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RESEARCH
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ABSTRACT

The integration-segregation framework is a popular first step to understand brain dynamics
because it simplifies brain dynamics into two states based on global versus local signaling
patterns. However, there is no consensus for how to best define the two states. Here, we map
integration and segregation to order and disorder states from the Ising model in physics to
calculate state probabilities, Pint and Pseg, from functional MRI data. We find that integration
decreases and segregation increases with age across three databases. Changes are consistent
with weakened connection strength among regions rather than topological connectivity based
on structural and diffusion MRI data.

AUTHOR SUMMARY

The integration-segregation framework succinctly captures the trade-off that brains face
between seamless function (more integration) in light of energetic constrains (more
segregation). Despite its ubiquitous use in the field, there is no consensus on its definition with
various graph theoretical properties being proposed. Here, we define the two states based on
the underlying mechanism of neuronal coupling strength to provide a physical foundation for
the framework. We find that younger adults’ brains are close to perfectly balanced between
integration and segregation, while older adults’ brains veer off toward random signaling.

INTRODUCTION

Aging is the number one risk factor for almost all neurodegenerative diseases (Kennedy et al.,
2014). For every 5 years after the age of 65, the probability of acquiring Alzheimer’s disease
doubles (Bermejo-Pareja et al., 2008). An influential conceptual approach to begin making
sense of brain dynamics frames it in terms of a balance between integrated and segregated
network states (Deco, Tononi, Boly, & Kringelbach, 2015; Friston, 2009; Sporns, 2010,
2013; Tononi, Sporns, & Edelman, 1994; Wig, 2017). On one hand, the brain faces functional
pressure to have as many regions directly connected for quick communication. On the other
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hand, the brain is constrained to minimize metabolic energy consumption because it con-
sumes 10 times more of the body’s energy than expected by mass (Raichle, 2006). Tuning
the balance between extensive global signaling, referred to as integration, and limited local
signaling, referred to as segregation, optimally compromises between functional and ener-
getic constraints (Bullmore & Sporns, 2012; Cohen & D’Esposito, 2016; Manza et al., 2020;
Wang et al., 2021). Although these constraints remain throughout life, age related glucose
hypometabolism disrupts their balance.

Previous research has found mixed aging results, depending on the metrics used to measure
integration and segregation (Chan, Park, Savalia, Petersen, & Wig, 2014; Chen et al., 2021;
Onoda & Yamaguchi, 2013; Zhang et al., 2021). Although most in the literature use the system
segregation metric (Chan et al., 2014), no consensus exists surrounding integration. In general,
the problem facing the integration-segregation framework is that there is no one way to define
the two states. Many graph theoretical metrics could potentially be used (Rubinov & Sporns,
2010), and it is unclear why one should take precedence over the other, particularly when
their aging outcomes are mutually inconsistent. Thus, there is a need to more fundamentally
define integration and segregation to transform it from a proxy to a physical quantity.

Here, we provide a physical foundation for the framework by applying the mean-field Ising
model to treat integration and segregation as physical two-phase systems like magnets and
liquids. After demonstrating that the Ising model can capture global brain dynamics as mea-
sured by functional MRI (fMRI) once the effective number of nodes is properly set, we proceed
to calculate probabilities of being in the integrated or segregated states and find that younger
and older brains are bounded by optimal and random signaling, respectively. We then explore
diffusion and structural MRI data to ask if the age-related changes in signaling are due to
changes in topological network connectivity.

APPLYING THE ISING MODEL TO FMRI

We model human brain signaling patterns obtained from resting-state fMRI datasets. As in pre-
vious work (Weistuch et al., 2021), we capture those patterns with the Ising model, a widely
used theoretical method for expressing macroscale behaviors in terms of interactions among
many underlying microscale agents (Dill & Bromberg, 2010). We first transform the continuous
fMRI data into a representation as discrete Ising spins via binarization of the data (Figure 1).
That is, we reduce the state of the region as either −1 or 1 based on whether fMRI signaling is
decreasing or increasing, respectively. Second, we calculate the synchrony by summing over
all spins in a given time interval and dividing by the total number of spins (Figure 1). Synchro-
nies are collected over the entirety of the scan to obtain a distribution. Based on the Ising
model theory, the synchrony threshold delineating between integrated and segregated states
is set such that Pint = Pseg = 1/2 at the Ising model’s critical point (see the Methods section). Pseg
is the probability that the brain is in the segregated state and is defined as the relative number
of time points for which the absolute value of synchrony is less than the synchrony threshold
(Figure 1). Pint is defined as the relative number of time points for which the absolute value of
synchrony is greater than the synchrony threshold and trivially relates to Pseg because
Pint + Pseg = 1.

RESULTS

The Number of Functionally Effective Brain Regions

Before proceeding to calculate Pseg, we first check whether the model can capture the exper-
imental synchrony distributions. A mean-field Ising model only considering pairwise

State:
A particular combination of physical
properties. Here, we assume that
brain networks can only occupy
either the integrated or segregated
state.

Integration:
A network state composed of global
signaling.

Segregation:
A network state limited to local
signaling.

Ising model:
A classic model in physics that was
first applied to ferromagnetism. It
includes pairwise interactions
between binary spin states.

Phase:
Interchangeable with the word
“state” for the purposes of this text.

Critical point:
The point where two phases coexist.
In this text, it is where the synchrony
distribution dramatically changes
from bimodal (primarily integrated)
to unimodal (primarily segregated).
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interactions has one quantity of interest, λ. The strength of connection λ between any two
regions corresponds to the degree to which signals between any two brain regions are corre-
lated. However, we find that a naive fit of λ based on the principle of maximum entropy (Dill &
Bromberg, 2010; Schneidman, Berry, Segev, & Bialek, 2006; Weistuch et al., 2021) fails to
capture the synchrony distribution from the fMRI data (Figure 2, orange). To improve upon
a standard Ising model approach, here, we introduce a hyperparameter Neff. Brain atlas par-
cellations provide N brain regions; however, those N regions must be identically distributed
across time for the Ising model to apply. We find that when setting N to a lower value Neff,
fixed for all individuals within a dataset, the Ising model accurately captures synchrony distri-
butions (Figure 2). The optimal value of Neff = 40 is determined by scanning across Neff mul-
tiples of 5 to find which best captures the next order moment not fit by our maximum entropy

Figure 1. Calculating the probability that the brain exhibits integrated or segregated dynamics (Pint or Pseg). The schematic demonstrates the
procedure for one individual’s fictitious fMRI scan with four brain regions and only two time points shown. First, we binarize data based on the
nearest neighbor scans in time. If the fMRI signal increases, a value of 1 is assigned; if it decreases, a value of −1 is assigned. Then, we calculate
the average spin state of the brain, called synchrony. Finally, we collect synchrony values across the entire time series to create a synchrony
distribution. We appropriately set the synchrony threshold based on the Ising model theory to delineate between integrated and segregated
microstates. Additional details can be found in the Methods section. Figure was created with Biorender.com.

