenomenon simply as "electrodiffraction."  

In this article, we have observed and quantified the enhancement of electrodiffraction 

from a novel two-component composite nanostructured diffraction grating that incorporates both 

an electrochromic material (either WO3 or PEDOT) and a nanostructured high refractive index 

ZnO (𝜂 = 1.998 at 633 nm). These composite gratings are fabricated by a two-step 

electrodeposition process on a fluorine-doped tin oxide (FTO) coated glass substrate as depicted 

schematically in Figure 4.1. A pattern of 10 μm wide lines of either WO3 or PEDOT separated 

by 5 μm of glass is created by electrodeposition onto an FTO glass substrate that is partially 

protected with a photopatterned film of photoresist. This initial electrochromic grating pattern 

has a film thickness of about 200 nm. A second electrodeposition step creates a nanostructured 

ZnO film on top of the electrochromic grating, with a film thickness of typically 600 nm. We 

show that this non-absorbing nanostructured ZnO film enhances both the optical absorption and 
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the electrodiffraction from this grating; the optical coupling between ZnO and the electrochromic 

host material and results in a four-fold increase of the electrodiffractive response. 

 

 

Figure 4.1. Schematic of the fabrication process of ZnO-WO3 and ZnO-PEDOT gratings shown 

in a) – e). A cross-sectional SEM image f) reveals the various components of a sample ZnO-

PEDOT grating. 
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4.2 Experimental Section 

4.2.1 Fabrication of WO3 Gratings  

FTO coated glass slides (~30 Ω/sq cm, Sigma-Aldrich) were cleaned by ultrasonication 

in an aqueous Hellmanex (1%) solution, rinsed with deionized water and ethanol, and dried 

under an N2 stream. The FTO coated glass slides were then plasma cleaned under O2 plasma for 

2 min. S1808 positive photoresist was spincoated at 2500 rpm for 80 s onto the glass slides, 

baked at 90°C for 25 min to evaporate photoresist solvent, and cooled to room temperature. The 

photoresist coated glass slides were exposed to a UV lamp source (50 W, Oriel Instruments 

He(Xe) arc lamp) for 3.5 s and patterned using a photomask with 5 μm wide Cr lines and 10 μm 

glass spacings. The photoresist was then developed for 25 s using MF-319 developer 

(Microchem), rinsed with deionized water, and dried under an N2 stream. An electrical contact 

area was made by dissolving the corner of the photoresist with acetone using a Q-tip. WO3 was 

then electrochemically deposited onto the photopatterned FTO substrate using a potentiostat 

(PGSTAT12, Metrohm Autolab) in a three-electrode setup. The working electrode of the 

photopatterned FTO substrate was exposed to an aqueous peroxytungstatic acid (H2W2O11) 

plating solution for 150 s at a cathodic potential of −0.5 V vs. a Ag/AgCl reference electrode in 

the presence of a Pt counter electrode. 

4.2.2 Fabrication of PEDOT Gratings  

FTO glass slides (~30 Ω/sq cm, Sigma-Aldrich) were degreased by sonication in 

deionized water, acetone, and methanol, and then dried with a nitrogen jet. Poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, 2.0 wt. % in H2O, Sigma-

Aldrich) was mixed with isopropyl alcohol and ethylene glycol (ratio 85:10:5) to enhance 

electronic conductivity and improve wetting. A thin PEDOT:PSS layer was spincoated onto the 
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FTO glass substrate at 3000 rpm for 20 s. Positive photoresist (S1808, Microchem) was then 

spincoated at 2500 rpm for 80 s onto the FTO glass substrate, and baked at 90°C for 25 min to 

evaporate the photoresist solvent. After cooling down to room temperature, the photomask with 

5 μm wide Cr lines and 10 μm glass spacings was placed flushed onto the substrate. The 

photoresist was exposed through the photomask using a UV lamp source (50 W, Oriel 

Instruments He(Xe) arc lamp) for 3.5 s. The photoresist was patterned and developed with MF-

319 developer, rinsed with deionized water, and dried under a N2 stream. An electrical contact 

area was made by dissolving the corner of the photoresist with acetone using a Q-tip. The 

PEDOT electrodeposition was performed with a potentiostat (PGSTAT12, Metrohm Autolab), 

where the FTO glass substrate was exposed to an aqueous electrolyte consisted with 0.02 M 3,4-

ethylenedioxythiophene (EDOT, 97%, Sigma-Aldrich), 0.1 M sodium dodecyl sulfate (SDS) and 

0.1 M lithium perchlorate (LiClO4, 99.5%, Alfa), at a constant potential of +1.0 V vs. a Ag/AgCl 

reference electrode for 45 s in the presence of a Pt counter electrode. 

