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A Reinforcement-and-Generalization Model of  
Sequential Effects in Identification Learning 

  
Matt Jones (mcj@colorado.edu) 

University of Colorado, Department of Psychology, 345 UCB 
Boulder, CO 80309 USA 

 
 

Abstract 

Responses in identification-learning tasks depend on events 
from recent trials.  A model for these sequential effects is 
proposed, based on previous work in category learning and 
founded on theories of reinforcement learning and generaliza-
tion.  The model is compared to two other theories in their 
predictions of the influence of previous stimuli and previous 
feedback.  Two experimental paradigms are introduced that 
allow separate assessment of these two effects.  Results 
support the reinforcement-and-generalization model. 

Keywords: Identification; reinforcement learning; 
generalization; sequential effects; mathematical models. 

Introduction 
Sequential effects arise in essentially any repeated 
psychological task.  Although the majority of experimental 
designs and statistical analyses aim to average out these 
effects, they often contain useful information.  Sequential 
effects can facilitate inferences about perceptual 
representations (Jones, Maddox, & Love, 2005), concept 
representations (Jones, 2009), and learning and decision 
processes that integrate knowledge from past experience 
(Sakamoto, Jones, & Love, 2008). 

This paper focuses on sequential effects in identification 
learning, a well studied task in which subjects learn to 
assign a unique response to each of a given set of stimuli.  
Sequential effects are well established in this domain (e.g., 
Garner, 1953), and several extant models attempt to explain 
these phenomena (e.g., Holland & Lockhead, 1968; Luce & 
Green, 1974; Stewart, Brown, & Chater, 2005).  A new 
model is proposed here, based on theories of reinforcement 
learning and generalization, that attempts to unify sequential 
effects in identification with previous work on sequential 
effects in category learning (Jones, Love, & Maddox, 2006; 
Jones et al., 2005).  Two experiments test the predictions of 
this model and compare it to previous proposals. 

Models of sequential effects in identification can be 
distinguished by the separate influences they ascribe to past 
stimuli and past feedback.  However, disentangling these is 
difficult in a standard identification task, because the 
stimulus and feedback observed on any past trial are 
perfectly confounded.  The present experiments offer two 
new solutions to this problem, by using probabilistic 
feedback and irregular stimulus-response mappings that 
varied across subjects.  Analyses of sequential effects in 
both experiments support the reinforcement-and-
generalization model.  Implications for other benchmark 
phenomena of identification learning are also discussed. 

Sequential Effects in Identification Learning 
On each trial in a standard identification-learning task, the 
subject is presented with a single stimulus, selects a 
response, and is given feedback with the correct answer.  
Often the stimuli are arranged along a single perceptual 
dimension, such as  loudness or line length, the responses are 
numbers on a keypad (e.g., 1-9), and the assignment 
preserves the natural ordering of the stimuli (e.g., the 
shortest line is mapped to response 1, etc.).  This basic 
paradigm has been used for decades to explore perceptual 
representations as well as the decision processes that allow 
people to discriminate items in their environment. 

Identification learning has long been known to exhibit 
sequential effects, whereby the identities of the stimuli on 
recent trials systematically bias the current response.  The 
first such finding was in a loudness-judgment task by 
Garner (1953), who observed an assimilation  effect, 
whereby the current response was biased toward the correct 
answer on the previous trial. 

The assimilation effect has played an important role in the 
development of models of identification learning.  Two 
broad explanations for this phenomenon have been 
proposed.  The first ascribes the effect to the previous 
stimulus, by assuming the representation of the current 
stimulus is confused with or contaminated by other stimuli 
in memory, so that its perceived value is biased toward 
those past stimuli (DeCarlo & Cross, 1990; Garner, 1953). 