Figure 2. Adjusting the number of brain regions (Neff) helps to reproduce the experimental data.
The modified Ising model with Neff = 40 (yellow line) better captures the synchrony distribution
(blue histogram) of an arbitrarily chosen individual in the Cam-CAN dataset (subject ID:
CC110045). The orange line corresponds to the Ising model with N equal to the number of regions
in the Seitzman atlas (Seitzman et al., 2020).

Principle of maximum entropy:
A fitting strategy that satisfies user-
defined constraints in the most
agnostic way.
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setup across all individuals (see the Methods section; Figure 6). For our particular preprocess-
ing (see the Methods section), we find that Neff = 40 performs best for individuals in the Cam-
bridge Centre for Ageing and Neuroscience (Cam-CAN) (Taylor et al., 2017) and the Human
Connectome Project (HCP) Aging (Harms et al., 2018). For the UK Biobank (UKB) (Alfaro-
Almagro et al., 2018), Neff = 30 performs best (Figure 6).

Based on identified Neff hyperparameter values, brains act as if they have a few tens of
functional units. If different preprocessing decisions are considered, such as atlas resolution,
Neff values are still within an order of magnitude. At the voxel level (N = 125,879), we obtain
an Neff value of 65 for Cam-CAN and 125 for HCP using the same procedure as for the Seitz-
man atlas (N = 300) considered in the previous paragraph (Supporting Information Figure S2).
Future work will pinpoint how Neff depends on preprocessing to enable a future study creating
a physics-based parcellation of the brain.

We also tried an alternative fitting strategy by fitting Neff per individual rather than having
the same value for all individuals in a respective dataset. We show that individually fitted Neff

values trivially relate to λ as expected by theory (Supporting Information Figure S1). Moreover,
individually fitted Neff are not found to be related to global differences in anatomical brain
connectivity (Supporting Information Figure S3).

The Aging Brain Becomes Functionally More Segregated

With an appropriately determined Neff, we can accurately set the same synchrony threshold s
for all individuals within a dataset to calculate Pseg. The value of s* is set such that at the Ising
model’s critical point in connection strength λ, Pseg equals to 1/2 for the ideal synchrony dis-
tribution based on the Ising model theory (see the Methods section). This enables Pseg com-
parisons across datasets that may have different Neff values. For Cam-CAN and HCP, the value
of s* is s* = 0.33 because Neff = 40 for both datasets. For UKB, s* = 0.36 (Supporting Infor-
mation Table S1).

Across the three publicly available datasets, we find that the balance shifts toward more
segregation at older ages (Figure 3). Note that if we plotted Pint rather than Pseg, Figure 3 would

Figure 3. Pseg rises in aging brains across the three datasets. Data points correspond to medians,
while error bars correspond to standard errors for bins of 5 years. The variable ρ corresponds to the
Spearman correlation coefficient between age and Pseg calculated over all N individuals, with the
p value in parenthesis.
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be horizontally flipped, where Pint goes from high to low values as a function of increasing age
because Pseg + Pint = 1. There is a large variation among the subjects (Supporting Information
Figure S4). However, the correlation between age and Pseg is significant with the largest coef-
ficient being 0.40 for Cam-CAN, while the lowest being 0.08 for UKB. Discrepancies in study
designs may explain correlation magnitude differences: Cam-CAN and HCP are designed to
study healthy aging (Bookheimer et al., 2019; Shafto et al., 2014), while the goal of UKB is to
identify early biomarkers for brain diseases (Sudlow et al., 2015).

To better highlight how Pseg changes across Cam-CAN’s large age range, we present violin
plots for younger, middle age, and older individuals’ Pseg (Supporting Information Figure S5).
We also investigate how Pseg varies across time for a given individual. In Supporting Informa-
tion Figure S6, we show that per individual Pseg, standard deviations decrease across age for
Cam-CAN and HCP individuals. Finally, we perform a multiple linear regression with sex and
handedness as additional covariates and show that age still strongly explains increasing seg-
regation (Supporting Information Tables S2–S4 and Figures S7–S9).

Informed by the Ising model, increases in segregation result from network reorganization to
more local signaling because of weakened connection strength between regions. Interestingly,
younger individuals exhibit segregation behavior closer to the Ising model’s critical point of
connection strength (Supporting Information Figure S10). At the critical point, we define
Pseg = 1/2 (see the Methods section) and find experimental Pseg values closer to 1/2 for younger
individuals (Figure 3). Older individuals, on the other hand, approach Pseg = 1 on average. This
limit corresponds to functionally uncoupled brain regions that are randomly activating. Our
results support the critical brain hypothesis that healthy brains operate near a critical point
(Beggs, 2022; Beggs & Plenz, 2003; Ponce-Alvarez, Kringelbach, & Deco, 2023; Tagliazucchi,
Balenzuela, Fraiman, & Chialvo, 2012) and implicate aging as pushing brain dynamics further
away from criticality.

Increasing Segregation Is Not Related to Structural Degradation

In the previous subsection, we discussed the disruption of the integration and segregation bal-
ance from the perspective of phase transitions in physics. Here, we explore the physiological
mechanism underlying increasing segregation in the aging brain. We consecutively simulate
the Ising model on a hypothetically degrading brain structure and show that random removal
of edges yields qualitatively similar results to those of fMRI (Figure 4). Note that Figure 4 is
horizontally flipped from that of Pseg (Figure 3) because the average degree (relative number
of edges) is on the x-axis. It is presumed that edges are lost as age increases. In Figure 4, edges
are lost linearly in time; however, more complicated monotonic functions can be employed to
yield a quantitative match with experimental data in Figure 3. We can also capture variability
among individuals by assuming that connection strengths within an individual are drawn from a
distribution, rather than all being equal (Supporting Information Figure S11). In the Supporting
Information, we also demonstrate that similar qualitative trends are obtained when starting with
other individuals’ structures, regardless of their age (Supporting Information Figure S12).

We now begin to investigate possible mechanisms of connection degradation. First, we find
that our simulation is agnostic to the detailed mechanism of connection degeneration because
connection strength is essentially modulated by the probability that a given edge exists
(Supporting Information Figure S13). In other words, the simulation cannot inform whether
connections are degraded based on some targeted property. Thus, we turn to structural MRI
and diffusion MRI data from UKB to investigate possible properties being degraded with age.
In Supporting Information Figure S15, we confirm that white matter volume decreases as a

White matter:
Bundles of axons connecting brain
regions.
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function of adult age, as previously reported (Bethlehem et al., 2022; Lawrence et al., 2021;
Lebel et al., 2012). However, this decrease does not correspond to a loss of anatomical con-
nections because we find that neither average degree, average tract length, nor average tract
density monotonically decrease with age when analyzing diffusion MRI scans using the Q-Ball
method (Supporting Information Figure S16). This seems to contradict previous findings, which
report decreases (Betzel et al., 2014; Lim, Han, Uhlhaas, & Kaiser, 2015). However, previous
results employed the more simple diffusion tension imaging (DTI) method, which is known to
be less accurate at performing tractography (Garyfallidis et al., 2014; Jones, Knösche, & Turner,
2013; Rokem et al., 2015). When rerunning our analysis for DTI, we can reproduce previously
reported tract properties’ anticorrelations with age (Supporting Information Figure S16). We
also investigate a graph property that captures polysynaptic connectivity called communica-
bility (Andreotti et al., 2014; Estrada & Hatano, 2008; Seguin, Sporns, & Zalesky, 2023) and
find that it also does not decrease age when using Q-Ball-derived tract density (Supporting
Information Figure S17).

