
Lawrence Berkeley National Laboratory
LBL Publications

Title
Embedded Boundary Algorithms for Solving the Poisson Equation on Complex
Domains

Permalink
https://escholarship.org/uc/item/6z21094s

Authors
Day, Marcus S
Colella, Phillip
Lijewski, Michael J
et al.

Publication Date
1998-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6z21094s
https://escholarship.org/uc/item/6z21094s#author
https://escholarship.org
http://www.cdlib.org/

• 1 • :.:

l •

• ~- '~ 1 :·. ,i.
,. :.

LBNL-41811
Preprint

ERNEST.'0RL.AND'D LAWRENCE
BERKELEY'· NATIONAL LABORATORY - . ,

E~bedded Boundary Algorithms
for Solving the Poisson Equation
on Complex Domains

Marcus S. Day, Phillip Colella, Michael]. Lijewski,
Charles A. Rendleman, and Daniel 1. Marcus

Computing Sciences Directorate

May 1998
Submitted to
]ournal'of:•:::=·.·- · ·--· · · ·
comf/ui~iionat. _

,
OJ z
r-

n 1
0 ~

"0
'<: CXI

- ~ • ~~ r ~:

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBNL-41811

Embedded Boundary Algorithms for Solving the Poisson
Equation on Complex Domains

Marcus S. Day, Phillip Colella, Michael J. Lijewski,
Charles A. Rendleman and Daniel L. Marcus

Computing Sciences Directorate
University of California

Ernest Orlando Lawrence Berkeley National Laboratory
Berkeley, CA, 94 720

May 1998

This work was supported by the Office of Energy Research, Applied Mathematical Sciences Program,
Office of Computational and Technology Research, Mathematical, Information and Computational
Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Embedded Boundary Algorithms for Solving the Poisson
Equation on Complex Domains

Marcus S. Day1, Phillip Colella, Michael J. Lijewski, Charles A. Rendleman
Lawrence Berkeley National Laboratory

Berkeley, CA, 94720

DanielL. Marcus
Sage IT Partners

San Francisco, CA 94111

Abstract

We present a graph-based strategy for representing the computational domain
for embedded boundary discretizations of conservation-law PDE's. The represen
tation allows recursive generation of coarse-grid geometry representations suit
able for multigrid and adaptive mesh refinement calculations. Using this scheme,
we implement a simple multigrid V-cycle relaxation algorithm to solve the lin
ear elliptic equatibns arising from a block-structured adaptive discretization of
the Poisson equation over an arbitrary two-dimensional domain. We demonstrate
that the resulting solver is robust to a wide range of two-dimensional geometries,
and performs as expected for multigrid-based schemes, exhibiting 0 (N log N)
scaling with system size, N.

Keywords: Cartesian grid, embedded boundary, adaptive mesh refinement,
multigrid, Poisson equation, linear solution methods

1 Introduction

In the Embedded Boundary (EB) approach to discretizing PDE's in complex geometries,
the physical domain is embedded completely within a larger uniform mesh. The bulk of the
data underlying an EB discretization utilizes rectangular indexing, and only a small number
of cells near the embedded boundary require special treatment. In this paper, we extend
a class of EB discretization schemes to allow for arbitrarily complex domain boundaries in
building multi-level discretization scheme components, such as multigrid and adaptive mesh
refinement. We focus here on an adaptive multigrid scheme for the Poisson equation. The
framework however, would extend readily as the basis for hyperbolic and ·incompressible
flow discretizations.

EB methods have been applied to a wide range of conservation-law PDE's (alternative
names for EB include "Cartesian Grid", or "Immersed Boundary"). The earliest use was
in 1977 by Reyhner[1] in the context of axisymmetric transonic potential flow solutions. In
1978, Purvis and Burkhalter[2] presented a finite-volume formulation of the full potential

1Corresponding author contact information: MSDay@lbl.gov, or via the Center for Computational Sci
ences and Engineering, MS-50D, LBNL, (510) 486-5076, FAX: (510) 486-6900

1

equation via Cartesian Grid methods. In 1983, Wedan and South[3] extended this idea
in two dimensions to allow multi-element and internal flow geometries. The TRAN AIR
code, presented in [4], employed a three-dimensional finite-element based discretization
of the full potential equation, complete with local adaptivity. Clarke, et al. [5], Gaffney,
et al.[6], Epstein, et al.[7] and Morinishi[8] presented work that extended the Cartesian
schemes to steady Euler flows. Chiang, et al.[9] presented an Euler solver for Cartesian
grids which featured adaptive gridding. Coirer[10] developed a locally adaptive upwind
finite-volume scheme in two dimensions, and incorporated the viscous terms necessary to
compute steady Navier-Stokes flow, following the work of DeZeeuw[ll, 12] and Gooch[13].
Melton[14] extended the work of Coirer into three dimensions. Melton's contribution also
included the capability for automated grid generation via a collection of specified "water
tight" components, and the logic for handling split irregular cells at the finest level. The
latter feature, introduced in [11], reduces considerably the grid resolution required to capture
the details of geometries containing sharp edges and thin bodies, such as the trailing edges
of airfoils.

When applying Embedded Boundary methods to the time-dependent Euler equations,
researchers must additionally deal with the overly severe CFL constraints arising from small
cells cut by the boundary. The earliest schemes to deal with cut cells in a time-dependent
framework were presented by Noh [15]. Some of Noh's ideas related to cell-merging and
flux redistribution, are used in more contemporary works, such as the schemes presented
by Quirk[16], Pember, et al.[17] and Yang, et al.[18]. Additional methods to ameliorate the
CFL time step restriction have been constructed based on geometrical wave-propagation,
and rotated difference schemes, and are presented in a series of papers by LeVeque[19, 20],
and Berger and LeVeque[21, 22, 22].

A variety of embedded boundary schemes have been presented in the literature for
elliptic problems on irregular domains. Peskin[23], LeVeque[24], Tome and McKee[25],
Tau[26], and Almgren, et al.[27] present specialized elliptic solution schemes for Cartesian
grids, as required to implement the elliptic solve step of the· projection schemes for in
compressible flows[28]. In a more general setting, LeVeque and Li[29] extend the methods
in [23] to allow internal interfaces in the elliptic transport coefficients and source terms.
Yang[30] then extended that scheme to incorporate complex domain boundaries embed
ded in a uniform rectangular grid. The resulting logically rectangular system can be
inverted with fast Poisson-solver schemes, including a specially tailored multigrid-based
implementation[31]. Hewitt[32] presents an embedded curved boundary scheme which is
similar to that of Yang[30], except that additional care was taken to allow efficient use of
ADI-based solvers. Johansen[33] presents a different type of two-dimensional scheme for
elliptic equations, along the lines of the hyperbolic schemes, where the embedded boundary
is treated as a physical domain boundary, and not just an internal interface. Johansen em
ploys a novel data-centering scheme to avoid conditioning and accuracy problems exhibited
by many of the previous schemes for elliptic and parabolic systems.

In this paper, we present a generalized EB domain specification for the data associated
with the numerical integration of conservation-law PDEs. In our scheme, the computational
domain is represented as a connected graph; the nodes of the graph represent the discrete
cells on the grid, and the edges represent the cell faces. The graph representation of gridded
data leads to an intuitive cell merging strategy for generating successively coarser geome-

2

(i,j+ 1(2) -h-- i (i-1,j) (i,j) (i + 1,j)

• I~ • II • h
(i -1(2,j) (i+ 1(2,j) ~ I - I

I - I (i,j-1(2)

Figure 1: Indexing scheme for Uniform gridding with mesh spacing, h, in two dimensions.

try descriptions from the finer grid. This framework is applied toward the construction of
an EB Poisson solver, employing block-structured adaptive mesh ref!nement(34] and multi
grid(d. (35]). Here, we extend the elliptic EB discretization of Johansen and Colella(33] to
fully arbitrary geometrical configurations, thereby allowing complete geometry coarsening
that is not limited by complex boundary shape. In a more general sense, this application
also extends (11, 14] to allow "split-cells" at all levels of refinement, rather than at only the
finest level. For this Poisson-solver example, we present convergence results which verify
that, even in complex domains, our scheme converges at the expected rates, in terms of
both grid-refinement, and multigrid relaxation performance.

The notation of our embedded boundary framework is motivated in Section 2 via the
finite-volume discretization of the Poisson equation. We present our simple multigrid scheme
in Section 3, including details of the EB grid-coarsening strategy. In Section 4, we present
the block-structured adaptive mesh refinement scheme and associated extensions to the
single-level multigrid iteration. In Section 5, a simple geometry generator is described
based on the requirements of the grid-coarsening strategy, and the Poisson discretization.
We demonstrate the generality and convergence of these schemes in Section 6 through a
variety of example test cases. We add some concluding remarks in Section 7.

2 Embedded Boundary Poisson Discretization

As a prototypical example of a conservation law PDE, take the Poisson equation for the
potential, cp (x)' d dimensions:

(1)

and for clarity of exposition, consider Neumann conditions to apply on all boundaries, an,
of the computational domain, n (we will remove this restriction in subsequent sections). We
solve Equation 1 on a discrete grid of uniform cells. The cells are indexed by the vector i =
(i1, ... , id), and are located at Lli = ((i1 - 1/2) h, (i1 + 1/2) h] x ... x [(id- 1/2) h, (id + 1/2) h]
(see Figure 1). Each cell has 2 · d faces, Si = i ± uk/2, k E (1, d], where uk is the unit
vector in the kth direction, and the discretized dependent variable is defined on cell centers,
'Pi ~ cp (ih).

The divergence of the conserved flux, F = '\lcp, over the control volume, Lli, can be
written via the divergence theorem as

('\1 . P). = f '\1 . Fdvj f dV = 1 P. dB/ f dV
a 1 Ll; 1 Ll; !aLl; 1 Ll;

(2)

3

(a)

0 Full Cells

0 Cell Fragments

d2J Embedded Solid

(b)

aij+!/2

.
... ai+!/2j

ai-!/2j
.

aij-!/2

Figure 2: (a) A two-dimensional embedded boundary domain, which excludes the embed
ded solid. (b) A standard cell for simple Embedded Boundary discretization
methods, with volume fraction, A, and apertures, A8 • For the Neumann case,
there is no flux into the embedded boundary.

= h
1
d 1 ff'. n hd-1

, for uniform grid spacing, h J8A;
where n is the normal on the surface, 8./lil of the control volume. Using the midpoint rule
to evaluate the surface integrals,

(3)

Here, (F · n) sis the normal component of the flux at the center of faces.

For the Poisson equation, we may compute F using centered differences. For d = 2,
i = (i,j), and s = {(i ± lj2,j), (i,j ± 1/2)}, the terms in the s,um expand explicitly to

(F . n) = 'Pi+l,j - 'Pi,j
i+'f2,j h ' (F. n) = 'Pi-1,j- 'Pi,j

i-lfz,j h
(4)

(F. n) = 'Pi,j+I- 'Pi,j
i,j+lf2 h ' (F. n) = 'Pi,j-1 - 'PiJ

i,j-lf2 . h

If the face s coincides with the edge of the computational domain, we simply set Fs = 0
to enforce the Neumann boundary conditions. Inserting these expressions into Equation 3,
and setting the result equal to the cell-centered discrete values of Pi, we obtain an elliptic
linear system of equations, which can be solved using a variety methods, including multigrid
relaxation.

2.1 Embedded Boundaries

The discrete cells for the Embedded Boundary method are based on a uniform underlying
grid of mesh cells, just as in the regular case above. And like the regular case, physical
boundaries may be represented by the grid-aligned edges of the uniform grid. However,
within the regular mesh, we also allow "solid body" boundaries which may not align with
the coordinate directions (see Figure 2(a)). These bodies are represented as piecewise linear
surfaces (curves in 2D) cutting through the background rectangular mesh cells, leaving cell
fragments in the domain. Cell fragments will be distinguished from full cells, which are
neither cut nor covered by the embedded solid. The region inside the embedded boundary
is not part of the computational domain.

4

Figure 3: Second-order flux evaluation due to Johansen and Colella. The shaded region
of the grid represents "solid body", outside the computational domain. The
flux at the center of the partial face is linearly interpolated from the fluxes
computed at the full edge centers.

If there is only one cell fragment at each mesh cell, fuU and partial cells can be identified
uniquely by the multi-dimensional index, i E zd. Indices of cells completely covered by the
embedded body are considered invalid. Define the volume fraction, Ai, as the ratio of cut to
full cell volume for cell i, and the face aperture, Ai,s, as the ratio of cut to full face area on
sides of cell i (see Figure 2(b) for the "reference" cut cell in two dimensions). Equation 3
can now be extended to apply to the regular and irregular cells in the Embedded Boundary
description:

(5)

This error estimate is valid only at the center of mass of the cut cell.
In order to compute the flux terms in Equation 5 from the state in the cut cells, we

· adopt the data-centering scheme detailed in [33]. In this scheme, all state data resides at
the geometric center of the full cell containing the partial cell. Note that this position will
actually lie outside the computational domain if the partial cell occupies less than half the
full cell's volume, since the embedded boundary is a piecewise-linear interface. It follows
then that the scheme may be applied only for problems where· the solution profile may be
smoothly extended into the embedded boundary region a distance 0 (h).

