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ABSTRACT OF THE THESIS

Control Methods for a Modal Disturbance Experiment with Structured

Uncertainty

by

Michael Callahan

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Thomas Bewley, Chair

The purpose of this thesis is to establish an experimental process by which a

structural system may be characterized through modal analysis in an effort to de-

velop and implement disturbance rejection control designs. Throughout this report,

a structural test article representing a simplified aircraft model will be the subject

of study, referred to as the ”Iron Bird.” This report discusses how the article was

modeled using finite element analysis for the purpose of control design. Then, the

report establishes a ”dry” wind tunnel testing approach by utilizing readily available

testing equipment and hardware as a means of testing aerodynamic control systems as

opposed to requiring a wind tunnel facility for the purposes of experimental validation.

Reviewing both the experimental setup and design environment, this thesis aims to

establish a comprehensive account of how this system was analyzed, designed, and

tested. Finally, with the inclusion of plant uncertainty this report analyzes a suite of

control design approaches in order to establish methods of implementing more robust

controller designs for modal disturbance rejection on this particular system.
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FEA Finite Element Analysis
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Chapter 1

Introduction

We begin by taking a look at the background of robust control, modal analysis,

system identification, and methods of aircraft dynamic testing. What we wish to show

is the need for a lower cost solution to experimental validation of cutting edge aircraft

designs, especially in the unmanned space, as an alternative to expensive wind tunnel

tests. In doing so, this study provides one potential methodology for achieving such

an alternative for experimental aerodynamic control systems validation.

1.1 Motivation

In regards to modern approaches to dynamic aircraft design validation, there are

both simulated and experimental methods. Simulation through finite element analysis

FEA and computational fluid dynamics CFD software tools provide powerful frame-

works for modeling, analyzing, and validating aircraft models and designs [23] [10].

However, there is no true replacement in this regard to testing physical hardware in an

experimental environment. Validating systems, components, designs, and assemblies

in unison with flight tests and wind tunnel testing provide a comprehensive and invalu-

able study in how a real test article will perform in operating environments. This is

partially due to the complexity of current and future aerodynamic problems requiring

faster and better scalable hardware. In addition, hardware tests will ensure that the

reliability and operability of all necessary systems are stressed at once whereas CFD

and FEA studies generally confine themselves to individual subsystems [29]. To this

end, it has proven useful to complement FEA and CFD methods with true hardware

testing in order to provide more complete analysis. This idea of pairing simulation

2



with hardware validation for design optimization is a key focus of this thesis.

The Iron Bird test article was designed and manufactured by ATA Engineering for

demonstrations of modal testing. In this regard, it makes a suitable piece for exploring

methods for control of structures and system modes. In the case of structural control

for this article, it proves important to obtain a reasonable quantification of uncertainty

with regards to modal dynamics in order to obtain a control design which is suitable

robust to plant variation, an objective previously explored by Briggs [7]. To this

end, FEA methods provide a reasonable starting model for control design. System

identification methods may be used in conjunction to establish the parameters left

undeveloped within the model through a FEM.

In the field of aeronautics, many active control systems on commercial aircraft

involve gust load alleviation for reducing airload stresses and improving operability

[17]. When these gust loads excite the natural resonances of the system in a way

which produces negative damping within the aeroelastic dynamics, flutter is produced.

The phenomenon of flutter and aeroelasticity has been well studied since the mid

twentieth century with the most famous example of unsteady airload induced flutter

being the Tacoma Narrows Bridge collapse of 1940 [5]. In the case of aircraft, extensive

flutter testing is mandatory for modern fighter jets and commercial vehicles, however

two fighter jets which experienced stable limit cycle oscillations under heavy loading

conditions are the F-16 and the F/A-18 [8]. Experimental research has been conducted

on the F/A-18 specifically for the formulation of flutter margins for nominal and robust

stability [32]. NASA’s X-53 project utilized a converted F/A-18 for demonstration

of their active aeroelastic wing project. Research on this specific article has been

performed through dynamic modeling techniques of the aeroelastic system [11] and

robust control designs for suppressing aeroelastic feedback through techniques like

adaptive feedback control [49].

Unmanned aerial vehicle designs are becoming more capable, faster, and higher

flying to the point where phenomena such as flutter and robust gust load alleviation

techniques must be considered [45] [47] [12]. Active flutter suppression research is being

performed on the X-56 due to its flexible wing stucture, opening a radical new possible

avenue for future dron designs [43]. While vibration testing methods exist for making

flutter predictions before flight test [18], wind-tunnel experimentation remains the

natural fit for replicating the aeroelastic dynamics an aircraft will experience during

flight. However, costs may run high for continued experimentation. This discourages

3



competition from any small startups or mid-sized aircraft design companies who may

not have the same budget for continued testing. A ”dry” wind tunnel testing procedure

outlined in this report might allow for an alternative means of testing an aircraft

design for aerodynamic performance without the potential expenses or unavailability

of a wind tunnel environment. An aim of this particular methodology is towards the

realization of a simulated flutter experimental methodology for lower cost testing of

unstable aeroelastic conditions with readily available hardware which was initiated by

Briggs for this particular Iron Bird application [6].

Figure 1.1: Iron Bird test article (left). Iron Bird model (right).

This thesis will not directly tie the Iron Bird test article to a flutter description,

however it will utilize knowledge of robust control and uncertainty modeling to show

an experimental methodology towards providing robustness in control modeling of this

system against simulated periodic gust load disturbances with uncertain airloads.

The presented Iron Bird problem requires analysis of frequency responses of sys-

tems, because the performance criterion of interest is the attenuation of modal dis-

turbances which themselves are components of frequency. The system considered in

this problem leverages modal frequency based characterization for formulating a state

space model. With this in mind, it proves vital to understand the derivation and

implementation of standard control theory methods for optimal and robust design.

1.2 Background

Control methods involving multivariable systems have expanded greatly since the

early research in what is now commonly referred to the advent of modern controls

4



during the 1970s. This early research indicated other methods of modeling and con-

trolling systems using linear state space methods. When it comes to modern control

theory, the field generally is divided into two separate branches: linear control theory

and nonlinear control theory. For the purposes of this thesis, we will construct control

models utilizing tools within linear control theory.

Modern control techniques utilize a state space representation to provide controllers

leveraging state variable feedback through pole placement, linear quadratic problem

formulation, and many more methods for applications usually requiring multi-input

multi-output MIMO control. There are numerous pole placement algorithms which

have been developed since the 1980s seeking to develop a closed loop system with

prescribed dynamics [28] [21]. For the purpose of this thesis, the primary modern

control design technique which will be discussed involves the formulation of a linear

quadratic regulator LQR and a linear quadratic estimator LQE.

Since the early 1960s, the framing of the optimal estimator and the noise free

regulator problems has been leveraged in such a way as to expose the dual nature of

the problem structure [27]. This duality framework is especially powerful when paired

with the principle of separation of estimation and control stating that the eigenvalues

of a system is the union of the closed estimator and closed regulator systems which

allows for independent design and optimization [21].

This study goes through a process of formulating a framework for deriving a Lin-

ear Quadratic Regulator LQR and Linear Quadratic Estimator LQE control model.

Standard LQR control utilizes a regulator obtained by solving the Algebraic Ricatti

Equation for a cost function emphasizing either error minimization or control input

cost through appropriate covariance matrix assignment.The estimator may be ob-

tained in a similar fashion by employing the concept of duality explored since the

1960s by Kalman [27]. There are numerous methods of deriving the state estimator,

thus obtaining a Kalman Filter, this dual form method is the one which this project

utilizes.

Modal characterization of systems is particularly useful in relating fundamental

frequencies to applied control in a system, due to the linear independence of each mode.

Modal analysis has existed in some form since the 1800s, and become modernized

in the mid 1900s with the utilization of the fast Fourier transform and advent of

computer technology [31]. By creating a state space representation around the system

modes, analysis can be done on each state with some degree of linear independence

5



by construction of the modal coordinate space which lends itself well towards control

design.

System identification for control systems has been a developing field since the late

1970s with much ground gained in the late 1980s through the mid 1990s. The theory

of system identification allows for the correlation of frequency driven data and struc-

tured models, resulting in data-driven models [33]. For this particular problem, we

leverage powerful tools and framework unified under Ljung’s work for connecting the

experimental test article’s dynamic response with the framework established through

finite element derived model. This thesis discusses how a series of experiments was

performed on the test article with a handful of approaches in order to best characterize

the system.

Robust control theory has been a topic long researched since the 1940s and mod-

ernized closer to the 1980s. The purpose of robust control theory is to reframe the

Wiener-Hopf-Kalman optimal control formulation in such a way as to deal with mod-

elling deviations and plant uncertainty [19]. For the purposes of H∞ control, this

problem focuses primarily on the methods of sensitivity minimization following the

methodology of Zames [48]. In this problem formulation, a weighting is assigned to

find a feedback frequency response which minimizes the H∞ norm, || · ||∞, of the

closed loop matrix output by leveraging state space linear fractional transformation

LFT methods to produce disturbance attenuation across a greater degree of plant

variance than the optimal case [14] [19]. This is a useful characterization of system

performance in this case, because our aim of rejecting modal disturbances will be di-

rectly related to reduction in the system H∞ norm due to the definition of the system’s

measured response as the linear superposition of all system modes [16].

On the subject of LFTs and uncertainty modeling, it is useful to consider how

plant variance will affect each mode parametrically. The framework of developing

LFT models allows for control design revolving around bounding structured singular

values and determining measures of design, including nominal performance, robust

stability, and robust performance [15] [19]. Although the system modes may be ex-

pressed independently, uncertainty introduced into the system through mass loading

will parametrically affect each one under some common relation which may be lin-

earized. A derived LFT model allows for system uncertainty to be characterized in

terms of an uncertainty-driven disturbance signal. This is useful when evaluating the

performance and robustness of a particular series of controllers under differing off-
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nominal conditions. The end design goal for H∞ techniques is the minimization of the

H∞ norm of the system response to disturbance inputs.

1.3 A Primer on the Simulated Flight Dynamics of

System

The Iron Bird is a steel sheet metal structure approximating the profile of an air-

craft. As such, this project focuses primarily on drawing some means of aerodynamic

control systems validation and implementation.

With regards to the inputs and outputs of the system, the Iron Bird utilizes two

pairs of linear actuators placed at different locations of the wings and four accelerom-

eters as outputs located at the wingtips at both the leading and trailing edges.

Figure 1.2: Modeled pressure induced from angle of attack (left). Modal equivalent

point force of angle of attack (right). [6]

From previous modeling performed on Iron Bird [6], we apply computational fluid

dynamics CFD modeling to obtain pressure distribution for shifting the angle of attack

of the aircraft by a unit degree. But, we wish to represent these pressure loads with

the four actuators we have in terms of hardware. In this case, we utilize the principle

of a modal equivalent point force to represent the pressure distribution as an applied

force vector from aileron deflection in figure 1.2. This modal equivalent force is a

direct translation of the pressure induced by deflection into applied load on the wings,

which consequently means that the delay from an aileron deflection signal to realized

force on the wing remains unmodeled.
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Figure 1.3: Modeled pressure induced from aileron deflection (left). Modal equivalent

point force of aileron deflection (right). [6]

We also obtain a modal equivalent point force to represent the pressure distribution

induced by increasing angle of attack. This is what we prescribe to our disturbance

input actuators which will provide input meant to simulate gust loading conditions.

Thus, we position the linear actuators at each of these four modal equivalent points

which will grant us a pair of actuators to simulate pressure loading on the wings from

flight dynamics and a separate pair of actuators to simulate the induced pressure by

altering the aileron deflection in figure 1.3. We now have a pair of actuators which

will simulate gust loads perturbing the wings of our system and another pair acting

as control surface ailerons with which we will counteract the disturbance.

In terms of constraints on the response of the actuators, there were not any physical

constraints which were enforced in terms of aileron responsiveness. This means that

while the actuators might be able to output ±1ft− lb force at frequencies exceeding

100Hz, this may not be the most realistic depiction of the system’s aileron response.

If a high performing aircraft system has an upper ceiling in terms of roll rate of 280◦/s,

then the frequency response of an aileron system likely needs not be substantial after

a couple of Hz. This study will assume designs vehicles which might be able to

implement an aileron system able to act upon higher frequency disturbances, up to

30Hz or so.

The accelerometers measure with units of in/s2 which means it is possible to mea-

sure the wing bending dynamics given some force input from the actuators. However,

we are interested in relating the measured output of the system with the individual

modal components which compose the total displacement dynamics of the wing bend-
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ing. For this reason, we will construct a state space dynamical model and apply a

modal coordinate transformation method to obtain modal state variables.

Figure 1.4: Section-view free body diagram of system force and acceleration vectors

on one wing.

When we evaluate performance and begin experimental testing, we drive the dis-

turbance actuators with different functions of frequency in order to excite the modal

components of the wings. Then, we design a controller in such a way as to attenuate

the modal components of the disturbance with the control actuators.