We propose that observed white matter volume reduction (Supporting Information Figure
S15) and brain dynamics change correspond to less myelin covering axons as functions of age.
Despite rejecting anatomical connections as a possible mechanism in the previous paragraph,
it remains inconclusive whether myelin underlies trends because we are not aware of such
data being publicly available. Although axons are still physically present, myelin coverage
disruption causes regions to no longer be functionally connected because signals do not arrive
on time. Previously reported results from myelin water imaging confirm reduction in myelin at
advanced ages (Arshad, Stanley, & Raz, 2016; Buyanova & Arsalidou, 2021). We also inves-
tigated whether degraded functional connections are likely to be longer than average with age,
as previously reported for certain brain regions (Tomasi & Volkow, 2012). Although we indeed
find that the average correlation of the 25% longest connections is slightly more strongly anti-

Figure 4. Simulating the random removal of edges results in Pseg increases. Five edges are ran-
domly removed from a starting diffusion MRI structure (arbitrarily chosen UKB individual, subject
ID: 6025360, 51 years old), under the Harvard-Oxford atlas (64 regions). An Ising system is
simulated with Neff = N = 64 for the corresponding diffusion MRI structure. Spin states, denoted
by dark blue and red node colors in the schematic, are recorded across 2,500 time steps to calculate
Pseg. Then, the entire procedure is repeated for the updated structure after edge removal, for a total
of 83 times (see the Methods section). Orange data points on the right plot correspond to individual
Ising systems, where N reflects the total number. The variable ρ corresponds to the Spearman cor-
relation coefficient calculated over all orange data points between average degree and Pseg, with the
p value in parenthesis. Magenta data points correspond to medians, while error bars correspond to
upper and lower quartiles for bin sizes of one degree. The schematic on the left is created with
Biorender.com.

Network Neuroscience 1056

Aging brains become functionally segregated

http://biorender.com
http://biorender.com


correlated with age compared with the average correlation of the 25% shortest connections
for Cam-CAN (Supporting Information Figure S18, left), we find the opposite trend for HCP
(Supporting Information Figure S18, right). Thus, myelin reduction does not seem to have a
stronger impact on longer connections and conclude that the loss of functional connections
happens randomly with respect to length at the brain-wide scale.

DISCUSSION

We apply the mean-field Ising model to physically quantify integration and segregation at the
emergent scale of the whole brain. From resting-state fMRI scans across three publicly avail-
able datasets, we find that brain dynamics steadily becomes more segregated with age.
Physically, aging leads to brain dynamics moving further away from its optimal balance at
the critical point. Physiologically, analyses of white matter properties point to random func-
tional connection losses due to myelin degeneration as the possible culprit for more segre-
gated dynamics. This expands upon our previous work finding metabolic dysfunction to
underly brain aging (Weistuch et al., 2021), hinting that myelin may be especially vulnerable
to energy imbalance.

The Ising model and integration-segregation frameworks are considered as the simplest
approaches to capture dynamics in their respective fields. Thus, it is fitting to map segre-
gated and integrated states in neuroscience to disordered and ordered Ising model phases
in physics, respectively. One general challenge in applying graph theory to MRI-level data is
identifying what constitutes a node (DeFelipe, 2010; Lacy & Robinson, 2020; Seung, 2012;
Sporns, 2010; Wig, Schlaggar, & Petersen, 2011; Yeo & Eickhoff, 2016). We identify the best
number of effective brain regions Neff such that the Ising model accurately captures individ-
uals’ synchrony distributions across the corresponding dataset, improving upon our original
application of the Ising model, which lacked the Neff hyperparameter (Weistuch et al., 2021).
Future work will utilize Neff calculations to guide the creation of a parcellation in which
brain regions are constrained to be physically independent based on their collective func-
tional activity.

The field is inundated with integration and segregation metrics that have different aging
trends. We go beyond heuristic definitions, such as one that we previously proposed based
on matrix decomposition (Weistuch et al., 2021), by self-consistently defining the two states
within the Ising model framework. This makes our metric mechanistically based on the con-
nection strength between regions and further stands out because Pseg and Pint are naturally at
the emergent scale of the brain. Notably, we do not calculate a local property and then aver-
age over nodes to yield a brain-wide value (Wang et al., 2021’s metric also has this advan-
tage). In addition, Pseg and Pint are directly related because Pseg + Pint = 1. Most integration and
segregation metrics (Chan et al., 2014; Rubinov & Sporns, 2010; Tononi et al., 1994; Wang
et al., 2021) are not defined to be anticorrelated. This could be advantageous because greater
complexity can be captured (Sporns, 2010).

Taken together, it is not surprising that Pseg and Pint results are not consistent with some
previous aging reports. For example, a property called system segregation, defined as the dif-
ference between inter- and intracorrelations among modules, was found to decrease with age
(Chan et al., 2014). Although most report that segregation decreases with age, regardless of the
specific metric (Chan et al., 2014; Damoiseaux, 2017; King et al., 2018; Zhang et al., 2021;
see Chen et al., 2021 for an exception), integration trends are less clear. Global efficiency,
taken from the graph theory, was found to increase with age (Chan et al., 2014; Yao et al.,
2019); however, others found different integration metrics decreasing with age (Chong et al.,
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2019; Oschmann, Gawryluk, & The Alzheimer's Disease Neuroimaging Initiative, 2020;
Zhang et al., 2021), consistent with the results reported here.

The utility of the integration-segregation framework lies in its simplicity. However, its
simplicity has led to various heuristic definitions that have qualitatively different aging trends.
By physically defining integration and segregation based on connection strength between
regions, we provide an interpretable foundation for more detailed studies going beyond the
two-state approximation to investigate brain dynamics.

METHODS

Functional MRI Preprocessing

We access three publicly available resting-state fMRI datasets: Cam-CAN (Taylor et al., 2017),
UKB (Alfaro-Almagro et al., 2018), and HCP (Harms et al., 2018). Acquisition details such as
the field strength and repetition time can be found in Supporting Information Table S5. Demo-
graphic details can be found in Supporting Information Table S6.

UKB and HCP fMRI data are accessed in preprocessed form (for details, see Alfaro-Almagro
et al., 2018, and Glasser et al., 2013, 2018, respectively). We preprocessed Cam-CAN data as
done in our previous work (Weistuch et al., 2021). For all three datasets, the cleaned, voxel
space time series are band-pass filtered to only include neuronal frequencies (0.01–0.1 Hz)
and smoothed at a full width at half maximum of 5 mm. Finally, we parcellate into 300 regions
of interest according to the Seitzman atlas (Seitzman et al., 2020). For our voxel-wide analysis
presented in the Supporting Information, we do not perform parcellation and just consider gray
mater voxels by masking.