As detailed in [33], numerical fluxes for this scheme are computed at the center of the
full edge underlying each of the partial edges using simple central differences-i.e. the flux
resides midway betweeri full cell centers, where the state resides2 • [2] used a full-edge
centered flux in their conservative integral sum corresponding to Equation 5. However,
for second-order accuracy, the surface integrals should be evaluated via the midpoint-rule,
requiring flux values which are interpolated to the center of the partial edge. This is easily
computed to second-order accuracy by linearly interpolating tangentially adjacent full-edge
centered quantities (see Figure 3). In [33], this scheme was shown to be a formally consistent
approximation, with errors in the computed field quantity diminishing asymptotically to
second order in all relevant norms. The truncation error, weighted by volume fraction, A,
is first-order in h on the boundary cells, uniformly in A, so that the entire scheme has a
second-order truncation.

2This position may actually lie outside the computational domain as well, depending on the associated
partial cell volumes. Also, when we later extend the scheme for thin bodies, edge-centered flux values for
edges on opposite sides of the body will coexist at the same physical location.

5

Fluid

(a) (b)

Figure 4: (a) An example "thin" body in the Embedded Boundary grid framework. Each
of the two mesh cells shown contains multiple partial cells. (b) A "trailing edge"
geometry, where a cell has more than one neighbor in a coordinate direction.

(a) (b)

Figure 5: (a) The blunting procedure used in existing embedded boundary iinplementa
tions unable to otherwise cope with the thin-body or trailing edge problems.
(b) The same geometry represented on a coarser grid. The location of the "tip"
will continue to creep with coarsening; the problem coarsened many times will
no longer represent gross physical properties of the original geometry, and may

· lead to unphysical communication in the computed fields

2.1.1 Extension to Complex Geometries

The above procedures for discretizing conservation laws in the embedded boundary
framework (based on cell-centered states, and tangentially interpolated fluxes) is limited to
applications where the irregular solid bodies are "thick". In particular, the discretizations
for the "thin-body" and "trailing-edge" scenarios such as those· shown in Figure 4 are ill
defined, since we can no longer uniquely identify partial cells using the index, i. Such
situations arise when constructing multiple-level numerics, such as multigrid linear solvers
and adaptive mesh refinement. In the literature, these cases also arise if the immersed body
has very thin fingers or trailing edges (such as airfoils).

Adaptive EB methods to date have employed a simple geometrical "blunting" technique
(a schematic of this process is shown in Figure 5 (a)). Blunting cuts off arbitrary portions of
the embedded body that lead to multiple cell fragments at a single index. Geometric fidelity
is preserved typically through concurrent use of adaptive mesh refinement (see [16], for ex
ample). However, blunting and mesh refinement alone have not been sufficient for large
three-dimensional simulations. DeZeeuw[ll] and Melton[14] have implemented "split-cell"
schemes, allowing multiple discrete cells to exist at a given mesh cell location. By localiz
ing the region of greatest refinement, they reduce the overall computational requirements,
particularly in simulating complex three-dimensional machinery.

In initial implementations of the "split-cell" approach, the fixed-width tree-based data
structures allow cell splitting only at the level most refined locally. However, for genuinely
multiple-level algorithms (i.e. those requiring a reasonable representation of the state at all

6

+---+-+--+---11--+--+- +

Figure 6: The dual-structure scheme stores the regular cells in a logically rectangular
array, and the irregular cells as a generalized graph (detailed in text). The
unstructured gridding used for the cut cells allows arbitrarily complex embedded
structures in the domain, while the logically rectangular data structures for the
remainder of the domain enable access to the inherent efficiencies of regular
structured gridding.

refinement levels), we must generalize the scheme. By definition, the extension requires an
unstructured data format, but only near the embedded boundary. For data over the bulk
of the domain, efficient structured array storage is sufficient and desirable.

2.2 A Formal Description of Embedded Boundaries

In the following, we present a dual-structure scheme that is general enough for arbitrary
geometrical complexity, yet does not preclude an efficient implementation. We describe and
manipulate the computational domain via a connected graph, ctot = {vtot, Etot}, empha
sizing the role of connectivity and communication through the domain. In a tot, the nodes,
ytot, represent the set of finite-volume cells, and the edges, Etot, represent the faces through
which the cells communicate.

We divide ctot into two sub-graphs, G and Qfull, with G = {V, E}, containing all cells, V,
adjacent to the embedded boundary. The set, E, contains all the edges between the nodes
in V. We define Qfull = { Vfu11, Efu11 } similarly for the regions away from the embedded

boundary. Data on Vfull and Efu11 are stored and manipulated in logically rectangular
arrays-incurring a small overhead; viz. unused locations occupied by partial and empty
cells. Irregular data on V and E is maintained in a sparse representation which implements
the nontrivial aspects of the connectivity implied by ctot (see Figure 6). The interface
between the two subgraphs is a small subset of edges, Etot- Efull_ E, and is maintained as
an auxiliary set in the Qfull data structures, since there is a natural location in the arrays.

Logically, an edge is specified by the two nodes that surround it. Let us define the
subscript operator, "-" over edge, e, such that e_ returns the node object to the "low" side.
Similarly, the "+" operator is defined such that e+ returns the node object to the "high"
side of e. Now, we may specify formally the defining properties of all edges in E:

That is, both the high and low nodes are in the graph. Relating the graph back to the
computational domain, we may associate a set of geometrical attributes with each node or
edge, such as its index, i E zd (note that multiple nodes may have identical indices). If

7

(a) (b)

Figure 7: (a) A small region of a typical multiply-connected geometry. Cells A, C, F and
J are bounded on a side by "interface" faces. (b) The graph representation of
the partial cells labeled in (a). The dotted lines indicate interface faces, which
are not strictly part of the graph. Information from the logically rectangular
data communicates with the graph via the interface faces.

K (v) is the operator returning the index of node v, then:

for e belonging to the set of faces in the kth coordinate (here, Uk is the kth unit vector).
Thaj)s, the nodes on either side of an edge are separated by a unit vector. The indices of
the edge is:

Each cell in the domain has an associated cell volume fraction, A (v) : V t-+ [0, 1]. The
cell volume fraction is the ratio of the partial cell volume to that of the underlying mesh
cell. Each cell face in the domain has an associated face area aperture, A (e) : E t-+ [0, 1].
The face area aperture is the ratio of the partial face area to that of the underlying mesh cell
face. For our uniform grid spacing, h, the mesh cell volume is.hd, and the mesh face area
is hd-I. For the nodes in Gfu11, vfu11 E Vfu11 A (vfu11) = 1, and for. efull E Efu11, A (efull) = 1.

The two data structures, regular and irregular, will communicate through the interface
faces (see Figure 7). Interface faces have on one side, a full cell in Gful1, represented in
the block-structured dense data, and on the other side, a cell fragment represented in the
graph, G. Formally, we define an interface edge:

e an inteface if e± E V and e=F E vtu11.

Also, we define the corresponding unit vector set, C (v) c 0 = {±u~, ... , ±ud}, as the
subset of orientations about the node, v E V, which are bounded by interface faces. Using
the notation of Figure 1, the set of indices of the interface faces about v are then K (v) +
o/2, 'V o E C (v). In Figure 7, C (F) = { -u1}, and there is an interface edge connected to
cell F residing at index K (F)- uif2. Also, K (I) = K (J), and K (F) = IC (G). This is an
example of a "thin-body" geometry.

We are now in a position to define the appropriate generalization of Equation 5. For the
partial cells, v E V, the sum consists of contributions from the partial faces, e E E as well
as from the interface faces. There is no flux contribution from the boundary, since we have
assumed homogeneous Neumann boundary conditions. Let us introduce a flux function,

8

P = (PR,pi), which lives on cell faces in the regular and irregular parts of the domain.

(i.e. Vo E 0, i E zd, pR (i + ~) : zd + ~ t-+ !Rand VeE E, pi (e) : E t-+ !R). We have,

(v. F)vev ~ A(:) h• t~.FI (e)A(e) hd-1 -"~FI (e) A(e) hd-1

+I: pR (K (v) + ~) hd-1sgn (o)} + 0 (h2) (6)
oE.C(v)

where sgn (x) = 1 if x > 0, otherwise sgn (x) = -1. Note that the right side contains an
implied sum over coordinate directions, and that this formulation treats correctly the cases
where there are more, or less than a single face on a given side of a discrete cell. On the
regular cells, v E vtuu, we simply apply Equation 3.

The flux functions, pR and pi, may be defined, according to the PDE, using a pair of
cell-based data structures for the state, cp = (cpR, cpi), where cpR : zd t-+ !R, and cpi : V t-+ !R.

It is useful to define pR in two passes. For the Poisson equation, on the first pass, pR may
be defined using central differences on data exclusively from cpR (as in Equation 5 for
d = 2). On the second pass, the fluxes on the interface edges are overwritten with the
central differences using data from cpR on the full-cell side of the interface, and data from
cpi on the partial-cell side. Formally, the expression is

(7)

The flux function, pi, will be computed using the algorithm described in [33]. To
carry this out in our generalized context, we require a set of monotone nodes, M (v,Lm),
associated with node v, and built from ctot = (vtot, Etot) (i.e. the nodes { v, M (v, Lm)} C

vtot). The node, u E M (v, Lm) is reachable from v via a monotone path of length Lm if
there exists some N E zd such that ·

d d

K (u) = K (v) + L Nkuk, where L INkl = Lm
k=l k=l

That is, M (v, Lm) consists of a sequence of at most Lm > 0 movements to neighbor nodes,
with the restriction that the movements along any single coordinate be all of the same sign.
Note that no two cells in a path can be at the same index. Also note that the list of cells
in a monotone path may include full cells from vtull as well as partial cells from V.

Geometrically, a monotone path may be used to restrict the neighborhood of a cell
for the purposes of constructing interpolating profiles that do not span an embedded thin
body (see Figure 8{a)). Monotone node sets may also be used to define an appropriate
neighborhood for conservative flux redistribution (such as in the scheme described in [17]).
In the present context, we will utilize the concept of monotonicity to help identify candidate
neighbor faces to involve in the flux interpolation scheme of [33].

In order to carry out the flux interpolation for a cell face, e, we need to identify all
the appropriate "other" edges, e', containing a cell-centered flux value we can use in the

9

(b)

Figure 8: (a) A monotone path is a sequence of steps along a connected path in the cell
fragment graph such that all steps in any single coordinate direction are of the
same sign. In the two-dimensional example, there is no monotone path from
B to D, or from A to E. However, the paths {A-B, A-B-C, C-D, C-D-E, D-E}
are monotone. (b) The face, e', is found by constructing two 1-step monotone
paths, as described in the text. Information above the top body is not used
when constructing the interpolated flux at e.

interpolant. To do this, search all edges in Etot fore' where

{8)

HereM_ = M (e-, 1) and M+ = M (e+, 1) (see Figure 8{b)). In general, this search will
return either zero, one or several candidate full or partial edges. Since we do not maintain
cell location information, we cannot select the "best" from multiple candidates. We might
further restrict the search to find only full cells for which Equation 8 held true, or to return
only faces such that A (e') = 1. Alternatively, we just average together the influence of all
edges that qualify. If the condition in Equation 8 returns an empty list, we have only a
single point on the edges to use for the interpolant, so we may construct only a piecewise
constant flux interpolant.

Now, we compute the full edge-centered Poisson flux, pf for: a state, cp, on the node set,
v

{9)

and then compute the partial edge-centered flux, F, as the linear in 2D, bilinear in 3D,
interpolation between F f (e) and the set F f (e'). For example, if d = 2, and the search,
Equation 8, returns a single candidate, then

F 1 (e)= pf (e') +~(A (e') +A (e)) (pf (e)- pf (e')) + 0 (h2) {10)

As an aside, notice that since data is stored for the full cells, v E Vfu11, in dense block
structured arrays, there are additional array positions corresponding to the mesh cells par
tially or completely covered by the solid (i.e. i, where ;Iv E vtot such that J((v) = i). The
interface faces have the effect of preventing any direct communication across the regular
edges into these covered cells. The covered cells thus become isolated from the computation,
and are effectively wasted space allocated for the solution process. In general though, the
computer resources spent on unused rectangular cells covered by the embedded structures
is easily minimized to be a negligible overhead cost for the calculation.

