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Abstract

Background: Human microbiome studies in clinical settings generally focus on
distinguishing the microbiota in health from that in disease at a specific point in
time. However, microbiome samples may be associated with disease severity or
continuous clinical health indicators that are often assessed at multiple time points.
While the temporal data from clinical and microbiome samples may be informative,
analysis of this type of data can be problematic for standard statistical methods.

Results: To identify associations between microbiota and continuous clinical
variables measured repeatedly in two studies of the respiratory tract, we adapted a
statistical method, the lasso-penalized generalized linear mixed model (LassoGLMM).
LassoGLMM can screen for associated clinical variables, incorporate repeated
measures of individuals, and address the large number of species found in the
microbiome. As is common in microbiome studies, when the number of variables is
an order of magnitude larger than the number of samples LassoGLMM can be
imperfect in its variable selection. We overcome this limitation by adding a pre-
screening step to reduce the number of variables evaluated in the model. We
assessed the use of this adapted two-stage LassoGLMM for its ability to determine
which microbes are associated with continuous repeated clinical measures.
We found associations (retaining a non-zero coefficient in the LassoGLMM) between
10 laboratory measurements and 43 bacterial genera in the oral microbiota, and
between 2 cytokines and 3 bacterial genera in the lung. We compared our
associations with those identified by the Wilcoxon test after dichotomizing our
outcomes and identified a non-significant trend towards differential abundance
between high and low outcomes. Our two-step LassoGLMM explained more of the
variance seen in the outcome of interest than other variants of the LassoGLMM
method.

(Continued on next page)
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(Continued from previous page)

Conclusions: We demonstrated a method that can account for the large number of
genera detected in microbiome studies and repeated measures of clinical or
longitudinal studies, allowing for the detection of strong associations between
microbes and clinical measures. By incorporating the design strengths of repeated
measurements and a prescreening step to aid variable selection, our two-step
LassoGLMM will be a useful analytic method for investigating relationships between
microbes and repeatedly measured continuous outcomes.

Keywords: Microbiota, 16S, ITS, Repeated measures, Continuous outcomes, GLMM, Lasso

Background
Epidemiologic studies, ranging from clinical trials to observational studies, often in-

clude the collection of demographic, disease symptoms, treatment, diagnostic tests and

clinical laboratory information. Recent evidence that the human microbiome influences

disease occurrence [1, 2] has led to interest in how the microbiome may more generally

impact clinical and treatment outcomes, and the natural history of a disease. While

continuous clinical measures are used to describe and to identify risk subgroups in the

patient population, the relationship between these measures and the microbiome is less

often examined. This rarity is in part caused by methodology limitations in applying

current microbiome and analytic techniques to continuous clinical data.

One stumbling block to analyzing the microbiome in the context of clinical variables

comes from repeated measurements, i.e. the same measurement taken at multiple time

points or multiple measurements made at a single time point. Even in non-equilibrated

communities, where variance between repeated measures is high, measurements of the

microbial community are expected to be highly correlated with each other, thus pre-

senting a problem for standard statistical methods. However, repeated measures can

provide important data for processes that evolve or change over time. Techniques to

analyze repeated measures would be of use to the microbiome field as repeated mea-

surements are often necessary to obtain a more complete understanding of a system of

interest.

An additional challenge in analyzing clinical outcomes and biomarkers in the context

of the microbiome is that the outcomes are often continuous rather than dichotomous

variables. Continuous variables are those that can take on any value within a given

range; when they are converted to a categorical or dichotomous format, in some in-

stances, information is lost. In practice, count variables, although not technically con-

tinuous, are treated as continuous variables. These continuous variables, as opposed to

categorical variables, have repeatedly been dichotomized in the microbiome literature

[3, 4] with the potential for loss of nuance in the relationship between the variable and

the microbiota.

Our primary interest was in assessing genus or species abundance as a potential pre-

dictor of clinical laboratory and other measures that have repeated measurements. We

focused on the generalized linear mixed model (GLMM) method because it handles

both continuous outcome variables and repeated measures. GLMMs have just recently

been incorporated into microbiome studies [1, 5, 6]. These early adopters of the

GLMM methods primarily use binary or categorical groups (e.g. sample site, treatment,

pregnant/non-pregnant) to explain the outcome of interest, such as species abundance.
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When combined with a penalty parameter—an additional term that eliminates extrane-

ous explanatory variables—species abundance can instead be used to explain clinical

outcomes, including continuous clinical measurements.

Mixed models—both GLMMs and linear mixed models—have been used in ecology

without penalty parameters at least as long as next generation sequencing-based micro-

biome studies have existed [7]. Mixed models incorporate both fixed effects that are

the same for every observation or sample, and random effects that apply to select sam-

ples or groups of samples. Through the use of random effects, linear mixed models are

designed to handle repeated measures and other complex study designs [7]. In addition,

GLMMs attempt to model data that do not follow a traditional normal distribution.

The linear relationship between the outcome and predictors is redefined as the set of

linear predictors and their relationship to the expected value of the outcome via a “link”

function. This link function, along with the variance of the expected value of the out-

come, is selected from the members of the exponential distribution family.

A complementary analytic method, penalized regression, has been used in genomics

and metagenomics for several years [8]. One of the common penalties used in these

studies is the lasso (or L1) penalty, which has the advantage of performing variable se-

lection by reducing some coefficients to zero. The variables whose coefficients are re-

duced to zero can be removed from the model without impacting the model’s ability to

predict the outcome of interest. The elastic net penalty, which is the combination of

the lasso penalty and the alternative ridge (or L2) penalty, reduces some coefficients to

zero and shrinks others, but not to zero, limiting its capacity to perform variable selec-

tion [9]. Only lasso performs variable selection without having to select a coefficient

size threshold to define association, but it has limitations when handling many variables

that are correlated with each other.