In order to represent uncertainty in the plant, sand bags were applied to the wings

in various configurations. The physical interpretation of this added weight could have

two interpretations. One might be the differing payload conditions on the wings

perhaps due to added or depleted fuel, and another could be off-nominal airloading

conditions on the wings from induced vortices due to dynamic presssure shifts at

differing airspeeds. The sand bags add both weight on the wings and torque with

respect to the centerline of the fuselage. These two parameters changing are important,

as they will become the focus of deriving a trend with respect to varying modal

parameters with each configuration.
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With respect to a free body diagram of the experimental setup representing vectors

of forces as well as the measured acceleration vector, there will be the force applied

to the wing by the control input actuator Fu, the force applied to the wing by the

disturbance actuator Fd, the y component of the accelerometer measurement ÿaccel,

and the point load equivalent weight from the added sand bag mass Fmass. The lengths

of each of these locations with respect to the fuselage centerline are given by Lu, Ld,

Laccel, and Lmass respectively. The free body diagram is given in figure 1.4.
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Chapter 2

Experimental Setup and Design

Environment

With the state space model defined in terms of the flight dynamics and equations of

motion pertaining to the wing bending modes, we now wish to discuss the experimental

setup and process in more detail. We discuss the experimental setup and the methods

for linearizing the system with regards to all the moving hardware elements.

2.1 Experimental Setup

The test article is a steel sheet metal structure with discrete parts which have

been welded together, including a chassis, wings, tail flaps, and legs. The structure

is suspended upside down from the ceiling using steel springs with known stiffness,

coil windings, and wire diameter. Attached to each wing are two separate pairs of

actuators. As described earlier, one pair of actuators represent the disturbance input

from an equivalent pressure load while the other pair represents the equivalent force

from induced pressure when deflecting aileron control surfaces [6]. In this case, each

aileron acts independently of one another in order to control modal disturbances on

the wings. The system also features accelerometers at each end of the wings on both

the leading edges and trailing edges.

The mass loading conditions are featured in 6 unique configuration as well as the

nominal zero-loading condition. A depiction of each of these configurations can be

seen in figure 2.2.
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Figure 2.1: System Block Diagram.

2.1.1 Data Acquisition

The accelerometer outputs provide measurements of disturbances at the wings

which can be interpreted by the implemented control system in order to provide con-

trol input and affect the resulting system dynamics. The data acquisition system

(DAQ) features a National Instruments PCI 2660 card [37] [36] slotted into a machine

running a Simulink Realtime operating system that interfaces directly with the NI

card for I/O operability. The card itself and the breakout board can be seen in figure

A.1. The structure of the control model is therefore represented within the Simulink

Realtime environment, featuring block diagrams and graphical depictions of signals,

components, and LTI systems [46].
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Figure 2.2: Configuration 1 (Upper-Left), 2 (Upper-Right), 3 (Middle-Left), 4 (Middle-

Right), 5 (Lower-Left), and 6 (Lower-Right).
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Figure 2.3: Overview of System.

2.1.2 Linear Actuators

The actuators are Moticont SDLM-025-095-01-05 linear direct drive motors [35],

and a picture can be seen in figure A.2. They were calibrated using a test stand

to linearize the output at low input signal to overcome the nonlinear deadzone and

stiction effects present near zero drive. The lookup tables are implemented into the

Simulink Realtime environment.

The actuators were calibrated on a test stand by running input signals of certain

frequencies at different voltage amplitudes. The testing array included voltage am-

plitudes of 0.5 V, 1.0 V, 1.5 V, 2.0 V, 2.5 V, 3.0 V, 3.5 V, 4.0 V, 4.5 V, and 5.0 V

running at 0 Hz (Constant Input), 1 Hz, 5 Hz, 10 Hz, 50 Hz, 75 Hz, 100 Hz, and 200

Hz. After running the tests, the output data was fitted to a sinusoidal signal using

least squares regression with amplitude and phase parameters to identify the output
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Figure 2.4: Example of Least Squares Fitting Routine on Experimental Data.

amplitude of the force sensor reading. Thus we establish a relation between the input

voltage signal amplitude to the output force amplitude as a function of frequency.

We notice that the actuator’s output force signal has some choppiness near the peaks

referencing figure 2.4, and this is likely due to slight tension to compression transition

within the test stand assembly.

The derived output voltage amplitudes are plotted for each input signal frequency

and input signal amplitude as seen in figure 2.5. Then the data points are aver-

aged over each frequency to obtain a calibration curve function with first order linear

interpolation between points. A lookup table is then implemented into the Simulink

Realtime environment using these derived curves for each actuator. The inverse curves

formed by linear interpolation are shown in figure A.10. The R2 coefficients of de-

termination for both the individual curves and the averaged curves over the input

frequency and amplitude range for control are represented in tables B.3, B.4, B.5, and

B.6. Overall, the fitted inverse calibration model fits well in the higher amplitude

range and suffers at lower amplitude range primarily because the signal to noise ratio

becomes unfavorable and difficult to model.

The actuators are driven by a Copley Controls Corp. 412CE DC Brush Motor

Amplifier [9] which uses an Artesyn Embedded Technologies LCC600-48U-4P External

Power Supply [3] and a Schaffner FN2070-12-06 AC/DC EMI Filter [44]. These can
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Figure 2.5: Actuator 1 Calibration Curve (Top Left). Actuator 2 Calibration Curve

(Top Right). Actuator 3 Calibration Curve (Bottom Left). Actuator 4 Calibration

Curve (Bottom Right).

be seen in figure A.3.

2.1.3 Accelerometers

The accelerometers are Analog Devices ADXL203 2-axis accelerometers with ±1.7g

range [2] [1], and a picture can be seen in figure A.4.

The physical connection between the accelerometer and the breakout board for

the DAQ proved to be sensitive to signal compromise. Displacing a wire connected to

the board slightly might lead to significant shifts in the measured output signal due

to grounding issues. Thus, a need to resolve potential grounding or impedance issues

arose which was solved by experimentally connecting to different inpout channels

on the DAQ unit and determining the best behaving input channels. In addition,

before each set of experiments, the system would be initialized and held neutrally to
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determine good signal quality without drift.

Figure 2.6: Accelerometer Output Drift Test.

A separate calibration process was initiated for the accelerometers by fixing each

of them to a machined block and taking static voltage readings at 90◦ increments

corresponding to ±1g and neutral. Taking the static readings allowed for calibration

gains to be set in the control environment.

2.1.4 Force Sensors

The force sensors present at the end of the actuator stingers are PCB 208A03 force

sensor with 500lbf range [38] [40]. While not used in closed loop control, these sensors

provided validation of the accelerometer readings. The force sensors are connected to

a Hewlett Packard US35375424 E1432-61600 voltage breakout unit [22] and Vishay

2120A signal conditioning module [39]. Depictions of the force sensor and the voltage

breakout and conditioner module can be viewed in figure A.5.

A separate force sensor was used on a test stand for calibration of the linear

actuators. This force sensor is an Interface, Inc. WMC-5 force gauge [26].

2.1.5 Other Hardware

The system also utilizes a separate power supply for a dedicated 5V line to the DAQ

system and the accelerometers. The power supply is a Power Designs, Inc. TP330

voltage generator. In addition, there was a Rigol DS1000D oscilloscope used to test

and validate measured output signals of the accelerometers [41] [42]. This oscilloscope

was used to calibrate each accelerometer to obtain the V/g gain coefficients.
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The test fixture used to calibrate the accelerometers was a simply machined block

with mounting interface for each accelerometer that allowed for separate 90o rotation.

The test stand for calibrating the linear actuators was 3D printed with some simple

hardware including a male thread adapter allowing for a nut and washer to be fastened

to one end.

2.2 Experimental Testing Procedures

Over the course of experimental testing, many different series of tests were per-

formed on the Iron Bird article. We will review some of these tests and the necessary

procedures in this section.

2.2.1 Adjusting the Actuators

In any testing involving exciting the Iron Bird, it proves necessary to align the

actuators in such a way as to ensure that the rod rests mid stroke within the actuator

body, this ensures the full dynamic range of each linear actuator is available, and it

correlates with the state in which the actuators were calibrated. The adjustment of the

stroke position was accomplished with threaded spacers which connected two separate

stingers, one stinger to the force sensor attached to the Iron Bird wing and one stinger

threaded into the actuator. Whenever the mass configurations were changed, the

vertical position of the Iron Bird would also shift which meant the actuators needed

to be readjusted for proper alignment.

Each actuator rested in a custom 3D-printed housing which could be propped up

on metal plates as necessary for added height. The housing could also be adjusted

for rotation in order to ensure that the stingers were in line and normal to the wing

surface which is very important to preserving the mechanical transfer of force without

bending during testing operation. The spacer was torqued with two separate nuts

to ensure resilience to vibration without being too much of a hassle to readjust and

reposition.

2.2.2 Connecting the DAQ

When wiring the DAQ, we have already discussed the wire sensitivity when con-

necting the accelerometers. The wires connecting to the accelerometer were shielded

18



in a protective sleeving. However, the mechanical connection to the DAQ proved trou-

blesome and required care in reconnecting over each series of tests. In addition to the

accelerometers, the force gauges, the motor outputs, and the encoder signals were all

wired into the DAQ system. Some of the channels needed to be changed in order to

separate the signals; in certain cases correlation in a strong signal could be seen with

a weaker signal if the two channels featured a significant degree of crosstalk.

2.2.3 Simulink Realtime Environment

The Simulink Realtime environment was constructed much in the same way as a

standard Simulink model would be built, the key difference being that there is both a

build computer and a target computer. The build computer features a Windows OS

environment running MATLAB r2017a. The realtime model is constructed in Simulink

in the same way a normal model would be built. The the measured outputs originate

from an ”Analog Input” block and then the system connects the control/disturbance

inputs to the ”Analog Output” block for the PCI 6229 card using the built-in library.

Transforming the signals in between involves implementing all necessary gains, LTI

system blocks, lookup tables, filters, and mathematical operations.

From the analog output, we take the measured accelerometer voltages and trans-

form them to proper units through the derived accelerometer gains taking units from

V to in/s2. This signal is then passed to the controller LTI block. The output of this

block will be the control inputs, so these input signals need to be passed through an

appropriate lookup table based on the calibration testing of each actuator. The output

signal from the lookup table will then be connected to the PCI 6229 analog output

block and drive the control actuators through the motor amplifier. The disturbance

signal is transformed similarly using their own lookup tables. The disturbance signals

are generated based on some signal formulation depending on the appropriate test,

i.e. chirp, white noise, or step. These manual signal definitions for testing may also be

applied to the input actuators and they were utilized during the system identification

testing to formulate an experimental plant model for comparison to the FEA derive

model.

The system was sampled at 500Hz. Each control model was discretized when im-

plemented into the Simulink Realtim control environemnt. Once the model is designed

and implemented into the discrete time environment, the build computer packages the

control model and sends it to the target computer which is running within a MATLAB
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Simulink Realtime r2017a OS environment.

An overview of the Simulink Realtime layout can be seen in figure A.8. An example

of the experimental scope layout monitored by the target computer during testing can

be seen in figure A.9.

2.2.4 System Identification/Parameter Estimation Testing

In order to obtain an experimental-based model of the system for comparison to

the FEA derived model, the input actuators were given individual chirp excitation

signals. This meant that the frequency content for each transfer function from input

to output could be obtained experimentally. With each test run, the system would

be driven by a linear chirp signal. This was performed with both inputs on each

configuration of the system.

In the case of the single input chirp tests, system identification transfer function

estimation techniques were utilized with the MATLAB system identification toolbox

and instrumental variable initialization in order to obtain experimentally derived sys-

tem parameters [33] [34]. These poles and frequencies which were of interest were

defined in such a way that all transfer functions shared the same denominator, i.e.

only the zeroes differ between input to output. Frequency spectra analysis is also a

useful tool for analyzing experimental data for comparing to the derived modes.

The primary details which were most important was the structure of the poles.

More specifically, it was crucial to evaluate the change in natural frequency as a

means to provide a structural uncertainty model. Therefore, the experimental chirp

results were processed via the MATLAB system identification toolbox [34] for each

input signal to configuration. In cases where some of the resonant modes were un-

clear, multiple transfer functions were derived for the separate output channels and

compared in order to establish congruence in the denominator terms. The method of

identification was to follow the following procedure.

1. Remove any non-zero means in the output data

2. Apply a band pass filter limiting the range for frequency to 18rad/s to 180rad/s

3. Estimate a transfer function with 12 zeros and 12 poles utilizing instrumental

variable method of initialization
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4. As part of the estimation process, fit the model to the frequency range 18rad/s

to 180rad/s

Figure 2.7: System identification plot of measured compared to simulated for input 1

to output 1.

Following this procedure along with any other necessary corrections or truncation

of data allowed for data to be fit to a suite of experimentally derived models such as

the nominal input 1 to output 1 model with response shown in figure 2.7. In this case,

obtaining a perfect model which satisfies a certain error residual criterion is not the

primary objective so much as obtaining reasonable estimates of the natural frequencies,

especially as they change from configuration to configuration. In this sense, we are

employing system identification tools to perform parameter fitting, because we have

some defined structure for the model and wish to derive the parametric changes of

frequency with the differing mass loads. This process requires a comparison of models

so as to validate the derived frequencies from each one. The damping coefficients

which will be used for the experimentally derived model are the same as those for the

FEA based model.
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Table 2.1: Experimentally derived natural frequencies per configuration.