10

n
• I •
I

I ® ® • • I

a

•

80-+

(a) (b)

Figure 9: (a) Dirichlet boundary fluxes for cell "a" (for d = 2), computed by fitting a
parabola through the value at the domain boundary, and two interior points (0).
The resulting Laplacian stencil involves 2 · d points (•). (b) Two dimensional
quadratic interpolation for computing profile gradients normal to the .embedded
boundary.

2.3 Dirichlet Boundaries

In this section, we generalize the Poisson problem of interest to include Dirichlet bound
aries. Since we are using a cell-centered approach, Dirichlet conditions imposed along the
domain boundary, 80, result in nontrivial fluxes through the boundary faces. We present
the methods we use to evaluate the fluxes based on the gradient of a multi-dimensional
polynomial interpolant constructed using the boundary data, and the internal state.

The case where the Dirichlet boundary aligns with the grid index coordinates is depicted
for d = 2 in Figure 9(a). The flux is to be evaluated at the midpoint of the cell face on
the physical domain boundary (•), using a parabola constructed with the boundary value
(at •), and internal state values (at o). The procedure extends directly to d = 3, since the
interpolant is constructed only in the dimension normal to the boundary surface.

The embedded boundary case is depicted in Figure 9(b).· The embedded boundary
is represented as a piecewise linear surface reconstruction between adjacent nodes on the
irregular cell graph, as detailed in Appendix A. The Dirichlet boundary value and the
resulting normal boundary gradient both live at the center of the cell's reconstructed surface.
A quadratic interpolant is constructed between this location, and where the boundary
normal intersects two adjacent grid lines (or planes, if d = 3) nearby; the intersection
locations are marked in Figure 9(b) with O's. The procedure for carrying this out follows
closely the one outlined in [33].

State values at the grid-line intersection locations are evaluated with a quadratic in
terpolant (parabolic for d = 2, bi-quadratic for d = 3). The interior state values used for
constructing the multi-dimensional interpolating surface must be in a monotone path from
the partial cell, as discussed in Section 2.2. This requirement prevents cases of unphysi
cal communication, where parts of the embedded boundary lie in between the cells used ·
for constructing the interpolant. The quadratic interpolant for embedded boundary fluxes
that is constructed in this fashion remains well-conditioned for arbitrarily small partial cells
adjacent to the boundary, as detailed in [33].

For sufficiently coarse geometries, a quadratic interpolant may be impossible to con
struct, simply for lack of sufficient candidate cells in a monotone path from the boundary

11

location. Typically, this occurs when a complex geometry is underresolved, or when an
embedded body is within 2h from the regular boundary. In these cases, we construct a
bilinear interpolant in two dimensions (tri-linear in 3D), if possible, from adjacent cells.
If there are no adjacent cells available, we set the flux at the Dirichlet boundary to zero,
effectively using a piecewise-constant interpolant. In practice, when we are forced to reduce
the order of the boundary interpolant on any cell at the finest level, our codes generate
warning messages, since the resulting discretization becomes formally inconsistent. The
remedy is usually to redefine the underlying rectangular grid so as to ensure sufficient grid
points. Unless otherwise mentioned, none of the results presented in later sections required
boundary interpolant order reduction.

3 Multigrid

Using Equation 6, and the dimension-dependent expression for the flux, such as Equa
tion 10, we build a discretization for Equation 1 of the form

L (<p) = P . (11)

Equation 11 can be solved with using point relaxation with multigrid acceleration[35]. Typi
cally, we employ simple "V-cycle" multigrid schedules in the relaxation, using piecewise con
stant prolongation, volume-weighted restriction, and a simple smoother of the Gauss-Seidel
type. It is worth noting that our level-transfer operators fail the well-known requirement
that

np +nR > 2n (12)

where n is the order of the differential operator, and np (nR) is the maximum degree of
exactly interpolated (coarsened) polynomials plus 1. For our choices, np = nR = 1. In
fact, inequality (12) is a heuristic for "optimal" multigrid performance, and is not strictly
necessary; we demonstrate that the computational work in our algorithm scales nearly
linearly with system size despite our low-order transfer functionS.

Details of the multigrid V-cycle are presented in Section 3.1. The scheme has been
tailored to solve Equation 11 in correction form, applicable to our linear problem (i.e. solve
fore: L (<p0 +e) = p, where <p0 is some initial guess for <p). The boundary conditions for
the correction, e, are simply the homogeneous form of those of the original problem for <p.

Our multigrid scheme requires a hierarchy of grids, created by coarsening recursively the
original geometry via a procedure we detail in Section 3.2. We detail the smoother and
level-transfer operations in Section 3.3.

3.1 Multigrid V-cycle

We label the refinement levels of our problem domain with m : 0 $ m $ mhi, where mhi

represents the original level, where we desire the problem solution. The multigrid iteration
is initiated by invoking the multigrid level-relaxer (the "V-cycle") on mhi· The level-relaxer
applies some number of smoothing passes, and then constructs the next coarser problem
using the smoothed residual. The coarse problem is relaxed with a recursive call to the
level-relaxer. At the bottom of the cycle, the coarse equations are solved "exactly", and the

12

resulting correction is interpolated back up to the next finer level. The interpolated correc
tions from the coarse grid are added to the next :finer solution, which is then smoothed once
again. A complete V-cycle terminates when the finest solution has been incremented with
coarse corrections and smoothed. The V -cycle is invoked repeatedly until the magnitude of
the residual, Rm = pm- Lm (rpm), is acceptably small at m = mhi·

Let P{nm+I) be the projection of the grid at multigrid level, m + 1, onto the grid at
level m. The recursive multigrid level relaxation is shown in Algorithm 1, for the case that

Algorithm 1 The multigrid V-cycle, for nm = P{Om+l).

Vcycle(m, m1, m2)
if (m = m2) then

Rm = pm _ Lm (rpm)

end if
if (m > 0) then

em= Smooth(em = O,Rm)
rpm= rpm+ em
if (m > mi) then

Rm-1 = pm-1 _ Lm-1 { rpm-1)

Vcycle(m- 1, m1, m2)
em= em+ Refine {em-1)

end if
Rm = Rm- Lm (em)
8m =Smooth (8m = 0, Rm)
rpm= rpm+ 8m

else
Solve£ (em) = Rm

end if

P{nm+1) = nm on all multigrid levels, m < mhi (all grids cover the entire domain). The
level m2 represents the finest grid, while m1 is the level at the bottom of the V-cycle. Notice
that m1 is an input parameter to the scheme, and is not necessarily zero. If m1 > 0, the
"bottom" level is not solved "exactly", but rather just smoothed like all the other levels.
This feature is used later, when we extend our multigrid scheme to incorporate a limited
form of adaptive mesh refinement.

3.2 Geometry Coarsening

In the following, we present an algorithm for coarsening a geometry specified according
the definitions in Section 2.2. The coarsening procedure is recursive, in the sense that it
takes an input :fine graph, Qf. = (VI, El), and its underlying index space, and generates
a complete coarse graph, ac. We assume a static geometry, so that the procedure need
be carried out only once to generate the full hierarchy of irregular geometry graphs at the
beginning of a computation. The refinement ratio, r E zd, is the refinement, by dimension,
between ac and Gl, with respect to the cell indices, JC (VI) and K (Vc). We restrict

our implementation to the case, r = 2i (2, ... , 2), where i E Z and discuss only the case

13

H

(a) {b)

(c) {d)
Figure 10: (a-b) The extended graph includes nodes representing full cells, such as B

and D. Also, the extended graph includes edges between the full cells, such as
B-D, as well as interface faces, such as A-B, C-D, D-F. (c-d) The coarsened
geometry and graph, where the path A-B-C-D has becomes coarse node 1,
E-F-H-1 has become 2, and G-J has become 3. The edge 1-2 is created by the
coarsening procedure.

r = {2, ... , 2), since the rest of the set we allow can be generated by recursive application.
Generally speaking, multigrid performs most efficiently when the levels are separated by
a constant factor of 2, unless there are geometrical or physical effects driving anisotropic
transport. The scheme is trivially extended to arbitrary r, including directionally biased
refinement, but such details detract from the presentation.

The procedure for generating Gc from Gf consists of three basic steps. First, we augment
the fine graph to include all full cells that will be merged into the new coarse map (see
Figure 10). Next, for every coarse index, ic, we build lists of connected components from

the fine nodes, vf, such that K(vf) =if, where ic = l!ifJ = (l~J, ... ,l~J) {the

operator, l x J, returns the largest integer d-tuple, such that each component is less than the
corresponding component in x). Each connected component generates a new node in the
coarse graph. Finally, the edge list is assembled to connect the new coarse nodes. Some
auxiliary information needed by the algorithm is generated on the fly, as will be discussed
below.

We can discuss each step in detail, after defining some useful notation.

• The index set of the cells in the fine graph, If= { K (v) : v E Vf}.

• The fine-to-coarse projection, pfc : zd f-t zd, takes a fine index, and returns a coarse
index, such that pfc (if) = l!ifJ.

• The coarse-to-fine projection takes a coarse index and returns a set of fine indices,
Icf (iC) = {if : pfc (if) = ic} of fine indices associated with a coarse index. For each

if E Icf (iC), if if (j. F, then if E If (i.e. the operator does not return indices fully
covered by the embedded boundary).

14

• The index set spanned by the coarse graph, Ic, is the union of fine indices created by
coarsening, then refining, the index set If,Ic = UvEVf Icf (p!c (i')), Vi/ E If.

• The index set of full cells to add to the fine graph is therefore, IExt = Ic- If

• The set of full cells, N (v) c zd, neighboring a node, v is defined from the index set
£ (v) as N (v) = {K (v) + o: Vo E £ (v)}. The set£ (v) must be provided as input at
the finest level; for coarser levels, the set is generated by the algorithm.

• The set of partial cells at the fine level to be associated with the coarse node, v, is
.ccf,I (v). The corresponding set of full fine cells to be associated with vis .ccf,R (v).
These are built during the coarsening procedure, and are useful when transferring
state data between refinement levels (see Section 3.3).

The extended graph, Gauu, is created by adding each index, i E IExt into the list of
nodes, vauu, removing i from all the lists, N (v), v E vauu, creating new edges connecting
this cell to the graph, and building a new N map entry for this cell. Algorithm 2 details
this procedure. In Figure 10, cells labeled B and D are to be added to VI, and the edges
(A, B), (C,D), (B,D) and (D,F) are added to Ef to obtain Gauu.

Algorithm 2 Creating the extended graph, Gaug = (vauu, Eauu).

Initialize (vaug, Eaug) = Gf
for all i E IExt do

vaug t- vaug u { vnew}
K (vnew) = i
A (vnew) = 1
N (vnew) = {}

fork= 1,d do
if 3 v : i E N (v) then

if i - K (v) = uk then
N(v) t-N(v)- {i}
e = (v,vnew)
A (e)= 1
Eaug t- Eaug U {e}

else if i- K (v) = -uk then
N(v) t-N(v)- {i}
e = (vnew ,v)
A (e)= 1
Eaug t- Eaug U {e}

else
N (vnew) t- N (vnew) U {i- uk}

end if
end if

end for
end for

15

The graph, ac is created by coarsening the extended graph, aaug, as detailed in Algo
rithm 3. Here, we build all the connected components at coarse index, ic, of an undirected
subgraph of aaug, using all the nodes, v E yaug such that pfc (JC (v)) = ic. A new coarse
cell is created for each of these connected paths, and the volume fraction of the new cell is
such that its volume is the sum of the volume of its constituent full and partial cells. In
Figure 10(a), the full coarse cell on the right contains two connected components, G-J, and
E-H-I-F, which give rise to coarse cells 2 and 3 in Figure 10(c).

Algorithm 3 Creating nodes, vc, of the coarsened graph, ac = (Vc, Ec), from the aug
mented graph, aaug.

Initialize vc = {}
for all ic E zc do

V = {v E yaug: pfc(JC (v)) = ic}
E = { e E Eaug : e_ E V 1\ e+ E V}
for all connected components, (Va, Ea) of (V, E) do

yc +- yc U {vnew}
J((vnew) = ic

A (vnew) = ia LviEV,. A (vi)
~:,cf,R (vnew) = ~:,c/,1 (vnew) = {}
for all v E Va do

if J((v) E zExt then
~:,cf,R (v) = ~:,cf,R (v) U {i}

else
~:,cf,l (v) = ~:,cf,I (v) u { vnew}

end if
end for

end for
fork= 1,d do

E~J± = { e:r E Va, e± ~ Va, JC (e+) - JC (e_) = Uk}
end for

end for

For each new coarse cell created, a subset of fine edges, E~J± c Eaug is identified that
connects the subgraph in the coordinate direction; k, to the remainder of the grid. The ±
symbol indicates whether this set of edges is on the low (-), or high (+) side of the new
coarse cell. Each unique edge subset, E~~±, generates a new coarse edge in Ec, as detailed in
Algorithm 4. The new edge may be defined once we find two cells pointing to the identical
fine-edge subset. The aperture of the new edge is such that the surface area of the coarse
edge is equal to the sum of its constituent fine edges. In Figure 10, the fine edge subset,
E~'-, a.Ssociated with coarse cell 2 in the 0-direction on the low side is {(D,F), (C,E)}.
This is identical toE~,+, so a new edge, (1, 2), is added to the coarse graph.

