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Embedded Boundary Algorithms for Solving the Poisson 
Equation on Complex Domains 

Marcus S. Day1, Phillip Colella, Michael J. Lijewski, Charles A. Rendleman 
Lawrence Berkeley National Laboratory 

Berkeley, CA, 94720 

DanielL. Marcus 
Sage IT Partners 

San Francisco, CA 94111 

Abstract 

We present a graph-based strategy for representing the computational domain 
for embedded boundary discretizations of conservation-law PDE's. The represen
tation allows recursive generation of coarse-grid geometry representations suit
able for multigrid and adaptive mesh refinement calculations. Using this scheme, 
we implement a simple multigrid V-cycle relaxation algorithm to solve the lin
ear elliptic equatibns arising from a block-structured adaptive discretization of 
the Poisson equation over an arbitrary two-dimensional domain. We demonstrate 
that the resulting solver is robust to a wide range of two-dimensional geometries, 
and performs as expected for multigrid-based schemes, exhibiting 0 (N log N) 
scaling with system size, N. 

Keywords: Cartesian grid, embedded boundary, adaptive mesh refinement, 
multigrid, Poisson equation, linear solution methods 

1 Introduction 

In the Embedded Boundary (EB) approach to discretizing PDE's in complex geometries, 
the physical domain is embedded completely within a larger uniform mesh. The bulk of the 
data underlying an EB discretization utilizes rectangular indexing, and only a small number 
of cells near the embedded boundary require special treatment. In this paper, we extend 
a class of EB discretization schemes to allow for arbitrarily complex domain boundaries in 
building multi-level discretization scheme components, such as multigrid and adaptive mesh 
refinement. We focus here on an adaptive multigrid scheme for the Poisson equation. The 
framework however, would extend readily as the basis for hyperbolic and ·incompressible 
flow discretizations. 

EB methods have been applied to a wide range of conservation-law PDE's (alternative 
names for EB include "Cartesian Grid", or "Immersed Boundary"). The earliest use was 
in 1977 by Reyhner[1] in the context of axisymmetric transonic potential flow solutions. In 
1978, Purvis and Burkhalter[2] presented a finite-volume formulation of the full potential 

1Corresponding author contact information: MSDay@lbl.gov, or via the Center for Computational Sci
ences and Engineering, MS-50D, LBNL, (510) 486-5076, FAX: (510) 486-6900 
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equation via Cartesian Grid methods. In 1983, Wedan and South[3] extended this idea 
in two dimensions to allow multi-element and internal flow geometries. The TRAN AIR 
code, presented in [4], employed a three-dimensional finite-element based discretization 
of the full potential equation, complete with local adaptivity. Clarke, et al. [5], Gaffney, 
et al.[6], Epstein, et al.[7] and Morinishi[8] presented work that extended the Cartesian 
schemes to steady Euler flows. Chiang, et al.[9] presented an Euler solver for Cartesian 
grids which featured adaptive gridding. Coirer[10] developed a locally adaptive upwind 
finite-volume scheme in two dimensions, and incorporated the viscous terms necessary to 
compute steady Navier-Stokes flow, following the work of DeZeeuw[ll, 12] and Gooch[13]. 
Melton[14] extended the work of Coirer into three dimensions. Melton's contribution also 
included the capability for automated grid generation via a collection of specified "water
tight" components, and the logic for handling split irregular cells at the finest level. The 
latter feature, introduced in [11], reduces considerably the grid resolution required to capture 
the details of geometries containing sharp edges and thin bodies, such as the trailing edges 
of airfoils. 

When applying Embedded Boundary methods to the time-dependent Euler equations, 
researchers must additionally deal with the overly severe CFL constraints arising from small 
cells cut by the boundary. The earliest schemes to deal with cut cells in a time-dependent 
framework were presented by Noh [15]. Some of Noh's ideas related to cell-merging and 
flux redistribution, are used in more contemporary works, such as the schemes presented 
by Quirk[16], Pember, et al.[17] and Yang, et al.[18]. Additional methods to ameliorate the 
CFL time step restriction have been constructed based on geometrical wave-propagation, 
and rotated difference schemes, and are presented in a series of papers by LeVeque[19, 20], 
and Berger and LeVeque[21, 22, 22]. 

A variety of embedded boundary schemes have been presented in the literature for 
elliptic problems on irregular domains. Peskin[23], LeVeque[24], Tome and McKee[25], 
Tau[26], and Almgren, et al.[27] present specialized elliptic solution schemes for Cartesian 
grids, as required to implement the elliptic solve step of the· projection schemes for in
compressible flows[28]. In a more general setting, LeVeque and Li[29] extend the methods 
in [23] to allow internal interfaces in the elliptic transport coefficients and source terms. 
Yang[30] then extended that scheme to incorporate complex domain boundaries embed
ded in a uniform rectangular grid. The resulting logically rectangular system can be 
inverted with fast Poisson-solver schemes, including a specially tailored multigrid-based 
implementation[31]. Hewitt[32] presents an embedded curved boundary scheme which is 
similar to that of Yang[30], except that additional care was taken to allow efficient use of 
ADI-based solvers. Johansen[33] presents a different type of two-dimensional scheme for 
elliptic equations, along the lines of the hyperbolic schemes, where the embedded boundary 
is treated as a physical domain boundary, and not just an internal interface. Johansen em
ploys a novel data-centering scheme to avoid conditioning and accuracy problems exhibited 
by many of the previous schemes for elliptic and parabolic systems. 

In this paper, we present a generalized EB domain specification for the data associated 
with the numerical integration of conservation-law PDEs. In our scheme, the computational 
domain is represented as a connected graph; the nodes of the graph represent the discrete 
cells on the grid, and the edges represent the cell faces. The graph representation of gridded 
data leads to an intuitive cell merging strategy for generating successively coarser geome-
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Figure 1: Indexing scheme for Uniform gridding with mesh spacing, h, in two dimensions. 

try descriptions from the finer grid. This framework is applied toward the construction of 
an EB Poisson solver, employing block-structured adaptive mesh ref!nement(34] and multi
grid( d. (35]). Here, we extend the elliptic EB discretization of Johansen and Colella(33] to 
fully arbitrary geometrical configurations, thereby allowing complete geometry coarsening 
that is not limited by complex boundary shape. In a more general sense, this application 
also extends (11, 14] to allow "split-cells" at all levels of refinement, rather than at only the 
finest level. For this Poisson-solver example, we present convergence results which verify 
that, even in complex domains, our scheme converges at the expected rates, in terms of 
both grid-refinement, and multigrid relaxation performance. 

The notation of our embedded boundary framework is motivated in Section 2 via the 
finite-volume discretization of the Poisson equation. We present our simple multigrid scheme 
in Section 3, including details of the EB grid-coarsening strategy. In Section 4, we present 
the block-structured adaptive mesh refinement scheme and associated extensions to the 
single-level multigrid iteration. In Section 5, a simple geometry generator is described 
based on the requirements of the grid-coarsening strategy, and the Poisson discretization. 
We demonstrate the generality and convergence of these schemes in Section 6 through a 
variety of example test cases. We add some concluding remarks in Section 7. 

2 Embedded Boundary Poisson Discretization 

As a prototypical example of a conservation law PDE, take the Poisson equation for the 
potential, cp ( x)' d dimensions: 

(1) 

and for clarity of exposition, consider Neumann conditions to apply on all boundaries, an, 
of the computational domain, n (we will remove this restriction in subsequent sections). We 
solve Equation 1 on a discrete grid of uniform cells. The cells are indexed by the vector i = 
(i1, ... , id), and are located at Lli = ((i1 - 1/2) h, (i1 + 1/2) h] x ... x [(id- 1/2) h, (id + 1/2) h] 
(see Figure 1). Each cell has 2 · d faces, Si = i ± uk/2, k E (1, d], where uk is the unit 
vector in the kth direction, and the discretized dependent variable is defined on cell centers, 
'Pi ~ cp (ih). 

The divergence of the conserved flux, F = '\lcp, over the control volume, Lli, can be 
written via the divergence theorem as 

( '\1 . P). = f '\1 . Fdvj f dV = 1 P. dB/ f dV 
a 1 Ll; 1 Ll; !aLl; 1 Ll; 

(2) 
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0 Full Cells 

0 Cell Fragments 

d2J Embedded Solid 

(b) 

aij+!/2 

. 
... ai+!/2j 

ai-!/2j 
. 

aij-!/2 

Figure 2: (a) A two-dimensional embedded boundary domain, which excludes the embed
ded solid. (b) A standard cell for simple Embedded Boundary discretization 
methods, with volume fraction, A, and apertures, A8 • For the Neumann case, 
there is no flux into the embedded boundary. 

= h
1
d 1 ff'. n hd-1

, for uniform grid spacing, h J8A; 
where n is the normal on the surface, 8./lil of the control volume. Using the midpoint rule 
to evaluate the surface integrals, 

(3) 

Here, ( F · n) sis the normal component of the flux at the center of faces. 

For the Poisson equation, we may compute F using centered differences. For d = 2, 
i = (i,j), and s = {(i ± lj2,j), (i,j ± 1/2)}, the terms in the s,um expand explicitly to 

(F . n) = 'Pi+l,j - 'Pi,j 
i+'f2,j h ' (F. n) = 'Pi-1,j- 'Pi,j 

i-lfz,j h 
(4) 

(F. n) = 'Pi,j+I- 'Pi,j 
i,j+lf2 h ' (F. n) = 'Pi,j-1 - 'PiJ 

i,j-lf2 . h 

If the face s coincides with the edge of the computational domain, we simply set Fs = 0 
to enforce the Neumann boundary conditions. Inserting these expressions into Equation 3, 
and setting the result equal to the cell-centered discrete values of Pi, we obtain an elliptic 
linear system of equations, which can be solved using a variety methods, including multigrid 
relaxation. 

2.1 Embedded Boundaries 

The discrete cells for the Embedded Boundary method are based on a uniform underlying 
grid of mesh cells, just as in the regular case above. And like the regular case, physical 
boundaries may be represented by the grid-aligned edges of the uniform grid. However, 
within the regular mesh, we also allow "solid body" boundaries which may not align with 
the coordinate directions (see Figure 2(a)). These bodies are represented as piecewise linear 
surfaces (curves in 2D) cutting through the background rectangular mesh cells, leaving cell 
fragments in the domain. Cell fragments will be distinguished from full cells, which are 
neither cut nor covered by the embedded solid. The region inside the embedded boundary 
is not part of the computational domain. 
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Figure 3: Second-order flux evaluation due to Johansen and Colella. The shaded region 
of the grid represents "solid body", outside the computational domain. The 
flux at the center of the partial face is linearly interpolated from the fluxes 
computed at the full edge centers. 

If there is only one cell fragment at each mesh cell, fuU and partial cells can be identified 
uniquely by the multi-dimensional index, i E zd. Indices of cells completely covered by the 
embedded body are considered invalid. Define the volume fraction, Ai, as the ratio of cut to 
full cell volume for cell i, and the face aperture, Ai,s, as the ratio of cut to full face area on 
sides of cell i (see Figure 2(b) for the "reference" cut cell in two dimensions). Equation 3 
can now be extended to apply to the regular and irregular cells in the Embedded Boundary 
description: 

(5) 

This error estimate is valid only at the center of mass of the cut cell. 
In order to compute the flux terms in Equation 5 from the state in the cut cells, we 

· adopt the data-centering scheme detailed in [33]. In this scheme, all state data resides at 
the geometric center of the full cell containing the partial cell. Note that this position will 
actually lie outside the computational domain if the partial cell occupies less than half the 
full cell's volume, since the embedded boundary is a piecewise-linear interface. It follows 
then that the scheme may be applied only for problems where· the solution profile may be 
smoothly extended into the embedded boundary region a distance 0 (h). 