Mode Number Natural Frequency (ωn) [Hz] Damping Ratio (ζ)
Nominal Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

1 5.3 4.65 4.55 4.5 4.7 4.7 5 0.12
2 7.2 6.825 6.775 6.725 6.875 6.875 7.1 0.12
3 11.78 10.35 10.35 10.03 9.87 11.46 10.34 0.08
4 12.73 12.25 11.78 10.35 12.41 13.05 11.62 0.08
5 23.5 23.25 19.75 19 20.75 21 20.75 0.02
6 29 26 23.5 23.5 27 25 25 0.02

2.2.5 Control Testing

Throughout the design and experimental process, many tests were performed on

the system with various control designs in place. Common tests included step re-

sponses to make sure the controller was stable, sine dwells to test how well a con-

troller attenuates modal disturbance, chirp bursts to test the overall performance of

a controller across a broader frequency spectrum, and white noise tests for the same

reason.

Description of Testing Signals:

1. Symmetric Sine Burst: Both disturbance actuators are driven by the following

sinusoidal signal

d(t) = sin(sin(t) · t) (2.1)

2. Asymmetric Sine Burst: The disturbance actuators are driven by opposing si-

nusoidal signals which are similar to the symmetric case but opposite

d1(t) = sin(sin(t) · t)

d2(t) = sin(sin(t) · (t+ π)) (2.2)

3. White Noise: The disturbance actuators are driven by random white noise Gaus-

sian signals with sampling time equal to the system sampling time of 0.002Hz

d1(t) = N (0, 1)

d2(t) = N (0, 1) (2.3)

2.3 Simulation and Design Environment

A separate workstation was utilized for control model design and simulation. This

consisted of MATLAB with Simulink.
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Figure 2.8: Simulink Environment (Top Level).

MATLAB scripts were developed in order to build and evaluate controllers based

on standard criteria for evaluation. The project utilized the control system toolbox

and the robust control toolbox for control design. A Simulink model was developed in

order to implement control designs and test plant dynamics in the presence of error.

An overview of the top level Simulink block diagram is seen in figure 2.8.

A simulation environment was developed in order to test lower order models against

a higher order plant in the presence of noise. One of the more useful developments for

creating a simulation environment was the ability to derive the approximate damping

ratios of the system for each mode by comparing the experimental step response of

the system against the simulated step response of the full model. By measuring the

settling time and counting the number of peaks, a reasonable estimate of the system

damping was obtained and implemented into subsequent models with a comparison

shown in figure 2.9.

Similar methodology was used to determine an appropriate process covariance

matrix. The accelerometer covariance data was expressed as a diagonal covariance

matrix for the measurement data. With this and the system model, an estimator was

formulated using an arbitrary weighting of the process noise covariance. A step input
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Figure 2.9: Experimental step response (left). Simulation step response (right).

Figure 2.10: State error from step response with high process noise covariance (left)

and balanced coavariance (right).

was applied to the system and the state estimator was observed and directly compared

to the true states in simulation. If the process covariance was too highly weighted, the

system would be too sensitive to noisy measurements, and the state error would not

settle. So, it was balanced appropriately in order to obtain acceptable settling time

for steady state error in the estimator as seen in figure 2.10.
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Chapter 3

Model

3.1 Deriving the State Space Plant Model

To construct a plant model, the system is assumed to be a multi-degree of freedom

system composed of as many points as the FEM requires. For a generalized equation

of motion in multiple degrees of freedom, we will state an equation of motion then

apply a modal coordinate transformation to achieve a MIMO state space model [16].

[M ]ẍ+ [C]ẋ+ [K]x = {F} (3.1)

In the above equation, x is the displacement vector of each point, M represents

the mass matrix of the system, C represents the damping matrix of the system, K

represents the stiffness matrix of the system, and F is the set of external forces applied

at each point. By expressing the equations of motion in this generalized form, it is

now possible to express an eigenvalue problem for an eventual change of coordinates

application to express our system in terms of modal coordinates.

[[K]− λ[M ]]x = 0 (3.2)

What is convenient for modal analysis is the fact that the eigenvalues of this

solution are directly related to the natural frequencies of the harmonic modes of the

system. In matrix form, the eigenvalues become a diagonal matrix of the square of

the natural frequencies of each mode.
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[Ω̄2] =


ω̄2

1,1 0 · · · 0

0 ω̄2
2,2 · · · 0

...
...

. . .
...

0 0 · · · ω̄2
n,n

 (3.3)

The eigenvectors corresponding to each eigenvalue can be defined.

[V ] =
(
{v1} {v2} · · · {vn}

)
(3.4)

By solving 3.2 in terms of the eigenvalues 3.3 and eigenvectors 3.4, it can be shown

that each distinct mode will be independent from one another due to orthogonality

which will result in completely diagonal modal mass and stiffness matrices under

the correct manipulation using eigenvectors and eigenvector transposes, where the

transpose is denoted in the form A∗.

[K][V ] = [M ][V ][Ω̄2]

[K]{vi} = λi[M ]{vi}

{vj}∗[K]{vi} = λi{vj}∗[M ]{vi}

{vi}∗[K]{vj} = λj{vi}∗[M ]{vj}

(λi − λj){vi}∗[M ]{vj} = 0

{vi}∗[M ]{vj} = 0 for i 6= j

{vi}∗[M ]{vj} = m̄i,i for i = j

{vi}∗[K]{vj} = k̄i,i for i = j

Therefore, because non-zero values exist only when the row and column indices are

equal, the modal mass and modal stiffness matrices can be defined as the following

diagonal matrices.
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[V ]∗[M ][V ] = M̄ =


m̄1,1 0 · · · 0

0 m̄2,2 · · · 0
...

...
. . .

...

0 0 · · · m̄n,n

 = I (3.5)

[V ]∗[K][V ] = K̄ =


k̄1,1 0 · · · 0

0 k̄2,2 · · · 0
...

...
. . .

...

0 0 · · · k̄n,n

 = [Ω̄] (3.6)

Note that the normalized mass matrix ends up being an identify matrix, and the

normalized stiffness matrix ends up being equal to the diagonal natural frequency

matrix.

The Modal coordinate transformation can be performed with the following change

of variables.

x = [V ]x̃ (3.7)

Applying this change of variables and premultiplying 3.1 by [V ]∗ leads to modal

coordinate form.

[V ]∗[M ][V ]¨̃x+ [V ]∗[C][V ] ˙̃x+ [V ]∗[K][V ]x̃ = [V ]∗{F}

[M̄ ]¨̃x+ [C̄] ˙̃x+ [K̄]x̃ = [V ]∗{F} (3.8)

Note that C̄ is not necessarily diagonal as it depends on how the damping is

modeled. For simplicity and to draw a comparison to harmonic motion, it is best to

model this relative to the natural frequency of each mode. It becomes possible to

formulate a state space equation by rearranging terms and premultiplying by [M̄ ]−1.

˙̃x =
(

0 I
)(x̃

˙̃x

)
(3.9)

¨̃x = −[M̄ ]−1[C̄] ˙̃x− [M̄ ]−1[K̄]x̃+
(

[M̄ ]−1[V ]∗
)
{F}

¨̃x =
(
−[M̄ ]−1[K̄] −[M̄ ]−1[C̄]

)(x̃
˙̃x

)
+
(

[M̄ ]−1[V ]∗
)
{F} (3.10)
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By combining 3.9 and 3.10, the state space matrices for A and B can be defined.

(
˙̃x

¨̃x

)
=

(
0 I

−[M̄ ]−1[K̄] −[M̄ ]−1[C̄]

)(
x̃

˙̃x

)
+

(
0

[M̄ ]−1[V ]∗

)
{F} (3.11)

Given the fact that [M̄ ] and [K̄] are both diagonal, the diagonal matrix of [Ω̄2]

can be substituted, and to model the damping, a diagonal matrix representing the

product of 2[Z̄][Ω̄] can be used in place of [M̄ ]−1[C̄]. For formulating B, a subset of

the applied forces can be taken at the points where control inputs exist. Consider a

subset of F consisting of two force values defined at the points in space where the

control inputs exist on the physical article. Due to the fact that all other values of

F will be zero and the fact that F is multiplied into the matrix consisting of rows of

transverses of the eigenvectors, it is possible to take a subset of indices over the vector

of F and over each vector of {u}T corresponding only to the control input locations

to fully represent B.

[Z̄] =


ζ̄1 0 . . . 0

0 ζ̄2 0
...

. . .
...

0 0 . . . ζ̄r



(
˙̃x

¨̃x

)
=

(
0 I

−[Ω̄2] −2[Z̄][Ω̄]

)(
x̃

˙̃x

)
+

(
0

[M̄ ]−1[vin]∗

)(
Fin

)
(3.12)

In order to define the state space matrices of C and D, a reverse change of variables

needs to be applied to 3.12 using the inverse of 3.7 as shown below. This results in

a mapping of the modal coordinates back to the displacement state representation

by premultiplying with the appropriate set of output eigenvectors. The input matrix

already features an eigenvector mapping from input force to modal force.
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x̃ = [V ]−1x

˙̃x = [V ]−1ẋ

¨̃x = [V ]−1ẍ(
ẋ

ẍ

)
= [V ]

(
0 I

−[Ω̄2] −2[Z̄][Ω̄]

)(
x̃

˙̃x

)
+ [V ]

(
0

[M̄ ]−1[vin]∗

)(
Fin

)
Taking only the acceleration component to define the outputs at the accelerometer

sensors and defining a subset where those accelerometers are located yields a further

condensed state space equation for C and D.

(
ẍout

)
=
(

[vout]
)(
−[Ω̄2] −2[Z̄][Ω̄]

)(x̃
˙̃x

)
+
(

[vout]
)(

[M̄ ]−1[vin]∗
)(

Fin

)
(3.13)

To put the state space equations together, take r modes from the set of all modal

states p and express 3.12 and 3.13 with the r modal states and the r modal state

derivatives which implies a total number of states equal to 2r. Also, express m outputs

for the number of accelerometers used as output signals in feedback as well as n inputs

for the number of control surface inputs used in the feedback control.

(
˙̃xr

¨̃xr

)
=

(
0 I

−[Ω̄2
r] −2[Z̄r][Ω̄r]

)(
x̃r

˙̃xr

)
+

(
0

[M̄r]
−1[vn]∗

)(
[un]
)

(
ẍm

)
=
(
−[vm][Ω̄2

r] −2[vm][Z̄r][Ω̄r]
)(x̃r

˙̃xr

)
+
(

[vm][M̄r]
−1[vn]∗

)(
[un]
)

(3.14)

We note in our derivation we shall redefine x̃ = x and x = y to realize our classical

state space definitions of state and output variables.

ẋ = Ax+Bu

y = Cx+Du(
ẋr

ẍr

)
=

(
0 I

−[Ω̄2
r] −2[Z̄r][Ω̄r]

)(
xr

ẋr

)
+

(
0

[M̄r]
−1[vn]∗

)(
[un]
)

(
ym

)
=
(
−[vm][Ω̄2

r] −2[vm][Z̄r][Ω̄r]
)(xr

ẋr

)
+
(

[vm][M̄r]
−1[vn]∗

)(
[un]
)
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Another useful result is the relation of state to output eigenvectors and input to

state eigenvectors. We are able to define them in terms of the realized state space

model, and the relation simplifies due to the [M̄−1] = I. Note the use of the Moore-

Penrose Pseudoinverse, with the form A†.

A =

[0 I
]

AL


B =

(
0

BL

)
Vin = BL (3.15)

Vout = C · A†L (3.16)

3.2 Realizing the Model

With the derived state space framework, we now utilize FEA software to analyze a

solid model of the Iron Bird structure in order to obtain the modal eigenvalue solution

of the system.

3.2.1 Finite Element Analysis

The dynamical model of the Iron Bird test article was obtained through a finite

element study using NX Simcenter by Siemens. The model of the Iron Bird article was

converted from a solid model from previous work. With this solid model, it becomes

possible to obtain a shell model of the article using midplanes with assigned thickness.

Previous work performed on this test article model to provide the solid model as

well as element partitions of the model based on future aerodynamical analysis to be

performed on certain sections of the wings and fuselage. The previous analysis and

study was discussed in the Briggs paper [6].

Starting with the model of the Iron Bird, the system was constrained using three

springs at each leg using CELAS elements. Assigning correct stiffness based on the

material, thickness, and winding of the springs, the model was then meshed whilst

ensuring proper mesh size and geometry. In certain cases, mesh size needed to be

adjusted for certain difficult features of the model. Once the model has been meshed

and constrained, then applying material and feature stitching leads to a complete
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FEM. There was also the addition of ballast material and weight which was included

in the final models.

In addition to modeling the ballast weight for the model, each configuration fea-

tured sand bags loaded on the wings in varying positions. These configurations were

all each modeled. The results of the eigenvalue analysis provided the natural frequency

with each mass-loaded condition to gain a sense for how the natural frequency changes

from a model perspective. The actual models of the configurations could be utilized

in theory to develop a suite of models for each configuration, however for this partic-

ular project, doing so would prove futile in obtaining the desired results, because the

nominal model deviates from the actual test article by a significant factor. In fact, the

fully loaded condition of the test article matched closest to the nominal model but not

quite, indicating a deviation which exceeds the entirety of the structured uncertainty.