4.2.3 Fabrication of Nanostructured ZnO Gratings  

The electrodeposition of nanostructured ZnO was performed with a potentiostat 

(PGSTAT12, Metrohm Autolab) using a three-electrode setup. An aqueous solution containing 

0.1 M Zn(NO3)2•6H2O (98%, Sigma-Aldrich) and 0.1 M KCl heated to 70°C was used as the 

plating solution. The working electrode of either a WO3 or PEDOT grating array surface was 

exposed to the plating solution for 600 s at a constant potential of −0.9 V vs. a Ag/AgCl 

reference electrode and in the presence of a Pt counter electrode to form a nanostructured ZnO 

film over the WO3 or PEDOT gratings. Finally, the sample was rinsed with acetone to remove 

remaining photoresist, and dried under a N2 stream. 

4.2.4 Morphological Characterization  
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SEM images were obtained using a FEI Magellan 400 field-emission scanning electron 

microscope at an accelerating voltage of 5 kV. AFM measurements were collected using an 

Asylum Research MFP-3D, and AFM images were analyzed using Gwyddion imaging 

processing software. XPS measurements were collected using a Kratos Analytical AXIS Supra 

surface analysis instrument, with an emission current of 15 mA during analysis. For UV-Vis/NIR 

absorbance measurements, a Jasco V-670 UV-Vis/NIR spectrophotometer was used. To measure 

ex situ absorbance spectra, a potential of −1.0 V vs. Ag/AgCl was applied to the grating surfaces 

for 30 s in a 0.1 M LiClO4 in polycarbonate solution before removing the grating surfaces from 

solution for spectroscopic analysis. To measure in situ absorbance spectra, UV-Vis/NIR 

measurements were collected while a potential of −1.0 V vs. Ag/AgCl was applied to the grating 

surfaces in a 0.1 M LiClO4 in polycarbonate solution. 

4.2.5 Optical Diffraction Analysis  

For diffraction and transmittance measurements, the grating surface was placed in an 

electrochemical cell connected to a potentiostat (Palmsens3, Palmsens) in a three-electrode 

setup. The grating sample was placed in a 0.1 M LiClO4 in polycarbonate solution under 

alternating step potentials of −1.0 V and +1.0 V (15 s at each potential for a total duration of 250 

s) vs. a Ag/AgCl reference electrode and in the presence of a Pt counter electrode. Light from a 

HeNe laser (λ = 633nm, 12 mW, LHRP-1201, Research Electro-Optics), p-polarized using a 

polarizer (Newport), was emitted and chopped at a frequency of 1.0 kHz using an optical 

chopper (Stanford Research Instruments SR540). A transmission geometry was employed in 

these optical measurements, where the intensities of the diffracted light (at the n = 1 spot) and 

transmitted light (at the n = 0 spot) were measured by a photodiode (Hamamatsu) connected to a 

DSP lock-in amplifier (EG&G model 7220). The photodiode potentials were recorded by a 
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Labview program. For %T measurements at the n = 0 spot, a FTO glass substrate was used as 

reference. For %DE measurements, the photodiode intensities at the n = 1 spot were divided by 

the photodiode intensity at the n = 0 spot at +1.0 V vs. Ag/AgCl (when the grating is at its most 

transmissive state). 

 

 

4.3 Results and Discussion 

4.3.1 Electrodeposition and Characterization of ZnO-WO3 and ZnO-PEDOT Gratings 

 

4.3.1.1 WO3 electrodeposition  

The mechanism of WO3 electrodeposition from acidic peroxytungstatic acid (H2W2O11) 

solutions has been described previously by other researchers.40-41 Electrodeposition occurred at 

negative potentials (−0.4 V vs. Ag/AgCl for 150 s) through a combination of electrochemical 

reduction and disproportionation of the four peroxide (O2
2-) anions in the peroxytungstate ions as 

described in Equation 1, where x is either 0, 4 or 8: 

W2O11
2- + (2+x) H+ + xe- → 2WO3 + 

(2+𝑥)

2
H2O + 

(8−𝑥)

4
 O2  (1) 

If x = 8, then all four of the peroxide anions are reduced electrochemically to three O2- ions (in 

the electrodeposited WO3) and five H2O. If x = 0, then the four peroxide anions disproportionate 

to form three O2- ions, H2O and two O2. In addition to the peroxide reduction, a non-

stoichiometric amount of W6+ ions in the WO3 are also reduced to W5+: 

zH+ + WO3 
 + ze- → HzWO3  (2) 