As detailed in [33], numerical fluxes for this scheme are computed at the center of the 
full edge underlying each of the partial edges using simple central differences-i.e. the flux 
resides midway betweeri full cell centers, where the state resides2 • [2] used a full-edge
centered flux in their conservative integral sum corresponding to Equation 5. However, 
for second-order accuracy, the surface integrals should be evaluated via the midpoint-rule, 
requiring flux values which are interpolated to the center of the partial edge. This is easily 
computed to second-order accuracy by linearly interpolating tangentially adjacent full-edge
centered quantities (see Figure 3). In [33], this scheme was shown to be a formally consistent 
approximation, with errors in the computed field quantity diminishing asymptotically to 
second order in all relevant norms. The truncation error, weighted by volume fraction, A, 
is first-order in h on the boundary cells, uniformly in A, so that the entire scheme has a 
second-order truncation. 

2This position may actually lie outside the computational domain as well, depending on the associated 
partial cell volumes. Also, when we later extend the scheme for thin bodies, edge-centered flux values for 
edges on opposite sides of the body will coexist at the same physical location. 
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Fluid 

(a) (b) 

Figure 4: (a) An example "thin" body in the Embedded Boundary grid framework. Each 
of the two mesh cells shown contains multiple partial cells. (b) A "trailing edge" 
geometry, where a cell has more than one neighbor in a coordinate direction. 

(a) (b) 

Figure 5: (a) The blunting procedure used in existing embedded boundary iinplementa
tions unable to otherwise cope with the thin-body or trailing edge problems. 
(b) The same geometry represented on a coarser grid. The location of the "tip" 
will continue to creep with coarsening; the problem coarsened many times will 
no longer represent gross physical properties of the original geometry, and may 

· lead to unphysical communication in the computed fields 

2.1.1 Extension to Complex Geometries 

The above procedures for discretizing conservation laws in the embedded boundary 
framework (based on cell-centered states, and tangentially interpolated fluxes) is limited to 
applications where the irregular solid bodies are "thick". In particular, the discretizations 
for the "thin-body" and "trailing-edge" scenarios such as those· shown in Figure 4 are ill
defined, since we can no longer uniquely identify partial cells using the index, i. Such 
situations arise when constructing multiple-level numerics, such as multigrid linear solvers 
and adaptive mesh refinement. In the literature, these cases also arise if the immersed body 
has very thin fingers or trailing edges (such as airfoils). 

Adaptive EB methods to date have employed a simple geometrical "blunting" technique 
(a schematic of this process is shown in Figure 5 (a)). Blunting cuts off arbitrary portions of 
the embedded body that lead to multiple cell fragments at a single index. Geometric fidelity 
is preserved typically through concurrent use of adaptive mesh refinement (see [16], for ex
ample). However, blunting and mesh refinement alone have not been sufficient for large 
three-dimensional simulations. DeZeeuw[ll] and Melton[14] have implemented "split-cell" 
schemes, allowing multiple discrete cells to exist at a given mesh cell location. By localiz
ing the region of greatest refinement, they reduce the overall computational requirements, 
particularly in simulating complex three-dimensional machinery. 

In initial implementations of the "split-cell" approach, the fixed-width tree-based data 
structures allow cell splitting only at the level most refined locally. However, for genuinely 
multiple-level algorithms (i.e. those requiring a reasonable representation of the state at all 
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Figure 6: The dual-structure scheme stores the regular cells in a logically rectangular 
array, and the irregular cells as a generalized graph (detailed in text). The 
unstructured gridding used for the cut cells allows arbitrarily complex embedded 
structures in the domain, while the logically rectangular data structures for the 
remainder of the domain enable access to the inherent efficiencies of regular 
structured gridding. 

refinement levels), we must generalize the scheme. By definition, the extension requires an 
unstructured data format, but only near the embedded boundary. For data over the bulk 
of the domain, efficient structured array storage is sufficient and desirable. 

2.2 A Formal Description of Embedded Boundaries 

In the following, we present a dual-structure scheme that is general enough for arbitrary 
geometrical complexity, yet does not preclude an efficient implementation. We describe and 
manipulate the computational domain via a connected graph, ctot = {vtot, Etot}, empha
sizing the role of connectivity and communication through the domain. In a tot, the nodes, 
ytot, represent the set of finite-volume cells, and the edges, Etot, represent the faces through 
which the cells communicate. 

We divide ctot into two sub-graphs, G and Qfull, with G = {V, E}, containing all cells, V, 
adjacent to the embedded boundary. The set, E, contains all the edges between the nodes 
in V. We define Qfull = { Vfu11, Efu11 } similarly for the regions away from the embedded 

boundary. Data on Vfull and Efu11 are stored and manipulated in logically rectangular 
arrays-incurring a small overhead; viz. unused locations occupied by partial and empty 
cells. Irregular data on V and E is maintained in a sparse representation which implements 
the nontrivial aspects of the connectivity implied by ctot (see Figure 6). The interface 
between the two subgraphs is a small subset of edges, Etot- Efull_ E, and is maintained as 
an auxiliary set in the Qfull data structures, since there is a natural location in the arrays. 

Logically, an edge is specified by the two nodes that surround it. Let us define the 
subscript operator, "-" over edge, e, such that e_ returns the node object to the "low" side. 
Similarly, the "+" operator is defined such that e+ returns the node object to the "high" 
side of e. Now, we may specify formally the defining properties of all edges in E: 

That is, both the high and low nodes are in the graph. Relating the graph back to the 
computational domain, we may associate a set of geometrical attributes with each node or 
edge, such as its index, i E zd (note that multiple nodes may have identical indices). If 
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(a) (b) 

Figure 7: (a) A small region of a typical multiply-connected geometry. Cells A, C, F and 
J are bounded on a side by "interface" faces. (b) The graph representation of 
the partial cells labeled in (a). The dotted lines indicate interface faces, which 
are not strictly part of the graph. Information from the logically rectangular 
data communicates with the graph via the interface faces. 

K (v) is the operator returning the index of node v, then: 

for e belonging to the set of faces in the kth coordinate (here, Uk is the kth unit vector). 
Thaj)s, the nodes on either side of an edge are separated by a unit vector. The indices of 
the edge is: 

Each cell in the domain has an associated cell volume fraction, A (v) : V t-+ [0, 1]. The 
cell volume fraction is the ratio of the partial cell volume to that of the underlying mesh 
cell. Each cell face in the domain has an associated face area aperture, A (e) : E t-+ [0, 1]. 
The face area aperture is the ratio of the partial face area to that of the underlying mesh cell 
face. For our uniform grid spacing, h, the mesh cell volume is.hd, and the mesh face area 
is hd-I. For the nodes in Gfu11, vfu11 E Vfu11 A ( vfu11) = 1, and for. efull E Efu11, A ( efull) = 1. 

The two data structures, regular and irregular, will communicate through the interface 
faces (see Figure 7). Interface faces have on one side, a full cell in Gful1, represented in 
the block-structured dense data, and on the other side, a cell fragment represented in the 
graph, G. Formally, we define an interface edge: 

e an inteface if e± E V and e=F E vtu11. 

Also, we define the corresponding unit vector set, C (v) c 0 = {±u~, ... , ±ud}, as the 
subset of orientations about the node, v E V, which are bounded by interface faces. Using 
the notation of Figure 1, the set of indices of the interface faces about v are then K ( v) + 
o/2, 'V o E C (v). In Figure 7, C (F) = { -u1}, and there is an interface edge connected to 
cell F residing at index K (F)- uif2. Also, K (I) = K (J), and K (F) = IC (G). This is an 
example of a "thin-body" geometry. 

We are now in a position to define the appropriate generalization of Equation 5. For the 
partial cells, v E V, the sum consists of contributions from the partial faces, e E E as well 
as from the interface faces. There is no flux contribution from the boundary, since we have 
assumed homogeneous Neumann boundary conditions. Let us introduce a flux function, 
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P = (PR,pi), which lives on cell faces in the regular and irregular parts of the domain. 

(i.e. Vo E 0, i E zd, pR (i + ~) : zd + ~ t-+ !Rand VeE E, pi (e) : E t-+ !R). We have, 

(v. F)vev ~ A(:) h• t~.FI (e)A(e) hd-1 -"~FI (e) A(e) hd-1 

+I: pR ( K (v) + ~) hd-1sgn (o)} + 0 ( h2) (6) 
oE.C(v) 

where sgn (x) = 1 if x > 0, otherwise sgn (x) = -1. Note that the right side contains an 
implied sum over coordinate directions, and that this formulation treats correctly the cases 
where there are more, or less than a single face on a given side of a discrete cell. On the 
regular cells, v E vtuu, we simply apply Equation 3. 

The flux functions, pR and pi, may be defined, according to the PDE, using a pair of 
cell-based data structures for the state, cp = (cpR, cpi), where cpR : zd t-+ !R, and cpi : V t-+ !R. 

It is useful to define pR in two passes. For the Poisson equation, on the first pass, pR may 
be defined using central differences on data exclusively from cpR (as in Equation 5 for 
d = 2). On the second pass, the fluxes on the interface edges are overwritten with the 
central differences using data from cpR on the full-cell side of the interface, and data from 
cpi on the partial-cell side. Formally, the expression is 

(7) 

The flux function, pi, will be computed using the algorithm described in [33]. To 
carry this out in our generalized context, we require a set of monotone nodes, M (v,Lm), 
associated with node v, and built from ctot = (vtot, Etot) (i.e. the nodes { v, M ( v, Lm)} C 

vtot). The node, u E M (v, Lm) is reachable from v via a monotone path of length Lm if 
there exists some N E zd such that · 

d d 

K (u) = K (v) + L Nkuk, where L INkl = Lm 
k=l k=l 

That is, M ( v, Lm) consists of a sequence of at most Lm > 0 movements to neighbor nodes, 
with the restriction that the movements along any single coordinate be all of the same sign. 
Note that no two cells in a path can be at the same index. Also note that the list of cells 
in a monotone path may include full cells from vtull as well as partial cells from V. 

Geometrically, a monotone path may be used to restrict the neighborhood of a cell 
for the purposes of constructing interpolating profiles that do not span an embedded thin 
body (see Figure 8{a)). Monotone node sets may also be used to define an appropriate 
neighborhood for conservative flux redistribution (such as in the scheme described in [17]). 
In the present context, we will utilize the concept of monotonicity to help identify candidate 
neighbor faces to involve in the flux interpolation scheme of [33]. 

In order to carry out the flux interpolation for a cell face, e, we need to identify all 
the appropriate "other" edges, e', containing a cell-centered flux value we can use in the 
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(b) 

Figure 8: (a) A monotone path is a sequence of steps along a connected path in the cell 
fragment graph such that all steps in any single coordinate direction are of the 
same sign. In the two-dimensional example, there is no monotone path from 
B to D, or from A to E. However, the paths {A-B, A-B-C, C-D, C-D-E, D-E} 
are monotone. (b) The face, e', is found by constructing two 1-step monotone 
paths, as described in the text. Information above the top body is not used 
when constructing the interpolated flux at e. 

interpolant. To do this, search all edges in Etot fore' where 

{8) 

HereM_ = M (e-, 1) and M+ = M (e+, 1) (see Figure 8{b)). In general, this search will 
return either zero, one or several candidate full or partial edges. Since we do not maintain 
cell location information, we cannot select the "best" from multiple candidates. We might 
further restrict the search to find only full cells for which Equation 8 held true, or to return 
only faces such that A ( e') = 1. Alternatively, we just average together the influence of all 
edges that qualify. If the condition in Equation 8 returns an empty list, we have only a 
single point on the edges to use for the interpolant, so we may construct only a piecewise 
constant flux interpolant. 