The coarsening strategy is trivial for the grid completely in the regular part of the
domain (i.e. at ic: i/ E :F, Vi/ E zc! (iC)). Finally, the coarse full-cell map, ;:c, is created

16

Algorithm 4 Creating edges, Ec, of the coarsened graph, Gc = (Vc, Ec) from the aug
mented graph, aaug.

Initialize Ec = {}
for all vc E vc do

fork= 1,d do
for all vC' : JC (vc) - Uk = JC (vC') do

E = EB,k n EB,k
-,vc +,vC'

if E =J {} then
enew = (vC', vc)
Ec +-- Ec U {enew}
A (enew) = 2dl_I I:eeE A (e)

end if
end for

end for
end for

using the existing fine full-cell map, ;:I, according to the following criteria:

(13)

Notice that within our coarsening strategy, floating-point data, such as apertures and vol
umes, are not used explicitly to determine the merging process. The procedure we have
outlined can be used to coarsen an input geometry to Gc = (Vc, Ec), where JC (vc) =
(0, ... , 0), \/ vc E vc, and accommodates multiple dimensions and arbitrary complexity.
Since we are concerned only with the aspects of the geometry that appear in Equation 3
(cell areas, volumes and connectivity), we do not require the ability to reconstruct the em
bedded surface. In particular, no "blunting" is necessary, and we retain maximal geometric
fidelity.

Also, notice that we have not designed our coarsening strategy to construct connected
paths of solid; there is no determined way to distinguish parts of the solid in a coarse cell
that were derived from specific regions of the fine description. This would be an issue for ap
plying inhomogeneous boundary conditions, except that we solve in correction form to avoid
requiring such information-the boundary conditions for the correction problem are homo
geneous). It follows then that our scheme cannot easily be extended to Full-Approximation
Storage versions of multigrid, for example (useful for nonlinear elliptic problems).

3.3 Smoothing, Coarsening, Refining the State

Point relaxation for Equation 11 iterates on the expression, cpn+l = cpn +). (L (cpn)- p),
where). is a relaxation parameter, n is an iteration counter and cpn is an approximation
to the solution, cp. For each cell, we choose). such that the expression for cpn+l does not
contain cpn at that cell.

The relaxation parameter, .Av, on the irregular cells, v E V, is obtained by summing
the derivative of each term in Equation 6 with respect to cp~, the value of the state in the

17

irregular data structure at node v. We can generalize Equation 10 so that the derivative of
the flux with respect to the cell-centered state is

api (e) w~
B<p£ =±-,;,fore: e=F = v

The weighting, w~, depends on the dimension, d, of the problem. For d = 2, w~ =
1/2 (A (e)+ A (e')), where A (e') is the aperture of other edge involved in the flux inter
polation (or, the average of the apertures, if there are more than one). The relaxation
parameter becomes

>.v= [A(\h2 (L w~A(e)+L 1)]-
1

V e:e±=v oE.C(v)

whereas on the regular cells, i E :F, the expression reduces simply to

h2
>.i = 2d

(14)

(15)

Over the regular cells, we order the pointwise updates with a multi-coloring scheme (red
black "checker-boarding" for d = 2) based on cell index for vectorization efficiency. We
update all the irregular cells simultaneously between each colored sweep over the regular
cells. The combination (red sweep, irregular update, black sweep, irregular update) counts
as a single "smoothing" pass of the point relaxation operator.

The Smooth operations in Algorithm 1 consist of two or more iterations of the above
sequence, while the Solve operation iterates the sequence to numerical convergence {the
number of iterations required is on the order of the number of unknowns at that level).
Typically, the Solve operation is carried out only on the coarsest multigrid level.

The level transfer operations, Coarsen and Refine are defined using the cell-to-cell
subset maps defined in Section 3.2. A volume-weighted averaging Coarsen operation for
irregular data at node vc is ·

<p~c = 2-d (L <p~JA (vi)+ L ;p5) (16)
vf E.Ccf,l (vc) if E.Ccf,R(vc)

where £cf,R (vc) and £cf,I (vc) are, respectively, the regular and irregular fine nodes that
coarsen into vc, as defined in Algorithm 4. For regular data at index ic,

2-di:cp5 (17)
if :if ezcf (ic) A if E:F

A piecewise-constant Refine operation for irregular data is constructed with the cell
to-cell-subset maps as

I _ I
<pvfe.Ccf,l(vc)- <pvc (18)

The corresponding piecewise-constant refine for regular data is

R _ { <p~c if i/ E £cf,R (vc)
<pi! E:Ff - <p~ if j/ E zc! W) A j/ fl. .c,cf,R (vc) 'V vc E yc (19)

Note that <p5 is not defined for i/ fl. ;:I, since those full cells are either cut or covered by
the embedded solid.

18

Figure 11: Properly nested unions of rectangular grid patches for cell-based data in 2D.
The refinement ratio between AMR levels is 2n,n is a small positive integer.
The refined patches at any level may touch the boundary of the computational
domain, but coarse-fine boundaries are buffered with at least one layer of cells
at the next coarser level.

Figure 12: The case where the embedded boundary, an, intersects the coarse-fine bound
ary, ant, between AMR levels, i and i - 1. The AMR implementation pre
sented here does not allow for this condition.

4 Adaptive Mesh Refinement

The regular component of the geometry description in Section 2.2 was built on rectan
gular patches of uniform gridding over the large portion of n that is not adjacent to the
embedded boundary. This aspect, and the structure of the coarsening machinery used to
generate the multigrid mesh hierarchy, make it straightforward to extend our scheme to
incorporate block-structured adaptive mesh refinement (AMR) over the regular parts of the
domain. The scheme is related closely to that described in [34].

The AMR rectangular grid hierarchy is composed of different levels, £, of refinement,
ranging from coarsest, at f = 0, to the finest, at f = fhi ~ 0. These levels will correspond
to a subset of the multigrid levels previously discussed. The domain at each AMR level,
ne, is represented as a union of rectangular grid patches of a given resolution, accompanied
by a graph of the irregular cells. The rectangular grids are properly nested, in the sense
that the union of the grid patches at level f + 1 are contained in the union of grids at
level f for 0 ~ f < fhi (see Figure 11). Furthermore, except at physical boundaries, the
union of level f grids is large enough to guarantee that there is a border at least one level
f cell wide surrounding each f + 1 grid. Grids at all levels are allowed to extend to the
regular physical boundaries. We restrict this implementation under the condition that the

19

irregular geometry, G£ = (v£,E£), at level 1., be completely contained within the union of

rectangular patches at level£ (see Figure 12). Thus, lC (vi) falls within the bounds of the

patches for every vi E v£. ·In short, this restriction specifies that the embedded boundary
will be discretized at the finest grid level.

The extent of the rectangular patches of regular gridding may be fixed throughout the
calculation, or modified as the calculation proceeds so as to focus computational resources
where resolution is required. In the latter solution-adaptive applications, error estimation
techniques, such as Richardson extrapolation, are used to tag cells where the local error
is above a given tolerance. The tagged cells are grouped into rectangular patches using
the clustering algorithm given in [36], and refined to form the grids at the next level.
The process is repeated until either the error tolerance criteria are satisfied, or a specified
maximum refinement level is reached. Upon entering the iterative solver, the initial guess
data may be used to create the grids at level 0 through £hi· As the guessed state is relaxed
toward the solution, a re-gridding algorithm may be called periodically. When new grids
are created at level£+ 1, the data on these new grids are copied from the previous grids at
level £ + 1, if possible, otherwise interpolated in space from the underlying level £ grids. In
all cases, the newly generated fine-level grids must be properly nested.

4.1 Multi-level V-cycle

In order to extend our embedded boundary multigrid Poisson solver to this limited AMR
framework, we augment our discretization and V-cycle to incorporate that P(n£) c n£-1.

We begin with the initial set of AMR levels on which we want the solution, and construct
intermediate multigrid levels between and below the AMR levels so that adjacent pairs of
levels are related by a refinement ratio of 2. These new levels are for use by the multigrid
solver alone, and are discarded when the solution is complete. Each new multigrid level is
created by coarsening the next finer level above, and does not communicate with coarser
AMR levels below. Let m = m (£)be the multigrid level corresponding to a given AMR level
£. (Note that m (£hi)= mhi·) For all intermediate multigrid levels, m (£) < m < m (I.+ 1),
nm = P(nm+1), i.e. the coarsened domain covers the same region of the physical domain
as does the source fine domain.

The multi-level residual, R = p- L (cp), is defined everywhere to be the residual on the
finest grid available. For every level, i <£hi, the residual for the region covered by P(n£+1)

is ignored. The multigrid relaxation is initiated by invoking the recursive V -cycle smoother
on the finest level, £hi, which in turn calls a V-cycle smoother on the next level. Note that
the next level may be an AMR level, or it may be simply a multigrid level.

The solution at level £ sees the coarse solution through the interface, an£, between
n£ and n£- 1 (excludes the physical boundary). Additionally, if£ < ihi, the solution on
n£ sees also the finer data through the interface an£+1. We define the full three-level
discrete Laplacian operator, Le (cp£+1, cp£, cp£-1) to incorporate the fine fluxes at an£+1, and

and coarse data at level i - 1 along an£, as discussed in Section 4.2. We also define a
"no-fine" operator, L£,nf (cpi,cp£-1), which uses the coarser data at an£, but ignores level
£ + 1 data, and applies a homogeneous boundary condition on all physical boundaries. In
order to use the no-fine operator, we construct the level£ correction problem in the region

20

P (nH1) by coarsening the level£+ 1 residual. In this way, the level £correction is "aware"
of the progress made on level £ + 1 without ever requiring the full three-level operator,
except to compute the initial residual at each level. The complete AMR V-cycle appears

Algorithm 5 The multigrid V-cycle, for P(n'-) c n'--1.

AmrVcycle(£)
if (£=£hi) then

R'- = p'-- L'- (cp'-,cp'--1)

e'- = 0
end if
if (£ > 0) then

trl - ul-rsave-.,.,
e'- =Smooth (e'-,R'-)
cp'- = cp'- + e'-
e'--1 = 0 ,
R'-_

1
_ { Coarsen (R'-- L'-,nf (e'-, e'--1

))

- p'--1-L'--1 (cp'-,cp'--l,cp'--2)

AmrVcycle(£ -1-)
e'- = e'- +Refine (e'--1) On P(n'-)
R'- = R'-- L'-,nf (e'-, e'--1)

o'- = Smooth (o'- = 0, R'-)
e'- = e'- + o'-
cp'- = cp;ave + e'

else
Solve L (e'-) = R'-
cp'- = cp'- + e'-

end if

On P(n'-)
On n'--1 - P(n'-)

in Algorithm 5. If 3m : m (£- 1) < m < m (£), then we augment the multigrid cycle to
smooth on the multigrid levels between the AMR levels, and bypass the bottom solve. This
modification is effected by replacing the recursive call to Amr V cycle(£ -1) in Algorithm 5,
with a call to Vcycle(m (£)- 1, m (£- 1), m (£)).

4.2 Coarse-Fine Matching

A coarse-fine interface, an'-, separates the regions P(n'-) and n'--1 - P(n'-). The
fine grid solution is connected to the coarse data through this interface so that it can
properly "feel" the boundary conditions on an, using a procedure closely related to that
presented in [37]. The fine grid feels the coarse solution via Dirichlet boundary conditions
by interpolating the coarse data adjacent to an'-. The coarse grid likewise feels the fine
solution through a procedure that replaces the coarse flux on an'- with the appropriate sum
of constituent face fine fluxes. The following two sections discuss each of these operations

21

• •
• •
• •
• •

0 A • •
0 A • • • 0 A • •

b 0 A • •
0 A • •
0 A • • • 0 A • •

a 0 A • •
0 A • •
0 A • • I • 0 A • • I level£ I I level£- 1

0 A • •

Figure 13: A typical coarse-fine interface, ant, for d = 2, r = 4. The heaviest lines
indicate fine grid boundaries. Locations are shown for coarse grid boundary
data (•), tangentially interpolated values (o), fine grid cell-centers (•) and
perpendicularly interpolated ghost cell values (.6.). Interpolated coarse grid
boundary data (0) is computed using Equation 20.

in detail.