This tungsten reduction is verified by the observation of a blue color of the electrodeposited 

WO3 film. 
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4.3.1.2 PEDOT electrodeposition  

A PEDOT film was formed by the electrodeposition of 3,4-ethylenedioxythiophene 

(EDOT) using a slightly modified procedure of a previously reported method.42-45 To generate 

stable, uniform PEDOT films, it was necessary to first spincoat a thin layer of PEDOT:PSS 

solution onto the FTO glass substrate to enhance conductivity and improve wetting of the 

surface, followed by the electropolymerization of EDOT to form a thicker layer of PEDOT. For 

the electrodeposition, an aqueous plating solution consisting of 0.02 M EDOT, 0.1 M SDS and 

0.1 M LiClO4 was employed. A constant potential of +1.0 V vs. Ag/AgCl was applied for 45 s to 

a photopatterned FTO glass substrate in the presence of a Pt counter electrode, creating a large 

scale (on the squared cm scale) uniform electroactive film. The electrodeposited film is in the 

reduced state, as evidenced by its blue color. 

 

4.3.1.3 ZnO electrodeposition  

Nanostructured ZnO was selectively deposited electrochemically on top of the WO3 or 

PEDOT thin film. In our approach, 0.1 M aqueous zinc nitrate at pH 4.0 heated to 70°C was used 

as the plating solution, and electrodeposition occurred for 600 s at a potential of −0.9 V vs. 

Ag/AgCl to ensure full coverage of ZnO over WO3 or PEDOT gratings. An SEM image of a 

ZnO-PEDOT grating sample with a ZnO electrodeposition time of 300 s, as shown in Supporting 

Information Figure S1, revealed sparse coverage of ZnO on the grating surface. The mechanism 

of the ZnO electrodeposition process has been discussed in previous works,7, 46-47 and is 

summarized as follows: At a sufficiently negative applied potential, OH- ions are generated, 

likely via the reduction of NO3
-  (Eqn. (4)). The OH- and the Zn2+ ions then result in the 

precipitation of ZnO onto the working electrode of either WO3 or PEDOT gratings (Eqn. (5)).  
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                                           NO3
- + H2O +2e- → NO2

- + 2OH-                                                 (4) 

                                             Zn2+ + 2OH- → ZnO ↓ + H2O                                                     (5) 

 

4.3.1.4 Grating fabrication  

The ZnO-WO3 and ZnO-PEDOT gratings were fabricated using a combination of 

photolithography and electrodeposition. As shown in the scheme in Figure 4.1, after a layer of 

photoresist was spincoated onto conductive FTO glass slides, UV photopatterning was employed 

to create an array of photoresist stripes of width d1 = 5 µm that were separated by 10 µm 

spacings of glass substrate. WO3 or PEDOT was then selectively deposited electrochemically 

onto the exposed glass to form arrays of continuous micron-scale stripes of width d2 = 10 µm. 

After the electrodeposition of both the electrochromic and ZnO layers, the photoresist was 

removed using acetone to create a diffraction grating surface that consists of an array of 10 µm 

wide ZnO-WO3 or ZnO-PEDOT stripes separated by 5 µm wide spacings. The morphology of 

the ZnO-WO3 and ZnO-PEDOT diffraction gratings was characterized using a combination of 

SEM, AFM, and XPS. A cross-sectional SEM image in Figure 4.1f shows the various 

components of a sample composite ZnO-PEDOT grating, while SEM images in Figure 4.2 

shows a) ZnO-WO3 gratings and b) ZnO-PEDOT gratings that are composed of an array of 10 

µm wide stripes that extend continuously over a length of several microns with 5 µm spacings in 

between.   
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Figure 4.2. SEM images of a set of a) ZnO-WO3 and b) ZnO-PEDOT gratings. The insets show 

high-resolution images of the nanostructured ZnO overlayer decorating the gratings. 

 

 

 

It should also be noted that the lower contrast in Figure 4.2b compared to Figure 4.2a is due to 

the presence of a thin layer of PEDOT:PSS in the 5 µm spacings between the ZnO-PEDOT 

stripes in the ZnO-PEDOT gratings (since a thin layer of PEDOT:PSS was spincoated onto the 

FTO glass substrate to ensure stable electropolymerized PEDOT thin films), whereas the ZnO-

WO3 stripes are separated by 5 µm spacings of glass substrates in the ZnO-WO3 gratings. The 

insets of the SEM images show high-resolution images of the nanostructured ZnO, where the 

individual flake-like ZnO nanostructures on the surface are depicted. This is a contrast to the 

mostly planar and featureless morphology of the WO3 or PEDOT gratings before the addition of 

the ZnO layer, as confirmed by SEM images in Supporting Information in Appendix C. In 

addition, AFM measurements (see Supporting Information in Appendix C) reveal that an 
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electrochromic layer of height h1 = 200 nm was formed, and a nanostructured ZnO layer of 

height h2 = 600 nm was formed. Furthermore, XPS measurements confirmed the formation of 

ZnO over both the WO3 and PEDOT grating surfaces (shown in Supporting Information in 

Appendix C). 