Now, we compute the full edge-centered Poisson flux, pf for: a state, cp, on the node set, 
v 

{9) 

and then compute the partial edge-centered flux, F, as the linear in 2D, bilinear in 3D, 
interpolation between F f (e) and the set F f ( e'). For example, if d = 2, and the search, 
Equation 8, returns a single candidate, then 

F 1 (e)= pf (e') +~(A (e') +A (e)) ( pf (e)- pf (e')) + 0 ( h2) {10) 

As an aside, notice that since data is stored for the full cells, v E Vfu11, in dense block
structured arrays, there are additional array positions corresponding to the mesh cells par
tially or completely covered by the solid (i.e. i, where ;Iv E vtot such that J( (v) = i). The 
interface faces have the effect of preventing any direct communication across the regular 
edges into these covered cells. The covered cells thus become isolated from the computation, 
and are effectively wasted space allocated for the solution process. In general though, the 
computer resources spent on unused rectangular cells covered by the embedded structures 
is easily minimized to be a negligible overhead cost for the calculation. 
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Figure 9: (a) Dirichlet boundary fluxes for cell "a" (for d = 2), computed by fitting a 
parabola through the value at the domain boundary, and two interior points (0). 
The resulting Laplacian stencil involves 2 · d points (•). (b) Two dimensional 
quadratic interpolation for computing profile gradients normal to the .embedded 
boundary. 

2.3 Dirichlet Boundaries 

In this section, we generalize the Poisson problem of interest to include Dirichlet bound
aries. Since we are using a cell-centered approach, Dirichlet conditions imposed along the 
domain boundary, 80, result in nontrivial fluxes through the boundary faces. We present 
the methods we use to evaluate the fluxes based on the gradient of a multi-dimensional 
polynomial interpolant constructed using the boundary data, and the internal state. 

The case where the Dirichlet boundary aligns with the grid index coordinates is depicted 
for d = 2 in Figure 9(a). The flux is to be evaluated at the midpoint of the cell face on 
the physical domain boundary (•), using a parabola constructed with the boundary value 
(at •), and internal state values (at o). The procedure extends directly to d = 3, since the 
interpolant is constructed only in the dimension normal to the boundary surface. 

The embedded boundary case is depicted in Figure 9(b).· The embedded boundary 
is represented as a piecewise linear surface reconstruction between adjacent nodes on the 
irregular cell graph, as detailed in Appendix A. The Dirichlet boundary value and the 
resulting normal boundary gradient both live at the center of the cell's reconstructed surface. 
A quadratic interpolant is constructed between this location, and where the boundary 
normal intersects two adjacent grid lines (or planes, if d = 3) nearby; the intersection 
locations are marked in Figure 9(b) with O's. The procedure for carrying this out follows 
closely the one outlined in [33]. 

State values at the grid-line intersection locations are evaluated with a quadratic in
terpolant (parabolic for d = 2, bi-quadratic for d = 3). The interior state values used for 
constructing the multi-dimensional interpolating surface must be in a monotone path from 
the partial cell, as discussed in Section 2.2. This requirement prevents cases of unphysi
cal communication, where parts of the embedded boundary lie in between the cells used · 
for constructing the interpolant. The quadratic interpolant for embedded boundary fluxes 
that is constructed in this fashion remains well-conditioned for arbitrarily small partial cells 
adjacent to the boundary, as detailed in [33]. 

For sufficiently coarse geometries, a quadratic interpolant may be impossible to con
struct, simply for lack of sufficient candidate cells in a monotone path from the boundary 
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location. Typically, this occurs when a complex geometry is underresolved, or when an 
embedded body is within 2h from the regular boundary. In these cases, we construct a 
bilinear interpolant in two dimensions (tri-linear in 3D), if possible, from adjacent cells. 
If there are no adjacent cells available, we set the flux at the Dirichlet boundary to zero, 
effectively using a piecewise-constant interpolant. In practice, when we are forced to reduce 
the order of the boundary interpolant on any cell at the finest level, our codes generate 
warning messages, since the resulting discretization becomes formally inconsistent. The 
remedy is usually to redefine the underlying rectangular grid so as to ensure sufficient grid 
points. Unless otherwise mentioned, none of the results presented in later sections required 
boundary interpolant order reduction. 

3 Multigrid 

Using Equation 6, and the dimension-dependent expression for the flux, such as Equa
tion 10, we build a discretization for Equation 1 of the form 

L (<p) = P . (11) 

Equation 11 can be solved with using point relaxation with multigrid acceleration[35]. Typi
cally, we employ simple "V-cycle" multigrid schedules in the relaxation, using piecewise con
stant prolongation, volume-weighted restriction, and a simple smoother of the Gauss-Seidel 
type. It is worth noting that our level-transfer operators fail the well-known requirement 
that 

np +nR > 2n (12) 

where n is the order of the differential operator, and np (nR) is the maximum degree of 
exactly interpolated (coarsened) polynomials plus 1. For our choices, np = nR = 1. In 
fact, inequality (12) is a heuristic for "optimal" multigrid performance, and is not strictly 
necessary; we demonstrate that the computational work in our algorithm scales nearly 
linearly with system size despite our low-order transfer functionS. 

Details of the multigrid V-cycle are presented in Section 3.1. The scheme has been 
tailored to solve Equation 11 in correction form, applicable to our linear problem (i.e. solve 
fore: L (<p0 +e) = p, where <p0 is some initial guess for <p). The boundary conditions for 
the correction, e, are simply the homogeneous form of those of the original problem for <p. 

Our multigrid scheme requires a hierarchy of grids, created by coarsening recursively the 
original geometry via a procedure we detail in Section 3.2. We detail the smoother and 
level-transfer operations in Section 3.3. 

3.1 Multigrid V-cycle 

We label the refinement levels of our problem domain with m : 0 $ m $ mhi, where mhi 

represents the original level, where we desire the problem solution. The multigrid iteration 
is initiated by invoking the multigrid level-relaxer (the "V-cycle") on mhi· The level-relaxer 
applies some number of smoothing passes, and then constructs the next coarser problem 
using the smoothed residual. The coarse problem is relaxed with a recursive call to the 
level-relaxer. At the bottom of the cycle, the coarse equations are solved "exactly", and the 
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resulting correction is interpolated back up to the next finer level. The interpolated correc
tions from the coarse grid are added to the next :finer solution, which is then smoothed once 
again. A complete V-cycle terminates when the finest solution has been incremented with 
coarse corrections and smoothed. The V -cycle is invoked repeatedly until the magnitude of 
the residual, Rm = pm- Lm (rpm), is acceptably small at m = mhi· 

Let P{nm+I) be the projection of the grid at multigrid level, m + 1, onto the grid at 
level m. The recursive multigrid level relaxation is shown in Algorithm 1, for the case that 

Algorithm 1 The multigrid V-cycle, for nm = P{Om+l). 

Vcycle( m, m1, m2) 
if (m = m2) then 

Rm = pm _ Lm (rpm) 

end if 
if (m > 0) then 

em= Smooth(em = O,Rm) 
rpm= rpm+ em 
if (m > mi) then 

Rm-1 = pm-1 _ Lm-1 { rpm-1) 

Vcycle( m- 1, m1, m2 ) 
em= em+ Refine {em-1) 

end if 
Rm = Rm- Lm (em) 
8m =Smooth (8m = 0, Rm) 
rpm= rpm+ 8m 

else 
Solve£ (em) = Rm 

end if 

P{nm+1) = nm on all multigrid levels, m < mhi (all grids cover the entire domain). The 
level m2 represents the finest grid, while m1 is the level at the bottom of the V-cycle. Notice 
that m1 is an input parameter to the scheme, and is not necessarily zero. If m1 > 0, the 
"bottom" level is not solved "exactly", but rather just smoothed like all the other levels. 
This feature is used later, when we extend our multigrid scheme to incorporate a limited 
form of adaptive mesh refinement. 

3.2 Geometry Coarsening 

In the following, we present an algorithm for coarsening a geometry specified according 
the definitions in Section 2.2. The coarsening procedure is recursive, in the sense that it 
takes an input :fine graph, Qf. = (VI, El), and its underlying index space, and generates 
a complete coarse graph, ac. We assume a static geometry, so that the procedure need 
be carried out only once to generate the full hierarchy of irregular geometry graphs at the 
beginning of a computation. The refinement ratio, r E zd, is the refinement, by dimension, 
between ac and Gl, with respect to the cell indices, JC (VI) and K (Vc). We restrict 

our implementation to the case, r = 2i (2, ... , 2), where i E Z and discuss only the case 
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H 

(a) {b) 

(c) {d) 
Figure 10: (a-b) The extended graph includes nodes representing full cells, such as B 

and D. Also, the extended graph includes edges between the full cells, such as 
B-D, as well as interface faces, such as A-B, C-D, D-F. (c-d) The coarsened 
geometry and graph, where the path A-B-C-D has becomes coarse node 1, 
E-F-H-1 has become 2, and G-J has become 3. The edge 1-2 is created by the 
coarsening procedure. 

r = {2, ... , 2), since the rest of the set we allow can be generated by recursive application. 
Generally speaking, multigrid performs most efficiently when the levels are separated by 
a constant factor of 2, unless there are geometrical or physical effects driving anisotropic 
transport. The scheme is trivially extended to arbitrary r, including directionally biased 
refinement, but such details detract from the presentation. 

The procedure for generating Gc from Gf consists of three basic steps. First, we augment 
the fine graph to include all full cells that will be merged into the new coarse map (see 
Figure 10). Next, for every coarse index, ic, we build lists of connected components from 

the fine nodes, vf, such that K(vf) =if, where ic = l!ifJ = (l~J, ... ,l~J) {the 

operator, l x J, returns the largest integer d-tuple, such that each component is less than the 
corresponding component in x). Each connected component generates a new node in the 
coarse graph. Finally, the edge list is assembled to connect the new coarse nodes. Some 
auxiliary information needed by the algorithm is generated on the fly, as will be discussed 
below. 

We can discuss each step in detail, after defining some useful notation. 

• The index set of the cells in the fine graph, If= { K (v) : v E Vf}. 

• The fine-to-coarse projection, pfc : zd f-t zd, takes a fine index, and returns a coarse 
index, such that pfc (if) = l!ifJ. 

• The coarse-to-fine projection takes a coarse index and returns a set of fine indices, 
Icf (iC) = {if : pfc (if) = ic} of fine indices associated with a coarse index. For each 

if E Icf (iC), if if (j. F, then if E If (i.e. the operator does not return indices fully 
covered by the embedded boundary). 
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• The index set spanned by the coarse graph, Ic, is the union of fine indices created by 
coarsening, then refining, the index set If,Ic = UvEVf Icf (p!c (i')), Vi/ E If. 

• The index set of full cells to add to the fine graph is therefore, IExt = Ic- If 

• The set of full cells, N ( v) c zd, neighboring a node, v is defined from the index set 
£ (v) as N (v) = {K (v) + o: Vo E £ (v)}. The set£ (v) must be provided as input at 
the finest level; for coarser levels, the set is generated by the algorithm. 

• The set of partial cells at the fine level to be associated with the coarse node, v, is 
.ccf,I (v). The corresponding set of full fine cells to be associated with vis .ccf,R (v). 
These are built during the coarsening procedure, and are useful when transferring 
state data between refinement levels (see Section 3.3). 

The extended graph, Gauu, is created by adding each index, i E IExt into the list of 
nodes, vauu, removing i from all the lists, N (v), v E vauu, creating new edges connecting 
this cell to the graph, and building a new N map entry for this cell. Algorithm 2 details 
this procedure. In Figure 10, cells labeled B and D are to be added to VI, and the edges 
(A, B), (C,D), (B,D) and (D,F) are added to Ef to obtain Gauu. 

Algorithm 2 Creating the extended graph, Gaug = (vauu, Eauu). 

Initialize (vaug, Eaug) = Gf 
for all i E IExt do 

vaug t- vaug u { vnew} 
K (vnew) = i 
A (vnew) = 1 
N (vnew) = {} 

fork= 1,d do 
if 3 v : i E N ( v) then 

if i - K ( v) = uk then 
N(v) t-N(v)- {i} 
e = (v,vnew) 
A (e)= 1 
Eaug t- Eaug U {e} 

else if i- K (v) = -uk then 
N(v) t-N(v)- {i} 
e = (vnew ,v) 
A (e)= 1 
Eaug t- Eaug U {e} 

else 
N (vnew) t- N (vnew) U {i- uk} 

end if 
end if 

end for 
end for 
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The graph, ac is created by coarsening the extended graph, aaug, as detailed in Algo
rithm 3. Here, we build all the connected components at coarse index, ic, of an undirected 
subgraph of aaug, using all the nodes, v E yaug such that pfc (JC (v)) = ic. A new coarse 
cell is created for each of these connected paths, and the volume fraction of the new cell is 
such that its volume is the sum of the volume of its constituent full and partial cells. In 
Figure 10(a), the full coarse cell on the right contains two connected components, G-J, and 
E-H-I-F, which give rise to coarse cells 2 and 3 in Figure 10(c). 