The second explanation contends that assimilation is due 
not to the previous stimulus, but to the previous feedback.  
These theories propose a relative judgment (RJ) strategy, in 
which subjects  base the current response on the feedback 
they received on the previous trial, combined with an 
adjustment for the difference between successive stimuli 
(Holland & Lockhead, 1968; Luce & Green, 1974; Stewart 
et al., 2005).  For example, if the previous feedback was 6 
and the current stimulus appears two steps greater, then the 
subject will respond 8 on the current trial.  This strategy 
alone does not produce assimilation, but it does if one also 
assumes subjects systematically underestimate the 
differences between stimuli (e.g., stimuli 3 steps apart can 
lead to a response adjustment of only 2 steps).  In this case 
the response becomes biased in the direction of the previous 
feedback (Stewart et al., 2005). 

Reinforcement-and-Generalization Model 
Assimilation in identification learning can also be 
interpreted as a manifestation of a broader phenomenon that 
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Jones et al. (2006) termed the decisional recency effect.  
This is a general tendency to select responses or perform 
actions that have been recently reinforced, and it arises in 
essentially any repeated task involving rewards or feedback 
(see Jones et al., 2006, for a review).  Decisional recency is 
also a natural prediction from the framework of 
reinforcement learning, in which the values of actions are 
updated based on the rewards they induce (e.g., Sutton & 
Barto, 1998).  When such updates are made in proportion to 
the difference between predicted and observed outcomes 
(known as delta-rule learning), estimated reward values 
depend primarily on more recent feedback (Estes, 1957). 

Investigations of sequential effects in category learning 
have found evidence for both the decisional recency effect 
and a separate perceptual recency effect arising from the 
previous stimulus (Jones et al., 2005, 2006).  These two 
effects can be dissociated using a probabilistic task, in 
which different occurrences of the same stimulus can lie in 
different categories.  This allows separate assessment of the 
influences of past stimuli and past feedback.   

Perceptual recency is observed in analyses that hold the 
previous feedback constant and examine the influence of the 
previous stimulus.  For example, subjects categorizing 
rectangles by height will respond to the current stimulus as 
though it were taller than it actually is , if the previous 
stimulus was short (Jones et al., 2006).  This suggests the 
representation of the current stimulus is biased away from 
the values of recent stimuli, consistent with the large body 
of physiological evidence that sensory processing is founded 
on adaptation and contrast (e.g., Sekuler & Blake, 1994).  
However, it is in direct opposition to the stimulus-confusion 
account for assimilation in identification learning. 

Decisional recency is observed in analyses that hold the 
previous stimulus constant and examine the effect of the 
previous feedback.  These show a bias  towards selecting the 
category that was reinforced on the previous trial (Jones et 
al., 2005, 2006).  Furthermore, this effect is moderated by 
the similarity between present and previous stimuli.  When 
successive stimuli are identical or highly similar, the current 
response depends very strongly on the previous feedback, 
whereas the effect becomes null or slightly negative as the 
stimuli become increasingly dissimilar.   

The dependence of decisional recency on similarity 
further supports the reinforcement-learning interpretation.  
In reinforcement learning, expectations about a given 
stimulus cannot normally be based on prior knowledge 
about that exact case but must rely on past experience with 
other, similar stimuli.  This is the problem of generalization.  
A large body of research on generalization shows that 
people and other animals generalize between stimuli to the 
extent they perceive them as similar (e.g., Shepard, 1987).  
Nearly all reinforcement-learning models embody this 
principle.  Therefore, if decisional recency reflects 
reinforcement learning from the previous trial, we should 
expect its magnitude to depend on how strongly the subject 
generalizes between the previous and present stimuli, which 
in turn will depend on their similarity. 

Drawing on the above evidence, Jones et al. (2006) 
developed a mathematical model of sequential effects in 
category learning that embodies both decisional and 
perceptual recency effects.  This paper proposes a natural 
adaptation of that model to identification learning, referred 
to as the reinforcement-and-generalization (RG) model.  
The model’s two primary assumptions are that the 
perception of the current stimulus is biased away from the 
previous stimulus, and the current response is biased toward 
the previous feedback to a degree determined by the 
similarity between present and previous stimu li. 