Applying the Ising model requires the data to only take two possible values: −1 or 1. After
performing the preprocessing outlined in the previous paragraph, we binarize the continuous
signal for a given region based on the sign of the slope of subsequent time points (Weistuch
et al., 2021). We previously showed that such binarization still yields similar functional con-
nectivities as that of the continuous data (Weistuch et al., 2021).

Finally, we only consider brain scans that have the same number of measurements as the
predominant number of individuals in the respective dataset (Supporting Information Table
S5). If the fitted connection strength parameter λ is less than 0, reflecting a nonphysical value,
we do not include that individual’s brain scan in our analysis. In the HCP dataset, we excluded
individuals aged 90 years or older because their exact age, considered protected health infor-
mation, is not available.

Identifying the Neff Hyperparameter

In Figure 2, our maximum entropy fit (orange line) fails to qualitatively capture the synchrony
distribution for an arbitrary individual. To rescue the fit, we replace N with Neff (Supporting
Information Equation S1). In the right plot of Figure 5, we demonstrate that a mean-field Ising
model with Neff = 40 accurately captures the fourth moment of synchrony hs4i across all indi-
viduals in Cam-CAN preprocessed under the Seitzman atlas. Note that Neff is not a parameter
like λ; rather, it is a hyperparameter because it takes the same value across all individuals
within the dataset. Neff is necessary because the Ising model systematically underestimates
hs4i when Λ > 0 (left plot of Figure 5). Note that Λ corresponds to rescaling λ such that
Λ = 0 is at the critical point (Supporting Information Equation S13).

To identify Neff = 40 as the best value, we perform a parameter scan over multiples of 5 and
identify the Neff at which the root mean square error (RMSE) between hs4iexp and hs4imodel is
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minimized (Figure 6). We choose the fourth moment because it is the next order moment that
our maximum entropy fit does not constrain. It is not the third moment because the distri-
bution is assumed to be an even function as indicated by our prior (Supporting Information
Equation S1).

Calculating Pseg

The probability of the brain network being in the segregated state is the sum over all micro-
states corresponding to the segregated state.

Pseg ¼
XNeff s�

n¼−Neff s�
P nð Þ (1)

Pseg ¼ 1
Z

XNeff s�

n¼−Neff s�

Neff

Neff þ nð Þ=2
� �

eλn
2=N2

eff (2)

In the second line, the mean-field Ising model’s P(n) is inserted (Supporting Information
Equation S2). Z corresponds to the partition function and ensures that P(n) is normalized.
The constant s* is the synchrony threshold for which segregated and integrated microstates
are delineated. We set s* such that Pseg = 1/2 when Λ = 0 according to theory. More spe-
cifically, we numerically calculate Pseg(Λ = 0) for a given Neff and extrapolate to find s*
(Supporting Information Figure S19). Proper calibration ensures that the theory is accurate
and enables apples to apples Pseg comparisons across datasets with different Neff. The list
of s* values for the three publicly available datasets studied can be found in Supporting
Information Table S1.

Figure 6. The effective number of regions Neff is identified by minimizing the root mean square error (RMSE) of the fourth moment of syn-
chrony between theory and experiment across all individuals. Each data point corresponds to the sum over all individuals’ RMSEs in the
respective data set. Note that the y-axis should be scaled by 10−3.

Figure 5. Adjusting the effective number of brain regions (Neff) helps capture synchrony distribu-
tions’ variances across individuals in the Cambridge Centre for Ageing data set. Each data point
corresponds to an individual.
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Ising Model Simulation

We simulate the Ising model on an initial structure informed by diffusion MRI under the
Harvard-Oxford atlas (Makris et al., 2006) (64 regions) for an arbitrarily chosen UKB individual
(subject ID: 6025360). If no edge exists between two regions, then the regions are uncoupled.
If an edge does exist, then regions i and j are coupled and contribute λ * σ i * σ j to the system’s
energy, where λ corresponds to the connection strength and σ corresponds to the spin state of
the corresponding region (−1 or 1). Under the standard notation of the Ising model, λ = J/T,
where J corresponds to the coupling constant and T is the temperature of the bath. The starting
λ is set to 34.4, which is above λ’s critical point (starting Pseg ≈ 0.2). By definition, Neff =N = 64
in the simulations. Based on the atlas resolution, simulating the Harvard-Oxford atlas provides
an Neff similar to those found for the experimental data (Neff = 40 for Cam-CAN and HCP;
Neff = 30 for UKB).

The simulation for a given structure starts by randomly assigning the 64 nodes up or down
spins. Then, for each time step, we attempt 10 spin flips 64 times, for a total of 2,500 time
steps. Spin flips are accepted according to the Metropolis-Hastings algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953). The exact number of spin flip attempts or total
time points does not matter, as long as equilibrium is reached. For example, we find that for λ
values larger than those presented in the text, synchrony distributions become asymmetric and
exhibit only one of the two peaks corresponding to the integrated state because of the high
kinetic barrier of going from all down spins to all up spins.

Although the starting structure is informed by diffusion MRI (dMRI), resulting structures after
computational edge removals are based on the posited removal strategy. Edges informed by dMRI
are undirected and removal maintains undirectedness. Effectively two times as many edges are
removed because both forward and backward edges are concurrently eliminated. In Supporting
Information Figure S14, we demonstrate how synchrony distributions change as edges are com-
putationally removed for a UKB individual (subject ID: 6025360), with a starting λ = 34.4.

We also investigate other individuals’ structures in the UKB to test the robustness of our
qualitative results. We arbitrarily chose the following six individuals to widely sample different
ages: subject IDs 6025360 (51 years old), 4712851 (57 years old), 3081886 (61 years old),
1471888 (65 years old), 4380337 (72 years old), and 1003054 (74 years old) (Supporting Infor-
mation Figure S12). To ensure that the starting λ are comparable despite differing in the prob-
ability that two regions are connected (pedge), we set λ0 = 86.0 for all simulations such that
λ = λ0 * pedge. For example, for subject ID 6025360, pedge = 0.40, thus, the starting λ = 34.4.

Diffusion MRI Processing

Diffusion MRI processing to obtain structural information such as tract length and streamline
count, which we call tract density, is outlined in our previous work (Razban, Pachter, Dill, &
Mujica-Parodi, 2023). Briefly, we take preprocessed dMRI scans from the UKB (Sudlow et al.,
2015) and calculate connectivity matrices using the Diffusion Imaging in the Python software
(Garyfallidis et al., 2014). We input the Talairach atlas (Lancaster et al., 2000) to distinguish
between white and gray matter. We perform deterministic tractography and reconstruct the
orientation distribution function using Constant Solid Angle (Q-Ball) with a spherical harmonic
order of 6 (Aganj et al., 2010). For Supporting Information Figure S16, we also do reconstruc-
tion using diffusion tensor imaging (Garyfallidis et al., 2014). To generate the starting structure
for Ising model simulations, we input the Harvard-Oxford atlas for tractography because it par-
cellates the brain into fewer regions, making it more computationally tractable to carry out
simulations, and is closer to Neff values found for experimental data.