Algorithm 3 Creating nodes, vc, of the coarsened graph, ac = (Vc, Ec), from the aug
mented graph, aaug. 

Initialize vc = {} 
for all ic E zc do 

V = {v E yaug: pfc(JC (v)) = ic} 
E = { e E Eaug : e_ E V 1\ e+ E V} 
for all connected components, (Va, Ea) of (V, E) do 

yc +- yc U {vnew} 
J( ( vnew) = ic 

A (vnew) = ia LviEV,. A (vi) 
~:,cf,R (vnew) = ~:,c/,1 (vnew) = {} 
for all v E Va do 

if J( (v) E zExt then 
~:,cf,R (v) = ~:,cf,R (v) U {i} 

else 
~:,cf,l (v) = ~:,cf,I (v) u { vnew} 

end if 
end for 

end for 
fork= 1,d do 

E~J± = { e:r E Va, e± ~ Va, JC (e+) - JC (e_) = Uk} 
end for 

end for 

For each new coarse cell created, a subset of fine edges, E~J± c Eaug is identified that 
connects the subgraph in the coordinate direction; k, to the remainder of the grid. The ± 
symbol indicates whether this set of edges is on the low (-), or high ( +) side of the new 
coarse cell. Each unique edge subset, E~~±, generates a new coarse edge in Ec, as detailed in 
Algorithm 4. The new edge may be defined once we find two cells pointing to the identical 
fine-edge subset. The aperture of the new edge is such that the surface area of the coarse 
edge is equal to the sum of its constituent fine edges. In Figure 10, the fine edge subset, 
E~'-, a.Ssociated with coarse cell 2 in the 0-direction on the low side is {(D,F), (C,E)}. 
This is identical toE~,+, so a new edge, (1, 2), is added to the coarse graph. 

The coarsening strategy is trivial for the grid completely in the regular part of the 
domain (i.e. at ic: i/ E :F, Vi/ E zc! (iC)). Finally, the coarse full-cell map, ;:c, is created 
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Algorithm 4 Creating edges, Ec, of the coarsened graph, Gc = (Vc, Ec) from the aug
mented graph, aaug. 

Initialize Ec = {} 
for all vc E vc do 

fork= 1,d do 
for all vC' : JC (vc) - Uk = JC ( vC') do 

E = EB,k n EB,k 
-,vc +,vC' 

if E =J {} then 
enew = ( vC', vc) 
Ec +-- Ec U {enew} 
A (enew) = 2dl_I I:eeE A (e) 

end if 
end for 

end for 
end for 

using the existing fine full-cell map, ;:I, according to the following criteria: 

(13) 

Notice that within our coarsening strategy, floating-point data, such as apertures and vol
umes, are not used explicitly to determine the merging process. The procedure we have 
outlined can be used to coarsen an input geometry to Gc = (Vc, Ec), where JC ( vc) = 
(0, ... , 0), \/ vc E vc, and accommodates multiple dimensions and arbitrary complexity. 
Since we are concerned only with the aspects of the geometry that appear in Equation 3 
(cell areas, volumes and connectivity), we do not require the ability to reconstruct the em
bedded surface. In particular, no "blunting" is necessary, and we retain maximal geometric 
fidelity. 

Also, notice that we have not designed our coarsening strategy to construct connected 
paths of solid; there is no determined way to distinguish parts of the solid in a coarse cell 
that were derived from specific regions of the fine description. This would be an issue for ap
plying inhomogeneous boundary conditions, except that we solve in correction form to avoid 
requiring such information-the boundary conditions for the correction problem are homo
geneous). It follows then that our scheme cannot easily be extended to Full-Approximation
Storage versions of multigrid, for example (useful for nonlinear elliptic problems). 

3.3 Smoothing, Coarsening, Refining the State 

Point relaxation for Equation 11 iterates on the expression, cpn+l = cpn +). (L (cpn)- p), 
where ). is a relaxation parameter, n is an iteration counter and cpn is an approximation 
to the solution, cp. For each cell, we choose ). such that the expression for cpn+l does not 
contain cpn at that cell. 

The relaxation parameter, .Av, on the irregular cells, v E V, is obtained by summing 
the derivative of each term in Equation 6 with respect to cp~, the value of the state in the 
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irregular data structure at node v. We can generalize Equation 10 so that the derivative of 
the flux with respect to the cell-centered state is 

api (e) w~ 
B<p£ =±-,;,fore: e=F = v 

The weighting, w~, depends on the dimension, d, of the problem. For d = 2, w~ = 
1/2 (A (e)+ A (e')), where A (e') is the aperture of other edge involved in the flux inter
polation (or, the average of the apertures, if there are more than one). The relaxation 
parameter becomes 

>.v= [A( \h2 ( L w~A(e)+L 1)]-
1 

V e:e±=v oE.C(v) 

whereas on the regular cells, i E :F, the expression reduces simply to 

h2 
>.i = 2d 

(14) 

(15) 

Over the regular cells, we order the pointwise updates with a multi-coloring scheme (red
black "checker-boarding" for d = 2) based on cell index for vectorization efficiency. We 
update all the irregular cells simultaneously between each colored sweep over the regular 
cells. The combination (red sweep, irregular update, black sweep, irregular update) counts 
as a single "smoothing" pass of the point relaxation operator. 

The Smooth operations in Algorithm 1 consist of two or more iterations of the above 
sequence, while the Solve operation iterates the sequence to numerical convergence {the 
number of iterations required is on the order of the number of unknowns at that level). 
Typically, the Solve operation is carried out only on the coarsest multigrid level. 

The level transfer operations, Coarsen and Refine are defined using the cell-to-cell
subset maps defined in Section 3.2. A volume-weighted averaging Coarsen operation for 
irregular data at node vc is · 

<p~c = 2-d ( L <p~JA (vi)+ L ;p5) (16) 
vf E.Ccf,l (vc) if E.Ccf,R( vc) 

where £cf,R ( vc) and £cf,I ( vc) are, respectively, the regular and irregular fine nodes that 
coarsen into vc, as defined in Algorithm 4. For regular data at index ic, 

2-di:cp5 (17) 
if :if ezcf (ic) A if E:F 

A piecewise-constant Refine operation for irregular data is constructed with the cell
to-cell-subset maps as 

I _ I 
<pvfe.Ccf,l(vc)- <pvc (18) 

The corresponding piecewise-constant refine for regular data is 

R _ { <p~c if i/ E £cf,R ( vc) 
<pi! E:Ff - <p~ if j/ E zc! W) A j/ fl. .c,cf,R ( vc) 'V vc E yc (19) 

Note that <p5 is not defined for i/ fl. ;:I, since those full cells are either cut or covered by 
the embedded solid. 
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Figure 11: Properly nested unions of rectangular grid patches for cell-based data in 2D. 
The refinement ratio between AMR levels is 2n,n is a small positive integer. 
The refined patches at any level may touch the boundary of the computational 
domain, but coarse-fine boundaries are buffered with at least one layer of cells 
at the next coarser level. 

Figure 12: The case where the embedded boundary, an, intersects the coarse-fine bound
ary, ant, between AMR levels, i and i - 1. The AMR implementation pre
sented here does not allow for this condition. 

4 Adaptive Mesh Refinement 

The regular component of the geometry description in Section 2.2 was built on rectan
gular patches of uniform gridding over the large portion of n that is not adjacent to the 
embedded boundary. This aspect, and the structure of the coarsening machinery used to 
generate the multigrid mesh hierarchy, make it straightforward to extend our scheme to 
incorporate block-structured adaptive mesh refinement (AMR) over the regular parts of the 
domain. The scheme is related closely to that described in [34]. 

The AMR rectangular grid hierarchy is composed of different levels, £, of refinement, 
ranging from coarsest, at f = 0, to the finest, at f = fhi ~ 0. These levels will correspond 
to a subset of the multigrid levels previously discussed. The domain at each AMR level, 
ne, is represented as a union of rectangular grid patches of a given resolution, accompanied 
by a graph of the irregular cells. The rectangular grids are properly nested, in the sense 
that the union of the grid patches at level f + 1 are contained in the union of grids at 
level f for 0 ~ f < fhi (see Figure 11). Furthermore, except at physical boundaries, the 
union of level f grids is large enough to guarantee that there is a border at least one level 
f cell wide surrounding each f + 1 grid. Grids at all levels are allowed to extend to the 
regular physical boundaries. We restrict this implementation under the condition that the 
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irregular geometry, G£ = (v£,E£), at level 1., be completely contained within the union of 

rectangular patches at level£ (see Figure 12). Thus, lC (vi) falls within the bounds of the 

patches for every vi E v£. ·In short, this restriction specifies that the embedded boundary 
will be discretized at the finest grid level. 

The extent of the rectangular patches of regular gridding may be fixed throughout the 
calculation, or modified as the calculation proceeds so as to focus computational resources 
where resolution is required. In the latter solution-adaptive applications, error estimation 
techniques, such as Richardson extrapolation, are used to tag cells where the local error 
is above a given tolerance. The tagged cells are grouped into rectangular patches using 
the clustering algorithm given in [36], and refined to form the grids at the next level. 
The process is repeated until either the error tolerance criteria are satisfied, or a specified 
maximum refinement level is reached. Upon entering the iterative solver, the initial guess 
data may be used to create the grids at level 0 through £hi· As the guessed state is relaxed 
toward the solution, a re-gridding algorithm may be called periodically. When new grids 
are created at level£+ 1, the data on these new grids are copied from the previous grids at 
level £ + 1, if possible, otherwise interpolated in space from the underlying level £ grids. In 
all cases, the newly generated fine-level grids must be properly nested. 

4.1 Multi-level V-cycle 

In order to extend our embedded boundary multigrid Poisson solver to this limited AMR 
framework, we augment our discretization and V-cycle to incorporate that P(n£) c n£-1. 

We begin with the initial set of AMR levels on which we want the solution, and construct 
intermediate multigrid levels between and below the AMR levels so that adjacent pairs of 
levels are related by a refinement ratio of 2. These new levels are for use by the multigrid 
solver alone, and are discarded when the solution is complete. Each new multigrid level is 
created by coarsening the next finer level above, and does not communicate with coarser 
AMR levels below. Let m = m (£)be the multigrid level corresponding to a given AMR level 
£. (Note that m (£hi)= mhi·) For all intermediate multigrid levels, m (£) < m < m (I.+ 1), 
nm = P(nm+1), i.e. the coarsened domain covers the same region of the physical domain 
as does the source fine domain. 

The multi-level residual, R = p- L (cp), is defined everywhere to be the residual on the 
finest grid available. For every level, i <£hi, the residual for the region covered by P( n£+1) 

is ignored. The multigrid relaxation is initiated by invoking the recursive V -cycle smoother 
on the finest level, £hi, which in turn calls a V-cycle smoother on the next level. Note that 
the next level may be an AMR level, or it may be simply a multigrid level. 

The solution at level £ sees the coarse solution through the interface, an£, between 
n£ and n£- 1 (excludes the physical boundary). Additionally, if£ < ihi, the solution on 
n£ sees also the finer data through the interface an£+1. We define the full three-level 
discrete Laplacian operator, Le ( cp£+1, cp£, cp£-1) to incorporate the fine fluxes at an£+1, and 

and coarse data at level i - 1 along an£, as discussed in Section 4.2. We also define a 
"no-fine" operator, L£,nf (cpi,cp£-1), which uses the coarser data at an£, but ignores level 
£ + 1 data, and applies a homogeneous boundary condition on all physical boundaries. In 
order to use the no-fine operator, we construct the level£ correction problem in the region 
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P ( nH1) by coarsening the level£+ 1 residual. In this way, the level £correction is "aware" 
of the progress made on level £ + 1 without ever requiring the full three-level operator, 
except to compute the initial residual at each level. The complete AMR V-cycle appears 

Algorithm 5 The multigrid V-cycle, for P( n'-) c n'--1. 