4.2.1 Fine Grid Boundary Conditions

At each level of the multigrid V-cycle (i.e. each multigrid level m), colored sweeps of
the point relaxation are performed on rectangular grids sequ~ntially, with the boundary
conditions effectively imposed once per sweep. For convenience, the coarse-fine boundary
conditions are represented in the operator as Dirichlet values In ghost cells immediately
outside the fine grids (to locations represented by triangles in the two-dimensional example
shown in Figure 13). For a given fine grid, each ghost cell value is copied from another fine
grid, or interpolated using the coarse grid data. Once the ghost cell values have been filled,
the Laplacian operator may be computed as specified in Equations 3 and 5 for all fine cells
in the rectangular grid patch.

The interpolation (ford= {2, 3}) is performed in two separate steps. First, a quadratic
interpolation tangential to the face of the fine grid gives values at the locations identified in
the example, Figure 13, by small open circles. Next, a quadratic interpolant is constructed
normal the interface, using the cell-centered fine grid data (small solid circles), and tangen
tially interpolated data, to fill in data in the ghost cell locations. The multi-dimensional
interpolation must be updated after each time the fine or coarse data is modified, since the
ghost cell value is affected by both profiles.

Sufficient coarse data exists to easily compute a parabola through the coarse data for
the tangentially interpolated values that lay in the coarse cell labeled "a" in Figure 13. For
cell "b" however, the upper point is covered by fine grid, and therefore contains invalid data.

22

In [37], a one-side linear tangential interpolation was constructed in this case using only the
valid coarse data. We improve on that concept by generating an accurate coarse value in
the covered coarse cells (large open circle in Figure 13), so that the parabolic interpolant
may be constructed as before. The generated coarse cell data is based on the covering fine
data, using a third-order interpolant:

(20)

where the sum is taken over the fine grid cells adjacent to location marked (o), and the
Laplacian correction term, V2rpb, is computed as the average of the simple (2d + 1)-pt
numerical Laplacian computed on the 2d fine cells surrounding the point marked (o).

4.2.2 Level £ - 1 fluxes along ant
Local conservation is preserved along the coarse-fine interface, ant, by ensuring that the

same flux computed to enter the fine grid is counted to leave the coarse grid. The procedure
for carrying this out can be specified after defining some additional notation. The coarse
index, ic, at level£ -1, is uncovered if ic E (n£-1 - P(nt)). Further, the uncovered index,

ic E zk,+, lays adjacent to ant in the kth_direction if ant borders the cell at ic on its
high-side. The cell at ic E zk,- lays adjacent to the coarse-fine boundary if ant borders its
low-side. For example, in Figure 13, each coarse cell marked with a large bullet, (e), is a
member of the set, .zo,+ at level £ - 1. For every ic E zk,±, there is a face set, S (iC) at level
£such that the sum of the faces, s E S (iC), covers entirely the coarse face at ic ± 1/2uk·

We incorporate the fine fluxes into the coarse discretization at level £ - 1 by building
the conservation sum on the coarse cell in two passes. In the first pass, the coarse fluxes
are computed and summed as if the level £ fine grid were not present. For the correction
pass, we compute the fine fluxes along ant according to the prescription in Section 4.2.1.
Then, we use the following expression to overwrite coarse fluxes at level£- 1 on an£ for
each coordinate Q.irection, k:

(v. f) = (v. f),.c + (21) icezk,±

1 ("" (ff'. n) (ht)d-1 _ (f. n) (ht-1)d-1)
(hl-1)d s'E~ic) s' ic±uk

That is, we remove the extensive contribution from the underlying coarse edge, and replace
it with the sum of extensive fluxes on the contributing fine edges. In this operation, the
cells in n,£-1 - P (n£) become effectively isolated from the cells in P (nt).

5 Implementation and Geometrical Requirements

The fundamental irregular data representation, the graph, G = (V, E) of irregular cells,
is implemented in our codes as two lists, one for the cell fragments, and one for the edge

23

fragments. These lists are produced by a "geometry generator" module, according to re
quirements of the algorithms presented in earlier sections of this paper. The geometry
generator is discussed in Section 5.1. In short, for every partial cell, v, in the domain, we
must store the following information:

• The partial cell volume fraction, A (v),

• The set of full cells, N (v), neighboring v, specified as a list of integer d-tuples,

• The index, JC (v), of the full mesh cell containing v, specified as ad-tuple

For each partial edge, e, in the domain, we need the following information:

• The partial edge area fraction, A (e)

• The coordinate direction of the unit vector normal to the edge

• An identifier of the cell on either side of the edge

Additionally, for the nodes, Vi in all levels but the coarsest, we require the lists, e,cf,l (vi)
and e,cf,R (vi), as discussed in Algorithm 3. Finally, we require a method of testing whether
an index, i, lies within the set of full fluid cells, i.e. if i E :F. For most problems, the
total number of solid and partial cell in the domain is much smaller than the number of
full cells. Instead of maintaining a list of all the full cells, we generate a list of the solid
cells, B : i E :F iff(,llv E V: K. (v) = i) and (,tli E B). Generation of B, is described in the
Section 5.1.4. The regular data is stored in block-structured arrays on a union of rectangles
for each refinement level using the BoxLib [BoxLib96] software library. The two distinct
data structures communicate via the "interface faces" described in Section 2.2.

5.1 Geometry Generation

In general, the procedure for generating Embedded Boundary geometries consists of the
following steps: intersect the surface description with the background uniform Cartesian
mesh; compute partial cell areas and cell fragment volumes; and establish connectivity of
the cells to each other and to the full cells. Although a general implementation of this
procedure has been presented for complex three dimensional geometries[14], we introduce
a simpler scheme for two dimensions which requires considerably less effort to implement,
yet is sufficient for our purposes.

Our procedure is similar to a two-dimensional scheme[16] presented for constructing
an Embedded Boundary representation of bodies which are specified as unions of Bezier
curves. We extend this idea by allowing for a nearly arbitrary collection of two-dimensional
polygons (vertex lists with an assumed orientation). The vertices of these polygons may be
generated, for example, by evaluating the parameterized Bezier curves and line segments
used in PostScript-compatible computer drawing software, or any other user-specifiable
function. The only constraint is that no mesh cell in the background fine-level Cartesian
grid may contain more than one of these vertices totally within it.

By convention, as the input vertex list is traversed, the body lies to the left of the
segments connecting successive nodes. Except in the case of a "polyline" (discussed in

24

(a) (b)

Figure 14: Creation of the c:ell fragments in two dimensions. (a) Along each line segment,
created by connecting successive nodes in the specified list, edge fragments are
generated from the grid line intersections. (b) Once the edges are known, cell
fragments can be generated. Cell fragments surrounding the nodes are created
in a subsequent step of the algorithm

(a) > (b)

Figure 15: Classification of nodes along the polygon that specifies the embedded body.
(a) A concave node, and (b) a convex node. Convex nodes are significantly
easier to handle in the geometry generation procedures.

Section 5.1.3), the polygon is closed by connecting the first point in the list to the last.
Each vertex is specified by location, and whether the point lies exactly on any grid line
or at a coordinate line intersection. The latter avoids difficulties associated with exact
arithmetic on a finite-precision machine.

A list of mesh-line intersections is computed between each successive pair of vertices.
The segment joining each successive pair of these new intersections will represent a portion
of the embedded boundary, and will become the irregular boundary of a new cut cell. The
grid-aligned partial edges of each of these new cut cells are easily constructed, and added
to a master list. It is a simple matter in this setting to then determine which partial edges
in the master list border the new cell fragment. Once the involved partial edges have been
identified, the cell volume is computed using the scheme outlined in Appendix A. For
each partial edge between newly created cell fragments, there is now enough information
to complete the specification, including in particular the identity of the surrounding partial
cells. After the input vertex list has been traversed, cell and edge fragments will exist
that completely surround the polygon, except within and bordering mesh cells that contain
original vertices (see Figure 14). The procedure for adding these final cell fragments and
edges into the master list depends on whether the specified vertex is concave or convex. We
discuss the simpler convex case first.

5.1.1 Convex Polygons

If the ith node, Vi, of the specified polygons is convex (i.e. if Vi-I Vi x ViVi+I :$ 0, see
Figure 15), there are at least two methods for computing the volume of the surrounding

25

(a) (b)

Figure 16: The two methods used in this paper for computing cell fragments. (a) The
"natural" method: Compute the cell fragment according the the specified
polygon, exactly. (b) The "blunted" method: Compute the cell fragment
using the grid line intersection locations. The blunted method only builds
cells that are exactly discretized by the finite-volume conservation sum. The
piecewise-linear boundary interfaces allowed by the natural method are only
approximated by the flux sum.

cell fragment: the volume may be defined explicitly by the polygon segments, or by the
nearest grid line intersections (locally blunting the boundary shape-see Figure 16). The
first option was implemented as the default in our scheme. The second option improved
some of the convergence results, as detailed in Section 6, but it places severe limits on the
generality of our scheme with respect to geometries containing fine scale surface concavity,
as discussed in Section 5.1.2. We refer to the former option as the "natural" method, and
the latter as the "blunted" method. Cell fragments encompassing a convex node may be
constructed by generating the appropriate partial edge areas and computing the cell volume
using one of the two methods shown in Figure 16. The edge fragments are simply added
into the edge list as well, since all the necessary information (face area, neighboring cells)
already exists.

5.1.2 Concave Nodes

If the node, vi, is concave, the situation is a little more complex, as there is the possibility
that one or more of the cell fragments defined in the first pass. actually conflict with one
another (see Figure 17). Since each was created without regard for the other, the two will
overlap in space, and each will protrude through the irregular boundary of the other. Given
the local node layout, we simply resolve the conflicting cell and edge fragment definitions
based on the location of edge intersections near the concave node. In particular, we march
away from the concave node by interval along the segment, Vi Vi +I, searching for a mesh index
containing more than one cell fragment. If two are found, we remove the fragment associated
with the segment ViVi+I, in favor of the one associated with Vi- 1 Vi. We additionally update
the cell pointers of the adjacent edges, and reduce the affected edge fragment apertures,
and cell fragment volume. Finally, we add in the cell fragment at the apex of the node.

If we are to build the geometry according to the blunted method, the procedure above
is modified. Firstly, if the segments, Vi-1 Vi and ViVi+I intersect the same face of the mesh
cell containing the concave node, then there can be no cell fragment surrounding that node.
If this is the case, we must traverse the segments, Vi-1 Vi and Vi Vi+ 1, removing edge and cell
fragments until we can properly construct a cell fragment with non-zero volume according
the blunted method. This process will minimize grid-scale concave features of the body,
and could be a strong function of exactly where the body is placed on the mesh grid.

26

(a) (b)

Figure 17: Resolving cell fragment conflicts that may arise near cqncave nodes, depending
on whether the natural or blunted generation scheme is being used. (a) A pair
of conflicting cell fragments exist at the mesh index marked "A". (b) In the
natural scheme, one of the cell fragments is removed, and the remaining one
is trimmed away appropriately, leaving the cell fragment marked "B". A new
cell fragment is added at the apex of the node. (c) In the blunted scheme, cell
and edge fragments are removed from the geometry until a cell fragment with
non-zero volu~p.e can be constructed from a linear boundary segment.

27

(a) (b)

Figure 18: A thin region of fluid between two sections of the embedded solid. The sections
may or may not be part of the same body. (a) No cell fragment conflicts arise
with our present generation schemes. (b) The cell fragments between the body
sections can be properly generated only after a global search procedure. We
have not implemented such a search, and currently flag this condition as an
input error.

Thin Shell
Boundary

Figure 19: A infinitely thin shell geometry. Cell fragments can be generated along both
sides of a a polyline; our schemes support multiple cell fragments at· a given
mesh cell index.

As presently implemented, our gridding scheme can resolve conflicting cell fragment
definitions coming only from adjacent line segments in the polygon description. This limits
large-scale convexity to cases where non-adjacent segments of the polygon remain separated
by at least one mesh grid line. For the same reason, multiple bodies in the same calculation
must remain separated by a grid line as well (see Figure 18). This limitation is easily
removed by expanding the search for conflicting cell fragments to include the entire set, but
the work of such a search would scale poorly with problem size, and cell and edge conflict
resolution would become considerably more complex.

5.1.3 Infinitely Thin Shells

A special case easily allowed by our procedure is the "infinitely thin" body having its
outline specified by an "open" polygon, or polyline. This is effected via the same procedures
as above, except that after we construct the cell fragments along each line segment in the
polygon, we reverse the point list, and repeat the procedure to generate cell fragments along
the other side of the line. We truncate the polyline at the last intersection with the grid
to avoid creating cell fragments around the first and last nodes of the polyline. Figure 19
illustrates such a situation. This is a "thin" body condition, as discussed in Section 2.1.1,
and is accommodated naturally in our framework; 'in Section 6.2, we present results for one
such geometry.