This means that the unloading the mass will cause the controllers to perform worse

than loading the mass, an inverted trend from the expectation of the model. The

results of the model can always be tuned according to parameters established with

system identification methods of the test article.

Figure 3.1: CELAS element constraints located on each foot.

The finite element modeling was performed through Siemen’s NX NASTRAN

with Simcenter as the postprocessor [25]. The spring elements were represented with

CELAS elements in NASTRAN using the proper stiffness values attached at each foot

as seen in figure 3.1. The ballast weight and wing loading weights of the system were

modeled using simple attached mass elements.

SOL103 was used to solve the FEA and provide associated eigenvalue/eigenector

data with generalized mass and stiffness matrices [24]. From the solution data, the
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Figure 3.2: Iron Bird First Bending Asymmetric Mode FEA Solution.

rigid body modes are discarded, and the wing bending and torsional modes are in-

cluded in the constructed model using IMAT functionality [4].

The damping is not derived from the FEA, but it is obtained from measuring the

system response dynamics to a step input. The dynamics are tuned in simulation to

obtain correlated response data. The rigid body modes are excluded from the model.

For control design, analysis, and implementation, we take the nominal condition to

be zero added mass loading, and we consider a full state model with 6 total modes with

two separate reduced models of 2 modes and 4 modes. These 6 wing modes are first

bending symmetric, first bending asymmetric, first torsional symmetric, first torsional

asymmetric, second bending symmetric, and second bending asymmetric respectively.

In any case, the finite element analysis provides eigenvalue related data which in

turn provides information about the associated generalized mass matrix, generalized

stiffness matrix, and generalized eigenvalue matrix. However, the analysis does not

perform any sort of modeling of system damping, which is a source of considerable

deviation.
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Table 3.1: Model derived natural frequencies per configuration.

Mode Number Natural Frequency (ωn) [Hz] Damping Ratio (ζ)
Nominal Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

1 3.788 2.53 2.42 2.43 2.87 2.80 3.30 0.12
2 5.25 4.15 4.14 4.09 4.15 4.37 5 0.12
3 14.67 10.42 9.33 9.40 10.95 12.10 10.88 0.08
4 14.79 10.46 9.37 9.43 11.15 12.23 10.99 0.08
5 20.26 16.71 13.59 12.20 15.66 13.93 14.49 0.02
6 21.45 16.82 14.23 13.23 15.91 14.66 15.04 0.02

3.2.2 Model Results

With the finite element data available for processing, the need to organize the data

into a state space model arises. To accomplish this, the data was accessed and writ-

ten into a MATLAB environment using the ATA proprietary software package called

IMAT. Reading the generated .op2 results file and saving the extracted MATLAB

data package to the workspace, it is simply a matter of finding the necessary data and

organizing it into the state space model derivation discussed. Using this state space

formulation, the A and B matrices complete the modal system of equations which can

be extended indefinitely for any number of known modes. In this case, a full model of

6 modes is obtained which leads to a 12 state system. The A matrix is constructed

using diagonal matrices of ones, zeros, ω2
ns, and 2ωnζs. The B matrix is constructed

using the associated eigenvectors for each included mode based on the location of the

control input actuator stingers on the FEM. This matrix maps a force input from the

actuator into a modal force equivalent that directly affects the system states.

The C matrix is constructed using the eigenvectors of the derived system modes which

map modal amplitude to output force at each of the four accelerometer locations on

the FEM. The D matrix is constructed using the eigenvectors of the derived modes

which map the modal force values to the output forces at each of the four accelerom-

eter locations on the FEM.

3.2.3 Analysis of the System Modes/States

We will consider the full 12 state system for the following analysis of the FEA pro-

vided model. To start with, we want to identify the controllability, observatbility, and
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Hankel singular value matrices of this system and determine if this model is suitable

for closed loop control.

Figure 3.3: Hankel Singular Values.

Starting with the Hankel singular values, it is clear that the first four modes con-

tribute the most to the overall input to output relation of this system. After the first

four, there is a sharp dropoff followed by a steady decline. From plotting the singular

values, it might be feasible to reduce this model to an eight or even four state realiza-

tion. This will be done when formulating a model for control design.

Continuing, we will next calculate the controllability matrix and the observability ma-

trices. In both cases, we find that the rank of these matrices is 11 instead of 12. This

means that there is rank deficiency which indicates an unobservable and uncontrol-

lable state. We note that the unobservable and uncontrollable mode are stable, and

therefore the system is stabilizable and detectable [21].

One way to work around this unobservable/uncontrollable state is through balanced

34



truncation and reducing the number of states in the system. For instance, it is pos-

sible to reduce the states from 12 to 8 using a balanced truncation method of model

order reduction. One key effect of this method however is that the dynamics of the

system now become interlinked in the sense that the reduced modes now have dy-

namical properties from the higher order modes which have now been coupled with

the new modes of the lower order realization. The process of model order reduction

involves obtaining the ordered Hankel singular value matrix with associated eigenvec-

tors. Then, by eliminating the eigenvalues below a certain threshold, a new set of

state space matrices may be obtained which correspond to the reduced state space

modes.

3.3 Uncertainty Modeling

Beginning with representing the plant in transfer function form, we obtain the

following expressions for input j to output i for each mode k.

Pi,j = di,j +
r∑

k=1

bk,jci,k + bk,jci,r+ks

s2 + 2ζkωk + ω2
k

These bk,j, ci,k, ci,n+k, and di,j terms are elements derived from the state space

realization of the system. To further define these coefficients in terms of the modal

components, a few more definitions will prove helpful. We utilize elements from the

previously derived input and output eigenvectors with vi,k ∈ [~vi] ∈ [V ] and vk,j ∈
[~vj]
∗ ∈ [V ]∗ respectively. Note that [~vi] will be horizontal while [~vj]

∗ is vertical. In

addition, we define natural frequency values ω̄k ∈ Ω̄ and mass values m̄k ∈ M̄ . Note

that the generalized mass matrix yields values identity, so all individual mass values

will be equal to 1. The damping terms follow a similar structure and are assigned

based on the mode ζ̄k ∈ Z̄.
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bk,j = [m̄k]
−1v̂k,j

ci,k = −ṽi,k[ω̄2
k]

ci,k+n = −2ṽi,k[ζ̄k][ω̄k]

di,j =
r∑

k=1

ṽi,k[m̄k]
−1v̂k,j

di,j,k = ṽi,k[m̄k]
−1v̂k,j

We can also express uncertainty in terms of a delta term |δ| ≤ 1 for each mode,

noting that the maximum structured uncertainty for this plant will be determined

through modeling and system identification methods for each mode. We therefore

define a nominal ω̄k and express our actual frequency as ωk = ω̄k (1 + Ukδk). We

are also able to obtain a linearized ω2
k as ω2

k = ω̄2
k (1 + 2Ukδk). In this case we have

represented the uncertainty coefficient for a particular mode as Uk, because we are

modeling the structured uncertainty with a single δ term under the belief that all the

system modes will deviate in a semi-linear fashion with respect to the physical interac-

tion of adding mass loads to the wings. We will discuss this behavior later this chapter.

Pi,j = [~vi][~vj]
∗ +

r∑
k=1

−vi,k[ω̄2
k]vk,j − 2vi,k[ζ̄k][ω̄k]vk,js

s2 + 2ζ̄kω̄k + ω̄2
k

Pi,j =
r∑

k=1

[
vi,k[s

2 + 2ζ̄kω̄ks+ ω̄2
k]vk,j

s2 + 2ζ̄kω̄k + ω̄2
k

+
−vi,k[ω̄2

k]vk,j − 2vi,k[ζ̄k][ω̄k]vk,js

s2 + 2ζ̄kω̄k + ω̄2
k

]
Pi,j =

r∑
k=1

vi,kvk,js
2

s2 + 2ζ̄kω̄ks+ ω̄2
k

Pi,j =
r∑

k=1

vi,kvk,js
2

s2 + 2ζ̄kω̄ks(1 + Ukδk) + ω̄2
k(1 + 2Ukδk)

Pi,j =
r∑

k=1

vi,kvk,js
2

s2 + 2ζ̄kω̄ks+ ω̄2
k + 2Uk(ζ̄kω̄ks+ ω̄2

k)δk
(3.17)

From a modal coordinate perspective, each mode is independent of one another

when it comes to individual contribution from input to output due to the diagonaliza-

tion of normalized system matrices derived from the eigenvalue problem solution [16].
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So, the modes can be isolated in this summation sequence. Denoting the plant trans-

fer function from input j to output i through mode k, the individual modal transfer

function can be expressed with three subscripts. We can obtain the components of

our multivariable transfer function Q through algebraic manipulation which applies

the same transformation of the Woodbury Matrix Identity to the 1× 1 case.

Pi,j,k = vi,k
ãi,j,k(s) + b̃i,j,k(s)δk

c̃k(s) + d̃k(s)δk
vk,j

Pi,j,k = vi,kãi,j,k(s)

(
1

c̃k(s)
− 1

c̃k(s)

)
δk

(
1

d̃k(s)
+

1

c̃k(s)
δk

)−1
vk,j
c̃k(s)

...

+ vi,kb̃i,j,k(s)δk

(
c̃k(s) + d̃k(s)δk

)−1

vk,j

Pi,j,k = vi,k
ãi,j,k(s)

c̃k(s)
vk,j + vi,k

(
b̃i,j,k(s)−

ãi,j,k(s)d̃k(s)

c̃k(s)

)
δk

(
1 +

d̃k(s)

c̃k(s)
δk

)−1
vk,j
c̃k(s)

Pi,j,k = Qi,j,k
22 +

(
Qi,k

21

)
δk
(
1 +Qk

11δk
)−1

Qk,j
12 (3.18)

We note that b̃i,j,k = 0 which simplifies the evaluation of Q from the listed quad-

rants in equation 3.18.

Qk
11 =

2Uk(ζ̄kω̄ks+ ω̄2
k)

s2 + 2ζ̄kω̄ks+ ω̄2
k

Qi,k
12 =

vk,j
s2 + 2ζ̄kω̄ks+ ω̄2

k

Qk,j
21 = −vi,ks

2 · 2Uk(ζ̄kω̄ks+ ω̄2
k)

s2 + 2ζ̄kω̄ks+ ω̄2
k

Qi,j,k
22 =

vi,kvk,js
2

s2 + 2ζ̄kω̄ks+ ω̄2
k

As discussed before regarding uncertainty structure, each individual modal fre-

quency shifts under a somewhat common trend with respect to added weight such that

a simplification can be made by assuming one δ which groups the individual modal δk

terms under one umbrella variance term by explicitly assigning Uk coefficients to each

individual transfer function. Because we have unified the modal components under a

single δ term, we will assign one δ term to an identity matrix.

Expressing the total LFT in terms of two inputs, four outputs, and a single modeled

mode, the structure will look like equation 3.19. The full LFT model is closed in
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δk

Qk
11 Qk,j

12

Qi,k
21 Qi,j,k

22

dk

zk

yi,kuk,j

Figure 3.4: Generalized LFT Strucuture.

m−1
k vk,j

1
s

1
s

2ζkωk

ω2
k

2

vi,k

Ukδk

Uk,j(s)

Yi,k(s)

Zk(s)

Dk(s)

−

Figure 3.5: Block Diagram Representation of Uncertain Modal System.

feedback using standard notation, F (A,∆) for closing A with ∆. In this case, F (Q,∆)

with ∆ = δ which results in the closed LFT per figure 3.6. Of course, by including

additional modes, Q qill change based on the superposition of each modal contribution.

Extending the LFT to include each modal contribution as a separate signal with

multiple zk outputs and dk inputs will look like figure A.18. In order to realize this, a

diagonal structure of δ must be imposed wherein ∆ = δ · I, |δ| ≤ 1. This diagonal

structure will be utilized as the LFT structure for the purposes of comparing models

and determining performance and stability robustness. We can actually formulate the

Q transfer function in matrix form for all modes considered using the same manipu-
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lation as before, except explicitly defining each modal component within a matrix .

This derivation is left to appendix section C.1.

z1

y1

y2

y3

y4


=



Q11
11 Q11

12 Q12
12

Q11
12 Q11

22 Q12
22

Q21
12 Q21

22 Q22
22

Q31
12 Q31

22 Q32
22

Q41
12 Q41

22 Q42
22




d1

u1

u2

 (3.19)

δ

Q11
11 Q11

12 Q12
12

Q11
12 Q11

22 Q12
22

Q21
12 Q21

22 Q22
22

Q31
12 Q31

22 Q32
22

Q41
12 Q41

22 Q42
22

d1

z1

y1

y2

y3

y4

u1

u2

Figure 3.6: LFT structure with single disturbance.

3.3.1 LFT Formulation and Derived Uncertainty Description

For this study, we choose to measure the change in the natural frequencies of each

mode with respect to the moment of the added mass in each configuration. This should

yield a reasonable interpretation of structured uncertainty for each mode. We look

back to the uncertainty LFT formulation in equation 3.17 and update the expression

based on measured data of our system.