The lasso penalized generalized linear mixed model (LassoGLMM), developed in

2011 for sports statistics and human-computer interactions [10, 11], has properties that

make it well-suited for microbiome applications. This model leverages the power

gained by repeated measures and compensates for the large number of variables by

combining the lasso penalty with GLMMs. The lasso penalty resolves the problem of

having many more explanatory variables than observations by forcing some coefficients

to be equal to zero and leaving only those variables (or in our case, microbes) with the

strongest associations with non-zero coefficients. Repeated measures can be incorpo-

rated through LassoGLMM mixed effects via a random effect for each patient and re-

peated measurement.

We present a two-stage approach that couples a correlation-based screening step

with the LassoGLMM to examine the relationships between the microbiota and con-

tinuous variables related to health and inflammation. The data originate from two clin-

ical studies of the respiratory tract: a 16S rRNA gene survey of the oral microbiota

from the Oral Cyclosporine in Chronic Obstructive Pulmonary Disease study

(OC-COPD; clinicaltrials.gov ID: NCT00974142, a randomized controlled clinical trial),

and a combination bacterial 16S rRNA gene and fungal Internal Transcribed Spacer

(ITS) analysis of the bronchoalveolar lavage (BAL) for the Pittsburgh site of the Lung

HIV Microbiome Project (LHMP; clinical trials ID: NCT00870857, an observational co-

hort study). In the OC-COPD study, we sought to discover associations between the

oral microbiota and laboratory values measured in peripheral blood. In the LHMP, we
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aimed to identify which bacteria and fungi were associated with increased inflammation

both locally in the lungs and systemically in the blood.

Methods
Multiple specimens including oral washes and BAL for microbiota characterization,

and blood for chemistry, inflammatory markers, and other laboratory measurements

were collected as part of the OC-COPD and the LHMP. The OC-COPD dataset in-

cluded 15 samples from eight individuals at pre-randomization (trial week 0) and at

trial week 16 (one participant did not have a sample for the pre-randomization visit).

These OC-COPD participants, who were sequentially enrolled from the parent trial,

had advanced COPD but were free of active infections. Specific inclusion criteria in-

cluded: 45–80 years of age, presence of advanced COPD (defined as forced expiratory

volume in 1 s, FEV1, between 25 and 60% predicted), and non-responsive to traditional

inhaler therapy. Once enrolled, participants were randomized to receive for 16 weeks

the test drug, cyclosporine (an immune suppressant), or a placebo (additional eligibility

requirements for the trial are described at clinicaltrials.gov, identifier NCT00974142).

Laboratory outcomes include 32 blood measurements found in a typical blood chemis-

try panel with electrolytes. Clinical independent variables used were gender and treat-

ment group (test drug or placebo).

The LHMP lung microbiome dataset contained 30 samples from 21 participants who

had BAL performed on their right and left lungs at the same clinical visit. This group

included both HIV-infected (HIV+; N = 11) and HIV-uninfected (HIV-; N = 10) individ-

uals, classified as current smoker (N = 3), former smokers (defined as having quit more

than 6 months prior to the study; N = 3), and never smokers (defined as having smoked

fewer than 100 cigarettes in a lifetime; N = 15). Inclusion criteria included no use of an-

tibiotics in the past 3 months and no evidence of acute respiratory disease for 4 weeks.

The lung microbiome was sampled by BAL following an oral wash and gargle with

antiseptic mouthwash. Specific inclusion criteria and sampling procedures can be found

in [12]. The 16S rRNA gene and ITS rRNA sequence data are described in [12, 13], re-

spectively. Laboratory outcome variables include 12 cytokines measured in both the

BAL and the blood. Six cytokines that were not detectable in 90% of the samples were

excluded from further analysis. Clinical independent variables used were HIV status

and smoking history category.

Sequence data processing

The sample processing procedures were performed as previously described in [12, 13].

In brief, all samples had DNA extracted using standard techniques with the PowerSoil®

DNA Isolation Kit from MO BIO (Carlsbad, CA). For the OC-COPD, the bacterial V4

hyper-variable region of the 16S rRNA gene was amplified and sequenced on the Illu-

mina MiSeq platform. For the LHMP, the hyper-variable regions 1 through 3 (V1-V3)

were amplified and sequenced using the Roche 454 GS-FLX platform with Titanium

chemistry. For fungal DNA sequencing, the ITS1 was amplified and sequenced on the

Ion PGM™ Sequencer using the 400 bp protocol [14]. Sequences were processed using

the QIIME pipeline version 1.7 [15] with default settings for de novo Operational Taxo-

nomic Unit (OTU) picking. Bacterial 16S rRNA gene sequences were clustered at 97%
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similarity and fungal ITS sequences were clustered at 99% similarity. Additional pro-

cessing and taxonomic assignment for the ITS sequences was performed using FHiT-

INGS [16]. Samples with fewer than 1000 16S rRNA gene (bacterial) reads, and

samples with fewer than 100 ITS (fungal) reads were considered to have failed and were

removed from further analysis. All OC-COPD samples were considered successfully se-

quenced but 16 LHMP samples were considered to have failed ITS sequencing.

After initial taxonomic assignments were made using the default settings in QIIME

or FHiTINGS, OTUs were combined by taxonomic assignment at the genus level. For

each kingdom, all genera counts were normalized using total sum scaling, also known

as relative abundance. Any bacterial genus present in less than half of the samples or

any fungal genus present in fewer than 10% of samples was removed.

Analytic association stage 1: Variable screening step

The number of genera present is often at least an order of magnitude larger than the

number of subjects sampled and presents an analytic challenge due to sparse microbial

data. We overcome this problem by preceding LassoGLMM regression with a variable

screening step based on correlation. We calculated the Spearman correlation for each

clinical response-microbial genera pair, and used the microbial genera with significant

Spearman correlations (p < 0.05 without multiple testing correction) as independent

variables in the regression model for that clinical response. Figure 1 shows an overview

of this two-step method.