AmrVcycle( £) 
if (£=£hi) then 

R'- = p'-- L'- (cp'-,cp'--1) 

e'- = 0 
end if 
if (£ > 0) then 

trl - ul-rsave-.,., 
e'- =Smooth (e'-,R'-) 
cp'- = cp'- + e'-
e'--1 = 0 , 
R'-_

1 
_ { Coarsen ( R'-- L'-,nf ( e'-, e'--1

)) 

- p'--1-L'--1 (cp'-,cp'--l,cp'--2) 

AmrVcycle( £ -1-) 
e'- = e'- +Refine ( e'--1) On P( n'-) 
R'- = R'-- L'-,nf ( e'-, e'--1) 

o'- = Smooth ( o'- = 0, R'-) 
e'- = e'- + o'-
cp'- = cp;ave + e'

else 
Solve L ( e'-) = R'-
cp'- = cp'- + e'-

end if 

On P(n'-) 
On n'--1 - P(n'-) 

in Algorithm 5. If 3m : m (£- 1) < m < m (£), then we augment the multigrid cycle to 
smooth on the multigrid levels between the AMR levels, and bypass the bottom solve. This 
modification is effected by replacing the recursive call to Amr V cycle(£ -1) in Algorithm 5, 
with a call to Vcycle( m (£)- 1, m (£- 1), m (£) ). 

4.2 Coarse-Fine Matching 

A coarse-fine interface, an'-, separates the regions P(n'-) and n'--1 - P(n'-). The 
fine grid solution is connected to the coarse data through this interface so that it can 
properly "feel" the boundary conditions on an, using a procedure closely related to that 
presented in [37]. The fine grid feels the coarse solution via Dirichlet boundary conditions 
by interpolating the coarse data adjacent to an'-. The coarse grid likewise feels the fine 
solution through a procedure that replaces the coarse flux on an'- with the appropriate sum 
of constituent face fine fluxes. The following two sections discuss each of these operations 
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0 A • • 
0 A • • • 0 A • • 

b 0 A • • 
0 A • • 
0 A • • • 0 A • • 

a 0 A • • 
0 A • • 
0 A • • I • 0 A • • I level£ I I level£- 1 

0 A • • 

Figure 13: A typical coarse-fine interface, ant, for d = 2, r = 4. The heaviest lines 
indicate fine grid boundaries. Locations are shown for coarse grid boundary 
data ( •), tangentially interpolated values ( o), fine grid cell-centers ( •) and 
perpendicularly interpolated ghost cell values (.6.). Interpolated coarse grid 
boundary data (0) is computed using Equation 20. 

in detail. 

4.2.1 Fine Grid Boundary Conditions 

At each level of the multigrid V-cycle (i.e. each multigrid level m), colored sweeps of 
the point relaxation are performed on rectangular grids sequ~ntially, with the boundary 
conditions effectively imposed once per sweep. For convenience, the coarse-fine boundary 
conditions are represented in the operator as Dirichlet values In ghost cells immediately 
outside the fine grids (to locations represented by triangles in the two-dimensional example 
shown in Figure 13). For a given fine grid, each ghost cell value is copied from another fine 
grid, or interpolated using the coarse grid data. Once the ghost cell values have been filled, 
the Laplacian operator may be computed as specified in Equations 3 and 5 for all fine cells 
in the rectangular grid patch. 

The interpolation (ford= {2, 3}) is performed in two separate steps. First, a quadratic 
interpolation tangential to the face of the fine grid gives values at the locations identified in 
the example, Figure 13, by small open circles. Next, a quadratic interpolant is constructed 
normal the interface, using the cell-centered fine grid data (small solid circles), and tangen
tially interpolated data, to fill in data in the ghost cell locations. The multi-dimensional 
interpolation must be updated after each time the fine or coarse data is modified, since the 
ghost cell value is affected by both profiles. 

Sufficient coarse data exists to easily compute a parabola through the coarse data for 
the tangentially interpolated values that lay in the coarse cell labeled "a" in Figure 13. For 
cell "b" however, the upper point is covered by fine grid, and therefore contains invalid data. 
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In [37], a one-side linear tangential interpolation was constructed in this case using only the 
valid coarse data. We improve on that concept by generating an accurate coarse value in 
the covered coarse cells (large open circle in Figure 13), so that the parabolic interpolant 
may be constructed as before. The generated coarse cell data is based on the covering fine 
data, using a third-order interpolant: 

(20) 

where the sum is taken over the fine grid cells adjacent to location marked (o), and the 
Laplacian correction term, V2rpb, is computed as the average of the simple (2d + 1)-pt 
numerical Laplacian computed on the 2d fine cells surrounding the point marked ( o). 

4.2.2 Level £ - 1 fluxes along ant 
Local conservation is preserved along the coarse-fine interface, ant, by ensuring that the 

same flux computed to enter the fine grid is counted to leave the coarse grid. The procedure 
for carrying this out can be specified after defining some additional notation. The coarse 
index, ic, at level£ -1, is uncovered if ic E ( n£-1 - P( nt)). Further, the uncovered index, 

ic E zk,+, lays adjacent to ant in the kth_direction if ant borders the cell at ic on its 
high-side. The cell at ic E zk,- lays adjacent to the coarse-fine boundary if ant borders its 
low-side. For example, in Figure 13, each coarse cell marked with a large bullet, (e), is a 
member of the set, .zo,+ at level £ - 1. For every ic E zk,±, there is a face set, S (iC) at level 
£such that the sum of the faces, s E S (iC), covers entirely the coarse face at ic ± 1/2uk· 

We incorporate the fine fluxes into the coarse discretization at level £ - 1 by building 
the conservation sum on the coarse cell in two passes. In the first pass, the coarse fluxes 
are computed and summed as if the level £ fine grid were not present. For the correction 
pass, we compute the fine fluxes along ant according to the prescription in Section 4.2.1. 
Then, we use the following expression to overwrite coarse fluxes at level£- 1 on an£ for 
each coordinate Q.irection, k: 

(v. f) = (v. f),.c + (21) icezk,± 

1 ( "" (ff'. n) (ht)d-1 _ (f. n) (ht-1)d-1) 
(hl-1 )d s'E~ic) s' ic±uk 

That is, we remove the extensive contribution from the underlying coarse edge, and replace 
it with the sum of extensive fluxes on the contributing fine edges. In this operation, the 
cells in n,£-1 - P ( n£) become effectively isolated from the cells in P ( nt). 

5 Implementation and Geometrical Requirements 

The fundamental irregular data representation, the graph, G = (V, E) of irregular cells, 
is implemented in our codes as two lists, one for the cell fragments, and one for the edge 
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fragments. These lists are produced by a "geometry generator" module, according to re
quirements of the algorithms presented in earlier sections of this paper. The geometry 
generator is discussed in Section 5.1. In short, for every partial cell, v, in the domain, we 
must store the following information: 

• The partial cell volume fraction, A ( v), 

• The set of full cells, N (v), neighboring v, specified as a list of integer d-tuples, 

• The index, JC (v), of the full mesh cell containing v, specified as ad-tuple 

For each partial edge, e, in the domain, we need the following information: 

• The partial edge area fraction, A (e) 

• The coordinate direction of the unit vector normal to the edge 

• An identifier of the cell on either side of the edge 

Additionally, for the nodes, Vi in all levels but the coarsest, we require the lists, e,cf,l (vi) 
and e,cf,R (vi), as discussed in Algorithm 3. Finally, we require a method of testing whether 
an index, i, lies within the set of full fluid cells, i.e. if i E :F. For most problems, the 
total number of solid and partial cell in the domain is much smaller than the number of 
full cells. Instead of maintaining a list of all the full cells, we generate a list of the solid 
cells, B : i E :F iff(,llv E V: K. (v) = i) and (,tli E B). Generation of B, is described in the 
Section 5.1.4. The regular data is stored in block-structured arrays on a union of rectangles 
for each refinement level using the BoxLib [BoxLib96] software library. The two distinct 
data structures communicate via the "interface faces" described in Section 2.2. 

5.1 Geometry Generation 

In general, the procedure for generating Embedded Boundary geometries consists of the 
following steps: intersect the surface description with the background uniform Cartesian 
mesh; compute partial cell areas and cell fragment volumes; and establish connectivity of 
the cells to each other and to the full cells. Although a general implementation of this 
procedure has been presented for complex three dimensional geometries[14], we introduce 
a simpler scheme for two dimensions which requires considerably less effort to implement, 
yet is sufficient for our purposes. 

Our procedure is similar to a two-dimensional scheme[16] presented for constructing 
an Embedded Boundary representation of bodies which are specified as unions of Bezier 
curves. We extend this idea by allowing for a nearly arbitrary collection of two-dimensional 
polygons (vertex lists with an assumed orientation). The vertices of these polygons may be 
generated, for example, by evaluating the parameterized Bezier curves and line segments 
used in PostScript-compatible computer drawing software, or any other user-specifiable 
function. The only constraint is that no mesh cell in the background fine-level Cartesian 
grid may contain more than one of these vertices totally within it. 

By convention, as the input vertex list is traversed, the body lies to the left of the 
segments connecting successive nodes. Except in the case of a "polyline" (discussed in 
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(a) (b) 

Figure 14: Creation of the c:ell fragments in two dimensions. (a) Along each line segment, 
created by connecting successive nodes in the specified list, edge fragments are 
generated from the grid line intersections. (b) Once the edges are known, cell 
fragments can be generated. Cell fragments surrounding the nodes are created 
in a subsequent step of the algorithm 

(a) > (b) 

Figure 15: Classification of nodes along the polygon that specifies the embedded body. 
(a) A concave node, and (b) a convex node. Convex nodes are significantly 
easier to handle in the geometry generation procedures. 

Section 5.1.3), the polygon is closed by connecting the first point in the list to the last. 
Each vertex is specified by location, and whether the point lies exactly on any grid line 
or at a coordinate line intersection. The latter avoids difficulties associated with exact 
arithmetic on a finite-precision machine. 

A list of mesh-line intersections is computed between each successive pair of vertices. 
The segment joining each successive pair of these new intersections will represent a portion 
of the embedded boundary, and will become the irregular boundary of a new cut cell. The 
grid-aligned partial edges of each of these new cut cells are easily constructed, and added 
to a master list. It is a simple matter in this setting to then determine which partial edges 
in the master list border the new cell fragment. Once the involved partial edges have been 
identified, the cell volume is computed using the scheme outlined in Appendix A. For 
each partial edge between newly created cell fragments, there is now enough information 
to complete the specification, including in particular the identity of the surrounding partial 
cells. After the input vertex list has been traversed, cell and edge fragments will exist 
that completely surround the polygon, except within and bordering mesh cells that contain 
original vertices (see Figure 14). The procedure for adding these final cell fragments and 
edges into the master list depends on whether the specified vertex is concave or convex. We 
discuss the simpler convex case first. 

5.1.1 Convex Polygons 

If the ith node, Vi, of the specified polygons is convex (i.e. if Vi-I Vi x ViVi+I :$ 0, see 
Figure 15), there are at least two methods for computing the volume of the surrounding 
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(a) (b) 

Figure 16: The two methods used in this paper for computing cell fragments. (a) The 
"natural" method: Compute the cell fragment according the the specified 
polygon, exactly. (b) The "blunted" method: Compute the cell fragment 
using the grid line intersection locations. The blunted method only builds 
cells that are exactly discretized by the finite-volume conservation sum. The 
piecewise-linear boundary interfaces allowed by the natural method are only 
approximated by the flux sum. 

cell fragment: the volume may be defined explicitly by the polygon segments, or by the 
nearest grid line intersections (locally blunting the boundary shape-see Figure 16). The 
first option was implemented as the default in our scheme. The second option improved 
some of the convergence results, as detailed in Section 6, but it places severe limits on the 
generality of our scheme with respect to geometries containing fine scale surface concavity, 
as discussed in Section 5.1.2. We refer to the former option as the "natural" method, and 
the latter as the "blunted" method. Cell fragments encompassing a convex node may be 
constructed by generating the appropriate partial edge areas and computing the cell volume 
using one of the two methods shown in Figure 16. The edge fragments are simply added 
into the edge list as well, since all the necessary information (face area, neighboring cells) 
already exists. 