In this case, we denote an index i for output number, j for input number, and k

for mode number. The equation is in terms of modal natural frequencies ωk, damping

ratios ζk, uncertainty coefficient Uk, and the correct state space coefficients from B,

C, and D. The uncertainty coefficients are obtained by calculating the frequency over

all the configurations and obtaining the maximum percentile change from the nominal

frequency. This was done via spectral analysis of the frequency responses of the system

39



Figure 3.7: Variance in Natural Frequency with Added Mass from Experimental Data.

to chirp input signals and white noise input signals under the different mass-loading

configurations. Taking all the data together, a trend was linearized with respect to

increasing moment on the wing taken from the centerline of the fuselage through a

least squares minimization calculation per equation 3.20.

θk =

(
ak

bk

)
=

(
7

∑6
p=0 τk,p∑6

p=0 τk,p
∑6

p=0 τ
2
k,p

)−1( ∑6
p=0 ωk,p∑6

p=0 τk,pωk,p

)
(3.20)

However, the mass loadings vary between leading edge and trailing edge loading.

Since the moment of the mass from the centerline of the fuselage remains the same,

the loading difference will affect the torsional modes much greater than the bending

modes. In this regard, we obtain only an approximation of a trend in uncertainty for

all six modes with regards to a single umbrella delta term. From the experimental

linear fit, we obtain values for the first six modal uncertainty coefficients. We also

obtain uncertainty coefficients for the model based linear fits. The plots of these fits

are shown in figure 3.7.

Uexp = [−0.1387, −0.0588, −0.1289, −0.1662, −0.2106, −0.1957]

Umod = [−0.3483, −0.1897, −0.3633, −0.3591, −0.4094, −0.3945]
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We note in the experimentally derived coefficients that we expect a maximum of 21%

deviation in the modal natural frequency value whereas we might expect up to a 41%

shift in modal frequency for the model derived uncertainty. For control design and

validation, we will choose to compare to the experimentally derived structure.

Figure 3.8: Modeled LFT Uncertainty Bode Plot.

Combining the experimentally-derived uncertainty coefficients with each of the

modal damping and natural frequency terms along with the appropriate eigenvector

data matching each mode to input/output allows for us to build an uncertainty model

to truly test the robustness limits of our controller designs.

The modal, input, and output data is applied to equation 3.17 to obtain an ex-

tended Q matrix for use in expressing an LFT. Upon closing the LFT, the uncertainty

description portrays the different mass loading conditions for each |δ| ≤ 1 and is shown

graphically via bode plot in figure 3.8. The uncertainty description also accounts for

the negative mass loading condition in which the natural frequencies of the modes

begin to increase instead, thus making the model twice as conservative as necessary
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in theory. However, this turned out to be beneficial due to the discrepancy between

model and physical system as the experimental results will show. However, it also

means that any sort of H∞ optimized controller for this LFT model will be required

to cover a broad variance in uncertainty such that the closed loop performance will be

optimized over the entire spectra of shifting frequencies.

Using this new uncertainty model to assess the performance of each controller

design. We intend to validate a linear quadratic design, a linear quadratic design with

high frequency rolloff, and a mixed sensitivity design. If we intend to focus more

on nominal performance with the linear quadratic design and more with stability

robustness with the mixed sensitivity, we should obtain the best robust stability and

robust performance with the mixed sensitivity design when we test the off-nominal

configurations.
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Chapter 4

Controls

In this chapter, we will go through the controller design process by reviewing some

of the derivations from standard literature to give context for the control designs used

for implementation on the Iron Bird System.

4.1 Building the Controller

For this experiment, we consider a classic control design approach by modeling the

Iron Bird as an LTI system with actuator inputs producing a force on the wings and

accelerometer outputs reading acceleration at the wingtips. Thus, for a simple open

loop block diagram, we generalize the input to output dynamics with a plant transfer

function with a block diagram representation in figure 4.1.

P
U(s)

D(s)

Y (s)

Figure 4.1: Open Loop System

By generalizing this as an LTI sytem, we can employ linear control modeling meth-

ods to derive a state space realization of the system. This is an especially important

process for eventual MIMO control design with linear-quadratic related methods and

linear matrix inequality problem formulations. We see in figure 4.2 a block diagram

representation of the open loop process with state space A, B, C, and D matrices.
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B
∫

C

A

D

U(s)

D(s)

Y (s)

Figure 4.2: Open Loop System State Space

ẋ = Ax+Bu

y = Cx+Du

With a state space realization of our system, it now makes sense to employ a

standard linear quadratic design methodology to derive a MIMO controller design.

We accomplish this through the formulation of an infinite horizon cost function which

we intend to minimize. We note that in closed loop, we define the input in terms of

state feedback u(t) = Kx(t).

J =

∫ ∞
0

(x(t)∗Qx(t) + u(t)∗Ru(t)) dt

=

∫ ∞
0

x(t)∗ (Q+K∗RK)x(t)dt

= x∗0Xx0

In this case, X represents the solution of a corresponding Lyapunov equation. By

isolating the K term of the equation, one choice of K can be utilized to reduce the

equation further.
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(A+BK)∗X +X(A+BK) +Q+K∗RK = 0, R > 0

A∗X +XA−XBR−1B∗X +Q+ (XBR−1 +K∗)R(R−1B∗X +K) = 0

K = −R−1B∗X

With this optimal choice of K, we obtain the Algebraic Ricatti Equation ARE for

X. The result of this choice in K and X is such that A+BK is Hurwitz and the cost

function J is minimized.

A∗X +XA−XBR−1B∗X +Q = 0

With this in mind, we satisfy all necessary conditions to solve the state feedback

problem formulation in such a way to stabilize the close loop system (open loop already

stable) and minimize the cost function based on two separate covariance matrices, Q

and R. With this convenient problem formulation, we treat these two matrices as

design parameters to adjust the expected closed loop system performance.

With our selection of Q, we can adjust the weighting placed on the associated state

deviation. If we emphasize minimization of state deviation, more control authority

is required to drive the system to the necessary dynamical response. Conversely,

if we wish to limit the control input, perhaps to avoid saturation, then we utilize

the weighting placed on R. Balancing these two will mean a tradeoff between nominal

performance and control input. In the case of this system, there is no issue of ensuring

stability, it comes down to the amount of added damping into the closed loop response

to attenuate modal disturbance. Ideally, we would like to obtain good added damping

across all modes which are included in the control model.

Now, consider the state space model with sources of noise.

ẋ = Ax+Bu+ w

y = Cx+Du+ v
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We also need to determine a way to filter out the effects of noisy outputs and noise

in the process associated with states. To this end, we employ a framework to develop

an optimal state estimator.

˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂

Due to the separation principle, we can design the state feedback gain and the

observer feedback gain separately then combine them afterwards taking the union of

eigenvalues for the complete system.

eigsys = eig(A+BK) ∪ eig(A+ LC)

For this estimator problem formulation, we will invoke knowledge of complemen-

tary systems and duality to reformulate the estimator problem in a similar structure

to regulator problem, except using the transpose of matrix A and the transpose of

matrix C in place of matrix A and matrix B respectively. For this problem, the de-

sired result is some observer matrix L which minimizes an associated cost function in

terms of the state error and the output covariance matrices.

We define the covariance for both the output noise v(t) and the process noise w(t).

We note that the output noise and process noise are independent and uncorrelated

white noise signals.

E(w(t)∗w(t)) = Wδ

E(v(t)∗v(t)) = V δ

E(w(t)∗v(t)) = 0

w(y) ≈ N (0,W )

v(t) ≈ N (0, V )

We can define the cost function in terms of the expected value of the square of the

state error. This allows us to conveniently define asystem to formulate a Lyapunov

equation which we can utilize to solve for an optimal observer gain.
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e = x− x̂

z = y − ŷ

ė = (A+ LC)e

We can form a cost function in similar fashion.

J =

∫ ∞
0

(e∗(t)We(t) + z∗(t)V z(t)) dt

With the new solution Y to the Lypaunov equation defined, we now express the

equation and determine the optimal L to obtain an ARE.

(A+ LC)Y + Y (A+ LC)∗ +W + LV L∗ = 0, V > 0

AY + Y A∗ +W + LCY + Y C∗L∗ + LV L∗ = 0

L = −Y C∗V −1

AY + Y A∗ +W − Y C∗V −1CY = 0

Now, with an optimal observer gain and an optimal regulator gain, we can formu-

late a state space system which includes an estimator and a state variable feedback

gain.

With a linear quadratic closed loop state space system defined, we can go about

testing and validating the expected closed loop dynamics from a designed model in

simulation with the implementation of the final controller onto the Simulink Realtime

environment which interfaces with the DAQ system of the Iron Bird. Taking the final

K and L matrices, we can formulate a controller by constructing a new LTI system

with the measurement outputs y as controller inputs and the system inputs u as the

controller output.
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Figure 4.3: Closed Loop LQG System.

˙̂x = (A−BK − LC)x̂+ Ly

u = −Kx̂

We also want to ensure that this disturbance rejection controller is not affected by

the aircraft dynamics during an extended maneuver where during which a pilot needs

to utilize control authority. To this end, we implement a high pass filter to reject static
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changes and offset drifts (like those observed from the accelerometers). This behaves

as a washout filter. Note that the rigid body modes are calculated at around 1Hz or

below, so having a cutoff frequency at around 3Hz will provide some separation from

the rigid body effects.

G =
s

s+ 1
(4.1)

B
∫

C

A

D

GL
∫
Ce

Ae

DeBeK

P

H

R(s)

U(s)

D(s)

Y (s)

E(s)

−

−

Figure 4.4: Closed Loop LQG System with Washout Filter (G).

Throughout many of these controller implementations, there arises a need to im-
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plement a high frequency rolloff filter to add robustness to the high frequency modal

disturbances [20]. In order to accomplish this, the high frequency rolloff filter R needs

to be included within the plant of the model during the controller design process. Once

the new controller is obtained K̄, the filter R is moved from the plant and grouped

with the controller to obtain the true controller K.

B
∫

C

A

D

K̄ GR

P

K

R(s)

U(s)

D(s)

Y (s)

−

Figure 4.5: Control Structure with High Frequency Rolloff Filter (R) and Washout

Filter (G).

4.2 First Bending Mode Controller Designs

For the series of experiments to follow, three controller designs were implemented

and tested. These three controllers were modeled based on a truncated version of our

full model consisting of the first two modes, the symmetric and the asymmetric first

wing bending modes.
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A =


0 0 1 0

0 0 0 1

−ω2
1 0 −2ζ1ω1 0

0 −ω2
2 0 −2ζ2ω2

 B =


0 0

0 0

vin1,1 vin1,2

vin2,1 vin2,2



C =


−vout1,1ω

2
1 −vout1,2ω

2
2 −vout1,3 2ζ1ω1 −vout1,4 2ζ2ω2

−vout2,1ω
2
1 −vout2,2ω

2
2 −vout2,3 2ζ1ω1 −vout2,4 2ζ2ω2

−vout3,1ω
2
1 −vout3,2ω

2
2 −vout3,3 2ζ1ω1 −vout3,4 2ζ2ω2

−vout4,1ω
2
1 −vout4,2ω

2
2 −vout4,3 2ζ1ω1 −vout4,4 2ζ2ω2

 D =


∑4

k=1 v
out
1,k v

in
k,1

∑4
k=1 v

out
1,k v

in
k,2∑4

k=1 v
out
2,k v

in
k,1

∑4
k=1 v

out
2,k v

in
k,2∑4

k=1 v
out
3,k v

in
k,1

∑4
k=1 v

out
3,k v

in
k,2∑4

k=1 v
out
4,k v

in
k,1

∑4
k=1 v

out
4,k v

in
k,2


4.2.1 Linear-Quadratic-Gaussian

The first is a linear-quadratic-Gaussian (LQG) design with standard cost function

formulation. The estimator is designed by first establishing the noise covariance in the

system after measuring a zero input signal from each output. This covariance is then

implemented into the simulation environment, and the simulated system is given a step

disturbance with no control input. The response of the state estimation is then tuned

accordingly using the state covariance weighting matrix until a reasonable response is

found, balancing between settling time and steady state robustness to noise.

With the regulator design, we want to create something which focuses on optimal

performance by balancing the state covariance to penalize deviation from zero and the

control input covariance to saturate control effort only in the worst case conditions.

The modal amplitude is weighted more than the modal velocity.

The regulator is balanced according to an acceptable level of control input. The

idea is to maximize the control effort when the system experiences precise resonance

according to its model simulation. Therefore, the input covariance is balanced against

the state covariance to make sure the control effort avoids saturation to all but the

worst disturbances, per the modeled modal dynamics.

Q = diag(25000, 25000, 10, 10)

R = diag(1, 1)

The estimator of this controller is designed using measured noise covariance of

each accelerometer and balanced against the state covariance using simulation to get

a reasonable estimator response to a disturbance input.
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Figure 4.6: State error from white noise in measurements during simulation.

W = 10−8 · diag(1, 1, 1, 1)

V = 10−3 ·


0.7110 0.0513 0.0931 0.0809

0.0513 0.5971 0.0125 0.0360

0.0931 0.0125 0.6288 0.0416

0.0809 0.0360 0.0416 0.7301


It should be noted that the noise covariance matrix is determined experimentally

from sampling output noise over time, and the covariance units are based on the

voltage signal rather than the in/s2 signal. In this case, we are just balancing the two

covariance matrices against one another, so they can both be scaled appropriately as

needed.