Analytic association stage 2: Lasso-penalized generalized linear mixed model

The microbial genera that pass the analytic association stage 1 screening are input into

the LassoGLMM as independent variables (X) in eq. 1 below. The LassoGLMM com-

bines variable selection with the flexibility to account for repeated measures and other

random effects. It can be built up from the random-intercept linear mixed model (eq.

1):

Y ¼ βX þ bZ þ ε

where Y is the response variable, or outcome of interest, X is the matrix of the fixed ef-

fects including genera abundances, Z is the matrix of the random effects including pa-

tient, ε is the random error, and β and b are the coefficient vectors corresponding to

fixed and random effects. For example, we modeled the response variable, Y, of blood

glucose on the relative abundance of bacterial genera in the mouth, formatted as matrix

X, while accounting for the individual participant as a random effect, Z. Here, genera

abundances and disease status are treated as fixed. Each study participant or time point

is treated as random effects. The fixed effects, X, can be redefined into continuous (X)

and categorical (W) variables (eq. 2):

Y ¼ βX þ BW þ bZ þ ε

W is the matrix form of the ‘dummy’ variables indicating each level among the cat-

egorical variables including disease status. This split is important for the penalization of

the categorical variables and described below.

For OC-COPD and LHMP data analyses, random effects and categorical variables

(fixed effects) were study specific. In the OC-COPD study, an individual was sampled
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at a pre-randomization visit and 16 weeks later. The visit time point was analyzed as a

random effect to account for any seasonal or batch processing effects. In the LHMP

study, the right and the left lungs were sampled in the same individual during the same

visit in a randomized order (right first or left first). An indicator of this order was in-

cluded as a random effect to account for any order bias, including the possibility of

contamination from the upper respiratory tract in the first side. In our regression

models we included the following categorical variables that are known to be associated

with the outcomes (Y) of interest: gender [17] and treatment (drug or placebo) in the

OC-COPD models; smoking [18] and HIV [19] status for the LHMP models.

By their nature, many of the variables (genera or OTUs) in the microbiota are

highly correlated with each other. This correlation makes including all variables in

the regression redundant and necessitates the use of the lasso or other penalty, which

can select the variables most strongly associated with the outcome of interest. The

penalty parameter λ performs variable selection by forcing the smaller β and B coeffi-

cients to equal zero during the maximal likelihood estimation of the coefficients in

eq. 2. All of the B values of one categorical variable are penalized together with a

grouped lasso penalty adapted from [20]. Thus, either all possible indicators for a cat-

egorical variable are included in the model, or none are included. For example, the

LHMP smoking statuses ‘current’, ‘former’, and ‘never’ result in two dummy variables,

one for ‘current’ and one for ‘former’. The B coefficients for both dummy variables

are either reduced to zero or both included in the model. By increasing λ, more of the

fixed effect coefficients will be forced to zero. It is important to note that only the

fixed effects coefficients are subject to the lasso penalty. Random effects are included

in the model regardless of the size of λ.

Fig. 1 Overview of the two-step LassoGLMM model developed. Species (or genera, OTUs, or any other
explanatory variables of interest) are divided into those that are correlated with the dependent continuous
variable, Y, and those that are not. Species that are correlated are stored in a matrix X. Relevant categorical
variables, found through a review of expert literature or other means, are stored in a matrix W. Indicators of
repeated measures such as patient ID are stored in matrix Z. Matrices X, W, and Z are entered into a generalized
linear mixed model to be regressed on outcome variable Y. Coefficient β for matrix X and coefficient B for W are
subjected to the lasso penalty. Any species that retain non-zero coefficients are considered strongly associated
with the dependent variable Y
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The optimal lasso penalty term (λ) was selected for each model by scanning be-

tween 0 and 200 (by increments of 1) using the R package glmmLasso version

1.3.3 [21], and identifying the model with the lowest Bayesian Information Criter-

ion (BIC) [21] as optimal. When λ = 0, if the Fisher matrix was not invertible (i.e.

the regression could not be completed) we started the scan at λ = 1. We consid-

ered those genera with non-zero coefficients in the model using the optimal pen-

alty term to be associated with the response variable. Following Groll’s

recommendation [10], we then ran a GLMM regression including only those gen-

era with non-zero coefficients using the R package lme4 [22]. This final regres-

sion step is related to the adaptive lasso penalty and is designed to compensate

for the lack of oracle properties of the basic lasso penalty that we used here [11].

Oracle properties are the features of a regression model that ensure it reprodu-

cibly estimates the correct coefficients. The LassoGLMM lacks these properties

but by running a final regression, the reproducibility and accuracy of the coeffi-

cients are improved. The results of this final regression led to the detection of an

association, and if that association was positive (more microbes when the variable

is high), or negative (more microbes when the variable is low). A list of all final

models is presented in Table 1.

Evaluating models

We evaluated the fit for each of our mixed models using both the marginal and condi-

tional R2 coefficients of variation [23]. Marginal R2 represents the percent of variation

explained by the fixed effects while conditional R2 represents the variation explained by

the entire mixed model, both fixed and random effects. Compared to the BIC that was

used for penalty optimization, the coefficients of variation provide a more absolute

measure of the goodness of fit for the model in question that can be compared across

models. We also inspected the residual plots to ensure that the relationship between

the microbes and clinical variables was linear. When a relationship was found to be

Table 1 Outcome variables and model abbreviations. A list of all final models by outcome
variable, and a short abbreviation based on which study the model originated from

Outcome variable Study Abbreviation

Percent Neutrophils OC-COPD O1

Blood Urea Nitrogen (BUN) OC-COPD O2

Immunoglobulin-M (IGM) OC-COPD O3

Partial Pressure of Oxygen (PPO) OC-COPD O4

SAT OC-COPD O5

Alkaline Phosphatase OC-COPD O6

Serum Glutamic Oxaloacetic Transaminae (SGOT) OC-COPD O7

Serum Glutamic-Pyruvic Transaminase (SGPT) OC-COPD O8

Cholesterol OC-COPD O9

Glucose OC-COPD O10

Bronchoalveolar Lavage (BAL) Interleukin Receptor Antagonist (IL-ra) LHMP L1

Systemic Interleukin Receptor Antagonist (IL-ra) LHMP L2
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non-linear, we attempted to refit the model with a generalized model to account for the

potentially non-normal distribution of outcome variable.