28

(a) (b)

Figure 20: Determining the set of solid cells, B, from the layout of cell and edge fragments.
(a) The vertical strips for the x-direction sweep. The cell fragment at A
has non-zero aperture on its high y-side, and zero aperture on its low y-side.
Therefore, B, and all the indices below it, must be solid cells. There are no cell
fragments in the vertical strip containing D, so no solid cells can be identified.
(b) The horizontal strips for the y-direction sweep. The cell fragments in C
identify D as a fluid cell.

5.1.4 Set of Solid Cells

The simple procedure we use for identifying the solid cells is similar in spirit to that
outlined in (16], except that we must allow for thin bodies (see Figure 20). We proceed after
generating all the cell and edge fragments, by sweeping in one-dimensional strips. The figure
illustrates the process in two-dimensions, though the scheme is valid in three dimensions
as well. We begin with a vertica:l strip at the left side of the domain, and the assumption
that all non-partial cells are full (non-solid), though we cannot determine a priori whether
the bottom of the strip is inside the solid or the fluid until we reach the first index which
contains cell fragments. We use the general logic that if one cell fragment in the set at that
index has non-zero aperture on its low x face, then there can be no solid cell immediately
below. Likewise, if a cell in the set has non-zero aperture on its high x face, then no solid
cell can be immediately above. If, at the first index containing cell fragments, there are
none in the set with non-zero aperture on their low x face, we add all mesh cells below that
one to the solid cell list. We continue upward until finding an index with cell fragments
where none have non-zero aperture on their high x face. All cells between that location,
and the next· with all cell fragments having zero low x aperture, are added to the solid set.
Note that since we may traverse the entire strip without encountering a cell fragment, this
single pass system may fail to identify solid cells which populate the entire strip. We now
proceed with similar logic in y-strips, and if in three dimensions, finish with z-strips.

Algorithm 6 Ensuring solid cells are "properly bordered". Here, 0 is the list of possible
orientation unit vectors.

I = { K (v) : v E V}
while 3i En I B u I: i + 0 E B, for any 0 E 0 do

B=BUi
end while

A finaLpass is required to eliminate any remaining ambiguities. We search for mesh
cells not containing a cell fragment, and not marked for solid, but which are adjacent to
solid. Since solid cells cannot be adjacent to fluid, if any such cells are found, they are
tagged solid as well. Details of the scheme appear in Algorithm 6. This procedure is

29

Ff'r\'''lW''f'' i' -.;;;;;); I

Pf}i"'i ., 'i fk1

Figure 21: Example geometry coarsening, taking a 128 x 96 grid progressively down to a
4 x 3. Note that the volume and area fractions are consistent across levels.

continued until there are no more mesh cells satisfying the condition. The algorithm is
particularly inefficient, but only required if the strip passes reveal any solid cells adjacent
to the rectangular computational domain boundary.

Once the complete geometry at the finest level has been generated, we may apply re
cursively the coarsening strategy defined in Section 3.2 to generate the coarser geometry
descriptions required for the multigrid/ AMR refinement levels. In Figure 21, we show an
example two-dimensional geometry, as it is coarsened by our scheme. In the figure, the em
bedded body is shaded in, and the individual cell fragments are drawn. Note that the body
shape is drawn in at the resolution of the finest grid; the volum~ and edges of the coarse cell
fragments are consistent with this picture. We use the reconstruction algorithm detailed in
Appendix A only for estimating a position to apply the Dirichlet boundary condition, as
described in Section 2.3

6 Results

We present a variety of test cases which exercise different components of our adaptive
multigrid linear elliptic solution scheme. In all cases, the domain is two-dimensional. The
first sets of results are used to verify the consistency and accuracy of the discretization. Since
the method is essentially identical to that presented in [33], we observe identical convergence
behavior. Next, we look at the residual reduction performance of our multigrid scheme,
using a variety of embedded boundary shapes and boundary conditions. We conclude with
a demonstration and assessment of the adaptive aspects of the solver.

30

6.1 Convergence Verification

For the following cases, the embedded boundary is defined by the curve,

r = 0.30 + 0.15 cos 68

where r is radius, and fJ is azimuthal angle about the origin, measured from the positive
x-axis. The computational domain for these cases lies between this curve, and the unit box,
centered at (0, 0). Equation 1 is solved for the potential, <p, given a Poisson source

p = 7r2 cos30

The exact solution for this system is <pe (r, 0) = r 4 cos 38. The error field, e (x) = <p (x) -
<pe (i) is used to monitor the convergence of the discrete solution to the correct continuum
solution. The exact solution resides at the full cell centers, as discussed in Section 2.1. The
truncation error field, r (x), is the difference between the analytic Laplacian operator, and
the numerically computed operator, L (cpe), defined in Section 3. The truncation field, as
well as the Poisson source resides at each cell's center of mass.

We define the volume-weighted norm of a variable e:

(22)

where n is the computational domain. An co-norm, llell 00 , is the maximum over all the
domain of the absolute value of the elements of e. The rate of convergence in a given
norm, p, between two errors fields, e1 and e2, computed with two different background
mesh spacings, h1 > h2, is

(23)

The convergence rate, Rp = n indicates nth_order accuracy, i.e. the leading term in the
truncation error scales as 0 (hn).

6.1.1 Problem 1: Dirichlet Embedded Boundary Conditions

We enforce inhomogeneous Dirichlet boundary conditions, as described in Section 2.3, by
setting the value at the center of the reconstructed interface, Xbc, equal to the exact solution
value, cpe (ibc)· This fixed value results in a non-trivial extensive Dirichlet boundary flux,
FEB· A-EB, to be added to the conservative sum, Equatiqn 6 on the cell fragments. Here,
AEB = AEBnEB, where nEB is the unit normal on the embedded boundary evaluated
at Xbc, and AEB is the magnitude of area of contact of the cell fragment with the solid,
computed using the interface reconstruction scheme described in Appendix A. The flux,
FEB, is computed according to the specification in Section 2.3.

In the first set of cases, the embedded boundary geometry is constructed using the
natural method, as discussed in Section 5.1, and we discretize the domain on uniform mesh
of N 2 cells, where N = { 40, 80, 160, 320, 640, 1280}. For these cases, the finest grid covers

31

Figure 22: Contours of the exact solution for Problem 1, plotted over a grid with h = 1/80.
The shaded region represents the embedded body, and is excluded from the
computational domain. Contours are not extended into the cell fragments,
which are drawn in around the embedded solid.

the entire domain, i.e. P(nm+l) · = nm, 'V m : 0 :$ m < mhi· We initialize the state with
the exact solution, and relax the system via a multigrid V-cycle using the level-transfer and
smoother operations defined in Section 3.3. At the coarsest level, there is insufficient data
in the domain to compute the full embedded boundary interpolants at 16 of the partial cell
boundaries (generally, at the concave nodes of the geometry). For those cells, the planar
interpolation functions are used, resulting in a scheme that is formally inconsistent. At
the refinement level where h = 1/80, there are just four points where this occurs-at the
concave nodes along the central vertical axis. For h < 1/80, the full interpolants could be
computed for all partial cells in the domain. A contour plot of the solution for this test
problem is shown in Figure 22. In the figure, we also draw in the cell fragments resulting
from discretizing the domain on a grid with h = 1/80, and shade in the embedded body,
which is excluded from the calculation.

Tables 1 and 2 show the convergence rates of the norm of the volume-weighted trunca
tion, and the error, respectively with decreasing h = 1/N. The large initial rates are due to
the low-order boundary interpolants, and the erratic convergence rates for IIArlloo will be
explained shortly. The 1 and 2 norm convergence rates for the truncation are as expected
for centered differences with boundary fluxes computed using parabolic interpolants. As
demonstrated in [33], the initial rapid convergence of the error, ~' due to errors in approxi
mating the flux at embedded Dirichlet boundaries. These errors, which are large on coarse
grids, generate contributions to ~ which converge to third order in h for all the norms.
Eventually however, this component of ~ becomes small enough that it is dominated by
the second-order truncation terms generated by the central differences in the bulk of the
computational domain. Our results appear to confirm that argument.

32

I N II IIA7"IIoo I Roo II IIA7111 I Rl II IIA7112 I R2 I
0040 0.483204 - 0.0148148 - 0.15888 -
0080 0.0616952 3.0 0.00311469 2.2 0.0141678 3.5
0160 0.0330336 0.90 0.00078422 2.0 0.00491301 1.5
0320 0.0191487 0.79 0.000198956 2.0 0.00180314 1.4
0640 0.00907973 1.1 4.93392e-05 2.0 0.000628069 1.5
1280 0.0059005 0.62 1.23034e-05 2.0 0.000225618 1.5

Table 1: Convergence of the volume-weighted truncation error of the numerical Laplacian
operator for the Dirichlet case, Problem 1, using the natural cell fragment con
struction process, as detailed in Section 5.1. The largest errors are consistently
on the cell fragments. The oo-norm converges roughly at first order in h, while
the 1 and 2-norms converge at 2 and 1.5 respectively.

I N II llelloo I Roo II 11e1h I Rl II 11e112 I R2 I
40 3.4 7043e-05 - 8.63834e-06 - 1.35548e-05 -
80 5.15269e-06 2.8 1.27141e-06 2.8 1.83661e-06 2.9
160 7.38936e-07 2.8 2.3757e-07 2.4 3.42284e-07 2.4
320 1.32241e-07 2.5 5.1197e-08 2.1 7.67556e-08 2.2
640 3.26955e-08 2:0 1.19695e-08 2.1 1.85318e-08 2.1
1280 8.18485e-09 2.0 2.93154e-09 2.0 4.61567e-09 2.0

Table 2: Convergence of the error, ~ = cp - r.pe, of the computed solution to the Dirichlet
case, Problem 1, using the natural cell fragment construction process, as detailed
in Section 5.1. The largest error is on the cell fragments. The initial fast conver
gence was explained in [33); the convergence rates approach two asymptotically,
as expected.

Truncation Error on Partial Cells

0.02 •

..

... . .·•.. -·- . - . -·· .. ~ · .. -.: ,. -·· --·.- -.. -.. .. ·'·• ~. r:-·'··· •• ·c.,.: -. - - ~·· • ... :: •••• ·;:..=.· :·-:._z-~:. _=;:·· ... :•.,
•• \ •.•. .J"-. .z .. ·.<C ,. ... -~ ... -.,. •••• / •••
• •• • • • r• • -...c »- • .-. •• • •• • r •••• ,...,._ _: "

0.00 ~'--'•• :~ •,,:;/• .. • J
0

-'wo" ~ .. ,._• ._ • .. _ ""-• ·•"••"

0 200 400 600 800

Partial Cell Index

Figure 23: Scatter plot of the magnitude of the volume-weighted truncation error, IArl,
of the operator in Problem 1, over the cell fragments generated for the grid,
h = 1/160.

33

(a) (b)

Figure 24: Cell reconstruction in 2D. The error,~' in the computed boundary area, may
be 0 (h) for .this special case. The figure exaggerates the curvature of the
boundary to illustrate the issue.

The erratic convergence behavior of IIArlloo can be understood with the aid of Figure 23,
where we plot the magnitude of Ar as a function of cell fragment index number for Problem 1
setup, with h = 1/160. It is evident that the oo-norm is determined (to a factor of two, or
so) by a small number of cells in the domain. All the cells represented in the figure where
IArl > 0.02 share the feature that boundary curvature effects introduce 0 (h) errors into
the numerical operator via the approximation of AEB, i.e. the surface integral,

is incorrect to 0 (h), whereas for normal cell fragments, this error is only 0 (h2). Such a
situation arises only for triangular reconstructed cells with high aspect-ratio near regions
on the boundary with significant curvature (see Figure 24). In this case, the reconstruction
will position the boundary segment correctly to 0 (h2), measured along nEB, which results
in an 0 (h) error at the intersections with the grid line. As an alternative, the boundary
area, ABB, may be defined so that the discrete area integral is exact, but then A computed
for this cell would no longer consistent with these cell faces. The observation motivated
us to develop the blunted approach to cell construction, desc!ibed in Section 5.1, where
both the cell apertures and volumes are constructed consistent with the piecewise linear
representation. For this case, the boundary interface reconstruction procedure will give
the "exact" boundary point location. Now, the geometry-induced errors arise only from
the piecewise-linear representation of the smooth boundary, and these errors are smoother
and better behaved. This phenomenon was not observed in [33], where the cell fragments
generated were automatically blunted (according to our terminology in Section 5.1).

We re-computed the geometry using the blunted version of the scheme, as detailed in
Section 5.1. Tables 3 and 4 show the convergence behavior for Problem 1, using the blunted
cell fragments. Clearly, IIArlloo behaves as expected, and indeed how it was reported to
behave in [33]. Note that the other norms remain effectively unchanged, as one might
expect. As an aside, we note that a plot for this blunted case that corresponds to Figure 23
would show the same general features as before, i.e. only a few cells were within a factor of
2 of ll~lloo, while the rest were at roughly half that level. However, in this case, since these
errors decay smoothly as h decreases, the outliers do not adversely impact the overall error
norm.