Combining the estimator and the regulator into a single LQG regulator, the result-

ing controller attempts to achieve a rather ambitious level of damping in the system,

theoretically increasing the lowest damped pole by a factor of 4. The controller is

designed in continuous time then converted to discrete time using a zero order hold

approximation.

Overall, this is a reasonable controller design for a nominal system, however this

remains a dubious proposition in light of the higher order modes neglected.

4.2.2 Linear Quadratic-Gaussian with High Frequency Rolloff

The second design utilized the same weighting matrices of the previous LQG design,

but this time a high frequency rolloff filter is implemented in an attempt to gain
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Figure 4.7: Bode Response of LQG Controller.

robustness against higher frequency disturbances from noise or higher order modes.

The main idea to to control the bandwidth of the controller so as not to heighten

control sensitivity near the unmodeled higher frequency dynamics of the system.

For added robustness, the next control design features the same LQG design as

described previously, but this features an added high frequency rolloff filter F = 40
s+40

to

minimize the effects of excluded higher frequency modes on the controller performance.

Utilizing the same weighting matrices as before, the controller is rebuilt using a

first order high frequency rolloff filter with 40 rad/s as the cutoff frequency. The plant

is redefined to include the filter, P̄ = P · F . The filter is then moved from the plant

to the derived controller to obtain the final controller form, K = K̄ · F . The block

diagram for this design is represented in figure 4.5 with one key distinction being that

K̄ encompasses the combined regulator and estimator controller.

The filtered LQG controller (LQGF) is able to achieve these design goals with

some degree of success. Observing the resulting lowest damped pole, the closed loop
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Figure 4.8: Bode Response of LQG Controller with High Frequency Rolloff.

LQGF system actually attempts an even more highly damped system than that of the

LQG closed loop system. However, we note that the controller drops off sensitivity at

higher frequencies thus achieving the aim of our design. With knowledge that higher

modes exist, we hope that this rolloff will add robustness in our design over the initial

LQG controller.

4.2.3 Mixed Sensitivity

The third controller utilizes a mixed sensitivity control design approach [30] in

which frequency dependent weighting functions are selected in order to strategize

tradeoffs in sensitivity to error, control sensitivity, and robustness in the system. With

this approach, the reduced plant is simple enough to implement an inverse weighting

matrix, W0, which heightens sensitivity in the frequency band containing the two

modeled modes. A fourth order weighting function is used which acts as an inverted

band stop filter. Utilizing this weighting function, the next step is to determine how
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best to weight the system’s sensitivity to nominal performance using W1. For this

implementation, it is simpler to leave this as an identity matrix and balance W0 against

W2. With the final weighting function, the aim is to balance the control sensitivity

of the system. Therefore, this weighting matrix is adjusted against W0 such that the

H∞ norm of the weighted system sensitivity and weighted control sensitivity remains

below 1. The aim of these weightings is to obtain a closed loop system which displays

decent margins in terms of robust stability and robust performance. We note that

in the design phase of this controller, we are comparing to truncated version of the

model so we cannot guarantee the same levels or robust stability and performance on

the higher order model or real system.

The weighting functions are applied to the plant in such a way to formulate a linear

fractional transformation matrix, Q. This formulation features two control inputs,

u, and two disturbance inputs, w. The formulation also features four measurement

outputs, y, a weighted input signal, e1, and a weighted output signal, e2.

P

W0

W1

W2

U(s)

W (s)

E1(s)

E2(s)

Y (s)

Figure 4.9: Mixed Sensitivity Weighted System

We should hopefully expect increased robustness from this mixed sensitivity design

over the initial LQG design and maybe over the LQGF design as well.

We now begin to formulate the LFT problem formulation by structuring an ex-

tended Q matrix which we will close using a ∆ structure.
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Q =


W1W0 W1P

0 W2

W0 P


Thus, the optimal controller may be calculated by minimizing the H∞ norm of the

closed loop performance criterion after forming the LFT with Q using −K in feedback

following the standard F (A,∆) notation.

||F (Q,−K)||∞ =

∣∣∣∣∣
∣∣∣∣∣ W1(1 + PK)−1W0

W2K(1 + PK)−1W0

∣∣∣∣∣
∣∣∣∣∣
∞

For this design, W0 is a frequency dependent weighting matrix which acts as an

inverse band stop filter along the frequency interval containing the first two modes.

W1 is kept as identity, and W2 is an inverted low pass filter to increase control effort

penalty on higher frequency ranges.

W0 =
0.65s2 + 26s+ 65

s2 + 100s+ 100
· I

W1 = I

W2 =
1000s+ 1000

s+ 1000

The desired controller KMS is obtained through a linear matrix inequality for-

mulation involving the state space realization of the derived LFT. The optimization

problem can be expressed through the minimization of the H∞ norm of the perfor-

mance weights.

KMS = inf
K
||F (Q,−K)||∞

F (Q,−K) =

[
Ã B̃

C̃ D̃

]

By the bounded real lemma [19], we can show that ||F (Q,−K)||∞ < γ and Ã is

Hurwitz if ∃X = X∗ which satisfies an ARE. We can construct the ARE problem as

an LMI minimization problem, because the goal is to achieve inf
γ
{||F (Q,−K)||∞ < γ}.
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
XÃ+ ÃX∗ XB̃ C̃∗

B̃∗X −γI D̃∗

C̃ D̃ −γI

 < 0, X > 0

Once we formulate this controller optimization problem, we modify it to include

the washout and high frequency rolloff filters in the design.

Figure 4.10: Bode Response of Mixed Sensitivity Controller.

For this experiment, we obtain a controller which yields a γ < 0.65. The controller

response acts in a very narrow band of frequency correlating to the specified modal

frequency range as seen in figure 4.10. Thus, the controller does not adversely im-

pact the higher frequency modes due to a more confined sensitivity region, especially

compared to the initial LQG design.
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4.3 Other Control Designs

With knowledge of the system from experimental testing and an understanding

that an LQR formulation will likely need to be rather conservative in light of the

uncertainty description, we can re-formulate a linear-quadratic controller with a reg-

ulator design that will prove more robust. Then, we can take this nominal sensitivity

function from the closed loop of the linear-quadratic design and pose this as an inverse

weighting function to achieve a new frequency weighted H∞ minimized design.

4.3.1 Linear-Quadratic Revisited

We start by including the second pair of modes into our model for control design.

Thus, we are now modeling the first symmetric and asymmetric wing bending modes

and the first symmetric and asymmetric torsional modes, bringing our control model

up to 4 modes, or 8 states.

Then, we adjust the weighting matrices of Q and R so as to balance robustness with

nominal performance. By reframing the optimization problem to balance robustness

with performance in a linear-quadratic sense, we are able to tune the controller to

achieve similar qualities found in the previous mixed sensitivity design. We keep the

washout filter included in all designs to follow.

4.3.2 Linear-Quadratic with High Frequency Rolloff Revis-

ited

Utilizing the design framework as before, we now add a high frequency rolloff filter,

except we adjust the rolloff frequency to a higher value so as to not interfere with the

desired range of frequency for control implementation. The filter itself will now have

the form F = 140
s+140

with cutoff frequency at 140rad/s.

4.3.3 Inverted Nominal Sensitivity Weighting

We now reformulate the mixed sensitivity design problem, except we utilize the

sensitivity function of new linear-quadratic closed loop design for our 4 mode model as

our primary inverted dynamics weighting. Therefore, we define the sensitivity function

of the closed loop linear-quadratic design as SLQ and choose our weightings appropri-

ately. We note that we adjust certain weightings in order to obtain an appropriate
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singular value bound with γ < 0.65.

W0 = S−1
LQ · I

W1 = I

W2 =
1000s+ 1000

s+ 1000

We walk through the same design procedure as before including the updated high

frequency rolloff filter and obtain a new controller.

4.3.4 Uncertainty Model H∞ Minimized Controller

Another control model worht considering is that of the H∞ norm-minimized de-

sign for the derived uncertainty description framed through an LFT. From before, we

obtain an uncertainty description and for Q based on the modal, input, and output

components of the individual transfer functions with uncertainty introduced per equa-

tion 3.18. We formulate an H∞ minimization LMI problem and optimize over γ. The

controller is developed with high frequency rolloff as well of the form F = 180
s+180

with

a cutoff frequency of 180rad/s.

4.4 Controllers Compared to Derived Uncertainty

Structures

When we calculate robust stability and robust performance margins with respect to

two separate uncertainty structures, we impose certain criterion for evaluation. In the

case of the first test, we consider a plant with multiplicative uncertainty amounting

to 20%. We then calculate the robust stability margins for all closed loop control

systems. Then, we also consider the previously derived uncertainty structure where

the individual modes are assigned uncertainty and perform the same calculations. We

note that the modal uncertainty structure will be harder to satisfy than the simple

multiplicative uncertainty structure.

4.4.1 Robust Stability

For multiplicative robust uncertainty, we have a criterion we can check which will

guarantee robust stability [13]. We define Ŵ2 = 0.2.
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∣∣∣∣∣∣∣∣ PK

1 + PK
Ŵ2

∣∣∣∣∣∣∣∣
∞
< 1

For robust stability of our derived structure, we consider each plant transfer func-

tion P ∈ P and check the internal stability of each plant when connected to each

controller in feedback by numerical iteration. We can check to what extent each con-

troller provides internal stability for the uncertainty structure driving the set of plant

transfer functions P . That is, we will check what percentage of the modeled perturba-

tion δ will destabilize a particular controller and quantify our robust stability margin

in this way. The structure of the plant uncertainty does not exactly follow additive,

multiplicative, or any other standard model, so obtaining a intuitive condition for

stability is messy due to the way in which the δ perturbation enters the modal system.

M11 = F (Q,K)

µδ(M11) =
1

infδ∈∆ ||δ||∞ for which det(I −M11(s)δ) = 0

δmin =
1

µδ(M11(jω))
∀ω

Using the above formulation for the structured singular value, it becomes possible

to formulate an LMI problem to determine the minimum δ value. This can be done

numerically as well, especially with a single parameter that affects the overall structure

of this system’s plant.

The multiplicative uncertainty structure with 20% uncertainty is a benchmark

which many of the control designs are able to achieve, however the modal natural

frequency derived uncertainty structure proves tougher to satisfy. We hope that the

expected margins from the modal uncertainty structure correlates with experimentally

derived performance. Note that the H∞ minimized Q controller performs notably

worse than nearly all other controllers with the exception of the 2 mode LQG controller

without high frequency rolloff. This is an important result, because it highlights the

numerical difficulty in posing an H∞ LMI formulation as the order of the system

increases and more modal disturbances need to be minimized. This is especially

true when the controller now has to account for a considerable dynamic range of

uncertainty.
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4.4.2 Robust Performance

For testing performance robustness on our multiplicative uncertainty model, there

is a convenient criterion by which robust performance may be guaranteed [13]. In

this case, we define Ŵ1 = 1
supω ||P||∞

. We are most interested in finding stable, robust

controllers which are able to provide some level of modal attenuation across all tested

frequency range and uncertainty conditions, so we are evaluating performance based

on the worst case condition of our uncertain plant structure.

∣∣∣∣∣∣∣∣∣∣∣∣ 1

1 + PK
Ŵ1

∣∣∣∣+

∣∣∣∣ PK

1 + PK
Ŵ2

∣∣∣∣∣∣∣∣∣∣∣∣
∞
< 1

To test robust performance for our derived modal uncertainty structure, we use

the supremum of the H∞ norm over all the uncertainty range and frequency. Thus

our criterion is directly comparing closed loop performance to open loop performance.

sup
ω

∣∣∣∣∣∣∣∣ P
1 + PK

∣∣∣∣∣∣∣∣
∞
< sup

ω
||P||∞

The main reason behind this criterion is that the intention of these controller

designs is to provide added modal damping in a robust manner over all the uncertainty.

So, if we can guarantee that the closed loop system is no worse and only better over

the entire frequency range and the entire uncertainty range, then we have achieved our

goal. Note that in order to test this performance robustness on the modal uncertainty

structure, a term was truncated to ensure the system is proper. The truncation

involved eliminating the 2Ukζ̄kω̄ks term from the d̃k term as its propagation leads to

improper transfer functions formed in the Qi,j,k
21 terms.

4.4.3 Predicted Margins

What we find from the performance robustness tests are that the control designs

cannot keep the maximum closed loop singular value below that of the maximum open

loop singular value. In this regard, we have not been able to successfully develop a

robust controller guaranteed to provide added damping over all the uncertainty in the

system. What we can evaluate however is how well each controller performs relative to

these indicators. In other words, we should expect the LQG controller to not provide

robustness at all (the system is considered unstable with simply the full plant model
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Table 4.1: Robust Stability and Robust Performance Comparisons for Controller De-

signs.

Controller Reduced Model 20% Mult Unc Full Unc Model
Rob Stab Rob Perf Rob Stab Rob Perf

LQG 102% 60.8% 0% 0%
LQGF 648% 591% 68.8% 14.6%

Mix Sens 609% 594% 100% 41.6%
LQG Full 1000% 964% 89.1% 20.7%

LQGF Full 1080% 967% 112% 19.5%
Inv Sens 279% 226% 102% 73.5%
Q min H∞ 0 0 1.65% 0.919%

in closed loop). We should expect the LQG controller with high frequency rolloff to

perform better in terms of robustness and the mixed sensitivity design better still.