Comparison to a dichotomous method

Because there is no single best way to evaluate the association between microbiota

abundance and a continuous variable, we compared our LassoGLMM method to di-

chotomizing the outcome of interest into two groups and comparing the genera abun-

dance between groups. For the comparison we used a basic dichotomous variable

method, the Wilcoxon (or Mann-Whitney U) test [24]. The Wilcoxon test is a

non-parametric statistical test that compares rank statistics between two groups. To

dichotomize our data, we divided samples into those above and those below the sample

average for the outcome of interest.

Results
Associations between bacteria and laboratory measurements

To identify associations between the easily accessible oral bacteria and laboratory

values measured in blood, we characterized the microbiota in 15 oral wash sam-

ples from eight individuals at two different time points, 16 weeks apart. A meta-

bolic panel of 32 measurements, including electrolytes and cholesterol levels, was

performed at each visit. In the 15 oral washes, we found a total of 95 bacterial

genera present in at least half the samples. All samples contained Streptococcus

(mean: 32.2%, standard deviation: 11.6), Prevotella (mean: 12.4%, SD: 6.5), Rothia

(mean: 10.6%, SD: 6.5), Fusobacterium (mean: 6.2%, SD: 5.0), and Veillonella

(mean: 5.6%, SD: 3.7).

We calculated Spearman correlations between every pair of bacterial genera and

blood metabolic profile measurement. There were 202 correlations (out of 1425 pos-

sible, 14.2%) that were nominally significant, p < 0.05 before correcting for multiple hy-

potheses testing. Each clinical variable was significantly correlated with 1 to 20 genera,

averaging 7.5 nominally significant correlations per clinical outcome (Additional file 1:

Table S1). Out of the 95 genera, 75 were nominally significantly correlated with 1 to 9

of the clinical variables.

The genera that had a nominally significant correlation with a clinical variable

were entered as potential explanatory variables into a LassoGLMM to predict

that clinical variable along with Cyclosporine/placebo treatment assignment and

gender. All but 64 genera coefficients (out of the 202 nominally significant cor-

relations) were forced to zero by the lasso penalty indicating no association

with the clinical outcome measure. The 64 coefficients that were not forced to

zero were considered strong associations (Table 2). Ten laboratory measures

(Table 1) were associated with bacterial genera since their models retained

non-zero coefficients (see Fig. 2, Additional file 2: Figure S1): percent neutro-

phils (model O1), blood urea nitrogen (BUN) (model O2), immunoglobulin M

(IGM; model O3), partial pressure of oxygen (model O4), SAT (model O5), al-

kaline phosphatase (model O6), serum glutamic oxaloacetic transaminase

(SGOT; model O7), serum glutamic-pyruvic transaminase (SGPT; model O8),

cholesterol (model O9), and glucose (model O10). Of these lab measures, BUN,

Tipton et al. BioData Mining  (2018) 11:12 Page 8 of 20



Ta
b
le

2
La
bo

ra
to
ry
m
ea
su
re
m
en
ts
an
d
th
ei
rs
tr
on

gl
y
as
so
ci
at
ed

ba
ct
er
ia
in
O
C-
CO

PD
.B
ac
te
ria

th
at

co
ul
d
no

t
be

cl
as
sif
ie
d
to

th
e
ge

nu
s
le
ve
la
re

lis
te
d
at

th
e
lo
w
es
t
ta
xo
no

m
ic
le
ve
l

th
at

co
ul
d
be

co
nf
id
en
tly

id
en
tif
ie
d.
Ba
ct
er
ia
in
bo

ld
ar
e
ne
ga
tiv
el
y
as
so
ci
at
ed

w
ith

th
e
la
bo

ra
to
ry
m
ea
su
re
m
en
t,
in
di
ca
tin

g
th
at
hi
gh

er
m
ic
ro
bi
al
ab
un

da
nc
e
is
as
so
ci
at
ed

w
ith

lo
w
er

m
ea
su
re
m
en
t
le
ve
l

Pe
rc
en

t
N
eu
tr
op

hi
ls

(O
1)

BU
N
(O
2)

IG
M

(O
3)

Pa
rt
ia
l

Pr
es
su
re

of
O
xy
ge

n
(O
4)

SA
T
(O
5)

A
lk
al
in
e

Ph
os
ph

at
as
e
(O
6)

SG
O
T
(O
7)

SG
PT

(O
8)

C
ho

le
st
er
ol

(O
9)

G
lu
co
se

(O
10
)

Ba
ct
er
oi
da

le
s

(o
rd
er
)

A
er
oc
oc
ca
ce
ae

(f
am

ily
)

Ps
eu
do
m
on

as
Ba

ci
llu

s
Ba

ci
llu

s
Bi
fid

ob
ac
te
ri
ac
ea
e

(f
am

ily
)

Ba
ci
lla

le
s
(o
rd
er
)

Ro
th
ia

M
ic
ro
co
cc
ac
ea
e

(f
am

ily
)

Ro
th
ia

S-
24

(fa
m
ily

in
Ba
ct
er
oi
da
le
s
or
de

r)
En

te
ro
co
cc
us

Ps
eu
do
m
on

as
Ps
eu
do
m
on

as
W
ee
ks
el
la
ce
ae

(f
am

ily
)

La
ch
no

sp
ir
ac
ea
e

(f
am

ily
)