 

4.3.2 Absorbance Spectra of ZnO-WO3 and ZnO-PEDOT Gratings 

 

The absorbance spectra of the composite gratings were measured using a normal 

incidence transmission geometry, and it was revealed that the addition of a nanostructured ZnO 

overlayer on both the WO3 and PEDOT gratings resulted in enhanced light absorption 

capabilities. The UV-Vis/NIR absorbance spectra for an electrodeposited WO3 thin film (blue 

curve), an electrodeposited WO3 grating (red curve) and an electrodeposited composite ZnO-

WO3 grating (black curve) are all shown in Figure 4.3a. These three ex situ spectra were obtained 

from samples that were first held at an applied potential of −1.0 V vs. Ag/AgCl for 30 s in an 

electrochemical cell containing a 0.1 M LiClO4 solution, then removed for spectroscopic 

measurements. As seen in Figure 4.3a, there is a strong absorbance peak around 1000 nm for the 

both the planar WO3 thin films and the WO3 gratings. Photographs of these two surfaces are also 

shown in Figure 3a and both exhibit the well-known blue color associated with reduced WO3 

electrochromic films. The spectrum of the WO3 grating shows a slightly stronger absorption 

band than the planar thin film, and thus the color of the WO3 grating is a darker blue. 
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Figure 4.3. a) UV-Vis/NIR spectra of ZnO-WO3 gratings, WO3 gratings, and WO3 thin film. b) 

UV-Vis/NIR spectra of ZnO-PEDOT gratings, PEDOT gratings, and PEDOT thin film. 

Photographs of each sample are also shown. 

 

 

 

In contrast, the spectrum of the ZnO-WO3 grating shows significantly enhanced absorbance at all 

wavelengths from 400 nm to 2000 nm. The addition of the nanostructured ZnO overlayer must 

enhance the light absorption capabilities of the WO3 grating underneath, since the 

electrodeposited ZnO has a high refractive index but no absorptive component ( = 0).  The UV-

Vis/NIR absorbance spectrum of ZnO does not exhibit any absorption bands from 400 nm to 

2000 nm, due to its high bandgap of 3.3 eV (375 nm).48 Nevertheless, the addition of ZnO to 
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form the ZnO-WO3 gratings significantly enhances the optical absorption of the WO3 gratings. 

The enhanced absorption also results in changes in visual appearance of the ZnO-WO3 gratings, 

which becomes black as shown in Figure 4.3a. This data clearly shows that there is a significant 

amount of light coupled or redirected from the nanostructured ZnO overlayer to the underlying 

WO3 portion of the grating structure. 

A similar effect was observed for ZnO-PEDOT gratings. The UV-Vis/NIR absorbance 

spectra of an electrodeposited planar PEDOT thin film, an electrodeposited PEDOT grating, and 

an electrodeposited ZnO-PEDOT grating are shown in Figure 4.3b. It has been shown previously 

that PEDOT thin films exhibit a π to π* transition with a bad gap of 1.7 eV (775 nm), thus 

PEDOT thin films in the reduced state show significant optical absorption near 600 nm,31-32, 49 as 

evidenced by the blue trace in Figure 4.3b. Similar to the WO3, PEDOT films also have a 

characteristic blue color in the reduced state as seen in the inset to Figure 4.3b. The PEDOT 

grating adds an additional absorption band at 450 nm (see Figure 4.3b) that has been attributed to 

an interference effect of the PEDOT grating, and is a darker blue in color as seen in the Figure 

4.3b inset. As in the case of the ZnO-WO3 gratings, the ZnO-PEDOT gratings also show a 

broadband enhancement in the UV-Vis/NIR absorbance spectrum, and has a black visual 

appearance, also seen in the inset of Figure 4.3b. We attribute this enhanced absorption from of 

ZnO-PEDOT gratings to the same mechanism as in the of ZnO-WO3 gratings: coupling or 

redirection of light from the nanostructured ZnO overlayer to the underlying PEDOT grating. 