When looking at the 4 mode controllers, we should expect the LQG with rolloff to

do the best in terms of stability, however interestingly enough the inverted sensitivity

controller appears to indicate a much better robust performance margin than the rest

even if it fails to ensure complete robust performance. The numerical results have

been tabulated in table 4.1. These margins represent the percentage of a unit of δ

uncertainty allowed into the system before either robust criterion fails.

In conclusion, we expect the controllers with high frequency rolloff to be much more

robust than those without it. We also expect the mixed sensitivity design to perform

with slightly better robustness than the LQGF design for the 2 mode controllers.

However, we do not expect the inverted sensitivity design to perform with better

robustness than the LQGF design for the 4 mode controllers. We do not expect the

direct H∞ minimized controller to perform particularly well at all, as it provides much

lower margins than most of the other designs.
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Chapter 5

Results

After performing all experiments, a certain trend may be observed with the first

bending mode controllers. This trend may be extended to higher order systems, but

there are complications which arise with the implementation of such a controller.

5.1 First Bending Mode Experimental Results

The series of first bending mode controllers, described in the experimental setup

and testing chapter, yield results which support the notion that the more robust

designs will perform better at higher system variance from the modeled nominal con-

dition.

All the experimental testing data has been processed with a low pass filter using a mov-

ing average smoothing. This process helps to create a more continuous distribution in

frequency content that is less noisy from each bin to bin.

From figure 5.1, the frequency responses of each closed loop system and the open

loop system are plotted across all configurations within the frequency range of all

modeled system modes. This yields a graphical interpretation of how each controller

does relative to the open loop of the plant. It also shows how much variance exists at

certain frequencies based on the uncertainty for all of the closed loop systems. The

gain of the system’s frequency response is also represented in terms of displacement

per figure A.32.

The weighted H∞ norms of the closed loop systems were determined with filter

weighting to isolate certain frequency ranges. The resulting H∞ norms are tabulated

for each testing method.
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Figure 5.1: Ranges of Frequency Responses for LQG, LQG with HF Rolloff, and Mixed

Sensitivity Closed Loop Systems as well as Open Loop System.

Referencing figure 5.2, this figure was developed by calculating the maximum and

the minimum values of each frequency response for each open loop and closed loop

system then plotting the percent gain increase or decrease over the open loop value each

closed loop system achieved. This can be seen as a measure of relative improvement

or degradation of attenuating disturbance input gain. Note that these plots are not

in units of dB themselves, because a relative calculation was made between the closed

loop frequency response and the open loop frequency response.

Note that each controller also behaves worse in the lower frequencies which roughly

correspond to the rigid body modes, especially the LQG controller. This could be a

sign that the washout filter did not perform as expected in the closed loop experimental

system, because part of its primary function was to ensure the controllers are not

sensitive to the lower frequency disturbances.

Tables 5.1, B.8, and B.7 show that the three controllers each perform noticeably

worse as the added mass to the wings decreases, which is contrary to the initial hy-

pothesis. In fact, this is the opposite trend, and that is due to the significant difference

between the natural frequency produced by the finite element study and that derived

from system identification testing. The experimental frequencies would place the

maximum loaded condition as closest to the nominal frequency of the model. There-

fore, while this trend is the opposite of the desired result, it still confirms that closed
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Figure 5.2: Change in Disturbance Gain with Respect to Open Loop System (% change

in dB).

loop system performance will generally degrade with increasing system uncertainty.We

should therefore expect the higher weighted conditions to produce better performance

than that of the lower weighted conditions, meaning the “nominal” mass loading of

no wieght added represents the extreme condition relative to the expected frequencies

of the model.

The tables show that the controllers perform the best in the frequency region

which contains the modeled natural frequency values of the first two modes. This is

an expected outcome. Another trend is the degradation of performance in closed loop

as the system’s natural frequencies deviate more from the modeled values. We note

that the LQG controller and the LQG controller with high frequency rolloff display a

trend that would suggest shifting the resonant peak rather than cancelling it.

Unfortunately, the controllers did not do well in the higher weighted frequency
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Table 5.1: Frequency Weighted H∞ Norms (dB) for Two Mode Controller Designs

(White Noise Results)

2-6Hz 2-16Hz 2-35Hz
CFG OL LQG LQGF MS OL LQG LQGF MS OL LQG LQGF MS

0 46.69 47.77 47.63 47.37 46.69 47.77 47.63 47.37 54.12 65.60 56.62 56.71
1 42.53 42.23 42.18 42.19 42.53 45.13 44.12 42.19 55.14 58.48 56.87 55.56
2 36.94 35.97 36.77 35.13 42.76 44.62 43.90 42.96 49.45 54.88 51.98 50.87
3 34.62 34.73 34.07 33.60 44.22 45.35 44.77 44.24 57.46 66.65 60.71 59.53
4 36.19 40.00 36.40 36.41 41.21 44.39 42.15 41.12 51.22 58.78 53.37 52.24
5 44.28 40.96 44.14 39.94 44.28 45.35 44.14 41.78 53.69 57.17 56.31 55.48
6 39.90 40.91 39.14 39.18 41.86 43.31 44.01 42.37 51.54 62.41 52.44 52.43

region and displayed poor attenuation of higher frequency disturbance even in con-

figurations closer to the modeled freqeuncy. This does bring up an interesting con-

tradiction to what our robust margins would have predicted. Of course, we modeled

the system uncertainty to account for up to 20% variance in natural frequency values

when the difference between the model and experimental frequency values themselves

are already 35% or more in some cases. To this end, while the correlation between

robust margin and experimental results does not line up perfectly, there are at least

some trends in performance worth highlighting. The mixed sensitivity design was

overall the most robust of these three with poor performance in the high range but

not substantially worse than the other controllers. The LQGF certainly proved itsef

more robust than the LQG controller, and the high frequency rolloff filter proves vital

in desig for this structural control model study.

5.2 Other Controller Results

From the first bending mode experiments, it is clear that the closed loop system

displays behavior and performance that is in line with expectations and theory sur-

rounding stability robustness and model uncertainty. The challenge now of creating

a robust and effective four mode controller will utilize all knowledge known of the

system. Therefore, implementing knowledge from our system identification and other

experimentation, an eight state, four mode LQG controller is derived which is weighted

to balance a reasonable expectation of control input to modal disturbance rejection.

This means saturating the controller only when the disturbance frequency reaches one

of the two torsional mode values as well as contributing additional damping amounting

to 0.13 or so total.
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Table 5.2: Frequency Weighted H∞ Norms (dB) for Four Mode Controller Designs

(White Noise Results, Nominal Only)

2-6Hz 2-16Hz 2-35Hz
CFG OL LQG LQGF MS OL LQG LQGF MS OL LQG LQGF MS

0 46.69 47.05 47.05 48.05 46.69 47.05 47.05 48.05 54.12 54.43 55.32 52.92

The end results show that the standard LQG controller fares better than the

one with the additional high frequency rolloff filter implemented. The LQG design

also does better at attenuating low frequency rejection in comparison to the robust

inverted sensitivity function design. However, the inverted sensitivity function design

appears to fare better at overall maximal rejection, because it manages to attenuate

the higher modes better which have considerably more impact on the system than the

lower frequency modes. It is the only controller which managed better performance

at the zero loading condition through the high frequency weighted H∞ norm in table

5.2.

This result demonstrates the limitations of controller bandwidth allocation. The

LQG design has a lower frequency focus which means the two low frequency modes

are fairly well attenuated, but the higher two modes are not as well attenuated. The

opposite is true with the inverted sensitivity design, because in that case, the controller

is much more sensitive to the higher frequency modes. This comes at the cost of

performance with the lower frequency modes. The symmetric and asymmetric sine

burst results can be seen in tables B.9 and B.10.
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Chapter 6

Conclusion

6.1 Summary

To summarize what was accomplished with this thesis project, we considered the

structural test article called Iron Bird and performed structural analysis via FEA

software in order to obtain an LTI state space model with which to conduct control

design to attenuate system modes of the wings. In order to complete this model

and to supplement the controller designs, the structural article itself was tested us-

ing system identification techniques to obtain experimental parameters involving the

damping coefficients, noise covariance, and frequency values. With a derived model

and experiemntal system, various control designs with differing levels of robustness

were implemented and tested on the structural article with differing mass loadings

on the wings which provided system uncertainty. The results were tabulated and

analyzed for each control design tested.

Overall, a discrepancy between model and article prevent the results from corre-

lating exactly to expected results which can be observed per figure 6.1 (also in figures

A.29 and A.30). In the experimentally derived natural frequencies, values deviated

from their modeled counterparts by up to 35% which is considerable in light of the

structured uncertainty accounting for up to 20%. Despite the inconsistencies, there

is still a trend of performance degradation and instability as the test article’s natural

frequency drifted further from the modeled nominal natural frequency value.
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Figure 6.1: Frequency Response Functions of Experimental Data of Nominal System

with Symmetric Sine Burst Input Compared to Model.

6.2 Future Work and Refinements

This study employed a simplistic FEA study methodology and does not incorpo-

rate any advanced methods of modal analysis. For future improvements, it would

make sense to leverage the the full expertise of an industry leader in the field such as

ATA Engineering for improving the upfront modeling of the system. One suggestion

which discussed during analysis was the incorporation of superelements in the FEM.

Further refinement in modeling technique would lead to a more accurate initial model

which would hopefully correlate closer with the test article. Another consideration is

modeling the change in dynamics when the test article is grounded by the connection

of the linear actuators. This constrains free body motion and adds some degree of

damping to the wing bending. Gaining a more accurate sense of this effect would lead

to a better development of an upfront FEA.

The experimental data most notable shows the effects of the closed loop control

with lower order control models. The higher order controllers received minimal ex-
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perimental testing, so it remains uncertain exactly how well all of these higher order

designs would perform under each uncertainty configuration.

While balanced truncation model order reduction methods were examined, there

was minimal formal testing of the balanced truncation derived controllers. The trun-

cation featured in this study amounted to truncation of the derived modes, rather

than reducing higher modes to a lower order, and this was done in part to preserve

the physical interpretation of each state without requiring a similarity transformation.

The subject of flutter was discussed in the first chapter, and this would be the

primary subject of future study for this experimental based approach to “dry” wind

tunnel testing. By refining the disturbance inputs to simulate the aeroelastic dynamics

of negative damping, results from this experiment on uncertainty could better be

applied to deriving control models for rejecting flutter. This would require a model

of the aeroelastic conditions in which flutter occur which was studied previously [6].

Applying robust control formulations in the context of the flutter problem would

lead to a new experimental methodology for flutter based control design. In the

future, one would hope that future drone technology allows for lower costs to entry for

aircraft design in a way that revolutionizes how active flutter suppression systems are

developed. In this regard, the Iron Bird platform might serve as a model for carrying

out lower cost simulated aeroelastic dynamic experiments on future designs.
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Appendix A

Additional Figures

Figure A.1: Data Acquisition Card (Left) [37] [36] and Data Acquisition Card Break-

out Board (Right).

Figure A.2: Linear Actuator [35].
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Figure A.3: Motor Amplifier (Top Left) [9]. External Power Supply (Top Right) [3].

EMI Filter (Bottom) [44].

Figure A.4: Accelerometer with Evaluation Board [2] [1].
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Figure A.5: Signal Conditioning Module (Top Left) [39]. Voltage Breakout Unit (Top

Right) [22]. Force Gauge (Bottom) [40].

Figure A.6: Power Supply.
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Figure A.7: PCI 6229 pinout from datasheet [37].
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Figure A.8: Simulink Realtime Model.
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Figure A.9: Simulink Realtime Target Computer Monitor.
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Figure A.10: Actuator 1 Inverse Calibration Curve (Top Left). Actuator 2 Inverse

Calibration Curve (Top Right). Actuator 3 Inverse Calibration Curve (Bottom Left).

Actuator 4 Inverse Calibration Curve (Bottom Right).
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Figure A.11: NX Simulink Results for Nominal Configuration: (Left-to-Right, Up-to-

Down) Modes 1, 2, 3, 4, 5, and 6.
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Figure A.12: NX Simulink Results for Configuration 1: (Left-to-Right, Up-to-Down)

Modes 1, 2, 3, 4, 5, and 6.
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Figure A.13: NX Simulink Results for Configuration 2: (Left-to-Right, Up-to-Down)

Modes 1, 2, 3, 4, 5, and 6.
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Figure A.14: NX Simulink Results for Configuration 3: (Left-to-Right, Up-to-Down)

Modes 1, 2, 3, 4, 5, and 6.
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Figure A.15: NX Simulink Results for Configuration 4: (Left-to-Right, Up-to-Down)

Modes 1, 2, 3, 4, 5, and 6.
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Figure A.16: NX Simulink Results for Configuration 5: (Left-to-Right, Up-to-Down)

Modes 1, 2, 3, 4, 5, and 6.
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Figure A.17: NX Simulink Results for Configuration 6: (Left-to-Right, Up-to-Down)

Modes 1, 2, 3, 4, 5, and 6.
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Figure A.18: LFT structure with r disturbances.
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Figure A.19: Example of Experimentally Derived Power Spectra.