Network Neuroscience 1060

Aging brains become functionally segregated



ACKNOWLEDGMENTS

We thank Ying-Jen Yang, Anthony Chesebro, Charles Kocher, Jonathan Pachter, and Lakshman
Verma for insightful discussions. The research described in this paper is funded by the White
House Brain Research Through Advancing Innovative Technologies Initiative (NSFNCS-FR
1926781 to L.R.M.-P. and K.A.D.) and the Stony Brook University Laufer Center for Physical
and Quantitative Biology (K.A.D.). Data collection and sharing for this project was provided
by the Cam-CAN. Cam-CAN funding was provided by the UK Biotechnology and Biological
Sciences Research Council (grant number BB/H008217/1), together with support from the UK
Medical Research Council and University of Cambridge, UK. This research has been conducted
using the UKB Resource under Application Number 37462. Research reported in this publication
was supported by the National Institute On Aging of the National Institutes of Health under Award
Number U01AG052564 and by funds provided by the McDonnell Center for Systems Neurosci-
ence at Washington University in St. Louis. The HCP-Aging 2.0 Release data used in this report
came from DOI: 10.15154/1520707. The HCP data repository grows and changes over time.
The HCP data used in this report came from NIMH Data Archive DOI: 10.15154/1526427.

SUPPORTING INFORMATION

Supporting information for this article is available at https://doi.org/10.1162/netn_a_00389.
The following references are cited in the supporting information: Friedli and Velenik (2017),
Kochmański et al. (2013), and Landau (1937).

AUTHOR CONTRIBUTIONS

Rostam M. Razban: Conceptualization; Data curation; Formal analysis; Investigation; Method-
ology; Visualization; Writing – original draft; Writing – review & editing. Botond B. Antal:
Conceptualization; Data curation; Investigation; Software; Writing – original draft; Writing –

review & editing. Ken A. Dill: Funding acquisition; Investigation; Methodology; Writing –

original draft; Writing – review & editing. Lilianne R. Mujica-Parodi: Funding acquisition;
Supervision; Visualization; Writing – original draft; Writing – review & editing.

FUNDING INFORMATION

Lilianne Mujica-Parodi, Division of Information and Intelligent Systems (https://dx.doi.org/10
.13039/100000145), Award ID: 1926781.

CODE AND DATA AVAILABILITY

Scripts necessary to reproduce figures and conclusions reached in the text can be found at
github.com/lcneuro/2state_brain. Please refer to the respective publicly available dataset to
access previously published data (Cam-CAN, UKB, and HCP) (Alfaro-Almagro et al., 2018;
Harms et al., 2018; Taylor et al., 2017).

REFERENCES

Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., & Harel,
N. (2010). Reconstruction of the orientation distribution function
in single- and multiple-shell q-ball imaging within constant solid
angle. Magnetic Resonance in Medicine, 64(2), 554–566. https://
doi.org/10.1002/mrm.22365, PubMed: 20535807

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson,
J. L. R., Griffanti, L., Douaud, G., … Smith, S. M. (2018). Image

processing and Quality Control for the first 10,000 brain imaging
datasets from UK Biobank. NeuroImage, 166, 400–424. https://
doi.org/10.1016/j .neuroimage.2017.10.034, PubMed:
29079522

Andreotti, J., Jann, K., Melie-Garcia, L., Giezendanner, S., Abela, E.,
Wiest, R., … Federspiel, A. (2014). Validation of network commu-
nicability metrics for the analysis of brain structural networks.

Network Neuroscience 1061

Aging brains become functionally segregated

http://dx.doi.org/10.15154/1520707
http://dx.doi.org/10.15154/1520707
http://dx.doi.org/10.15154/1520707
http://dx.doi.org/10.15154/1526427
http://dx.doi.org/10.15154/1526427
http://dx.doi.org/10.15154/1526427
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
https://doi.org/10.1162/netn_a_00389
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://dx.doi.org/10.13039/100000145
http://github.com/lcneuro/2state_brain
http://github.com/lcneuro/2state_brain
http://github.com/lcneuro/2state_brain
http://github.com/lcneuro/2state_brain
http://github.com/lcneuro/2state_brain
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://doi.org/10.1002/mrm.22365
https://pubmed.ncbi.nlm.nih.gov/20535807
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://pubmed.ncbi.nlm.nih.gov/29079522


PLoS One, 9(12), e115503. https://doi.org/10.1371/journal.pone
.0115503, PubMed: 25549088

Arshad, M., Stanley, J. A., & Raz, N. (2016). Adult age differences in
subcortical myelin content are consistent with protracted myeli-
nation and unrelated to diffusion tensor imaging indices. Neuro-
Image, 143, 26–39. https://doi.org/10.1016/j.neuroimage.2016
.08.047, PubMed: 27561713

Beggs, J. M. (2022). Addressing skepticism of the critical brain
hypothesis. Frontiers in Computational Neuroscience, 16,
703865. https://doi.org/10.3389/fncom.2022.703865, PubMed:
36185712

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocor-
tical circuits. Journal of Neuroscience, 23(35), 11167–11177.
https://doi.org/10.1523/ JNEUROSCI.23-35-11167.2003,
PubMed: 14657176

Bermejo-Pareja, F., Benito-León, J., Vega, S., Medrano, M. J.,
Román, G. C., & Neurological Disorders in Central Spain
(NEDICES) Study Group. (2008). Incidence and subtypes of
dementia in three elderly populations of central Spain. Journal
of the Neurological Sciences, 264(1–2), 63–72. https://doi.org
/10.1016/j.jns.2007.07.021, PubMed: 17727890

Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson,
K. M., Adamson, C., … Alexander-Bloch, A. F. (2022). Brain charts
for the human lifespan. Nature, 604(7906), 525–533. https://doi
.org/10.1038/s41586-022-04554-y, PubMed: 35388223

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O.
(2014). Changes in structural and functional connectivity among
resting-state networks across the human lifespan. NeuroImage,
102, 345–357. https://doi.org/10.1016/j.neuroimage.2014.07
.067, PubMed: 25109530

Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch,
D. M., Buckner, R. L., … Yacoub, E. (2019). The lifespan Human
Connectome Project in aging: An overview. NeuroImage, 185,
335–348. https://doi.org/10.1016/j.neuroimage.2018.10.009,
PubMed: 30332613

Bullmore, E., & Sporns, O. (2012). The economy of brain network
organization. Nature Reviews Neuroscience, 13(5), 336–349.
https://doi.org/10.1038/nrn3214, PubMed: 22498897

Buyanova, I. S., & Arsalidou, M. (2021). Cerebral white matter mye-
lination and relations to age, gender, and cognition: A selective
review. Frontiers in Human Neuroscience, 15, 662031. https://
doi.org/10.3389/fnhum.2021.662031, PubMed: 34295229