 

4.3.3 Electrodiffraction of ZnO-WO3 and ZnO-PEDOT Gratings  

While the nanostructured ZnO overlayer enhances the absorptive properties of WO3 and 

PEDOT gratings, there is an even larger effect on the electrochemically modulated diffraction. 
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Electrodiffraction from electrodeposited ZnO-WO3 and ZnO-PEDOT gratings at λ= 633 nm was 

measured in situ at normal incidence in an electrochemical cell containing 0.1 M LiClO4 in 

polycarbonate, as shown schematically in Figure 4.4a. A representative diffraction pattern is 

shown in Figure 4.4b. 

 

 

Figure 4.4. a) Schematic of the setup used for electrochemically modulated optical measurements 

of ZnO-WO3 and ZnO-PEDOT gratings. b) Photograph of and intensity profile of diffraction 

pattern created by a set of ZnO-WO3 gratings. 

 

 

 

To measure the electrodiffractive and electrochromic response, the applied potential to a ZnO-

WO3 or ZnO-PEDOT grating was stepped between −1.0 V to +1.0 V vs. Ag/AgCl every 15 

seconds. The current transients from the potential steps are shown in Figure 4.5. The current 

transients are higher for the ZnO-WO3 grating as compared to the WO3 grating, as shown in 

Figure 4.5b; we attribute this to the larger charging currents for high surface area nanostructured 

ZnO. Similar trends were observed for the ZnO-PEDOT and PEDOT gratings in Figure 4.5c. 
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Figure 4.5. a) For the applied step potentials of −1.0 V and +1.0 V vs. Ag/AgCl, corresponding 

current transients for b) ZnO-WO3 and WO3 gratings, as well as c) ZnO-PEDOT and PEDOT 

gratings are shown. 
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The electrochemically modulated optical signals for electrochromic changes 

(transmission at n = 0) and first order diffraction (n = 1) were acquired as a function of time from 

both ZnO-WO3 gratings (Figures 4.6b and 4.6c) and ZnO-PEDOT gratings (Figures 4.7b and 

4.7c). Transmission measurements at n = 0 were collected in situ at normal incidence at λ = 633 

nm in an electrochemical cell containing 0.1 M LiClO4 in polycarbonate using a FTO coated 

glass slide as reference. To ensure reproducibility, optical measurements were acquired as the 

applied potentials were stepped between +1.0 V and –1.0 V (potentials measured against 

Ag/AgCl) for a total of 10 times. The %T observed in Figure 4.6b from the n = 0 spot for both 

WO3 gratings and ZnO-WO3 gratings varied reversibly with the applied potential as a result of 

the electrochromic properties of WO3. For the WO3 grating, %T switched between 79% at +1.0 

V to 27% at −1.0 V vs. Ag/AgCl. This variation in %T is indicative of the electrochromic effects 

displayed by the WO3 grating, with larger Δ%T values indicating a greater optical contrast under 

an applied potential. At −1.0 V, Li ion intercalation and electron injection into the WO3 grating 

lead to an increase in  and thus the large increase (∆%T = 52%) in light absorption. This effect 

has been observed previously, on both planar WO3 films and gratings.24-26 Similar 

electrochromic effects were observed for the ZnO-WO3 gratings, with a Δ%T = 46%. However, 

the average intensity of the transmitted light was lower for the ZnO-WO3 gratings as compared 

to undecorated WO3 gratings (Tave = 40% vs Tave = 55%). This decrease is expected from the 

absorption spectra results discussed in the previous section. 
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Figure 4.6. Optical measurements of ZnO-WO3 and WO3 gratings after a) applied potentials of 

−1.0 V and +1.0 V vs. Ag/AgCl showing the b) transmittance at the n = 0 spot and the c) diffraction 

efficiency at the n = 1 spot. 
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Then, for electrodiffraction experiments, optical measurements were also collected in situ 

at normal incidence at λ = 633 nm in an electrochemical cell containing 0.1 M LiClO4 in 

polycarbonate using the gratings’ n = 0 transmission measurements at +1.0 V vs. Ag/AgCl (the 

gratings’ most transmissive state) as reference. To ensure reproducibility, %DE measurements 

were reported as the applied potentials were stepped between +1.0 V and –1.0 V (potentials 

measured against Ag/AgCl) for a total of 10 times. In contrast to the electrochromic behavior, 

both the average and the electrochemically modulated diffraction efficiency (%DE) observed for 

the n =1 diffraction spot were greater for the ZnO-WO3 gratings compared to the WO3 gratings. 