5.1.2 Concave Nodes 

If the node, vi, is concave, the situation is a little more complex, as there is the possibility 
that one or more of the cell fragments defined in the first pass. actually conflict with one 
another (see Figure 17). Since each was created without regard for the other, the two will 
overlap in space, and each will protrude through the irregular boundary of the other. Given 
the local node layout, we simply resolve the conflicting cell and edge fragment definitions 
based on the location of edge intersections near the concave node. In particular, we march 
away from the concave node by interval along the segment, Vi Vi +I, searching for a mesh index 
containing more than one cell fragment. If two are found, we remove the fragment associated 
with the segment ViVi+I, in favor of the one associated with Vi- 1 Vi. We additionally update 
the cell pointers of the adjacent edges, and reduce the affected edge fragment apertures, 
and cell fragment volume. Finally, we add in the cell fragment at the apex of the node. 

If we are to build the geometry according to the blunted method, the procedure above 
is modified. Firstly, if the segments, Vi-1 Vi and ViVi+I intersect the same face of the mesh 
cell containing the concave node, then there can be no cell fragment surrounding that node. 
If this is the case, we must traverse the segments, Vi-1 Vi and Vi Vi+ 1, removing edge and cell 
fragments until we can properly construct a cell fragment with non-zero volume according 
the blunted method. This process will minimize grid-scale concave features of the body, 
and could be a strong function of exactly where the body is placed on the mesh grid. 
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(a) (b) 

Figure 17: Resolving cell fragment conflicts that may arise near cqncave nodes, depending 
on whether the natural or blunted generation scheme is being used. (a) A pair 
of conflicting cell fragments exist at the mesh index marked "A". (b) In the 
natural scheme, one of the cell fragments is removed, and the remaining one 
is trimmed away appropriately, leaving the cell fragment marked "B". A new 
cell fragment is added at the apex of the node. (c) In the blunted scheme, cell 
and edge fragments are removed from the geometry until a cell fragment with 
non-zero volu~p.e can be constructed from a linear boundary segment. 
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(a) (b) 

Figure 18: A thin region of fluid between two sections of the embedded solid. The sections 
may or may not be part of the same body. (a) No cell fragment conflicts arise 
with our present generation schemes. (b) The cell fragments between the body 
sections can be properly generated only after a global search procedure. We 
have not implemented such a search, and currently flag this condition as an 
input error. 

Thin Shell 
Boundary 

Figure 19: A infinitely thin shell geometry. Cell fragments can be generated along both 
sides of a a polyline; our schemes support multiple cell fragments at· a given 
mesh cell index. 

As presently implemented, our gridding scheme can resolve conflicting cell fragment 
definitions coming only from adjacent line segments in the polygon description. This limits 
large-scale convexity to cases where non-adjacent segments of the polygon remain separated 
by at least one mesh grid line. For the same reason, multiple bodies in the same calculation 
must remain separated by a grid line as well (see Figure 18). This limitation is easily 
removed by expanding the search for conflicting cell fragments to include the entire set, but 
the work of such a search would scale poorly with problem size, and cell and edge conflict 
resolution would become considerably more complex. 

5.1.3 Infinitely Thin Shells 

A special case easily allowed by our procedure is the "infinitely thin" body having its 
outline specified by an "open" polygon, or polyline. This is effected via the same procedures 
as above, except that after we construct the cell fragments along each line segment in the 
polygon, we reverse the point list, and repeat the procedure to generate cell fragments along 
the other side of the line. We truncate the polyline at the last intersection with the grid 
to avoid creating cell fragments around the first and last nodes of the polyline. Figure 19 
illustrates such a situation. This is a "thin" body condition, as discussed in Section 2.1.1, 
and is accommodated naturally in our framework; 'in Section 6.2, we present results for one 
such geometry. 
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(a) (b) 

Figure 20: Determining the set of solid cells, B, from the layout of cell and edge fragments. 
(a) The vertical strips for the x-direction sweep. The cell fragment at A 
has non-zero aperture on its high y-side, and zero aperture on its low y-side. 
Therefore, B, and all the indices below it, must be solid cells. There are no cell 
fragments in the vertical strip containing D, so no solid cells can be identified. 
(b) The horizontal strips for the y-direction sweep. The cell fragments in C 
identify D as a fluid cell. 

5.1.4 Set of Solid Cells 

The simple procedure we use for identifying the solid cells is similar in spirit to that 
outlined in (16], except that we must allow for thin bodies (see Figure 20). We proceed after 
generating all the cell and edge fragments, by sweeping in one-dimensional strips. The figure 
illustrates the process in two-dimensions, though the scheme is valid in three dimensions 
as well. We begin with a vertica:l strip at the left side of the domain, and the assumption 
that all non-partial cells are full (non-solid), though we cannot determine a priori whether 
the bottom of the strip is inside the solid or the fluid until we reach the first index which 
contains cell fragments. We use the general logic that if one cell fragment in the set at that 
index has non-zero aperture on its low x face, then there can be no solid cell immediately 
below. Likewise, if a cell in the set has non-zero aperture on its high x face, then no solid 
cell can be immediately above. If, at the first index containing cell fragments, there are 
none in the set with non-zero aperture on their low x face, we add all mesh cells below that 
one to the solid cell list. We continue upward until finding an index with cell fragments 
where none have non-zero aperture on their high x face. All cells between that location, 
and the next· with all cell fragments having zero low x aperture, are added to the solid set. 
Note that since we may traverse the entire strip without encountering a cell fragment, this 
single pass system may fail to identify solid cells which populate the entire strip. We now 
proceed with similar logic in y-strips, and if in three dimensions, finish with z-strips. 

Algorithm 6 Ensuring solid cells are "properly bordered". Here, 0 is the list of possible 
orientation unit vectors. 

I = { K ( v) : v E V} 
while 3i En I B u I: i + 0 E B, for any 0 E 0 do 

B=BUi 
end while 

A finaLpass is required to eliminate any remaining ambiguities. We search for mesh 
cells not containing a cell fragment, and not marked for solid, but which are adjacent to 
solid. Since solid cells cannot be adjacent to fluid, if any such cells are found, they are 
tagged solid as well. Details of the scheme appear in Algorithm 6. This procedure is 
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Figure 21: Example geometry coarsening, taking a 128 x 96 grid progressively down to a 
4 x 3. Note that the volume and area fractions are consistent across levels. 

continued until there are no more mesh cells satisfying the condition. The algorithm is 
particularly inefficient, but only required if the strip passes reveal any solid cells adjacent 
to the rectangular computational domain boundary. 

Once the complete geometry at the finest level has been generated, we may apply re
cursively the coarsening strategy defined in Section 3.2 to generate the coarser geometry 
descriptions required for the multigrid/ AMR refinement levels. In Figure 21, we show an 
example two-dimensional geometry, as it is coarsened by our scheme. In the figure, the em
bedded body is shaded in, and the individual cell fragments are drawn. Note that the body 
shape is drawn in at the resolution of the finest grid; the volum~ and edges of the coarse cell 
fragments are consistent with this picture. We use the reconstruction algorithm detailed in 
Appendix A only for estimating a position to apply the Dirichlet boundary condition, as 
described in Section 2.3 

6 Results 

We present a variety of test cases which exercise different components of our adaptive 
multigrid linear elliptic solution scheme. In all cases, the domain is two-dimensional. The 
first sets of results are used to verify the consistency and accuracy of the discretization. Since 
the method is essentially identical to that presented in [33], we observe identical convergence 
behavior. Next, we look at the residual reduction performance of our multigrid scheme, 
using a variety of embedded boundary shapes and boundary conditions. We conclude with 
a demonstration and assessment of the adaptive aspects of the solver. 
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6.1 Convergence Verification 

For the following cases, the embedded boundary is defined by the curve, 

r = 0.30 + 0.15 cos 68 

where r is radius, and fJ is azimuthal angle about the origin, measured from the positive 
x-axis. The computational domain for these cases lies between this curve, and the unit box, 
centered at (0, 0). Equation 1 is solved for the potential, <p, given a Poisson source 

p = 7r2 cos30 

The exact solution for this system is <pe (r, 0) = r 4 cos 38. The error field, e (x) = <p (x) -
<pe ( i) is used to monitor the convergence of the discrete solution to the correct continuum 
solution. The exact solution resides at the full cell centers, as discussed in Section 2.1. The 
truncation error field, r (x), is the difference between the analytic Laplacian operator, and 
the numerically computed operator, L (cpe), defined in Section 3. The truncation field, as 
well as the Poisson source resides at each cell's center of mass. 

We define the volume-weighted norm of a variable e: 

(22) 

where n is the computational domain. An co-norm, llell 00 , is the maximum over all the 
domain of the absolute value of the elements of e. The rate of convergence in a given 
norm, p, between two errors fields, e1 and e2, computed with two different background 
mesh spacings, h1 > h2, is 

(23) 

The convergence rate, Rp = n indicates nth_order accuracy, i.e. the leading term in the 
truncation error scales as 0 (hn). 

6.1.1 Problem 1: Dirichlet Embedded Boundary Conditions 

We enforce inhomogeneous Dirichlet boundary conditions, as described in Section 2.3, by 
setting the value at the center of the reconstructed interface, Xbc, equal to the exact solution 
value, cpe (ibc)· This fixed value results in a non-trivial extensive Dirichlet boundary flux, 
FEB· A-EB, to be added to the conservative sum, Equatiqn 6 on the cell fragments. Here, 
AEB = AEBnEB, where nEB is the unit normal on the embedded boundary evaluated 
at Xbc, and AEB is the magnitude of area of contact of the cell fragment with the solid, 
computed using the interface reconstruction scheme described in Appendix A. The flux, 
FEB, is computed according to the specification in Section 2.3. 

In the first set of cases, the embedded boundary geometry is constructed using the 
natural method, as discussed in Section 5.1, and we discretize the domain on uniform mesh 
of N 2 cells, where N = { 40, 80, 160, 320, 640, 1280}. For these cases, the finest grid covers 
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Figure 22: Contours of the exact solution for Problem 1, plotted over a grid with h = 1/80. 
The shaded region represents the embedded body, and is excluded from the 
computational domain. Contours are not extended into the cell fragments, 
which are drawn in around the embedded solid. 

the entire domain, i.e. P(nm+l) · = nm, 'V m : 0 :$ m < mhi· We initialize the state with 
the exact solution, and relax the system via a multigrid V-cycle using the level-transfer and 
smoother operations defined in Section 3.3. At the coarsest level, there is insufficient data 
in the domain to compute the full embedded boundary interpolants at 16 of the partial cell 
boundaries (generally, at the concave nodes of the geometry). For those cells, the planar 
interpolation functions are used, resulting in a scheme that is formally inconsistent. At 
the refinement level where h = 1/80, there are just four points where this occurs-at the 
concave nodes along the central vertical axis. For h < 1/80, the full interpolants could be 
computed for all partial cells in the domain. A contour plot of the solution for this test 
problem is shown in Figure 22. In the figure, we also draw in the cell fragments resulting 
from discretizing the domain on a grid with h = 1/80, and shade in the embedded body, 
which is excluded from the calculation. 