The perceptual portion of the identification model is 
unchanged from that of the categorization model.  The 
perceived value of the current stimulus, Ψn, is assumed to 
depend on both the present and previous stimuli, Sn and Sn-1.  
Provided that stimuli are scaled linearly with their percep-
tual representations, a reasonable assumption is that the 
effect of the previous stimulus is also linear (e.g., DeCarlo 
& Cross, 1990).  The coefficient c is negative if the percep-
tual effect is contrastive and positive if it is assimilative. 

Ψn = Sn + c⋅Sn-1 (1) 

The decision portion of the model assumes the response 
depends on two sources of evidence.  The first is the current 
percept, mapped onto the response scale by the learned 
stimulus-response map f.  The second is generalization of 
reinforcement from the previous feedback, Fn-1, whose 
impact depends on the similarity between successive stim-
uli, sim(Sn, Sn-1), together with a scaling parameter, β.  The 
only change in the identification model is that it predicts the 
expected value of the response, E(Rn), rather than the 
probabilities of selecting among (nominal) category labels.   

E(Rn) = f(Ψn) + β⋅sim(Sn, Sn-1)⋅(Fn-1 – f(Ψn)) (2) 

Experiment 1: Variable Feedback 
The three models discussed above differ in how they ascribe 
sequential effects to the previous stimulus and feedback.  
Experiment 1 tested the models’ predictions using a 
probabilistic identification task, which allowed separate 
assessment of these two influences on the current response.   
Stimuli were horizontal lines of varying length, and 
responses were the numbers 1 through 9.  Subjects were told 
there was one line length for each response, but in fact there 
were ten lengths, referred to here as A through J.  Each 
feedback value followed two different stimuli equally often 
– A and B for 1, B and C for 2, and so on. 

Experiment 1 also included a between-subjects  manipula-  
tion of sequential dependencies among trials, designed to 
affect subjects’ use of the RJ strategy.  The 18 possible 
stimu lus-feedback pairings were partitioned into two types: 
Lower trials, in which the stimulus was the shorter of the 
two possible values for the feedback given (A-1,  B-2,… 
H-9), and Upper trials, in which the stimulus was the longer 
possible value (B-1, C-2,…J-9).  In the Independent 
condition, all trials were sampled independently.  In the 
Autocorrelated  condition,  80%  of  trials  were  of the same  
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Figure 1.  Mean response in Independent condition of 
Experiment 1, as a function of present stimulus 
(separate curves), previous stimulus (Sn-1), and previous 
feedback (Fn-1).  Lower section shows mean error 
collapsed over present stimulus. 
 

type as their predecessors.  Because the RJ strategy is only 
reliable (i.e., produces the correct answer) when successive 
trials are of the same type, it was predicted that 
autocorrelation would serve to induce or increase subjects’ 
use of RJ.  The results below support this assumption. 

Method 
33 and 35 undergraduates were randomly assigned to the 
Independent and Autocorrelated conditions, respectively.  
Stimuli were horizontal lines with lengths from 2.54 to 5.08 
cm in steps of 0.28 cm.  The stimulus on each trial was 
presented in a random position on an LCD monitor, and 
once the subject pressed a response key (1-9), the chosen 
and correct responses were both displayed.  Stimulus and 
feedback remained for 1000 ms.  Trials were separated by 
500 ms of blank screen.  Each subject completed 400 trials 
in blocks of 50. 

Results and Discussion 
Sequential effects were assessed by computing the mean 
response as a function of the present stimulus, previous 
stimulus, and previous feedback.  The results for the 
Independent condition are shown in Figure 1 (Autocorrelat-
ed results are discussed below).  Different curves corres-
pond to values of the current stimulus, and the abscissa 
shows all 18 possibilities for the stimulus-feedback pair on 
the previous trial.  Each grey segment represents a compar-
ison of two values of Sn-1, with Fn-1 and Sn held fixed.  These 
segments tend to slope downward, indicating a negative 
effect of the previous stimulus.  Each black segment repre-
sents a comparison of two values of Fn-1, with Sn-1 and Sn 
held fixed.  These segments tend to slope upward, indicating 
a positive effect of the previous feedback.  The pattern is 
clearest in the lowest curve, which shows average error 
collapsed  over  Sn.   All  nine  Sn-1  comparisons  are  negative  
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Figure 2.  Dependence of sequential effects on 
similarity between present and previous stimuli in 
Experiment 1.  Previous-stimulus effect is negative but 
is inverted for comparison to previous-feedback effect. 