It should also be noted that the electrochemical modulation of %DE was 180° out of phase with 

the modulation of %T. A comparison of Figures 4.6b and 4.6c revealed that the more absorptive 

state at n = 0 (for the applied potential −1.0 V vs. Ag/AgCl) displayed a low %T but a high 

%DE, and vice versa at +1.0 V vs. Ag/AgCl. From the red trace in Figure 4.6c, an average %DE 

of 3.2% and an electrochemically modulated ∆%DE of 2.4% were observed for WO3 gratings. 

As for the ZnO-WO3 gratings (black trace in Figure 4.6c), the average %DE increased to 10%, 

and the electrodiffraction increased to a ∆%DE of 9.7% – four times higher than the gratings 

without ZnO. A similar effect was observed for the case of the ZnO-PEDOT and PEDOT 

gratings. As seen in the Figure 4.7b, for PEDOT gratings, %T and ∆%T were 45% and 35% 

respectively; these values decreased to 36% and 27% for ZnO-PEDOT gratings.   
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Figure 4.7. Optical measurements of ZnO-PEDOT and PEDOT gratings after a) applied 

potentials of −1.0 V and +1.0 V vs. Ag/AgCl showing the b) transmittance at the n = 0 spot and 

the c) diffraction efficiency at the n = 1 spot. 
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However, the diffraction efficiencies again showed significant increases: an average %DE and 

∆%DE were 3.5% and 2.8% for PEDOT gratings, but increased significantly to 8.5% and 8.3% 

respectively as shown in Figure 4.6c. The drastic increase of ∆%DE displayed by the ZnO-WO3 

and ZnO-PEDOT gratings compared to their counterpart WO3 and PEDOT gratings indicates a 

significant improvement of their electrodiffractive performance, likely due to optical coupling 

between ZnO and the host material. By reporting ∆%DE values, we have demonstrated that we 

are able to quantify optical coupling between the non-absorptive nanostructured ZnO overlayer 

and the absorptive host material (WO3 and PEDOT). 

To understand these changes in the average %DE and ∆%DE, we need to consider the 

contributions to  and  for the composite gratings. In the case of thin gratings, the diffraction 

efficiency DE is a linear combination of an absorptive component and a phase component (Eqn. 

(6)):22, 38, 50  

 𝐷𝐸 = 𝑎(∆𝜅)2 + 𝑏(∆𝜂)2 (6) 

This equation can be used to explain the increases in the average %DE, but not the 

electrodiffractive component (∆%DE).  For the case of the composite ZnO-WO3 and ZnO-

PEDOT gratings in this paper, an additional coupling between the ZnO and the absorptive WO3 

or PEDOT is observed, even though no electrodiffractive effect (∆𝜅 = ∆𝜂 = 0) is observed with 

ZnO gratings alone (optical measurements shown in Supporting Information in Appendix C). 

Instead, the nanostructured ZnO overlayer redirects light into the electrochromic WO3 or 

PEDOT component of the grating. This type of optical coupling occurs because the 

electrodeposited nanostructured ZnO coating is on the same scale as the light; similar optical 

effects have been previously observed in calculations of the diffraction efficiency of taller 

gratings.35, 50 Furthermore, the high surface area, nanostructured nature of the ZnO provides an 
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additional coupling mechanism via a series of total internal reflection from the ZnO to the 

absorptive material underneath.6 To support our proposed mechanism for optical coupling, we 

showed that ZnO-PEDOT gratings without a fully covered ZnO overlayer displayed much 

weaker electrodiffractive effects (measurements in Supporting Information in Appendix C). 

ZnO-PEDOT gratings with a sparse ZnO overlayer only displayed a 1.5-fold enhancement of 

Δ%DE compared to PEDOT gratings, which indicates weaker optical coupling between the 

sparse ZnO overlayer and the absorptive material underneath. Thus, the presence of the 

electrodeposited ZnO, in a combination of the nanoscale structure and metamaterial patterning, is 

crucial for creating enhanced electrodiffraction. 

 

 

4.4 Conclusions 

The enhanced absorption and electrodiffraction observed from the composite ZnO-WO3 

and ZnO-PEDOT gratings described in this paper clearly demonstrate that there is a strong 

optical coupling between the electrodeposited nanostructured ZnO overlayer and the 

electrochromic thin film layer underneath. This coupling has some significant implications; the 

presence of both nanoscale structuring and metamaterial patterning (e.g., gratings, nanocone 

arrays, or nanoring arrays) are both required for this coupling to occur. The electrodiffraction 

from these gratings increases in the presence of the high surface area nanostructured ZnO, even 

though the ZnO itself has no absorptive () or electrochromic (∆) behavior. In these gratings, 

the ZnO enhances the delivery of light to the underlying electrochromic materials via optical 

coupling. We have also observed this coupling effect previously in the enhanced antireflectivity 

of PEDOT and gold nanocone arrays that were coated with electrodeposited ZnO 
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nanostructures.7 Going forward, we should be able to employ this coupling effect to enhance the 

production of electron-hole pairs by enhancing the optical absorption of TiO2, In2O3, or Si 

semiconductor patterned gratings, nanocone arrays, or nanoring arrays. 
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Appendix A 