Sc
ar
do

vi
a

Po
rp
hy
ro
m
on

as
Po

rp
hy

ro
m
on

as

Cl
os
tr
id
ia
ce
ae

St
re
pt
oc
oc
cu
s

G
em

el
la
le
s
(o
rd
er
)

M
or
ye
lla

Cl
os
tr
id
ia
le
s

(o
rd
er
)

Pr
ev
ot
el
la

Ta
nn

er
el
la

O
rib
ac
te
riu
m

La
ch
no

sp
ira
ce
ae

(fa
m
ily
)

G
em

el
la
ce
ae

(f
am

ily
)

O
rib
ac
te
riu
m

La
ch
no

sp
ir
ac
ea
e

(f
am

ily
)

Ca
to
ne
lla

Pr
ev
ot
el
la

O
sc
ill
os
pi
ra

G
ra
nu

lic
at
el
la

Pe
pt
os
tr
ep
to
-

co
cc
us

M
or
ye
lla

Fi
lif
ac
to
r

G
em

el
la
ce
ae

(f
am

ily
)

Ru
m
in
oc
oc
cu
s

La
ct
ob
ac
ill
us

Ei
ke
ne

lla
O
rib
ac
te
riu
m

Pe
pt
os
tr
ep
to
co
cc
us

La
ct
ob
ac
ill
us

Ph
as
co
la
ct
ob
ac
te
riu
m

Ei
ke
ne
lla

N
ei
ss
er
ia

Sc
hw

ar
tz
ia

M
og
ib
ac
te
ria
ce
ae

(fa
m
ily
)

Pe
pt
os
tr
ep

to
-c
oc
ca
ce
ae

(f
am

ily
)

Su
cc
in
iv
ib
rio

N
ei
ss
er
ia

Ca
rd
io
ba

ct
er
iu
m

Su
cc
in
iv
ib
rio

TG
-5

(m
em

be
r
of

D
et
hi
os
ul
fo
vi
br
on

ac
ea
e

fa
m
ily
)

Pe
pt
os
tr
ep

to
-c
oc
cu
s

Ag
gr
eg
at
ib
ac
te
r

TM
-7
.3

Ve
ill
on

el
la

M
yc
op
la
sm

a
M
og

ib
ac
te
ri
ac
ea
e

(f
am

ily
)

TG
-5

(m
em

b
er

of
D
et
hi
os
ul
fo
vi
br
o-

na
ce
ae

fa
m
ily
)

M
yc
op

la
sm

a

Tipton et al. BioData Mining  (2018) 11:12 Page 9 of 20



IGM, partial pressure of oxygen, SAT, and SGPT (models O2, O3, O4, O5, and

O9) were strongly associated with all of the bacterial genera that correlated

with the measurement (optimal penalty parameters of 0). For the remaining 5

models, the optimal λ penalty parameter ranged from 2 to 144. In each of these

5 models, higher λ penalty parameter values revealed no association (β coefficient

reduced to 0) between the outcome of interest and some of the bacterial genera that were

correlated with it, when the other correlated bacterial genera were accounted for in the

a

b

c

d

e

Fig. 2 OC-COPD associations between laboratory measurements and bacteria identified by LassoGLMM.
Strong associations between bacteria and (a) BUN (O2), (b) IGM (O3), (c) SGOT (O7), (d) SGPT (O8), and (e)
cholesterol (O9). Each horizontal grey line represents an individual. When a colored circle is located on the
grey line, it is the relative abundance of that microbe for that subject. Perfect positive association between
clinical variable and bacteria would form a line from the bottom-left to the top-right of the graph and
would have a highly positive β coefficient in the LassoGLMM. Perfect negative association would form a
line from the top-left to the bottom-right of the graph and would have a highly negative β coefficient

Tipton et al. BioData Mining  (2018) 11:12 Page 10 of 20



model. The higher λ penalty parameter values also revealed no association (B coefficient

reduced to 0) between glucose and drug treatment assignment in model O10 or between

cholesterol and gender in model O9.

Associations between bacteria or fungi and cytokines

Using the LHMP dataset, we sought to identify associations between indicators of local

or systemic inflammation and bacteria and/or fungi detected in BAL samples. We used

bacterial and fungal surveys previously performed on 30 BAL samples from 21 individ-

uals [12, 13]. Across all samples we found 49 bacterial genera in at least half of the

samples and 28 fungal genera in at least 10% of the samples. There were 106 Spearman

correlations (out of 1386 possible, 7.6%) that were nominally significant at p < 0.05.

Each cytokine had between 2 and 9 nominally significant correlations with bacterial

and fungal genera (average number of genera nominally correlated with each cytokine

= 5.9) (Additional file 3: Table S2). Conversely, of the 77 genera identified, 42 were

nominally significantly correlated with 1 to 7 cytokines.

These bacterial and fungal genera were entered into the LassoGLMM along with

HIV status and smoking status as potential explanatory variables. As in the oral micro-

biota model evaluations, most genera coefficients (103 out of 106) in the LHMP models

were reduced to zero by the lasso-penalty, indicating no associations between the gen-

era and the outcome of interest. All fungal genera coefficients in all models were re-

duced to zero. The three bacterial genera that maintained non-zero coefficients are

presented in Table 3. In models for the 16 other cytokines (see Additional file 3: Table

S2 for a list of all cytokines analyzed), all genera coefficients were forced to zero while

HIV and/or smoking status coefficients were non-zero, which indicates they may ex-

plain variation in the cytokine levels better than any components of the microbiota.

Two models had evidence of strong genera association with non-zero coefficients

(Fig. 3), BAL interleukin receptor antagonist (IL-ra) (model L1), and systemic IL-ra

(model L2). BAL IL-ra (model L1) had an optimal penalty parameter of 0, indicating

that all correlated bacteria (no fungi were nominally significantly correlated with BAL

IL-ra) were strongly associated with BAL IL-ra. Conversely, systemic IL-ra (model L2)

had an optimal penalty parameter of 13, retaining one bacterial genus as strongly asso-

ciated and eliminating seven others as well as HIV and smoking status.