 
and all eight Fn-1 comparisons are positive.  Both patterns 
are reliable by binomial tests (ps < .01).  The net slope of 
this curve is positive, replicating the classic assimilation 
effect, which is now be seen to result from a stronger pos-
itive effect of Fn-1 compared to the negative effect of Sn-1. 

The negative influence of the previous stimulus rules out 
the stimulus-confusion model, so it is not considered 
further.  However, both RJ and RG models  predict this 
result, as well as the positive influence of the previous 
feedback.  To distinguish these models, we consider how 
the sequential effects depend on the autocorrelation 
manipulation and on the similarity between successive 
stimuli. 

The effect of stimulus similarity can be seen in Figure 1 
as the increased jaggedness of the curves near the main 
diagonal, indicating that both sequential effects are stronger 
when Sn is more similar to Sn-1.  This can be formalized as 
follows.  For the previous-feedback effect, the influence of 
Fn-1 (corresponding to the slope of each black segment in  
Figure 1) can be averaged over all [Sn-1,Sn] pairs that differ 
by a given number of steps.  This yields the average effect 
of the previous feedback on the current response, 
conditioned  on  the  difference  between  present  and 
previous stimuli.  A parallel approach can be used for the 
previous-stimulus effect, except that each comparison 
involves two values of Sn-1 (e.g., Sn-1 = A vs. B, conditioned 
on Fn-1 = 1 and Sn = C), and thus two differences between 
Sn-1 and Sn.  For ease of exposition, I use the average of 
these two differences (1.5 in the above example), so that 
stimulus differences for the previous-stimulus effect range 
from .5 to 8.5. 

Figure 2 shows the previous-feedback and previous-
stimulus effects as a function of the difference between 
successive stimuli.  The previous-stimulus effect is nega-
tive, but it is inverted to facilitate comparison.  Four 
significant aspects of this graph are discussed in turn: the 
curves all slope downward, the feedback effect has a steeper 
slope than the stimulus effect, the Autocorrelated curves lie 
above the Independent curves, and the curves for the two 
conditions   are   parallel.     To  test  the  reliability  of   these  
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Table 1:  Sequential effects as functions of similarity, 
 from individual-subject fits to Experiment 1  
 Previous-feedback Previous-stimulus 
Condition  Intercept Slope  Intercept Slope  
Independent .488 -.057 -.231 .019 
Autocorrelated .637 -.069 -.389 .027  

 
patterns, separate curves were estimated for each subject 
with the simplifying constraint that all curves be linear.  
Thus a slope and intercept for the previous-stimulus and 
previous-feedback effects (as functions of stimulus 
dissimilarity) were estimated for each subject.  Mean values 
by condition are displayed in Table 1. 

Starting with the Independent condition, the mean slope 
for the previous-feedback effect is significantly negative (t32 
= 6.18, p < 10-6), indicating this effect decreases as 
successive stimuli become dissimilar.  This is a central 
prediction of the RG model.  The mean slope for the 
previous-stimulus effect is marginally positive (t32 = 1.83, p 
= .076), suggesting this effect may also weaken with 
similarity.  Under the RG model, this suggests that 
perceptual contrast levels off as stimulus differences 
become large, rather than continuing to increase at a 
constant rate.  Equation 1 does not predict this, but it is a 
natural elaboration of the model that is consistent with more 
detailed studies of perceptual contrast (e.g., Petzold, 1981). 