Supporting Information for  

Fabrication of PEDOT Nanocone Arrays 

with Electrochemically Modulated 

Broadband Antireflective Properties 
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A.1 PEDOT Electrodeposition Current Density vs. Time 

 

 

Figure A.1. Current density and charge curves during PEDOT electropolymerzation and 

electrodeposition at +1.0V on thin PEDOT:PSS coated FTO conductive substrate. 
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A.2 Electrodeposited PEDOT Film Thickness 

 

 

Figure A.2. SEM image shows that an unmodified electrodeposited PEDOT film has a film 

thickness of 450 nm. 
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A.3 Electrochromic Behavior of an Unmodified PEDOT Planar Thin 

Film 

 

 

 

Figure A.3. Electrochromic behavior of an unmodified PEDOT thin film. UV–visible absorption 

spectra of PEDOT film removed from solution after 20s under potentiostatic control at three 

potentials: -1.0V (blue spectrum), 0.0V (black spectrum) and +1.0V (red spectrum) vs. Ag/AgCl. 
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Appendix B 

Supporting Information for 

Ultra-Antireflective Electrodeposited 

Plasmonic and PEDOT Nanocone Array 

Surfaces 
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B.1 ZnO Electrodeposition Current Density vs. Time 

 

 

Figure B.1. Electrochemical characterization of the formation of the nanostructured ZnO thin 

film via electrodeposition. 
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B.2 XRD Analysis of ZnO-Coated Nanocone Arrays 

 

 

Figure B.2. XRD analysis of the ZnO-coated nanocone arrays indicates a wurzite structure with 

polycrystalline ZnO growing primarily in the <002> direction. 
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B.3 XPS Analysis of ZnO-Coated Nanocone Arrays 

 

 

Figure B.3. XPS analysis confirming the presence of ZnO on the surface of the FEP ZnO-Au 

nanocone arrays and the ZnO-PEDOT nanocone arrays. a) indicates the presence of both Zn 2p3/2 

and Zn 2p1/2 peaks, while b) indicates the presence of the O 1s peak. 
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B.4 Morphologies of ZnO-Coated Nanocone Arrays and Unmodified 

Planar ZnO Thin Film 

 

 

 

                  
 
Figure B.4. SEM images of a) the planar ZnO thin film surface and b) the ZnO nanocone arrays 

used in the methylene blue degradation. For the planar ZnO thin film, the ZnO crystals are packed 

tightly together, reducing the surface roughness factor compared to the periodic ZnO-coated 

nanocone arrays. 
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B.5 Experimental Details for Simulated %R Measurements for 

Nanocone Arrays 

 

 
The simulated %R measurements were obtained using 11-phase Fresnel calculations, where n1 = 

air, n11 = bulk Au or ZnO-Au, and n2, n3, … , n10 = the effective refractive index calculated by 

averaging the refractive indices of air and the nanocone structure as a function of the distance 

away from the bottom of the nanocone. For Au, n11 at various λ was referenced from values 

reported in literature. To calculate the real part of n2, n3, … , n10, the following formula was 

used:  

nxreal = 𝑛𝑥𝑟𝑒𝑎𝑙 = 𝑛𝑥𝑟𝑒𝑎𝑙+1 + (
1−𝑛11𝑟𝑒𝑎𝑙

10
) , where 2 < x < 10 

To calculate the imaginary part of n2, n3, … , n10, the following formula was used:  

nxim = 𝑛11𝑖𝑚𝑒−(
11−𝑥

7
)
, where 2 < x < 10 

For ZnO-Au, n11 at various λ was modeled using the refractive index of ZnO reported in 

literature. However, we also combined the imaginary part of Au’s refractive index to model the 

absorptive nature of the ZnO-Au nanocone arrays (e.g., at 600 nm, nAu = 0.24 + 3.10i, nZnO = 

2.00 + 0i, and ZnO-Au is modeled using nZnO-Au = 2.00 + 3.10i). To calculate the real and 

imaginary parts of n2, n3, … , n10 for the ZnO-Au nanocone arrays, the same formulas listed 

above were used. Other important parameters for the Fresnel calculations include setting the film 

height for each phase from n2, n3, … , n10 to 100 nm, and setting the angle of incidence to 8°.   
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B.6 Igor Pro Macro for 11-Phase Fresnel Reflectivity Measurements for 