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S.
(2014). Decreased segregation of brain systems across the
healthy adult lifespan. Proceedings of the National Academy of
Sciences, 111(46), E4997–E5006. https://doi.org/10.1073/pnas
.1415122111, PubMed: 25368199

Chen, X., Necus, J., Peraza, L. R., Mehraram, R., Wang, Y., O’Brien,
J. T., … Taylor, J.-P. (2021). The functional brain favours segre-
gated modular connectivity at old age unless affected by neuro-
degeneration. Communications Biology, 4(1), 973. https://doi.org
/10.1038/s42003-021-02497-0, PubMed: 34400752

Chong, J. S. X., Ng, K. K., Tandi, J., Wang, C., Poh, J.-H., Lo, J. C., …
Zhou, J. H. (2019). Longitudinal changes in the cerebral cortex
functional organization of healthy elderly. Journal of Neurosci-
ence, 39(28), 5534–5550. https://doi.org/10.1523/JNEUROSCI
.1451-18.2019, PubMed: 31109962

Cohen, J. R., & D’Esposito, M. (2016). The segregation and integra-
tion of distinct brain networks and their relationship to cognition.
Journal of Neuroscience, 36(48), 12083–12094. https://doi.org
/10.1523/JNEUROSCI.2965-15.2016, PubMed: 27903719

Damoiseaux, J. S. (2017). Effects of aging on functional and struc-
tural brain connectivity. NeuroImage, 160, 32–40. https://doi.org
/10.1016/j.neuroimage.2017.01.077, PubMed: 28159687

Deco, G., Tononi, G., Boly, M., & Kringelbach, M. L. (2015).
Rethinking segregation and integration: Contributions of
whole-brain modelling. Nature Reviews Neuroscience, 16(7),
430–439. https://doi.org/10.1038/nrn3963, PubMed: 26081790

DeFelipe, J. (2010). From the connectome to the synaptome: An
epic love story. Science, 330(6008), 1198–1201. https://doi.org
/10.1126/science.1193378, PubMed: 21109663

Dill, K., & Bromberg, S. (2010). Molecular driving forces: Statistical
thermodynamics in biology, chemistry, physics, and nanoscience.
Garland Science. https://doi.org/10.4324/9780203809075

Estrada, E., & Hatano, N. (2008). Communicability in complex net-
works. Physical Review E, 77(3), 036111. https://doi.org/10.1103
/PhysRevE.77.036111, PubMed: 18517465

Friedli, S., & Velenik, Y. (2017). Statistical mechanics of lattice sys-
tems: A concrete mathematical introduction. Cambridge Univer-
sity Press. https://doi.org/10.1017/9781316882603

Friston, K. J. (2009). Modalities, modes, and models in functional
neuroimaging. Science, 326(5951), 399–403. https://doi.org/10
.1126/science.1174521, PubMed: 19833961

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt,
S., Descoteaux, M., … Dipy Contributors. (2014). Dipy, a library
for the analysis of diffusion MRI data. Frontiers in Neuroinfor-
matics, 8, 8. https://doi.org/10.3389/fninf.2014.00008, PubMed:
24600385

Glasser, M. F., Coalson, T. S., Bijsterbosch, J. D., Harrison, S. J.,
Harms, M. P., Anticevic, A., … Smith, S. M. (2018). Using temporal
ICA to selectively remove global noise while preserving global
signal in functional MRI data. NeuroImage, 181, 692–717. https://
doi.org/10.1016/j.neuroimage.2018.04.076, PubMed: 29753843

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S.,
Fischl, B., Andersson, J. L., … WU-Minn HCP Consortium.
(2013). The minimal preprocessing pipelines for the Human Con-
nectome Project. NeuroImage, 80, 105–124. https://doi.org/10
.1016/j.neuroimage.2013.04.127, PubMed: 23668970

Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch,
D. M., Bastiani, M., … Yacoub, E. (2018). Extending the Human
Connectome Project across ages: Imaging protocols for the
Lifespan Development and Aging projects. NeuroImage, 183,
972–984. https://doi.org/10.1016/j.neuroimage.2018.09.060,
PubMed: 30261308

Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter
integrity, fiber count, and other fallacies: The do’s and don’ts
of diffusion MRI. NeuroImage, 73, 239–254. https://doi.org/10
.1016/j.neuroimage.2012.06.081, PubMed: 22846632

Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M.,
Epel, E. S., … Sierra, F. (2014). Geroscience: Linking aging to
chronic disease. Cell, 159(4), 709–713. https://doi.org/10.1016
/j.cell.2014.10.039, PubMed: 25417146

King, B. R., van Ruitenbeek, P., Leunissen, I., Cuypers, K., Heise,
K.-F., Santos Monteiro, T., … Swinnen, S. P. (2018). Age-related

Network Neuroscience 1062

Aging brains become functionally segregated

https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://doi.org/10.1371/journal.pone.0115503
https://pubmed.ncbi.nlm.nih.gov/25549088
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://pubmed.ncbi.nlm.nih.gov/27561713
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://doi.org/10.3389/fncom.2022.703865
https://pubmed.ncbi.nlm.nih.gov/36185712
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://pubmed.ncbi.nlm.nih.gov/14657176
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://doi.org/10.1016/j.jns.2007.07.021
https://pubmed.ncbi.nlm.nih.gov/17727890
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://pubmed.ncbi.nlm.nih.gov/35388223
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://pubmed.ncbi.nlm.nih.gov/25109530
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://pubmed.ncbi.nlm.nih.gov/30332613
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://pubmed.ncbi.nlm.nih.gov/22498897
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://doi.org/10.3389/fnhum.2021.662031
https://pubmed.ncbi.nlm.nih.gov/34295229
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1073/pnas.1415122111
https://pubmed.ncbi.nlm.nih.gov/25368199
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://doi.org/10.1038/s42003-021-02497-0
https://pubmed.ncbi.nlm.nih.gov/34400752
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://pubmed.ncbi.nlm.nih.gov/31109962
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://pubmed.ncbi.nlm.nih.gov/27903719
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://pubmed.ncbi.nlm.nih.gov/28159687
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
https://pubmed.ncbi.nlm.nih.gov/26081790
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://doi.org/10.1126/science.1193378
https://pubmed.ncbi.nlm.nih.gov/21109663
https://doi.org/10.4324/9780203809075
https://doi.org/10.4324/9780203809075
https://doi.org/10.4324/9780203809075
https://doi.org/10.4324/9780203809075
https://doi.org/10.4324/9780203809075
https://doi.org/10.4324/9780203809075
https://doi.org/10.4324/9780203809075
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1103/PhysRevE.77.036111
https://pubmed.ncbi.nlm.nih.gov/18517465
https://doi.org/10.1017/9781316882603
https://doi.org/10.1017/9781316882603
https://doi.org/10.1017/9781316882603
https://doi.org/10.1017/9781316882603
https://doi.org/10.1017/9781316882603
https://doi.org/10.1017/9781316882603
https://doi.org/10.1017/9781316882603
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://doi.org/10.1126/science.1174521
https://pubmed.ncbi.nlm.nih.gov/19833961
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://pubmed.ncbi.nlm.nih.gov/24600385
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://pubmed.ncbi.nlm.nih.gov/29753843
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://pubmed.ncbi.nlm.nih.gov/23668970
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://pubmed.ncbi.nlm.nih.gov/30261308
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://pubmed.ncbi.nlm.nih.gov/22846632
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2014.10.039
https://pubmed.ncbi.nlm.nih.gov/25417146


declines in motor performance are associated with decreased
segregation of large-scale resting state brain networks. Cerebral
Cortex, 28(12), 4390–4402. https://doi.org/10.1093/cercor
/bhx297, PubMed: 29136114