The simple version of the RJ model does not predict 
either sequential effect to depend on similarity.  However, 
DeCarlo and Cross (1990) proposed that people rely more 
on this strategy (as opposed to responding to the absolute 
value of the current stimulus) when successive stimuli are 
similar, and this assumption predicts the pattern seen here. 

Direct comparison shows that the previous-feedback 
effect has a steeper (absolute) slope than the previous-
stimulus effect (t32 = 7.16, p < 10-7).  This is consistent with 
the RG model (although the opposite pattern is also), 
because it assumes perceptual contrast and generalization 
are unrelated processes.  The RJ strategy alone does not 
predict the slope difference, but recall that Stewart et al. 
(2005) proposed people underestimate stimulus differences 
in mapping them to response differences.  This is the as -
sumption needed for the model to predict the overall assim-
ilation effect, and it also causes the effect of the previous 
stimulus (and hence its dependence on similarity) to be 
attenuated relative to the effect of the previous feedback.  

Turning to a comparison between conditions, the inter-
cepts for both sequential effects were greater in the Auto-
correlated condition (ts > 3, ps < .01).  There was no signifi-
cant interaction between effect type (feedback vs. stimulus) 
and condition (F1,66 = .12, p > .5).  For slopes, there was no 
difference between conditions for either sequential effect (ts 
< 1, ps > .1), and there was no condition-by-effect 
interaction (F1,66 = .41, p > .5).  Therefore, the effect of 
autocorrelation was a uniform increase in both sequential 
effects, to equal degrees, independent of stimulus similarity. 

The difference between conditions supports the 
assump tion behind the autocorrelation manipulation, that it 

would increase reliance on RJ.  However, it also reveals two 
aspects of the RJ strategy that are incompatible with it as an 
explanation for sequential effects.  First, the fact that the 
slopes  of the similarity effects were unchanged implies that 
reliance on RJ is independent of similarity.  This directly 
contradicts the assumption needed for RJ to explain the 
similarity effect to begin with.  Second, the fact that the two 
sequential effects are strengthened equally implies that 
subjects correctly scale stimulus differences to response 
differences.  This  directly contradicts the assumption 
needed for RJ to explain the overall assimilation effect.  To 
be clear, the data do not rule out RJ altogether.  Subjects do 
seem to engage this strategy when it is reliable (as it would  
be in a standard, deterministic identification task).  The 
point, however, is that RJ cannot explain the observed 
sequential effects.  Therefore this strategy must act on top of 
more fundamental mechanisms operating separately on 
stimulus and response representations, as in the RG model. 

Experiment 2: Variable Mappings 
Experiment 2 varied the stimulus-response map between 
subjects, so that stimuli and feedback would be decoupled 
when considering the data for all subjects together.  
Subjects’ task was to learn to assign the numerals 1 through 
9 to the letters A through I.  The assignments were irregular, 
which renders strategies such as RJ useless (e.g., knowing 
that 3 maps to G is irrelevant to the answer for 4) and allows 
us to assume that processing consists of stimulus identi-
fication, retrieval of stimulus-response associations, and 
response selection.  Our interest is in the errors that occur at 
the stimulus and response stages, due to processes such as 
perceptual or motor confusion, generalization, encoding and 
retrieval errors, and sequential effects.  These processes can 
all be summarized by a confusion matrix among stimuli, 
specifying the distribution over which stimuli are accessed 
given the stimulus actually presented, and a confusion 
matrix among responses, specifying the distribution over 
which response is selected given the one that is retrieved.   

The experiment hinges on a counterbalancing of stimulus-
response maps, due to Shepard (1957), that allows separate 
estimation of the stimulus and response confusion matrices.  
To estimate the response-confusion matrix, one considers 
the distribution of actual responses conditioned on which 
response was correct.  When these probabilities are 
averaged over subjects, patterns of stimulus confusion 
average out to a constant, because for any pair values for the 
actual and correct responses, the associated stimuli are  
counterbalanced over subjects.  The stimulus-confusion 
matrix is estimated in a similar way, by computing the 
distribution over the correct stimulus for the response that 
was chosen (i.e., ),(1 Rf −  where f is the mapping), 
conditioned on the stimulus that was actually presented. 