Tables 1 and 2 show the convergence rates of the norm of the volume-weighted trunca
tion, and the error, respectively with decreasing h = 1/N. The large initial rates are due to 
the low-order boundary interpolants, and the erratic convergence rates for IIArlloo will be 
explained shortly. The 1 and 2 norm convergence rates for the truncation are as expected 
for centered differences with boundary fluxes computed using parabolic interpolants. As 
demonstrated in [33], the initial rapid convergence of the error, ~' due to errors in approxi
mating the flux at embedded Dirichlet boundaries. These errors, which are large on coarse 
grids, generate contributions to ~ which converge to third order in h for all the norms. 
Eventually however, this component of ~ becomes small enough that it is dominated by 
the second-order truncation terms generated by the central differences in the bulk of the 
computational domain. Our results appear to confirm that argument. 
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I N II IIA7"IIoo I Roo II IIA7111 I Rl II IIA7112 I R2 I 
0040 0.483204 - 0.0148148 - 0.15888 -
0080 0.0616952 3.0 0.00311469 2.2 0.0141678 3.5 
0160 0.0330336 0.90 0.00078422 2.0 0.00491301 1.5 
0320 0.0191487 0.79 0.000198956 2.0 0.00180314 1.4 
0640 0.00907973 1.1 4.93392e-05 2.0 0.000628069 1.5 
1280 0.0059005 0.62 1.23034e-05 2.0 0.000225618 1.5 

Table 1: Convergence of the volume-weighted truncation error of the numerical Laplacian 
operator for the Dirichlet case, Problem 1, using the natural cell fragment con
struction process, as detailed in Section 5.1. The largest errors are consistently 
on the cell fragments. The oo-norm converges roughly at first order in h, while 
the 1 and 2-norms converge at 2 and 1.5 respectively. 

I N II llelloo I Roo II 11e1h I Rl II 11e112 I R2 I 
40 3.4 7043e-05 - 8.63834e-06 - 1.35548e-05 -
80 5.15269e-06 2.8 1.27141e-06 2.8 1.83661e-06 2.9 
160 7.38936e-07 2.8 2.3757e-07 2.4 3.42284e-07 2.4 
320 1.32241e-07 2.5 5.1197e-08 2.1 7.67556e-08 2.2 
640 3.26955e-08 2:0 1.19695e-08 2.1 1.85318e-08 2.1 
1280 8.18485e-09 2.0 2.93154e-09 2.0 4.61567e-09 2.0 

Table 2: Convergence of the error, ~ = cp - r.pe, of the computed solution to the Dirichlet 
case, Problem 1, using the natural cell fragment construction process, as detailed 
in Section 5.1. The largest error is on the cell fragments. The initial fast conver
gence was explained in [33); the convergence rates approach two asymptotically, 
as expected. 
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Figure 23: Scatter plot of the magnitude of the volume-weighted truncation error, IArl, 
of the operator in Problem 1, over the cell fragments generated for the grid, 
h = 1/160. 
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(a) (b) 

Figure 24: Cell reconstruction in 2D. The error,~' in the computed boundary area, may 
be 0 (h) for .this special case. The figure exaggerates the curvature of the 
boundary to illustrate the issue. 

The erratic convergence behavior of IIArlloo can be understood with the aid of Figure 23, 
where we plot the magnitude of Ar as a function of cell fragment index number for Problem 1 
setup, with h = 1/160. It is evident that the oo-norm is determined (to a factor of two, or 
so) by a small number of cells in the domain. All the cells represented in the figure where 
IArl > 0.02 share the feature that boundary curvature effects introduce 0 (h) errors into 
the numerical operator via the approximation of AEB, i.e. the surface integral, 

is incorrect to 0 (h), whereas for normal cell fragments, this error is only 0 (h2). Such a 
situation arises only for triangular reconstructed cells with high aspect-ratio near regions 
on the boundary with significant curvature (see Figure 24). In this case, the reconstruction 
will position the boundary segment correctly to 0 (h2 ), measured along nEB, which results 
in an 0 (h) error at the intersections with the grid line. As an alternative, the boundary 
area, ABB, may be defined so that the discrete area integral is exact, but then A computed 
for this cell would no longer consistent with these cell faces. The observation motivated 
us to develop the blunted approach to cell construction, desc!ibed in Section 5.1, where 
both the cell apertures and volumes are constructed consistent with the piecewise linear 
representation. For this case, the boundary interface reconstruction procedure will give 
the "exact" boundary point location. Now, the geometry-induced errors arise only from 
the piecewise-linear representation of the smooth boundary, and these errors are smoother 
and better behaved. This phenomenon was not observed in [33], where the cell fragments 
generated were automatically blunted (according to our terminology in Section 5.1). 

We re-computed the geometry using the blunted version of the scheme, as detailed in 
Section 5.1. Tables 3 and 4 show the convergence behavior for Problem 1, using the blunted 
cell fragments. Clearly, IIArlloo behaves as expected, and indeed how it was reported to 
behave in [33]. Note that the other norms remain effectively unchanged, as one might 
expect. As an aside, we note that a plot for this blunted case that corresponds to Figure 23 
would show the same general features as before, i.e. only a few cells were within a factor of 
2 of ll~lloo, while the rest were at roughly half that level. However, in this case, since these 
errors decay smoothly as h decreases, the outliers do not adversely impact the overall error 
norm. 

These results might indicate that the blunted scheme is superior to the natural scheme, 
were it not for the undue restrictions that the blunted scheme places on geometries. Aside 
from being unable to represent concave features on the scale of the mesh grid, the blunted 
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I N II IIArlloo I Roo II IIArll1 I Rl II IIArll2 I R2 I 
40 0.484045 - 0.0150905 - 0.155971 -
80 0.065068 2.90 0.00313342 2.3 0.014329 3.4 
160 0.035117 0.89 0.000787199 2.0 0.0049367 1.5 
320 0.0198966 0.82 0.000199542 2.0 0.00179268 1.5 
640 0.0104768 0.93 4.94945e-05 2.0 0.000618629 1.5 
1280 0.00578773 0.86 1.23339e-05 2.0 0.000220398 1.5 

Table 3: Convergence of the volume-weighted truncation error of the numerical Laplacian 
operator for the Dirichlet case, Problem 1, using the blunted cell fragment con
struction process, as detailed in Section 5.1. The co-norm convergence is slightly 
better behaved in this case, compared to the results generated from the natural 
cell generation method. Here again, the co-norm converges roughly at first order 
in h, while the 1 and 2-norms converge at 2 and 1.5 respectively. 

I N II llelloo I Roo II 11e111 I Rl II 11e112 I R2 I 
40 3.62205e-05 - 8. 7 4556e-06 - 1.36764e-05 -
80 5.21425e-06 2.8 1.2735e-06 2.8 1.84214e-06 2.9 
160 7.92214e-07 2.7 2.38048e-07 2.4 3.43014e-07 2.4 
320 1.32427e-07 2.6 5.12732e-08 2.2 7.68536e-08 2.2 
640 3.27236e-08 2.0 1.19778e-08 2.1 1.8544e-08 2.1 
1280 8.18749e-09 2.0 2.93368e-09 2.0 4.61752e-09 2.0 

Table 4: Convergence of the error, ~ = <p- <pe, of the computed solution to the Dirichlet 
case, Problem 1, using the blunted cell fragment construction process, as detailed 
in Section 5.1. These results are quite similar to those presented for the natural 
cell fragment method 
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I N II IIArlloo I Roo II l1Arll1 I Rl II l1Arl12 I R2 I 
40 0.0498369 - 0.00691271 - 0.019298 -
80 0.0249605 1.0 0.00178174 2.0 0.00678532 1.5 

160 0.0124902 1.0 0.000451207 2.0 0.00242888 1.5 
320 0.00624756 1.0 0.000114123 1.9 0.00087124 7 1.5 
640 0.00312439 1.0 2.87537e-05 2.0 0.000308245 1.5 

1280 0.00156234 1.0 7 .23863e-06 2.0 0.000110257 1.5 

Table 5: Convergence of the volume-weighted truncation error of the numerical Laplacian 
operator for the Neumann case, Problem 2, using the natural cell fragment con
struction process, as detailed in Section 5.1. Here again, the oo-norm converges 
at first order in h, while the 1 and 2-norms converge at 2 and 1.5 respectively. 

method generates geometries that may depend strongly on the position of the underlying 
grid lines. Since we are developing these numerical schemes for arbitrary geometries, the 
latter is not a desirable feature. Also, it is worth noting that since the large errors in this 
scheme are due to an 0 {1) number of points, and since these cells generally have very small 
volume, they will have minimal impact on the solution over the rest of the domain-this was 
evident in the results presented above, since the truncation and solution errors converged 
at the expected rates in the 1 and 2-norm regardless of the convergence behavior of the 
oo-norm. 

6.1.2 Problem 2: Neumann Embedded Boundary Conditions 

To test the discretization with Neumann boundary conditions, we set up a case identical 
to Problem 1, except that the inhomogeneous extensive flux, FEB ·nEB, added to the 
conservative flux sum is computed explicitly from the known solution. The components of 
FEB= \lcpe, are 

where r2 = x2+y2 . The local normal was computed from the cell's edge fragment apertures, 
according to the procedures outlined in Appendix A. The natural cell construction proce
dures were used for this case. The convergence results are presented in Tables 5 and 6. Note 
that convergence behavior in these cases is much more uniform. The Neumann case appears 
to be somewhat less sensitive to details of the boundary treatment, as expected. Since there 
is no contribution to conservative flux sum from terms along the boundary interface, the 
scheme is insensitive to the details of the boundary surface reconstruction procedure. 

6.2 Multigrid Assessment 

In this section, we evaluate the effectiveness of our simple multigrid scheme for solving 
the Poisson equation on a variety of two-dimensional geometries. First, we assess the 
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I N II llelloo I Roo II 11e111 I Rl II 11e112 I R2 I 
40 6.12207e-05 - 1. 7791le-05 - 3.01133e-05 -
80 1. 72152e-05 1.8 4.8787e-06 1.9 8.34709e-06 1.9 
160 4.57722e-06 1.9 1.29383e-06 1.9 2.21562e-06 1.9 
320 1.18702e-06 1.9 3.35947e-07 1.9 5. 73883e-07 1.9 
640 3.02077e-07 2.0 8.53856e-08 2.0 1.45699e-07 2.0 
1280 7.61676e-08 2.0 2.16465e-08 2.0 3.68528e-08 2.0 

Table 6: Convergence of the error,~= <p- <pe, of the computed solution to the Neumann 
case, Problem 2, using the natural cell fragment construction process, as detailed 
in Section 5.1. We clearly observe second order in all norm measures. 

performance of our schemes for the case that .e.hi = 0, and nm = P(nm+1), i.e. the finest 
grid covers the entire domain completely. We use the simple V -cycle described in this paper, 
with low-order level transfer functions and a point-relaxation smoother. In all cases, the 
coarsest level in the multigrid V -cycle is h = 1/2, and the "exact" solve at the bottom of the 
V-cycle (on the 2 x 2 system) consists of 8 passes of the smoother operation. The measure 
of performance is the averaged residual reduction factor, 

. 1 

f = ( IIARolloo )w 
IIARNIIoo 

(24) 

where the average is taken over the total number, N, of complete multigrid iterations taken 
during that solve. As in Section 3.1, R = p- L (rp), and the subscript indicates iteration 
number, with 0 representing the residual computed with the initial guess. For all cases, 
the initial guess was a flat profile (rp = 0), and the system was relaxed until IIARIIoo was 
reduced by 10 orders of magnitude. 

6.2.1 Problem 3: Solver Scaling with System Size 

Problem 3 is designed to illustrate how our simple multigrid scheme scales with system 
size. The problem setup is identical to that of Problem 1, except that we build a single 
geometry, based on h = 1/256, and construct a series of sub-problems, at decreasing levels 
of refinement. We do this simply by starting the multigrid V -cycle at successively higher 
(coarser) levels. Figure 25 plots the residual reduction factor, f as a function log N, where 
N is the number of cells on a side (= 1h). The reduction factor increases linearly with 
log N, which verifies that we are ~chieving the expected performance of classic multigrid 
schemes, where the work scales as 0 (NlogN). 