Model evaluation

To evaluate our models, we used both marginal (fixed effects only) and conditional

(both fixed and random effects) coefficients of determination, or R2 [23]. For GLMMs

based on models O1-O10 we had an average marginal R2 value of 0.44 (SD 0.32) and

Table 3 Cytokines and their strongly associated microbes in LHMP. Bacteria and fungi that could not
be classified to the genus level are listed at the lowest taxonomic level that could be identified. Microbe
in bold is negatively associated with the cytokine, indicating that higher microbial abundance is
associated with lower cytokine level

BAL IL-ra (L1) Systemic IL-ra (L2)

Clostridia (class) Leptotrichia

Ralstonia
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an average conditional R2 value of 0.90 (SD 0.14; Table 4). These R2 values demonstrate

that, on average, 44% of the variation seen in the clinical variables was explained by the

bacteria that were strongly associated with the laboratory measurement, gender, and

drug treatment, and that our whole model explained 90% of the variation seen in the

clinical variables. However, models O1, O4, O5, O6, and O10 were found to be

over-fitting the data with conditional R2 greater than 0.99. Both GLMMs based on the

a

c

b

Fig. 3 LHMP associations between cytokines and bacteria and fungi identified by LassoGLMM. Strong
associations between bacteria and (a) BAL IL-ra (L1) and (b) systemic IL-ra (L2). Each horizontal grey line
represents a subject. When a colored circle is located on the grey line, it is the relative abundance of that
microbe for that individual. Perfect positive association between cytokine and bacteria or fungi would form
a line from the bottom-left to the top-right of the graph and would have a highly positive β coefficient in
the LassoGLMM. Perfect negative association would form a line from the top-left to the bottom-right of the
graph and would have a highly negative β coefficient

Table 4 Marginal and conditional coefficients of variation (R2) for OC-COPD models and Lasso-
penalized GLMM variants. The two-step LassoGLMM method, in columns 1 and 2, is presented here.
The original LassoGLMM, in columns 3 and 4, omits the first step of correlation-based variable screening,
adding all OTUs to the LassoGLMM. The GLMM with correlated genera, in columns 5 and 6, uses the
correlation-based variable screening step, adding only those variables that are correlated with the
outcome to the model, but modifies the second step to not include the lasso penalty. Each method
column contains the marginal and conditional R2 that represent fit of the fixed effects and entire model,
respectively

Two-step LassoGLMM Original LassoGLMM GLMM with correlated genera

Marginal R2 Conditional R2 Marginal R2 Conditional R2 Marginal R2 Conditional R2

BUN (O2) 0.58 0.60 No non zero coefficients All correlated variables were in
Two-step LassoGLMM

IGM (O3) 0.19 0.89 No non zero coefficients All correlated variables were in
Two-step LassoGLMM

SGOT (O7) 0.22 0.84 No non zero coefficients 0.50 0.59

SGPT (O8) 0.44 0.75 No non zero coefficients All correlated variables were in
Two-step LassoGLMM

Cholesterol (O9) 0.80 0.93 0.95 0.98 0.99 1.00
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LHMP models, L1 and L2, were also found to be over-fitting the data with conditional

R2 equal to 1.00. The residuals from the remaining models fit the data reasonably

well (Fig. 4). The most notable exception was in model O3, for IGM, which has

large residuals whose pattern indicates a non-linear relationship. We attempted to

fit a generalized model to these data to allow for the non-linear relationship and

potentially non-normally distributed outcome, as well as to models O2 and O7,

but were unable to significantly improve the fit based on residual inspection (data

not shown).

We then compared our models from two-step LassoGLMMs with 1) Las-

soGLMMs, as originally described by Groll [10, 21], which does not include vari-

able screening, and with 2) a two-step non-penalized GLMM that uses all

correlated genera that passed variable screening as explanatory variables. This latter

model is our two-step LassoGLMM with a λ penalty parameter of 0. The marginal

and conditional R2 values for the three model styles are included in Table 4. With

the notable exception of model O9, we found that our two-step model performed

at least as well as the original LassoGLMM without a variable screening step and

as the two-step non-penalized GLMM with a variable screening step. By including

both the variable screening step and the lasso penalty, our two-step method suc-

cessfully found associations that would have been missed when the original

Fig. 4 Observed vs predicted value plots evaluating the fit of the LassoGLMMs from the OC-COPD study. Each
plot represents one LassoGLMM with non-zero coefficients. The value observed (X-axis) is plotted against the value
predicted by the LassoGLMM (Y-axis). Each point represents a sample. The red line indicates where the predicted
value matches the observed value. For models that deviate from this line (O2, O3, and O7), we attempted to fit a
generalized model but found no significant improvements in fit
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LassoGLMM retained no non-zero coefficients and when the non-penalized GLMM

with all correlated variables failed due to the high number of variables correlated

with each other.

Comparison to categorical methods

To compare the performance of our method, which retains the continuous nature of

the original measurements, to categorical methods, which remove the relative scale of

the measurements and are used most frequently in microbiome studies, we dichoto-

mized the original continuous measurements based on their mean values. For these

newly dichotomized variables, we compared the genera abundance of the microbiota

between the two groups using a Wilcoxon test [24].