The primary aim of Experiment 2 was to test the RG 
model’s predictions for how stimulus and response 
distributions are affected by the previous trial.  However, 
because the use of irregular  mappings necessitated symbolic  
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Figure 3.  Generalization gradients for stimuli 
(numerals) and responses (letters) in Experiment 2. 
 

stimuli, it was uncertain whether perceptual contrast effects 
would be observed.  Therefore, this experiment served 
primarily as a test of the decision portion of the model. 

Method 
72 undergraduates were assigned stimulus-response maps 
such that, for any two stimuli, S1 and S2, and responses, R1 
and R2, exactly one subject had S1 mapped to R1 and S2 
mapped to R2.  The stimulus on each trial was a numeral 1-9 
presented in the center of a monitor.  The responses, letters 
A-I, were arranged in a circle (2.54 cm radius) around the 
stimulus, in a different random configuration on each trial.  
The subject used a mouse to click on a response, and was 
then shown the correct answer.  This feedback remained for 
750 ms.  Trials were grouped into blocks of 36, containing 
four repetitions of each stimulus.  The experiment ended 
when a block was completed with at most two errors. 

Results and Discussion 
The response-confusion matrix was estimated by computing 
P(R = j | f(S) = i) for all responses i and j, where f(S) is the 
correct response for the current stimulus.  The stimulus-
confusion matrix was estimated by computing P(R = f(j) | S 
= i) for all stimuli i and j.  Generalization gradients were 
obtained from the confusion matrices by averaging over all 
pairs of stimuli or responses differing by the same number 
of steps.  These differences were determined by the standard 
numeric and alphabetic orderings (123…, ABC…).  As 
Figure 3 shows, these gradients are remarkably regular, even 
though the psychological similarity structure of numbers 
and letters is likely more complex than just that induced by 
their orderings. 

Unfortunately, conditioning the confusion matrices on the 
previous stimulus and feedback breaks the symmetry from 
the counterbalancing of stimulus-response maps.  Therefore 
sequential effects were evaluated using a formal modeling 
approach, in which the RG model was combined with the 
standard Luce-Shepard identification-choice model (Luce, 
1963; Shepard, 1957).  This model assumes processing 
occurs in three stages: stimulus generalization, stimulus-
response mapping, and response generalization and 
selection.  The first stage was modified to accommodate 
perceptual recency by assuming that stimulus generalization 
is based not on Sn but on Ψn as given by Equation 1.  Here s 
represents any stimulus, and A(s) is its activation. 
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Figure 4.  Effect of previous feedback on current 
response as function of stimulus similarity, from fit of 
nonparametric model to Experiment 2. 

A(s) ∝ sim(s,Ψn) (3) 

The stimulus-response mapping stage involves retrieving 
the correct response for each stimulus, or else guessing with 
probability g.  This determines the activation of responses.1 

A(f(s)) = g + (1-g )⋅A(s) (4) 

In the response stage of the Luce-Shepard model,  
activation is generalized among responses  according to 
similarity.  The effect of reinforcement from the previous 
trial was incorporated by assuming initial activations are 
biased towards the previous feedback by the same formula 
as Equation 2.  This leads to the following response rule 
(where Luce-Shepard has just sim[R,r] for the final term). 

( ) ( )[ ]∑ −⋅⋅β+⋅∝ −−
r

nnn rFSSsimrRsimrARP 11,,)()(  (5) 

Similarity was assumed to be an exponential function of 
distance (Shepard, 1987), sim(x,y) = exp(-α⋅|x-y|), where α 
equals αstim for stimuli and αresp for responses.  Distance 
was again determined by the numeric and alphabetic 
orderings, as a simple working assumption.  Thus there 
were three parameters for the base identification model –  
similarity parameters (αstim, αresp) and guessing probability 
(g) – and two more for sequential effects: perceptual 
assimilation or contrast (c) and reinforcement effect (β).  
The principal predictions to be tested were c < 0 and β > 0. 