Simulated %R Measurements for Nanocone Arrays 

 
 

Make/N=900/D Refs,theta,rad,Refp 

Make/N=900/D/C 

rs1,rs2,rs3,rs4,rs5,rs6,rs7,rs8,rs9,rs10,rs12,rs13,rs14,rs15,rs16,rs17,rs18,rs19,rs110,c1,c2,c3,c4,c5,c6,c7,c

8,c9,c10,c11,b1,b2,b3,b4,b5,b6,b7,b8,b9,rp1,rp2,rp3,rp4,rp5,rp6,rp7,rp8,rp9,rp10,rp12,rp13,rp14,rp15,rp

16,rp17,rp18,rp19,rp110 

variable lambda := 496 

variable h := 100.0 

variable/c ic := cmplx(0,1) 

variable/c n1 := cmplx(1.00,0) 

variable/c n2 := cmplx(0.9916,0.508674) 

variable/c n3 := cmplx(0.9832,0.586788) 

variable/c n4 := cmplx(0.9748,0.676898) 

variable/c n5 := cmplx(0.9664,0.780846) 

variable/c n6 := cmplx(0.958,0.900757) 

variable/c n7 := cmplx(0.9496,1.039081) 

variable/c n8 := cmplx(0.9412,1.198648) 

variable/c n9 := cmplx(0.9328,1.382718) 

variable/c n10 := cmplx(0.9244,1.595055) 

variable/c n11 := cmplx(0.916,1.84) 

theta := x/10 

rad := theta*pi/180 

c1 := n1*cos(rad) 

c2 := sqrt(n2^2-(n1*sin(rad))^2) 

c3 := sqrt(n3^2-(n1*sin(rad))^2) 

c4 := sqrt(n4^2-(n1*sin(rad))^2) 

c5 := sqrt(n5^2-(n1*sin(rad))^2) 

c6 := sqrt(n6^2-(n1*sin(rad))^2) 

c7 := sqrt(n7^2-(n1*sin(rad))^2) 

c8 := sqrt(n8^2-(n1*sin(rad))^2) 

c9 := sqrt(n9^2-(n1*sin(rad))^2) 

c10 := sqrt(n10^2-(n1*sin(rad))^2) 

c11 := sqrt(n11^2-(n1*sin(rad))^2) 
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Appendix C 

Supporting Information for 

Quantitative Characterization of Optical 

Coupling in Nanoporous ZnO-WO3 and 

ZnO-PEDOT Composite 

Electrodeposited Gratings using 

Electrodiffraction Measurements 
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C.1 Morphology of WO3 and PEDOT Gratings 

 

 

 

Figure C.1. SEM images of a) WO3 gratings and b) PEDOT gratings. 
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C.2 AFM Measurements of ZnO Composite Gratings 

 

 

 

Figure C.2. AFM measurements revealed the heights of a) the PEDOT layer and b) the ZnO 

overlayer from a ZnO-PEDOT grating. Cross-sectional SEM images of c) the ZnO-PEDOT grating 

sample confirm AFM measurements and show the various components of the composite ZnO-

PEDOT grating. 
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C.3 XPS Characterization of ZnO Composite Gratings 

 

 

 

 
 

Figure C.3. XPS measurements confirmed the formation of a ZnO overlayer on our ZnO-WO3 

gratings and ZnO-PEDOT gratings. 
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C.4 Electrochromic and Electrodiffrative Measurements for ZnO Only 

Gratings 

 

 

 

 
 

Figure C.4. Optical measurements of ZnO only gratings after a) applied potentials of −1.0 V and 

+1.0 V vs. Ag/AgCl showing the b) transmittance at the n = 0 spot and the c) diffraction efficiency 

at the n = 1 spot.   
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C.5 Electrochromic and Electrodiffrative Measurements of Sparsely 

ZnO Covered ZnO Composite Gratings 

 

 

 

 
 

Figure C.5. a) SEM image of a sparsely ZnO covered ZnO-PEDOT grating. b) Optical data reveals 

a much weaker electrodiffractive effect at applied potentials of +1.0 V and –1.0 V vs. Ag/AgCl 

for the sparsely ZnO covered ZnO-PEDOT grating (with ZnO electrodeposition time of 300 s). 

The ZnO-PEDOT grating here only displayed a 1.5-fold enhancement of Δ%DE compared to the 

PEDOT grating. 

 
 