For OC-COPD models O1 to O10, the genera that retained non-zero coefficients

(suggesting a relationship between the genera and outcome) differed from the categor-

ical method results. Bacterial genera (n = 1 to 12, mean = 5.4) were differentially abun-

dant between above- and below-average clinical measurement outcome groups, before

correcting for the large number of tests (Fig. 5). For the two cytokines that retained

non-zero coefficients in our LassoGLMMs (models L1 and L2), dichotomized at the

mean cytokine level, abundance levels for two bacterial genera and one fungal genus

were significantly different (Fig. 6). After adjusting for multiple hypotheses testing using

Fig. 5 Wilcoxon p-values compared to LassoGLMM β coefficients for OC-COPD study. Each plot represents one
LassoGLMM with non-zero coefficients. For each bacterial genus, the Wilcoxon p-value (before adjustment for
multiple hypotheses testing) is plotted on the X-axis and the LassoGLMM β coefficient is plotted on the Y-axis.
Most β coefficients are equal to zero. The dashed vertical line indicates nominal significance based on a
Wilcoxon P-value of 0.05
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the Benjamini-Hochberg false discovery rate [25], no genera were significantly differen-

tially abundant between above and below mean outcome or cytokine levels. Before

multiple hypotheses testing correction, the 60 significantly different genera identified

by the Wilcoxon tests across all 12 of the outcomes of interest showed 52% overlap

with the 67 genera identified as strongly associated with the outcome by our two-step

LassoGLMM method. With one exception (Leptotricia in model L2), all genera identi-

fied by our two-step LassoGLMM had an unadjusted Wilcoxon test p-value no greater

than 0.23, suggesting a difference between the samples with high and low outcomes

that is detectable by LassoGLMM but not by the simple Wilcoxon approach. The Las-

soGLMM is therefore more sensitive to associations, even in small sample sizes.

To show the impact of the cutoff value on determining associations, we examined using

the first and third quartiles as thresholds for high/low abundances in the LHMP cytokine

values. Using the first quartile cutoff, the Wilcoxon tests identified five genera as signifi-

cantly differentially abundant (before multiple hypothesis correction) between high and

low BAL IL-ra (Additional file 4: Figure S2a). These five genera have no overlap with the

genera identified when the mean value was used as the cutoff, nor those identified by our

LassoGLMM L1 model. Using the third quartile cutoff, the Wilcoxon tests identified two

genera (Additional file 4: Figure S2b), including Ralstonia, which was identified using the

mean value cutoff and by our LassoGLMM L1 model. For systemic IL-ra, the Wilcoxon

Fig. 6 Wilcoxon p-values compared to LassoGLMM β coefficients for LHMP study. Each plot represents one
LassoGLMM with non-zero coefficients. For each bacterial or fungal genera, the Wilcoxon p-value (before
adjustment for multiple hypotheses testing) is plotted on the X-axis and the LassoGLMM β coefficient is plotted
on the Y-axis. Most β coefficients are equal to 0; those that are not are labeled with their lowest taxonomic
assignment appearing horizontally. The dashed vertical line indicates nominal significance based on a Wilcoxon
p-value of 0.05. The nominally significant genera that have a β coefficient of 0 are labeled with their lowest
taxonomic assignment appearing diagonally
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tests identified the genus Ralstonia as significantly differentially abundant, regardless of

cutoff value, but identified nine additional genera using the first quartile cutoff

(Additional file 4: Figure S2c) and three additional genera using the third quartile cutoff

(Additional file 4: Figure S2d). Both quartile-based cutoffs identified the genus Prevotella

as differentially abundant, but this genus was not identified using the mean as the cutoff.

No cutoff for high/low systemic IL-ra identified the association with Leptotrichia that was

detected by our LassoGLMM L2 model.

Discussion
We analytically identified associations between bacteria and fungi and continuous clinical

variables, including standard blood chemistries as well as lung and peripheral cytokines.

Our application of the two-step LassoGLMM approach to two clinical datasets represents

an important addition to the field as it identifies relationships between microbes and repeat-

edly measured continuous outcomes while maintaining the outcomes as the response vari-

ables. We applied our two-step LassoGLMM approach to two mucosal microbiome

datasets to analyze the relationship of microbes and their abundances to continuous

clinically-related variables with repeated measurements.

Our aim was to explain variation and discover association between clinical variables

and microbial abundance, with the exact value of this association being less important

than the direction of the association. Explanatory associations, such as those predicted

by our LassoGLMM method, are more useful in hypothesis generation than in predict-

ing future events or values given our small sample sizes (7 of our 12 models were con-

sidered overfitted, which would be a problem if predictive modeling were our aim

[26]). For both the oral and lung microbiomes, testing the hypotheses based on our

identified associations remains elusive at this time. In smaller-scale or more

well-known systems, associations identified with the LassoGLMM method could likely

be validated in the laboratory.

Traditionally, associations between microbial abundance and continuous

clinically-related outcomes, with repeated measures or not, have been built on grouping

samples using arbitrary cutoffs of clinical values measured within the study itself. In

our comparison of our two-step LassoGLMM to the Wilcoxon test, we mimicked a

common cutoff for comparison (above/below study mean) to define a study sample

group and briefly explored how changing that cutoff can lead to different results. Be-

cause the analytic comparison groups are often defined by the dichotomization of a

variable, the cutoff point is study sample dependent, and the choice of this cutoff point

impacts the results, there are limitations on reproducibility outside the current study

and the range of a measure’s natural variation in the larger population is ignored. Any

association between microbial abundances and a repeated clinical measurement found

by this type of test (Wilcoxon) ignores the fact that repeated samples are not independ-

ent of each other. This limitation may explain why there was minimal overlap between

the genera identified by our two-step LassoGLMMs and the Wilcoxon test.

Repeated measurements taken in the clinic introduce a data structure that violates a

number of assumptions among common statistical tests, even those developed specific-

ally for microbiome studies. Multivariate Association with Linear Models (MaAsLin)

was recently developed to simultaneously find associations between microbes and mul-

tiple clinical outcomes, including continuous variables, through variable selection and
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linear modeling [27]. However, MaAsLin models do not allow for repeated measure-

ments and their complex covariance structure because MaAsLin requires that all sam-

ples be independent, originating from different subjects. Another approach is the

two-part zero-inflated Beta regression model with random effects (ZIBR), which can

handle repeated measurements through the use of random effects. However, ZIBR as-

sumes that all subjects will have samples taken at the same time points with no missing

measurements [28]. Real-world datasets, including ours, rarely contain all time points

for all subjects and may have missing data for various reasons including missed ap-

pointments or failed amplification and sequencing. A third approach, negative binomial

mixed models (NBMM) is more similar to our method in that it uses mixed models to

handle complex correlation structures and can handle missing data [29]. However, none

of these other methods allow for correlations or interactions between microbial abun-

dances since microbial measures are restricted to being the response variable only.