The best-fitting value of β was .117, indicating a positive 
bias of the response towards the previous feedback.  
Comparison to a model with β fixed to 0 showed this effect 
is highly reliable 2

1(χ  = 45.64, p < 10-10).  As a more 
rigorous test of the dependence of the previous-feedback 
effect on similarity, the model was refit with the β⋅sim(Sn, 

                                                                 
1 The internal variables A(s) and A(r) can be interpreted either as 

probabilities of which value is activated or as distributed repre-
sentations, without change in the formalism or predictions.  This 
allows evaluation of sequential effects with minimal theoretical 
commitment regarding the architecture underlying the task. 
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Sn-1) term in Equation 5 replaced by a nonparametric 
function, Γ(|Sn – Sn-1|), allowing a different free parameter 
for each possible dis tance.  The best-fitting values of Γ are 
plotted in Figure 4, which shows a clear decrease in the 
effect of the previous feedback with increasing distance 
between successive stimuli.  Comparison to a model in 
which Γ was constant showed this relationship to be reliable 

2
7(χ  = 16.44, p < .05).  However, the nonparametric model 

did not fit significantly better than the original model of 
Equation 5 2

7(χ  = 7.87, p > .1), indicating similarity 
provides an adequate fit to the pattern in Figure 4.  This 
supports the core principle of the RG model, that previous 
reinforcement is generalized to the current trial to a degree 
determined by the similarity between successive stimuli. 

The best-fitting value of c was .005, which was not 
reliably different from zero 2

1(χ  = .008, p > .5).  Therefore 
there was no evidence for an effect of the previous stimulus 
on the perception of the current stimulus.  Given that the 
stimuli were symbolic (numerals), this is not necessarily a 
concern for the model.  We are currently piloting a version 
of this experiment using more perceptual stimuli to 
determine whether a contrast effect is observed in that case. 

General Discussion 
Sequential effects in learning provide important clues to 
how stimuli are represented and the decision process used to 
identify them.  The reinforcement-and-generalization (RG) 
model proposed here posits that separate sequential effects 
operate at both of these levels.  The perception of the current 
stimulus is contrasted away from the previous stimulus, and 
the current response is biased towards the previous feedback 
to a degree determined by the similarity between successive 
stimuli.  The latter effect derives from fundamental 
principles of reinforcement learning and generalization (e.g., 
Sutton & Barto, 1998). 

An important next step in testing the RG model is to 
identify factors that separately influence the two recency 
effects.  One factor that seems to influence perceptual 
contrast is the nature of the stimuli.  Contrast was observed 
for the perceptual stimuli in Experiment 1 but not for the 
symbolic stimuli in Experiment 2.  One factor that has been 
seen to influence the reinforcement effect (decisional 
recency) is selective attention.  Stimulus differences on a 
task-irrelevant dimension do not attenuate the reinforcement 
effect as much as differences on the relevant dimension 
(Jones et al., 2005), consistent with established effects of 
selective attention on similarity (e.g., Tversky, 1977). 

The RG model is not a complete model of identification, 
but an account of sequential effects (in this task and others).  
However, it may shed light on other phenomena in this 
domain.  For example, one consistent finding is the bow 
effect, whereby discrimination is better between stimuli near 
the ends of the range than near the middle (Murdock, 1960).  
Another is the spacing effect, whereby discrimination 
between two fixed stimuli is worse if the spacing between 
other stimuli is increased.  Many explanations for these 

phenomena rely on assumptions about stimulus represent-
ations, for example that they are based on position relative 
to the endpoints of the stimulus range (Parducci, 1965).  
These theories lead to specific predictions regarding 
similarity, which can be tested with the RG model by using 
the decisional recency effect as an index of similarity.  Thus 
the present theory offers a useful window onto how stimulus 
representations adapt to the task at hand. 
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