Kochmański, M., Paszkiewicz, T., & Wolski, S. (2013). Curie–Weiss
magnet—A simple model of phase transition. European Journal of
Physics, 34(6), 1555–1573. https://doi.org/10.1088/0143-0807
/34/6/1555

Lacy, T. C., & Robinson, P. A. (2020). Effects of parcellation and
threshold on brainconnectivity measures. PLoS One, 15(10),
e0239717. https://doi.org/10.1371/journal.pone.0239717,
PubMed: 33002019

Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas,
C. S., Rainey, L., … Fox, P. T. (2000). Automated Talairach atlas
labels for functional brain mapping. Human Brain Mapping,
10(3), 120–131. https://doi.org/10.1002/1097-0193(200007)
10:3<120::AID-HBM30>3.0.CO;2-8, PubMed: 10912591

Landau, L. D. (1937). On the theory of phase transitions. I. Zhurnal
Eksperimental’noi i Teoreticheskoi Fiziki, 11, 19–32.

Lawrence, K. E., Nabulsi, L., Santhalingam, V., Abaryan, Z., Villalon-
Reina, J. E., Nir, T. M., … Thompson, P. M. (2021). Age and sex
effects on advanced white matter microstructure measures in
15,628 older adults: A UK biobank study. Brain Imaging and
Behavior, 15(6), 2813–2823. https://doi.org/10.1007/s11682-021
-00548-y, PubMed: 34537917

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu,
C. (2012). Diffusion tensor imaging of white matter tract evolu-
tion over the lifespan. NeuroImage, 60(1), 340–352. https://doi
.org/10.1016/j.neuroimage.2011.11.094, PubMed: 22178809

Lim, S., Han, C. E., Uhlhaas, P. J., & Kaiser, M. (2015). Preferential
detachment during human brain development: Age- and
sex-specific structural connectivity in diffusion tensor imaging
(DTI) data. Cerebral Cortex, 25(6), 1477–1489. https://doi.org
/10.1093/cercor/bht333, PubMed: 24343892

Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness,
V. S., Faraone, S. V., … Seidman, L. J. (2006). Decreased volume
of left and total anterior insular lobule in schizophrenia. Schizo-
phrenia Research, 83(2–3), 155–171. https://doi.org/10.1016/j
.schres.2005.11.020, PubMed: 16448806

Manza, P., Wiers, C. E., Shokri-Kojori, E., Kroll, D., Feldman, D.,
Schwandt, M., … Volkow, N. D. (2020). Brain network segrega-
tion and glucose energy utilization: Relevance for age-related
differences in cognitive function. Cerebral Cortex, 30(11),
5930–5942. https://doi.org/10.1093/cercor/bhaa167, PubMed:
32564073

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,
& Teller, E. (1953). Equation of state calculations by fast comput-
ing machines. Journal of Chemical Physics, 21(6), 1087–1092.
https://doi.org/10.1063/1.1699114

Onoda, K., & Yamaguchi, S. (2013). Small-worldness and modular-
ity of the resting-state functional brain network decrease with
aging. Neuroscience Letters, 556, 104–108. https://doi.org/10
.1016/j.neulet.2013.10.023, PubMed: 24157850

Oschmann, M., Gawryluk, J. R., & The Alzheimer’s Disease
Neuroimaging Initiative. (2020). A longitudinal study of changes
in resting-state functional magnetic resonance imaging functional
connectivity networks during healthy aging. Brain Connectivity,

10(7), 377–384. https://doi.org/10.1089/brain.2019.0724,
PubMed: 32623915

Ponce-Alvarez, A., Kringelbach, M. L., & Deco, G. (2023). Critical
scaling of whole-brain resting-state dynamics. Communications
Biology, 6(1), 627. https://doi.org/10.1038/s42003-023-05001-y,
PubMed: 37301936

Raichle, M. E. (2006). The brain’s dark energy. Science, 314(5803),
1249–1250. https://doi.org/10.1126/science.1134405, PubMed:
17124311

Razban, R. M., Pachter, J. A., Dill, K. A., & Mujica-Parodi, L. R.
(2023). Early path dominance as a principle for neurodevelop-
ment. Proceedings of the National Academy of Sciences,
120 (16) , e2218007120. ht tps: / /doi .org/10.1073/pnas
.2218007120, PubMed: 37053187

Rokem, A., Yeatman, J. D., Pestilli, F., Kay, K. N., Mezer, A., van der
Walt, S., & Wandell, B. A. (2015). Evaluating the accuracy of dif-
fusion MRI models in white matter. PLOS ONE, 10(4), e0123272.
https://doi.org/10.1371/journal.pone.0123272, PubMed:
25879933

Rubinov, M., & Sporns, O. (2010). Complex network measures of
brain connectivity: Uses and interpretations. NeuroImage, 52(3),
1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003,
PubMed: 19819337

Schneidman, E., Berry, M. J., II, Segev, R., & Bialek, W. (2006).
Weak pairwise correlations imply strongly correlated network
states in a neural population. Nature, 440(7087), 1007–1012.
https://doi.org/10.1038/nature04701, PubMed: 16625187

Seguin, C., Sporns, O., & Zalesky, A. (2023). Brain network com-
munication: Concepts, models and applications. Nature Reviews
Neuroscience, 24(9), 557–574. https://doi.org/10.1038/s41583
-023-00718-5, PubMed: 37438433

Seitzman, B. A., Gratton, C., Marek, S., Raut, R. V., Dosenbach,
N. U. F., Schlaggar, B. L., … Greene, D. J. (2020). A set of
functionally-defined brain regions with improved representation of
the subcortex and cerebellum. NeuroImage, 206, 116290. https://
doi.org/10.1016/j.neuroimage.2019.116290, PubMed: 31634545

Seung, S. (2012). Connectome: How the brain’s wiring makes us
who we are. HMH.

Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B.,
Cusack, R., … Cam-CAN. (2014). The Cambridge Centre for
Ageing and Neuroscience (Cam-CAN) study protocol: A
cross-sectional, lifespan, multidisciplinary examination of
healthy cognitive ageing. BMC Neurology, 14, 204. https://doi
.org/10.1186/s12883-014-0204-1, PubMed: 25412575

Sporns, O. (2010). Networks of the brain. MIT Press. https://doi.org
/10.7551/mitpress/8476.001.0001

Sporns, O. (2013). Network attributes for segregation and integra-
tion in the human brain. Current Opinion in Neurobiology, 23(2),
162–171. https://doi.org/10.1016/j.conb.2012.11.015, PubMed:
23294553

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J.,
… Collins, R. (2015). UK Biobank: An open access resource for
identifying the causes of a wide range of complex diseases of
middle and old age. PLoS Medicine, 12(3), e1001779. https://
doi.org/10.1371/journal.pmed.1001779, PubMed: 25826379

Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R.
(2012). Criticality in large-scale brain fMRI dynamics unveiled

Network Neuroscience 1063

Aging brains become functionally segregated

https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1093/cercor/bhx297
https://pubmed.ncbi.nlm.nih.gov/29136114
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://doi.org/10.1371/journal.pone.0239717
https://pubmed.ncbi.nlm.nih.gov/33002019
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://doi.org/10.1002/1097-0193(200007)10:3%3c120::AID-HBM30%3e3.0.CO;2-8
https://pubmed.ncbi.nlm.nih.gov/10912591
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1007/s11682-021-00548-y
https://pubmed.ncbi.nlm.nih.gov/34537917
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://pubmed.ncbi.nlm.nih.gov/22178809
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://doi.org/10.1093/cercor/bht333
https://pubmed.ncbi.nlm.nih.gov/24343892
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1016/j.schres.2005.11.020
https://pubmed.ncbi.nlm.nih.gov/16448806
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://doi.org/10.1093/cercor/bhaa167
https://pubmed.ncbi.nlm.nih.gov/32564073
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neulet.2013.10.023
https://pubmed.ncbi.nlm.nih.gov/24157850
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1089/brain.2019.0724
https://pubmed.ncbi.nlm.nih.gov/32623915
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.1038/s42003-023-05001-y
https://pubmed.ncbi.nlm.nih.gov/37301936
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://doi.org/10.1126/science.1134405
https://pubmed.ncbi.nlm.nih.gov/17124311
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://doi.org/10.1073/pnas.2218007120
https://pubmed.ncbi.nlm.nih.gov/37053187
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://doi.org/10.1371/journal.pone.0123272
https://pubmed.ncbi.nlm.nih.gov/25879933
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://pubmed.ncbi.nlm.nih.gov/19819337
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
https://pubmed.ncbi.nlm.nih.gov/16625187
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://pubmed.ncbi.nlm.nih.gov/37438433
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://pubmed.ncbi.nlm.nih.gov/31634545
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.1186/s12883-014-0204-1
https://pubmed.ncbi.nlm.nih.gov/25412575
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://pubmed.ncbi.nlm.nih.gov/23294553
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://pubmed.ncbi.nlm.nih.gov/25826379


by a novel point process analysis. Frontiers in Physiology, 3, 15.
https://doi.org/10.3389/fphys.2012.00015, PubMed: 22347863

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A.,
Dixon, M., … Henson, R. N. (2017). The Cambridge Centre for
Ageing and Neuroscience (Cam-CAN) data repository: Structural
and functional MRI, MEG, and cognitive data from a cross-
sectional adult lifespan sample. NeuroImage, 144, 262–269.
https://doi.org/10.1016/j.neuroimage.2015.09.018, PubMed:
26375206

Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain
networks. Molecular Psychiatry, 17(5), 549–558. https://doi.org
/10.1038/mp.2011.81, PubMed: 21727896

Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for
brain complexity: Relating functional segregation and integration
in the nervous system. Proceedings of the National Academy of
Sciences, 91(11), 5033–5037. https://doi.org/10.1073/pnas.91.11
.5033, PubMed: 8197179

Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., & Zhou, C.
(2021). Segregation, integration, and balance of large-scale resting
brain networks configure different cognitive abilities. Proceedings
of the National Academy of Sciences, 118(23), e2022288118.
https://doi.org/10.1073/pnas.2022288118, PubMed: 34074762

Weistuch, C., Mujica-Parodi, L. R., Razban, R. M., Antal, B., van
Nieuwenhuizen, H., Amgalan, A., & Dill, K. A. (2021). Metabolism

modulates network synchrony in the aging brain. Proceedings of
the National Academy of Sciences, 118(40), e2025727118.
https://doi.org/10.1073/pnas.2025727118, PubMed: 34588302

Wig, G. S. (2017). Segregated systems of human brain networks.
Trends in Cognitive Sciences, 21(12), 981–996. https://doi.org
/10.1016/j.tics.2017.09.006, PubMed: 29100737

Wig, G. S., Schlaggar, B. L., & Petersen, S. E. (2011). Concepts and
principles in the analysis of brain networks. Annals of the New
York Academy of Sciences, 1224(1), 126–146. https://doi.org/10
.1111/j.1749-6632.2010.05947.x, PubMed: 21486299

Yao, Z., Zou, Y., Zheng, W., Zhang, Z., Li, Y., Yu, Y., … Hu, B.
(2019). Structural alterations of the brain preceded functional
alterations in major depressive disorder patients: Evidence from
multimodal connectivity. Journal of Affective Disorders, 253,
107–117. https://doi.org/10.1016/j.jad.2019.04.064, PubMed:
31035211

Yeo, B. T. T., & Eickhoff, S. B. (2016). A modern map of the human
cerebral cortex. Nature, 536(7615), 152–154. https://doi.org/10
.1038/nature18914, PubMed: 27437585

Zhang, Y., Wang, Y., Chen, N., Guo, M., Wang, X., Chen, G., … Hu,
B. (2021). Age-associated differences of modules and hubs in
brain functional networks. Frontiers in Aging Neuroscience, 12,
607445. https://doi.org/10.3389/fnagi.2020.607445, PubMed:
33536893

Network Neuroscience 1064

Aging brains become functionally segregated

https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://pubmed.ncbi.nlm.nih.gov/22347863
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://pubmed.ncbi.nlm.nih.gov/26375206
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://pubmed.ncbi.nlm.nih.gov/21727896
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://pubmed.ncbi.nlm.nih.gov/8197179
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://pubmed.ncbi.nlm.nih.gov/34074762
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://doi.org/10.1073/pnas.2025727118
https://pubmed.ncbi.nlm.nih.gov/34588302
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2017.09.006
https://pubmed.ncbi.nlm.nih.gov/29100737
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://pubmed.ncbi.nlm.nih.gov/21486299
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.jad.2019.04.064
https://pubmed.ncbi.nlm.nih.gov/31035211
https://doi.org/10.1038/nature18914
https://doi.org/10.1038/nature18914
https://doi.org/10.1038/nature18914
https://doi.org/10.1038/nature18914
https://doi.org/10.1038/nature18914
https://doi.org/10.1038/nature18914
https://doi.org/10.1038/nature18914
https://pubmed.ncbi.nlm.nih.gov/27437585
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://doi.org/10.3389/fnagi.2020.607445
https://pubmed.ncbi.nlm.nih.gov/33536893

	Brain signaling becomes less integrated and �more segregated with�age



