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Abstract

The motion of the beating heart is complex and creates artifacts in SPECT and x-ray CT images. Phan-
toms such as the Jaszczak Dynamic Cardiac Phantom are used to simulate cardiac motion for evaluation
of acquisition and data processing protocols used for cardiac imaging. Two concentric elastic membranes
filled with water are connected to tubing and pump apparatus for creating fluid flow in and out of the inner
volume to simulate motion of the heart. In the present report, the movement of two concentric balloons is
solved numerically in order to create a computer simulation of the motion of the moving membranes in the
Jaszczak Dynamic Cardiac Phantom. A system of differential equations, based on the physical properties,
determine the motion. Two methods are tested for solving the system of differential equations. The results of
both methods are similar providing a final shape that does not converge to a trivial circular profile. Finally,
a tomographic imaging simulation is performed by acquiring static projections of the moving shape and
reconstructing the result to observe motion artifacts. Two cases are taken into account: in one case each
projection angle is sampled for a short time interval and the other case is sampled for a longer time interval.
The longer sampling acquisition shows a clear improvement in decreasing the tomographic streaking artifacts.

keywords: Differential Equation, Numerical Method, Physically Based Modeling, Tomography
Artifacts

1 Introduction

WHEN imaging the heart, the movement of it
creates artifacts which are hard to model due

to the complexity of its motion. One can use both
physical and computer generated phantoms to simu-
late the cardiac motion in the evaluation of imaging
and data processing protocols. One physical phantom
is the Jaszczak Dynamic Cardiac Phantom.

The Jaszczak Dynamic Cardiac Phantom is used
to evaluate imaging techniques applied to emission
tomography such as SPECT. The phantom consists
of the standard Jaszczak cardiac torso phantom with
two concentric inflatable balloon inserts and pump
apparatus (see Fig. 1). A pump inflates the balloons
with fluid pumped through tubing into and out of
the inner balloon insert, which is sealed and attached
to the tubing. With proper adjustments of pressures
both externally and internally the balloons will inflate
and deflate simulating the motion of the heart. A ra-
dioisotope can be injected into the spacing between
the two balloons to simulate uptake of isotope in my-

ocardium tissue or within the inter volume to simu-
late activity in the blood of the left ventricular cav-
ity. The phantom with the simulated beating heart is
used to simulate an imaging experiment of a human
beating heart. The phantom simulates the motion of
the boundaries of the heart but does not simulate the
twisting and true deformation of the heart wall [1–3].

Here we solve for the motion of the two balloon in-
serts by solving numerically a system of differential
equations that represents the physics for the equilib-
rium of forces. The numerical solution can then be
used to compare with results that are obtained in ap-
plying our mechanical models [4–7] to imaging data
of the Jaszczak Dynamic Cardiac Phantom. Our sim-
ulation uses two plastic ballons for a simple model of
the ventricle (Fig. 2) which can be dilated and con-
tracted to simulate the motion. The inner balloon
models the endocardium and the outer balloon cor-
responds to the epicardium. The space between the
two balloons simulates the heat wall. Our purpose is
to numerically simulate the motion of these balloon

1



Fig. 1: Picture of the Jaszczak Dynamic Cardiac Phantom
used to evaluate the motion of the heart with two concentric
balloons in the middle of the torso.

inserts in order to create a numerical model of the
motion of the Jaszczak Dynamic Cardiac Phantom.

The balloon has an initial cylindrical shape of
length h with a spherical apex of radius R (R0 for
the interior and R1 for the exterior semi-circle) see
Table 1 and Fig. 2.

Table 1: Dimensions of the balloons

h (cm) R (cm)

interior 8.5 1.75

exterior 8.5 2.75

(a) 3D model of the ex-
terior balloon

(b) View of the flat end
of the two concentric
balloons

Fig. 2: Initial cylindrical shape of the balloons with spherical
apex

The problem can be treated directly in a 2D plane
containing the axis of revolution (see Fig. 3) since the
material is assumed to be completely isotropic around
its circumferential direction. Afterwards, the results
are applied in 3D by revolution.

R0R1

h

Fig. 3: Slice of the balloons for the 2D numerical study.

Table 2: Formulas for the balloon characteristics

volume π R2
(
h + 4

6 R
)

surface delimited by the 2D curve π R
(
2 h + R

2

)

length of the 2D curve 2 h + π R

Some formulas for the volume of the balloon, the
area filled by the boundaries in the 2D plane and the
length of these boundaries in 2D are summarized in
Table 2.