Our use of the LassoGLMM takes advantage of its ability to account for correlations

between genera, which may be indicative of biological interactions. Too many interac-

tions or correlations between genera can be problematic for the lasso penalty, as it may

discard a biologically important genus while retaining a non-zero coefficient for a

correlated but less biologically important genus. We mitigate this problem by reducing

the number of genera entered into the LassoGLMM with a variable screening step. The

“choices” that the lasso penalty makes highlight the need for future study of the

relationships between the genera in addition to their relationships with the outcome

variable. Genera whose coefficients are pushed to zero may be chemically or physically

interacting with genera whose coefficients are non-zero. Or, if negatively correlated

with each other, may be performing the same function. This biological redundancy may

stem from bacterial interactions or from competition to fill the same niche. Biological

interactions between genera within a microbiome represent an area of active research

and in the meantime, methods such as our two-step LassoGLMM that can account for

these uncharacterized interactions should be better able to determine associations than

methods that ignore them.

Conclusions
The potential applications of our two-step LassoGLMM are multiple and go beyond

what we have used it for in our study. We took advantage of the ability to account for

potentially confounding categorical variables, treatment assignment and gender in

OC-COPD, and HIV status and smoking status in LHMP. This ability can be used to

account for attributes that are known or suspected to influence the outcome variable,

including host genotype. We made use of the ability to analyze repeated measurements

from the same individual, over two time points in OC-COPD, and in two lung locations

(right and left lungs were sampled separately) in the LHMP. The method can accom-

modate any number of repeated measurements, including long-term longitudinal stud-

ies, even when the number of measurements per individual is not identical. The

inclusion of the individual as a random effect also accounts for an uneven number of

observations per subject, a common issue in the clinic where study participants can be

followed for different lengths of time, can be “lost to follow-up”, may die, or may drop

out of the study. The generalized nature of our two-step LassoGLMM also allows for

the analysis of variables that do not follow a normal distribution, including
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time-to-event and categorical outcomes. The lasso penalty allows for variable selection

to select the strongest genera associations but the selection criteria may be influenced

by the correlations between microbes inherent in relative abundance and other com-

positional data. However, our two-step LassoGLMM is not limited to relative abun-

dance data and when a consensus is reached about the optimal normalization or

transformation methods for microbiome data, this method will be able to handle that

data and improve its performance.

We have demonstrated that our two-step version of the lasso-penalized generalized

linear mixed model can be applied to microbiome studies with continuous outcomes

and repeated measures. This model works well with both 16S rRNA gene surveys and

more complicated 16S/ITS combination studies. The method combines the

well-established lasso penalty to account for the large number of variables with the

mixed model to account for repeated sampling—including longitudinal studies—and

other variables that are known to be associated with the outcome. The addition of a

variable screening step ensures that models for more outcome variables are solvable

than with a single step LassoGLMM. The power of our two-step LassoGLMM lies not

only in its ability to identify known associations between microbes and continuous

clinical variables, but in its ability to identify novel associations that can be used to test

new potential biomarkers.

Additional files

Additional file 1: Table S1. Correlations between bacteria and laboratory measurements in OC-COPD. Table
displays the Spearman correlations between all bacteria-laboratory measurement pairs. P values were adjusted
(AdjustedP) using the Bonferroni correction. The last column (NwithGenus) is a count of the number of samples
that contained the genus in that correlation-pair. (XLSX 173 kb)

Additional file 2: Figure S1. Additional OC-COPD associations between laboratory measurements and bacteria
identified by LassoGLMM. Strong associations between bacteria and (a) percent neutrophils (O1), (b) partial
pressure of oxygen PO2(O4) (c) SAT (O5), (d) alkaline phosphatase (O6), and (e) glucose (O10). Each horizontal grey
line represents an individual. When a colored circle is located on the grey line, it is the relative abundance of that
microbe for that subject. Perfect positive association between clinical variable and bacteria would form a line from
the bottom-left to the top-right of the graph and would have a highly positive β coefficient in the LassoGLMM.
Perfect negative association would form a line from the top-left to the bottom-right of the graph and would have
a highly negative β coefficient. (PDF 287 kb)

Additional file 3: Table S2. Correlations between bacteria or fungi and cytokines in LHMP. Table displays the
Spearman correlations between all bacteria/fungi-cytokine pairs. P values were adjusted (AdjustedP) using the
Bonferroni correction. The last column (NwithGenus) is a count of the number of samples that contained the
genus in that correlation-pair. (XLSX 161 kb)

Additional file 4: Figure S2. Wilcoxon p-values based on quartile cutoffs compared to LassoGLMM β coefficients
for LHMP study. Each plot represents one LassoGLMM with non-zero coefficients. For each bacterial or fungal
genera, the Wilcoxon p-value (before adjustment for multiple hypotheses testing) based on the first (a and c) or
third quartile (b and d) is plotted on the X-axis and the LassoGLMM β coefficient is plotted on the Y-axis. Most β
coefficients are equal to 0; those that are not are labeled with their lowest taxonomic assignment appearing
horizontally. The dashed vertical line indicates nominal significance based on a Wilcoxon p-value of 0.05. The
nominally significant genera that have a β coefficient of 0 are labeled with an arrow indicating their lowest
taxonomic assignment, except in panel c where they would be, from smallest to largest p-value, Catonella,
Actinomyces, Porphyromonas, Alicyclobacillus, Megasphaera, Ramularia, Prevotella, Ralstonia, Atopobium, and
Veillonella. (PDF 246 kb)
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