These results might indicate that the blunted scheme is superior to the natural scheme,
were it not for the undue restrictions that the blunted scheme places on geometries. Aside
from being unable to represent concave features on the scale of the mesh grid, the blunted

34

I N II IIArlloo I Roo II IIArll1 I Rl II IIArll2 I R2 I
40 0.484045 - 0.0150905 - 0.155971 -
80 0.065068 2.90 0.00313342 2.3 0.014329 3.4
160 0.035117 0.89 0.000787199 2.0 0.0049367 1.5
320 0.0198966 0.82 0.000199542 2.0 0.00179268 1.5
640 0.0104768 0.93 4.94945e-05 2.0 0.000618629 1.5
1280 0.00578773 0.86 1.23339e-05 2.0 0.000220398 1.5

Table 3: Convergence of the volume-weighted truncation error of the numerical Laplacian
operator for the Dirichlet case, Problem 1, using the blunted cell fragment con
struction process, as detailed in Section 5.1. The co-norm convergence is slightly
better behaved in this case, compared to the results generated from the natural
cell generation method. Here again, the co-norm converges roughly at first order
in h, while the 1 and 2-norms converge at 2 and 1.5 respectively.

I N II llelloo I Roo II 11e111 I Rl II 11e112 I R2 I
40 3.62205e-05 - 8. 7 4556e-06 - 1.36764e-05 -
80 5.21425e-06 2.8 1.2735e-06 2.8 1.84214e-06 2.9
160 7.92214e-07 2.7 2.38048e-07 2.4 3.43014e-07 2.4
320 1.32427e-07 2.6 5.12732e-08 2.2 7.68536e-08 2.2
640 3.27236e-08 2.0 1.19778e-08 2.1 1.8544e-08 2.1
1280 8.18749e-09 2.0 2.93368e-09 2.0 4.61752e-09 2.0

Table 4: Convergence of the error, ~ = <p- <pe, of the computed solution to the Dirichlet
case, Problem 1, using the blunted cell fragment construction process, as detailed
in Section 5.1. These results are quite similar to those presented for the natural
cell fragment method

35

I N II IIArlloo I Roo II l1Arll1 I Rl II l1Arl12 I R2 I
40 0.0498369 - 0.00691271 - 0.019298 -
80 0.0249605 1.0 0.00178174 2.0 0.00678532 1.5

160 0.0124902 1.0 0.000451207 2.0 0.00242888 1.5
320 0.00624756 1.0 0.000114123 1.9 0.00087124 7 1.5
640 0.00312439 1.0 2.87537e-05 2.0 0.000308245 1.5

1280 0.00156234 1.0 7 .23863e-06 2.0 0.000110257 1.5

Table 5: Convergence of the volume-weighted truncation error of the numerical Laplacian
operator for the Neumann case, Problem 2, using the natural cell fragment con
struction process, as detailed in Section 5.1. Here again, the oo-norm converges
at first order in h, while the 1 and 2-norms converge at 2 and 1.5 respectively.

method generates geometries that may depend strongly on the position of the underlying
grid lines. Since we are developing these numerical schemes for arbitrary geometries, the
latter is not a desirable feature. Also, it is worth noting that since the large errors in this
scheme are due to an 0 {1) number of points, and since these cells generally have very small
volume, they will have minimal impact on the solution over the rest of the domain-this was
evident in the results presented above, since the truncation and solution errors converged
at the expected rates in the 1 and 2-norm regardless of the convergence behavior of the
oo-norm.

6.1.2 Problem 2: Neumann Embedded Boundary Conditions

To test the discretization with Neumann boundary conditions, we set up a case identical
to Problem 1, except that the inhomogeneous extensive flux, FEB ·nEB, added to the
conservative flux sum is computed explicitly from the known solution. The components of
FEB= \lcpe, are

where r2 = x2+y2 . The local normal was computed from the cell's edge fragment apertures,
according to the procedures outlined in Appendix A. The natural cell construction proce
dures were used for this case. The convergence results are presented in Tables 5 and 6. Note
that convergence behavior in these cases is much more uniform. The Neumann case appears
to be somewhat less sensitive to details of the boundary treatment, as expected. Since there
is no contribution to conservative flux sum from terms along the boundary interface, the
scheme is insensitive to the details of the boundary surface reconstruction procedure.

6.2 Multigrid Assessment

In this section, we evaluate the effectiveness of our simple multigrid scheme for solving
the Poisson equation on a variety of two-dimensional geometries. First, we assess the

36

I N II llelloo I Roo II 11e111 I Rl II 11e112 I R2 I
40 6.12207e-05 - 1. 7791le-05 - 3.01133e-05 -
80 1. 72152e-05 1.8 4.8787e-06 1.9 8.34709e-06 1.9
160 4.57722e-06 1.9 1.29383e-06 1.9 2.21562e-06 1.9
320 1.18702e-06 1.9 3.35947e-07 1.9 5. 73883e-07 1.9
640 3.02077e-07 2.0 8.53856e-08 2.0 1.45699e-07 2.0
1280 7.61676e-08 2.0 2.16465e-08 2.0 3.68528e-08 2.0

Table 6: Convergence of the error,~= <p- <pe, of the computed solution to the Neumann
case, Problem 2, using the natural cell fragment construction process, as detailed
in Section 5.1. We clearly observe second order in all norm measures.

performance of our schemes for the case that .e.hi = 0, and nm = P(nm+1), i.e. the finest
grid covers the entire domain completely. We use the simple V -cycle described in this paper,
with low-order level transfer functions and a point-relaxation smoother. In all cases, the
coarsest level in the multigrid V -cycle is h = 1/2, and the "exact" solve at the bottom of the
V-cycle (on the 2 x 2 system) consists of 8 passes of the smoother operation. The measure
of performance is the averaged residual reduction factor,

. 1

f = (IIARolloo)w
IIARNIIoo

(24)

where the average is taken over the total number, N, of complete multigrid iterations taken
during that solve. As in Section 3.1, R = p- L (rp), and the subscript indicates iteration
number, with 0 representing the residual computed with the initial guess. For all cases,
the initial guess was a flat profile (rp = 0), and the system was relaxed until IIARIIoo was
reduced by 10 orders of magnitude.

6.2.1 Problem 3: Solver Scaling with System Size

Problem 3 is designed to illustrate how our simple multigrid scheme scales with system
size. The problem setup is identical to that of Problem 1, except that we build a single
geometry, based on h = 1/256, and construct a series of sub-problems, at decreasing levels
of refinement. We do this simply by starting the multigrid V -cycle at successively higher
(coarser) levels. Figure 25 plots the residual reduction factor, f as a function log N, where
N is the number of cells on a side (= 1h). The reduction factor increases linearly with
log N, which verifies that we are ~chieving the expected performance of classic multigrid
schemes, where the work scales as 0 (NlogN).

6.2.2 Problems 4 and 5

Problems 4 and 5 are designed to test the scheme's ability to handle a wide variety of
geometrical shapes embedded in the grid. Statistics for the six geometries we tried appear
in Table 7. In all cases, the background uniform mesh is 256 x 256 over the region in two
dimensional real space, [0, 0] x [1, 1]. The bodies were described as a set of node lists, and
the natural cell fragment construction procedure was used. The cases are: ·

37

Residual Reduction Factor
0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
3 5 6 8

log(N)/log(2)

Figure 25: Plot of the residual reduction factor, j, as a function of system size, N, for
Problem 3. The reduction factor scales linearly with log N, so that the com
puter work to solve this linear system scales as 0 (NlogN).

I Case I Des c. II NB I Nf5ll I N I t25ll (s) II N~U24 I tw24 (s) II fN I fn
A Line 0 192 65336 0.17 768 0.43 0.141 0.146
B Boxes 8192 512 57344 0.35 2048 1.4 0.103 0.0767
c Ellipses 10240 912 55296 0.9 3792 5.0 0.0407 0.0557
D Ellipse 42764 700 22772 0.63 2812 7.5 0.0607 0.0760
E Naca 2311 536 63225 0.5 2144 1.8 0.118 0.0902
F Arc 0 764 65918 0.7 3068 3.0 0.186 0.135

Table 7: The six geometries used for Problems 4 and 5. Here, N8 is the number of solid
cells , N{,56 is the number of cell fragments, N is the total number of uncovered
cells (including full and partial cells), t 256 is the CPU time (in seconds) to gen
erate the geometry on. the 2562 domain, N~024 is the number of cell fragments
in the same geometry generated for a 10242 mesh, and t 1024 is the CPU time
it took to generate the larger geometry. f N and f D are the residual reduction
factors for the Neumann and Dirichlet problems, Problems 4 and 5, respectively.

38

I

(a)

· (d) (e) (f) L..==.---===--___J
Figure 26: Contour plots foi: Problem 4. Homogeneous Neumann conditions are imposed

on the embedded body, while homogeneous Dirichlet conditions are applied to
the rectangular boundaries {except in (d)).

A. An infinitely thin line boundary from (1
5
6 , 1

5
6) to (1

5
6 , i~) .

B. Two boxes, measuring ! on a side, and placed at (!, ! .± !) .
C. Four ellipses, centered at (! ± ! , ! ± !) measuring 1

5
6 x 3

5
2 •

D. One ellipse, centered at (!,!),measuring! x l For this case, the domain is inside
the elliptical surface (so that there are no rectangular boundaries for this example),

E. Two NACA 0012 airfoils, uniformly scaled to have length ·0.468, and placed so that
the leading edges are at (.336, .625) and (.195, .375) .

F. Anarc,sweepingout8= [~,-~],withcenterat (!,o) andradius= t·
For Problem 4, we computed solutions to the Poisson equation on. the six geometries,

imposing a homogeneous Neumann boundary condition at the embedded boundaries. A
homogeneous Dirichlet condition was imposed all along the rectangular boundary (if one
exists in the problem). To make the solution non-trivial and non-singular, we placed equal,
but opposing Gaussian source terms,

p =I: cf exp (Gi lx- xil2
) (25)

i

where Xi = (±!, n, Cf = ±1 and C~ = 0.01 (actually we omitted the left source in
Case A to obtain a solution which more clearly demonstrates the· abilities of the code).
Contour plots of the solutions for all six cases are presented in Figure 26. Here, we plot 31
equally spaced levels between the extreme values of the solution, and shade in the embedded

39

(a) (b)

~ ~ w
Figure 27: Contour plots for Problem 5. Homogeneous Dirichlet conditions are imposed

on all boundaries of the domain, including rectangular and embedded surfaces.

bodies that have been excluded for each case. The contours clearly intersect normal to the
embedded surface, and are tangent to the rectangular boundary, as expected. The multigrid
residual reduction factors for this case appear in Table 7, column 9.

For Problem 5, we enforce Dirichlet conditions on all boundaries. The embedded bound
aries were set to zero, while the rectangular boundaries where set to unity (if they exist in
the problem). In Case D, this would result in a trivial solution; we added a single source
of the form of Equation 25 at the center of the domain, with where x1 = (~, ~), C[= 1

and C:} = 0.01. Contour plots of the solutions for all six cases· are presented in Figure 27.
Here, we plot 21 equally spaced levels between 0 and 1, inclusive. The contours are clearly
tangent to all boundaries in the problems, and show the correct general characteristics ex
pected of the Poisson solution. The multigrid residual reduction factors for this case appear
in Table 7, column 10.

6.2.3 Problem 6: Adaptive Multi-level Solve

Problem 6 demonstrates the AMR component of our solver. For this case, we chose the
geometry labeled "F" in Table 7, and run the system setup for Problem 3 (i.e. the Poisson
equation, with two opposing sources). We apply homogeneous Neumann conditions to
the embedded boundaries, and along the left and right sides of the domain. We apply

· homogeneous Dirichlet conditions to the upper and lower boundaries. The final solution
presented has four AMR levels, with a uniform factor of two separating each. The finest
grid has h = 1/512, while the coarsest uncovered level has h = 1/64.

First, we solve our problem over the entire domain with h = 1/64 (this will involve 7
multigrid levels, with h = 1/2n, n = [1, 6]). Richardson extrapolation is used to estimate -
the local truncation error, r, as described in [38]. All rectangular cells with r > .1h2

40

are "tagged" for refinement, according to the procedure detailed in [38]. We also tag
every mesh cell containing at least one partial cell (in this way, we can ensure that the
embedded boundary is always gridded to the finest level). A set of rectangular grid patches
are generated for the level with h = 1/128. The fine grid solution is initialized by by
interpolating the coarse grid values using our piecewise-constant level transfer scheme, and
the system is relaxed via the multi-level multigrid scheme given in Algorithm 5. After the
solve, the error tagging procedure is applied again to adjust the grids at h = 1/128, if
necessary. The solve at this level continues until the grid layout remains constant. The
next AMR level is then added using a similar process, and the three-level scheme is iterated
to convergence in the same way. We terminate execution after four AMR levels have been
converged, both in terms of grid placement and in terms of reducing the oo-norm of the
residual at each level at least eight orders of magnitude from that of the initial guess.