Figure A.20: Variance in Natural Frequency with Added Mass from FEA Model.
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Figure A.21: Complete Modal Uncertainty Structure Bode Response.
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Figure A.22: Bode Response of Closed Loop LQG System.

Figure A.23: Bode Response of Closed Loop LQG with High Frequency Rolloff System.
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Figure A.24: Bode Response of Closed Loop Mixed Sensitivity System.

Figure A.25: Weighted Sensitivity and Control Sensitivity Functions in Mixed Sensi-

tivity Design.
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Figure A.26: Bode Response with Inverse Weighting Functions for Mixed Sensitivity

Design.

Figure A.27: Frequency Response Function from Experimental Data of Nominal Sys-

tem with Symmetric Sine Burst Input with Two Mode Controllers.
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Figure A.28: Frequency Response Function from Experimental Data of Nominal Sys-

tem with Symmetric Sine Burst Input with Four Mode Controllers.
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Figure A.29: Frequency Response Functions of Experimental Data of Nominal System

with Asymmetric Sine Burst Input Compared to Model.
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Figure A.30: Frequency Response Functions of Experimental Data of Nominal System

with White Noise Input Compared to Model.
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Figure A.31: Alternate Surface View of Disturbance Gain Maps for Each System.

Figure A.32: Ranges of Frequency Responses for Closed Loop and Open Loop System

(Gain of Displacement).

94



Figure A.33: Alternate Surface View of Disturbance Gain Maps for Each System (Gain

of Displacement).
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Appendix B

Additional Tables

Table B.1: List of hardware elements

Item Manufacturer Part Number Quantity
Accelerometer Analog Devices ADXL203 4

Linear Direct Drive Motor With Encoder Moticont SDLM-025-095-01-05 4
Force Gauge PCB 208A03 4

Actuator Calibration Force Gauge Interface, Inc. WMC-5 1
DC Power Supply Power Designs, Inc. TP330 1

DC Brush Motor Amplifier Copley Controls Corp. 412CE 4
AC/DC EMI Filter Schaffner FN2070-12-06 1

External Power Supply Artesyn Embedded Technologies LCC600-48U-4P 1
Strain Gauge Conditioning Module Vishay Precision Group 2120A 1

Signal Conditioner PCB 442B119 1
Signal Channel Voltage Breakout Box Agilent US35375424 E1432-61600 1

Data Acquisition Card National Instruments PCI 6229 1
VHDCI 68 Pin Breakout Board daqstuff.com ASSY #400054 PCB #100456 2
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Table B.2: DAQ Wiring Pinout

Analog Input Channel Function DAQ Slot Number Pin Number
0 Accelerometer Signal 1 0 68
1 Accelerometer Signal 2 0 33
2 Accelerometer Signal 3 0 65
3 Accelerometer Signal 4 0 30
16 Force Gauge Signal 1 1 68
17 Force Gauge Signal 2 1 33
18 Force Gauge Signal 3 1 65
19 Force Gauge Signal 4 1 30

Encoder Input Channel Function DAQ Slot Number Pin Number
0 Encoder Signal 1 (Channel A) 0 37
0 Encoder Signal 1 (Channel B) 0 45
0 Encoder Signal 1 (Return) 0 3
1 Encoder Signal 2 (Channel A) 0 42
1 Encoder Signal 2 (Channel B) 0 46
1 Encoder Signal 2 (Return) 0 41

Analog Output Channel Function DAQ Slot Number Pin Number
0 Motor Output 1 0 22
1 Motor Output 2 0 21
2 Motor Output 3 1 22
3 Motor Output 4 1 21

Table B.3: R2 Values for Actuator 1 calibration. Individual fits and averaged fits.

Individual Fits Averaged Fits
Input Signal Amplitude 1Hz 5Hz 10Hz 1Hz 5Hz 10Hz

0.5V 0.650 0.646 0.635 0.626 0.635 0.629
1.0V 0.940 0.943 0.941 0.940 0.937 0.930
1.5V 0.958 0.974 0.973 0.958 0.974 0.971
2.0V 0.968 0.980 0.981 0.964 0.980 0.977
2.5V 0.974 0.983 0.984 0.967 0.983 0.983
3.0V 0.979 0.986 0.987 0.966 0.982 0.985
3.5V 0.986 0.990 0.990 0.974 0.984 0.985
4.0V 0.990 0.993 0.992 0.981 0.988 0.988
4.5V 0.993 0.995 0.994 0.991 0.991 0.991
5.0V 0.995 0.996 0.996 0.992 0.994 0.993
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Table B.4: R2 Values for Actuator 2 calibration. Individual fits and averaged fits.

Individual Fits Averaged Fits
Input Signal Amplitude 1Hz 5Hz 10Hz 1Hz 5Hz 10Hz

0.5V 0.790 0.758 0.783 0.783 0.758 0.781
1.0V 0.946 0.956 0.953 0.946 0.940 0.925
1.5V 0.970 0.982 0.981 0.960 0.966 0.970
2.0V 0.975 0.984 0.984 0.973 0.984 0.984
2.5V 0.980 0.987 0.987 0.977 0.986 0.986
3.0V 0.983 0.990 0.990 0.976 0.985 0.985
3.5V 0.987 0.991 0.991 0.977 0.984 0.983
4.0V 0.990 0.993 0.993 0.984 0.986 0.985
4.5V 0.993 0.994 0.994 0.986 0.989 0.988
5.0V 0.995 0.995 0.994 0.991 0.992 0.991

Table B.5: R2 Values for Actuator 3 calibration. Individual fits and averaged fits.

Individual Fits Averaged Fits
Input Signal Amplitude 1Hz 5Hz 10Hz 1Hz 5Hz 10Hz

0.5V 0.732 0.914 0.909 0.690 0.908 0.908
1.0V 0.975 0.985 0.984 0.964 0.977 0.978
1.5V 0.989 0.991 0.991 0.975 0.981 0.983
2.0V 0.994 0.995 0.995 0.987 0.989 0.988
2.5V 0.996 0.996 0.996 0.992 0.992 0.992
3.0V 0.997 0.997 0.997 0.995 0.995 0.995
3.5V 0.998 0.998 0.997 0.997 0.997 0.996
4.0V 0.998 0.998 0.998 0.998 0.998 0.998
4.5V 0.998 0.998 0.998 0.998 0.998 0.998
5.0V 0.999 0.999 0.998 0.999 0.999 0.998
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Table B.6: R2 Values for Actuator 4 calibration. Individual fits and averaged fits.

Individual Fits Averaged Fits
Input Signal Amplitude 1Hz 5Hz 10Hz 1Hz 5Hz 10Hz

0.5V 0.704 0.687 0.652 0.680 0.683 0.651
1.0V 0.942 0.965 0.963 0.939 0.965 0.963
1.5V 0.967 0.981 0.980 0.961 0.980 0.980
2.0V 0.980 0.987 0.986 0.969 0.981 0.983
2.5V 0.987 0.990 0.990 0.975 0.981 0.981
3.0V 0.991 0.994 0.993 0.982 0.985 0.984
3.5V 0.993 0.995 0.994 0.985 0.987 0.987
4.0V 0.995 0.995 0.995 0.989 0.990 0.990
4.5V 0.996 0.996 0.996 0.991 0.992 0.992
5.0V 0.996 0.997 0.996 0.993 0.994 0.993

Table B.7: Frequency Weighted H∞ Norms (dB) for Two Mode Controller Designs

(Symmetric Sine Burst Results)

2-6Hz 2-16Hz 2-35Hz
CFG OL LQG LQGF MS OL LQG LQGF MS OL LQG LQGF MS

0 37.31 35.63 32.67 31.57 41.30 47.28 43.67 41.41 59.94 81.03 60.02 61.22
1 26.13 28.53 26.02 20.69 42.04 42.96 41.99 42.32 54.40 59.07 55.29 54.55
2 27.92 25.78 28.55 27.97 47.26 49.76 49.23 47.74 51.83 59.56 55.44 52.70
3 26.71 24.77 26.79 19.14 45.49 49.27 47.49 45.34 52.05 61.52 54.82 53.88
4 26.88 33.91 27.41 19.80 42.72 45.69 45.96 42.45 54.16 74.81 58.86 55.28
5 19.99 22.21 22.38 16.76 40.49 46.82 41.72 41.14 53.11 55.66 53.81 53.62
6 34.40 36.10 31.49 29.42 45.53 47.16 47.44 44.85 53.77 69.58 55.37 54.85

Table B.8: Frequency Weighted H∞ Norms (dB) for Two Mode Controller Designs

(Asymmetric Sine Burst Results)

2-6Hz 2-16Hz 2-35Hz
CFG OL LQG LQGF MS OL LQG LQGF MS OL LQG LQGF MS

0 33.21 38.73 33.02 30.61 41.31 46.34 43.11 41.99 60.24 83.27 60.28 59.68
1 28.29 27.51 26.51 25.16 41.79 43.34 42.26 42.56 54.27 59.21 55.31 54.67
2 29.03 25.71 27.55 23.63 47.65 49.05 49.04 46.62 53.02 57.17 53.70 52.88
3 27.95 23.97 24.04 19.80 45.39 49.03 46.80 44.93 53.57 63.34 56.01 53.83
4 26.21 34.92 27.34 21.07 42.31 46.37 45.96 42.19 54.14 75.45 57.81 55.62
5 23.38 23.48 21.92 19.93 40.42 45.80 41.40 41.36 52.51 55.66 54.13 53.30
6 31.48 33.49 29.94 28.79 45.22 46.87 46.74 44.63 52.65 73.08 56.42 54.45

Table B.9: Frequency Weighted H∞ Norms (dB) for Four Mode Controller Designs

(Symmetric Sine Burst Results, Nominal Only)

2-6Hz 2-16Hz 2-35Hz
CFG OL LQG LQGF MS OL LQG LQGF MS OL LQG LQGF MS

0 37.31 30.67 32.50 47.84 41.30 40.78 41.86 47.84 59.94 59.49 61.34 58.48
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Table B.10: Frequency Weighted H∞ Norms (dB) for Four Mode Controller Designs

(Asymmetric Sine Burst Results, Nominal Only)

2-6Hz 2-16Hz 2-35Hz
CFG OL LQG LQGF MS OL LQG LQGF MS OL LQG LQGF MS

0 33.21 30.50 32.88 47.52 41.31 40.56 42.20 47.52 60.24 59.51 61.27 57.11
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Appendix C

Additional Derivations

C.1 Matrix Formulation for Modal Uncertainty Trans-

fer Function

Beginning with equation 3.17, we can form an alternate derivation of Q which

explicitly utilizes the diagonal nature of the modal components to create a matrix op-

eration which expresses the modal components of the input to output channel tranfer

function as a vector. We start by defining two additional diagonal matrices and a

vector of ones.

[Ūr] =


U1 0 . . . 0

0 U2 0
...

. . .
...

0 0 . . . Ur



[V̄i,r] =


vi,1 0 . . . 0

0 vi,2 0
...

. . .
...

0 0 . . . vi,r


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[V̄r,j] =


v1,j 0 . . . 0

0 v2,j 0
...

. . .
...

0 0 . . . vr,j



O =


1

1
...

1



With these defined, we can define a vector of the modal components of a transfer

function channel then apply the Woodbury Matrix Identity. We know that each matrix

is diagonal and therefore invertible.

Pi,j = O∗
(

([V̄i,r][V̄r,j] · I · s2)((I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2
r])...

+ [Ūr](2[Z̄r][Ω̄r] + 2[Ω̄2
r])(I · δ))−1

)
O

= O∗
(
A(C + UDV )−1

)
O

= O∗
(
A(C−1 − C−1U(D−1 + V C−1U)−1V C−1)

)
O

= O∗
(
AC−1 − AC−1U(D−1 + V C−1U)−1V C−1

)
O

= O∗
(
AC−1 − AC−1UD(I +DV C−1U)−1V C−1

)
O

= O∗(([V̄i,r][V̄r,j] · I · s2)(I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2
r])
−1 − ([V̄i,j,r] · I · s2)(I · s2...

+ 2[Z̄r][Ω̄r] + [Ω̄2
r])
−1[Ūr](2[Z̄r][Ω̄r] + 2[Ω̄2

r])

(
I + (2[Z̄r][Ω̄r] + 2[Ω̄2

r])(I · δ)(I · s2...

+ 2[Z̄r][Ω̄r] + [Ω̄2
r])
−1[Ūr]

)−1

(I · δ)(I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2
r])
−1O

Observing the above result and comparing with equation 3.18, we can explicitly

define the Q quadrant matrices per input to output channel.
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Q11 = (2[Z̄r][Ω̄r] + [Ω̄2
r])(I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2

r])
−1[Ūr]

Qi
12 =

(
(I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2

r])
−1 · [V̄r,j]

)
O

Qj
21 = O∗

(
−([V̄r,j] · I · s2)(I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2

r])
−1[Ūr](2[Z̄r][Ω̄r] + [Ω̄2

r])
)

Qi,j
22 = O∗

(
([V̄r,j] · I · s2)(I · s2 + 2[Z̄r][Ω̄r] + [Ω̄2

r)
−1 · [V̄i,r]

)
O
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