6.2.2 Problems 4 and 5 

Problems 4 and 5 are designed to test the scheme's ability to handle a wide variety of 
geometrical shapes embedded in the grid. Statistics for the six geometries we tried appear 
in Table 7. In all cases, the background uniform mesh is 256 x 256 over the region in two
dimensional real space, [0, 0] x [1, 1]. The bodies were described as a set of node lists, and 
the natural cell fragment construction procedure was used. The cases are: · 
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Figure 25: Plot of the residual reduction factor, j, as a function of system size, N, for 
Problem 3. The reduction factor scales linearly with log N, so that the com
puter work to solve this linear system scales as 0 (NlogN). 

I Case I Des c. II NB I Nf5ll I N I t25ll (s) II N~U24 I tw24 (s) II fN I fn 
A Line 0 192 65336 0.17 768 0.43 0.141 0.146 
B Boxes 8192 512 57344 0.35 2048 1.4 0.103 0.0767 
c Ellipses 10240 912 55296 0.9 3792 5.0 0.0407 0.0557 
D Ellipse 42764 700 22772 0.63 2812 7.5 0.0607 0.0760 
E Naca 2311 536 63225 0.5 2144 1.8 0.118 0.0902 
F Arc 0 764 65918 0.7 3068 3.0 0.186 0.135 

Table 7: The six geometries used for Problems 4 and 5. Here, N8 is the number of solid 
cells , N{,56 is the number of cell fragments, N is the total number of uncovered 
cells (including full and partial cells), t 256 is the CPU time (in seconds) to gen
erate the geometry on. the 2562 domain, N~024 is the number of cell fragments 
in the same geometry generated for a 10242 mesh, and t 1024 is the CPU time 
it took to generate the larger geometry. f N and f D are the residual reduction 
factors for the Neumann and Dirichlet problems, Problems 4 and 5, respectively. 
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(a) 

· (d) (e) (f) L..==.---===--___J 
Figure 26: Contour plots foi: Problem 4. Homogeneous Neumann conditions are imposed 

on the embedded body, while homogeneous Dirichlet conditions are applied to 
the rectangular boundaries {except in (d)). 

A. An infinitely thin line boundary from ( 1
5
6 , 1

5
6 ) to ( 1

5
6 , i~) . 

B. Two boxes, measuring ! on a side, and placed at (!, ! .± !) . 
C. Four ellipses, centered at (! ± ! , ! ± ! ) measuring 1

5
6 x 3

5
2 • 

D. One ellipse, centered at (!,!),measuring! x l For this case, the domain is inside 
the elliptical surface (so that there are no rectangular boundaries for this example), 

E. Two NACA 0012 airfoils, uniformly scaled to have length ·0.468, and placed so that 
the leading edges are at ( .336, .625) and ( .195, .375) . 

F. Anarc,sweepingout8= [~,-~],withcenterat (!,o) andradius= t· 
For Problem 4, we computed solutions to the Poisson equation on. the six geometries, 

imposing a homogeneous Neumann boundary condition at the embedded boundaries. A 
homogeneous Dirichlet condition was imposed all along the rectangular boundary (if one 
exists in the problem). To make the solution non-trivial and non-singular, we placed equal, 
but opposing Gaussian source terms, 

p =I: cf exp ( Gi lx- xil2
) (25) 

i 

where Xi = ( ±!, n, Cf = ±1 and C~ = 0.01 (actually we omitted the left source in 
Case A to obtain a solution which more clearly demonstrates the· abilities of the code). 
Contour plots of the solutions for all six cases are presented in Figure 26. Here, we plot 31 
equally spaced levels between the extreme values of the solution, and shade in the embedded 
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(a) (b) 

~ ~ w 
Figure 27: Contour plots for Problem 5. Homogeneous Dirichlet conditions are imposed 

on all boundaries of the domain, including rectangular and embedded surfaces. 

bodies that have been excluded for each case. The contours clearly intersect normal to the 
embedded surface, and are tangent to the rectangular boundary, as expected. The multigrid 
residual reduction factors for this case appear in Table 7, column 9. 

For Problem 5, we enforce Dirichlet conditions on all boundaries. The embedded bound
aries were set to zero, while the rectangular boundaries where set to unity (if they exist in 
the problem). In Case D, this would result in a trivial solution; we added a single source 
of the form of Equation 25 at the center of the domain, with where x1 = (~, ~), C[ = 1 

and C:} = 0.01. Contour plots of the solutions for all six cases· are presented in Figure 27. 
Here, we plot 21 equally spaced levels between 0 and 1, inclusive. The contours are clearly 
tangent to all boundaries in the problems, and show the correct general characteristics ex
pected of the Poisson solution. The multigrid residual reduction factors for this case appear 
in Table 7, column 10. 

6.2.3 Problem 6: Adaptive Multi-level Solve 

Problem 6 demonstrates the AMR component of our solver. For this case, we chose the 
geometry labeled "F" in Table 7, and run the system setup for Problem 3 (i.e. the Poisson 
equation, with two opposing sources). We apply homogeneous Neumann conditions to 
the embedded boundaries, and along the left and right sides of the domain. We apply 

· homogeneous Dirichlet conditions to the upper and lower boundaries. The final solution 
presented has four AMR levels, with a uniform factor of two separating each. The finest 
grid has h = 1/512, while the coarsest uncovered level has h = 1/64. 

First, we solve our problem over the entire domain with h = 1/64 (this will involve 7 
multigrid levels, with h = 1/2n, n = [1, 6]). Richardson extrapolation is used to estimate -
the local truncation error, r, as described in [38]. All rectangular cells with r > .1h2 
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are "tagged" for refinement, according to the procedure detailed in [38]. We also tag 
every mesh cell containing at least one partial cell (in this way, we can ensure that the 
embedded boundary is always gridded to the finest level). A set of rectangular grid patches 
are generated for the level with h = 1/128. The fine grid solution is initialized by by 
interpolating the coarse grid values using our piecewise-constant level transfer scheme, and 
the system is relaxed via the multi-level multigrid scheme given in Algorithm 5. After the 
solve, the error tagging procedure is applied again to adjust the grids at h = 1/128, if 
necessary. The solve at this level continues until the grid layout remains constant. The 
next AMR level is then added using a similar process, and the three-level scheme is iterated 
to convergence in the same way. We terminate execution after four AMR levels have been 
converged, both in terms of grid placement and in terms of reducing the oo-norm of the 
residual at each level at least eight orders of magnitude from that of the initial guess. 

Figure 28 shows the converged, adapted solution. The boxes overlaid on the contours 
indicate the extent of block-structured logically rectangular grids at each level (for clarity, 
we've shaded them according to level). Due to limitations in our graphics, contours were not 
drawn in the partial cells-this is most noticeable near the body in the first solution plot. In 
the final arrangement, levels 3-0 cover 6.96, 24.3.46.8 and 100 percent of the computational 
domain, respectively. The average residual reduction factor for the entire calculation was 
approximately 0.08. Note that the solution is resolved well enough that grid refinement 
is not triggered near the location of the sources. The minor profile adjustments with grid 
refinement appear to result from the improved resolution of the curved boundary. 

We note this example was the largest of the linear solves presented in this paper, consum
ing approximately 10 minutes of CPU time on a DEC Alpha 300 MHz machine. Although 
such performance is unacceptable for for typical high-performance computing applications, 
the encouraging convergence performance warrants another implementation pass to stream
line data access and minimize unnecessary calculation. 

7 Conclusions 

In this paper, we have presented a graph-based algorithm for representing irregular 
bodies embedded in a block-structured, logically rectangular Cartesian grid. We detailed a 
recursive geometrical coarsening strategy valid for arbitrarily complicated domain shapes. 
The strategy carries enough geometrical information along to allow finite-volume type 
conservation-law discretizations to be constructed on every coarse level generated. It ap
propriately handles "thin-bodies" and "trailing-edges" at every level, and extends directly 
to three dimensions. 

Based on our data representation and coarsening strategy, we constructed a simple 
multigrid scheme for solving the Poisson equation in the presence of arbitrarily complex 
geometries. We studied the behavior of our scheme, both in terms of convergence rates to 
the continuum solution of Poisson's equation, and in terms of the residual reduction rates. 
By testing over a wide range of geometries, we found that the complexity and position 
of the embedded shapes seems to have some impact on our scheme's residual reduction 
properties, but that the scheme was nonetheless generally quite robust-remarkable since we 
implemented only the simplest of possible strategies for the various components of multigrid 
(such as level transfer and smoothing operations). 
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Figure 28: Adaptive solution to the Poisson equation on the "Arc" geometry, an infinitely 
thin embedded surface. Left-to-right, top-to-bottom, the figures depict the 
converged solution with one, two, three and four AMR levels, respectively. 
The coarsest solution is on a 64 x 64 grid, and each AMR level is refined a 
constant factor of two from the one next coarser. 
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Figure 29: Linear reconstruction of the embedded boundary surface, based on the surface 
normal, fi, and cell volume. In two-dimensions, the fluid cell may be triangular, 
trapezoidal or pentagonal. 

The encouraging results presented in this paper indicate that our scheme is suitable for 
extension to other conservation-law PDE systems. Our EB formalism extends naturally to 
the high-resolution Godunov scheme presented in [17], and to the approximate projection 
scheme presented in [27]). The adaptive solver can also be used as a starting point for 
extending the variable-density adaptive projection schemes in [37, 38). 

A Piecewise Linear Boundary Reconstruction 

At the most refined grid level, the embedded boundary is represented as a Co piecewise 
linear interface, specified by the apertures of the edges in connected paths of the irregular 
geometry graph. The location of this interface within the cells is required, for example, when 
computing the fluxes induced by Dirichlet conditions along the embedded boundary. The 
boundary surface can be reconstructed with volume-of-fluid-type methods. We compute 
the surface normal, ii = {n1, ... , nd}, for irregular cell v using the partial cell apertures: 

(26) 

for all edges, e, in the k-direction. Now, the surface normal, ii, and the cell volume, A (v), 
specify a unique location for a linear boundary intersection surface. In two dimensions, for 
example (see Figure 29), take the case that ln2l > ln1l > 0. Define a slope, m = ~' and 
v = A ( v). The shape of the cell can identified: 

{ 

quadrilateral if v ~ b and v ~ 1 - b 
v is a triangle if v ~ b and v ~ 1 - b 

pentagon if v ~ b and v ~ 1 - b 

where b = lml /2. In the case of the triangle, one node is on the unit square, the others 
are at ( 0, 1 - V4bV) and ( ,jV(b, 1). In the case of a quadrilateral, two nodes are on the 
unit square, and the others are at (0, 1- v ±b). Finally, in the case of the pentagon, three 
of the nodes are on the unit square, while the other two are at (1- J(1- v) jb,o) and 

( 1, yl4b-(1- v) ). These formula are then rotated based on the signs of n 1 and n 2 , in order 
to keep a well-behaved slope, m. Similar, but slightly more complex formula can be used 
to find the plane intersecting the boundary in three dimensions. 

We use these formulas also to define an approximate boundary location for geometries 
coarsened using the techniques described in Section 3.2. However, there is no guarantee that 
the position will accurately reflect the sub-grid scale boundary shape. And since we are 
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modeling arbitrary boundary shape, higher order reconstruction methods do not necessarily 
represent an improvement in location accuracy. For example, on a very coarse grid with 
d = 2, one may compute nk = 0, 'if k E {1, d} and A (v) < 1, for some v in the domain. This 
implies that the embedded structure lays completely within the coarse cell; this case cannot 
be represented by a linear boundary segment. We handle this case in the computations 
by merely setting the slope, m = 0, and continuing on to the next cell. Such ill-defined 
cases arise typically at the coarsest levels generated automatically for a multigrid solver 
grid hierarchy, and usually represent a refinement level constructed solely as a temporary 
aid for the linear solution. If such a procedure ends up degrading the performance of the 
solver, we remove that level from the multigrid hierarchy so that the coarsest problem is 
fine enough to prevent these ambiguous cases. · 
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