Figure 28 shows the converged, adapted solution. The boxes overlaid on the contours
indicate the extent of block-structured logically rectangular grids at each level (for clarity,
we've shaded them according to level). Due to limitations in our graphics, contours were not
drawn in the partial cells-this is most noticeable near the body in the first solution plot. In
the final arrangement, levels 3-0 cover 6.96, 24.3.46.8 and 100 percent of the computational
domain, respectively. The average residual reduction factor for the entire calculation was
approximately 0.08. Note that the solution is resolved well enough that grid refinement
is not triggered near the location of the sources. The minor profile adjustments with grid
refinement appear to result from the improved resolution of the curved boundary.

We note this example was the largest of the linear solves presented in this paper, consum
ing approximately 10 minutes of CPU time on a DEC Alpha 300 MHz machine. Although
such performance is unacceptable for for typical high-performance computing applications,
the encouraging convergence performance warrants another implementation pass to stream
line data access and minimize unnecessary calculation.

7 Conclusions

In this paper, we have presented a graph-based algorithm for representing irregular
bodies embedded in a block-structured, logically rectangular Cartesian grid. We detailed a
recursive geometrical coarsening strategy valid for arbitrarily complicated domain shapes.
The strategy carries enough geometrical information along to allow finite-volume type
conservation-law discretizations to be constructed on every coarse level generated. It ap
propriately handles "thin-bodies" and "trailing-edges" at every level, and extends directly
to three dimensions.

Based on our data representation and coarsening strategy, we constructed a simple
multigrid scheme for solving the Poisson equation in the presence of arbitrarily complex
geometries. We studied the behavior of our scheme, both in terms of convergence rates to
the continuum solution of Poisson's equation, and in terms of the residual reduction rates.
By testing over a wide range of geometries, we found that the complexity and position
of the embedded shapes seems to have some impact on our scheme's residual reduction
properties, but that the scheme was nonetheless generally quite robust-remarkable since we
implemented only the simplest of possible strategies for the various components of multigrid
(such as level transfer and smoothing operations).

41

Figure 28: Adaptive solution to the Poisson equation on the "Arc" geometry, an infinitely
thin embedded surface. Left-to-right, top-to-bottom, the figures depict the
converged solution with one, two, three and four AMR levels, respectively.
The coarsest solution is on a 64 x 64 grid, and each AMR level is refined a
constant factor of two from the one next coarser.

42

Figure 29: Linear reconstruction of the embedded boundary surface, based on the surface
normal, fi, and cell volume. In two-dimensions, the fluid cell may be triangular,
trapezoidal or pentagonal.

The encouraging results presented in this paper indicate that our scheme is suitable for
extension to other conservation-law PDE systems. Our EB formalism extends naturally to
the high-resolution Godunov scheme presented in [17], and to the approximate projection
scheme presented in [27]). The adaptive solver can also be used as a starting point for
extending the variable-density adaptive projection schemes in [37, 38).

A Piecewise Linear Boundary Reconstruction

At the most refined grid level, the embedded boundary is represented as a Co piecewise
linear interface, specified by the apertures of the edges in connected paths of the irregular
geometry graph. The location of this interface within the cells is required, for example, when
computing the fluxes induced by Dirichlet conditions along the embedded boundary. The
boundary surface can be reconstructed with volume-of-fluid-type methods. We compute
the surface normal, ii = {n1, ... , nd}, for irregular cell v using the partial cell apertures:

(26)

for all edges, e, in the k-direction. Now, the surface normal, ii, and the cell volume, A (v),
specify a unique location for a linear boundary intersection surface. In two dimensions, for
example (see Figure 29), take the case that ln2l > ln1l > 0. Define a slope, m = ~' and
v = A (v). The shape of the cell can identified:

{

quadrilateral if v ~ b and v ~ 1 - b
v is a triangle if v ~ b and v ~ 1 - b

pentagon if v ~ b and v ~ 1 - b

where b = lml /2. In the case of the triangle, one node is on the unit square, the others
are at (0, 1 - V4bV) and (,jV(b, 1). In the case of a quadrilateral, two nodes are on the
unit square, and the others are at (0, 1- v ±b). Finally, in the case of the pentagon, three
of the nodes are on the unit square, while the other two are at (1- J(1- v) jb,o) and

(1, yl4b-(1- v)). These formula are then rotated based on the signs of n 1 and n 2 , in order
to keep a well-behaved slope, m. Similar, but slightly more complex formula can be used
to find the plane intersecting the boundary in three dimensions.

We use these formulas also to define an approximate boundary location for geometries
coarsened using the techniques described in Section 3.2. However, there is no guarantee that
the position will accurately reflect the sub-grid scale boundary shape. And since we are

43

modeling arbitrary boundary shape, higher order reconstruction methods do not necessarily
represent an improvement in location accuracy. For example, on a very coarse grid with
d = 2, one may compute nk = 0, 'if k E {1, d} and A (v) < 1, for some v in the domain. This
implies that the embedded structure lays completely within the coarse cell; this case cannot
be represented by a linear boundary segment. We handle this case in the computations
by merely setting the slope, m = 0, and continuing on to the next cell. Such ill-defined
cases arise typically at the coarsest levels generated automatically for a multigrid solver
grid hierarchy, and usually represent a refinement level constructed solely as a temporary
aid for the linear solution. If such a procedure ends up degrading the performance of the
solver, we remove that level from the multigrid hierarchy so that the coarsest problem is
fine enough to prevent these ambiguous cases. ·

References

[1] T.A. Reyhner, Cartesian mesh solution for axisymmetric transonic potential flow
around inlets. AIAA J., 15(5) p. 624-631 (1977).

[2] J.W. Purvis and J.E. Burkhalter, Prediction of critical mach number for store config
urations. AIAA J., 17 (11) p. 117Q-1177 (1979).

[3] B. Wedan and J. South, A method for solving the transonic full-potential equations
for general configurations. in "Proceedings, AIAA 6th Computational Fluid Dynamics
Conference", Danvers, MA (1993). AIAA Paper 83-1889.

[4] D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant, and J.E. Bus
soletti, A locally refined rectangular grid finite element method: Application to com
putational fluid dynamics and computational physics. J. Comput. Phys., 92 p. 1-66
(1991).

[5] D.K. Clarke, M.D. Salas, and H.A. Hassan, Euler calculations for multielement airfoils
using Cartesian grids. AIAA J., 24(3) p. 353-358 (1986).

[6] R.L. Gaffney, H.A. Hassan, and M.D. Salas, Euler calculations for wings using Carte
sian grids. in "Proceedings of the AIAA 25th Aerospaces Meeting", Reno, NV (1987).
AIAA Paper 87-0356.

[7] B. Epstein, A.L. Luntz, and A. Nachson, Cartesian Euler methods for arbitrary aircraft
configurations. AIAA J., 30(3) p. 679-687 (1992).

[8] K. Morinishi, A finite difference solution of the Euler equations on non-body fitted grids.
Comp. Fluids, 21(3) p. 331-344 (1992).

[9] Y-t. Chiang, B. van Leer, and KG. Powell, Simulation of unsteady inviscid flow on
an adaptively refined Cartesian grid. AIAA Paper 92-0443-CP (1992).

[10] W.J. Coirier, An Adaptively Refined, Cartesian, Cell-Based Scheme for the Euler and
Navier-Stokes Equations. PhD thesis, University of Michigan (1994). Also appeared
as NASA TM-106754.

44

[11] D.L. DeZeeuw, A Quadtree-Based Adaptively Refined Cartesian-Grid Algorithm for
Solution of the Euler Equations. PhD thesis, University of Michigan {1993).

[12] D.L. DeZeeuw and K.G. Powell, An adaptively refined Cartesian mesh solver for the
Euler equations. J. Comput. Phys., 104 p. 56-68 {1993).

[13] C.F. Gooch, Solution of the Navier-Stokes Equations on Locally-Refined Cartesian
meshes using State- Vector Splitting. PhD thesis, Stanford University {1993).

[14] J.E. Melton, Automated Three-Dimensional Cartesian Grid Generation and Euler Flow
Solutions for Arbitrary Geometries. PhD thesis, University of California, Davis {1996).

[15] W.F. Noh, GEL: A time-dependent two-space-dimensional, coupled Eulerian-Lagrange
code. in "Fundamental Methods of Hydrodynamics, Methods of Computational
Physics", Vol. 3. Academic Press, New York/London (1964).

[16] J.J. Quirk, An alternative to unstructured grids for computing gas dynamic flows
around arbitrarily complex two-dimensional bodies. Comp. Fluids, 23{1) p. 125-142
{1994).

[17] R.B. Pember, J.B. Bell, P. Colella, W.Y. Crutchfield, and M.L. Welcome, An adaptive
Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput.
Phys., 120 p. 278-304 {1995).

[18] G. Yang, D.M. Causon, and D.M. Ingram, Calculation if 3-D compressible flows around
moving bodies. in "Twenty-first International Symposium on Shock Waves", Great
Keppel Island, Australia (1997). Paper 1780.

[19] R.J. LeVeque, A large time step generalization of Godunov's method for systems of
conservation laws. SIAM J. Num. Anal., 22 p. 1051-1073 (1985).

[20] R.J. LeVeque, High resolution finite volume methods on arbitrary grids via wave prop
agation. J. Comput. Phys., 78(1) p. 36-63 (1988).

[21] M.J. Berger and R.J. LeVeque, Stable boundary conditions for Cartesian grid calcula
tions. Comp. Sys. Eng., 1 p. 305-311 (1990).

[22] M.J. Berger and R.J. LeVeque, An adaptive Cartesian mesh algorithm for the Euler
equations in arbitrary geometries. in "Proceedings, AIAA 9th Computational Fluid
Dynamics Conference", pp. 1-7, Buffalo, New York (1989). Paper 89-1930-CP.

[23] C.S. Peskin, Flow patterns around heart valves. J. Comput. Phys., 10 p. 252-271
(1972).

[24] R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible
flow. SIAM J. Num. Anal., 33 p. 627-665 {1996).

[25] M.F. Tome and S. McKee, GENSMAC: a computational marker and cell method for
free surface flows in general domains. J. Comput. Phys., 110 p. 171-186 {1994).

45

[26] E.Y. Tau, A second-order projection method for the incompressible Navier-Stokes equa
tions in arbitrary domains. J. Comput. Phys., 115 p. 147-152 (1994).

(27) A. Almgren, J.B. Bell, P. Colella, and T. Marthaler, A Cartesian grid method for
incompressible Euler equations in complex geomtries. SIAM J. Sci. Comput., 18(5) p.
1289-1309 (1997).

[28) A. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp., 22 p.
745-762 (1969).

[29) R.J. LeVeque and Z. Li, The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources. SIAM J. Num. Anal., 31 p. 1019-1044
(1994).

[30] Z. Yang, A Cartesian Grid Method for Elliptic Boundary Value Problems in Irregular
Regions. PhD thesis, University of Washington (1996).

[31) L. Adams, A multigrid algorithm for immersed interface problems, in "Seventh Copper
Mountain Conference on Multigrid Methods". NASA Conference Publication 3339,
NASA, p. 1-14 (1996).

[32] D.W. Hewitt, The embedded curved boundary method for othogonal simulation meshes.
J. Comput. Phys., 138 p. 585 (1997).

[33] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson's
equation on irregular domains. accepted for publication J. Comput. Phys. Also appears
as LBNL-39908, Lawrence Berkeley National Laboratory, January, 1997.

[34] M.J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53 p. 484-512 (1984).

[35] W.L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, PA {1987).

[36] M.J. Berger and I Rigoutsos, An algorithm for point clustering and grid generation.
IEEE Trans. Sys. Man Cybemet, 21 p. 1278-1286 (1991).

[37] A. Almgren, J .B. Bell, P. Colella, L.H. Howell, and M.L. Welcome, A conservative
adaptive projection method for the variable density incompressible N avier-Stokes equa
tions. J. Comput. Phys., 141 (1998). Also appears as LBNL-39075, Lawrence Berkeley
National Laboratory, July, 1996.

[38) D. Martin, An Adaptive Cell-centered Projection Method for the Incompressible Euler
Equations. PhD thesis, UC Berkeley (1998).

46

@JoJ;<!I§b-nf ~ (YtWJ;;J§I;<!Iif#! I:I§I:'J:i!I§IY3\? ~~ ~itihN

~ ~ ~ 0 @t§I£13HY3\?o ~~

"

0