2 Model of the Physical Forces

The balloon is subject to forces which determine how
the balloon deforms. In this report we use a model of
forces that has been used to simulate deformable ma-
terial made of cloth. The description of this problem
and its solution were first introduced by D. Terzopou-
los et al. in 1987 [8].

2.1 Pressure Action

Let the vector c define the parametric 2D curve of the
balloon parameterized by the parameter s, such that
c(s) =

(
cx(s), cy(s)

)
, where x defines the direction

along the axis of rotation and y is the perpendicular
direction.

The shape is subject to the internal pressure that
the water applies to the inner membrane. Considering
only the static behavior of the water, fluid mechanics
indicates that the action of the water on the balloon is
constantly normal to its curve. Moreover, neglecting
the effect of gravity, the magnitude of the force due
to pressure is constant along the membrane.

In 2D, each small arc of length dL is subject to a
constant force of intensity f . If n(s) defines the nor-
malized exterior normal of the curve at each position
c(t), the pressure force Fp can be expressed by

Fp(s) = f n(s) . (1)
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The normal can be defined by the curve itself. The
tangent vector τ is given by the derivative of the para-
metric curve c with respect to s [9]. Then any normal
vector n′ (n is normalized where n′ is not necessarily)
can be defined by τ · n′ = 0. Therefore, an external
normal can be defined by:

n′(s) =
( −c′y(s)

c′x(s)

)
. (2)

Equation 1 can then be rewritten by normalizing n′:

Fp(s) = f

( −c′y(s)
c′x(s)

)

√
c′x

2(s) + c′y
2(s)

, (3)

where f is a local constant1 force parameter.
The force f can be expressed in reference to a global

action of the pump exerted on the water. Let us
suppose the pump exerts a force Fα on the whole
interior surface in order to make the balloon have
a percent gain in volume α compared to its resting
state. This force is then homogeneous at every po-
sition. So for every position defined by c(s) the ac-
tion has a magnitude of Fα

S , where S is the total sur-
face area of the shape. Locally, the area element of
the membrane (which is a surface of revolution) is

dS = 2π cy

√
c′x

2 + c′y
2 ds. Then the local force f can

be linked to the global force Fα and Eq. 3 can be
expressed by:

Fp(s) =
Fα

2π

1∫

c

cy(u)
√

c′x
2(u) + c′y

2(u) du

×

( −c′y(s)
c′x(s)

)

√
c′x

2(s) + c′y
2(s)

,

(4)

where Fα is a global parameter independent of the
shape itself.

2.2 Membrane Reaction

The membrane of the balloon is elastic and reacts
itself with elastic deformations. A comprehensible
model of this membrane is to consider it composed
of an infinite number of positions all linked with their
neighbors by springs. Such a method has been used
for instance for 3D modeling of muscle in [10].

Each position has two neighbors and two elastic
forces act upon them. Let us call ∆c the displacement

1for a fixed curve, actually f depends on c

between the current position and the initial shape
c0. The reaction Fe of the membrane to the exte-
rior forces is then expressed by

Fe(s) = λ

(
s +

ds

2

) (
∆c (s + ds)−∆c (s)

)

+ λ

(
s +

ds

2

) (
∆c (s− ds)−∆c (s)

)
,

(5)
where λ is the stiffness of the membrane at each po-
sition.

The basic decomposition of the derivative of the
product can be recognized and the internal elastic
force is

Fe(s) =
(
λ

(
c− c0

)′)′
(s). (6)

It can be noticed that if the stiffness is constant along
the curve, this force reduces to the second derivative:

Fe(s) = λ (c− c)′′ (s). (7)

2.3 Damping Force

An arbitrary damping force can be added to the
model. Since the forces of pressure and elasticity con-
serve energy, a simulation of a dynamic system would
oscillate constantly. To facilitate reaching an equilib-
rium position, and to model the physical decrease of
energy, a fluid friction force is added. This force Fd

is directly proportional to the speed of the variation
of the curve vc:

Fd = −µv , (8)

where µ ∈ [0, 1].

2.4 Boundary Conditions

The forces just described are acting at each position
along the curve c. However, the physical model is
fixed at the base. Supposing that these contact po-
sitions have zero length, the sum of the forces act-
ing on the first and final position of the balloon
are zero. If the curve c is parameterized by s with
s ∈ [0, 1], the boundary conditions are set-up with
Fp(b) = Fe(b) = Fd(b) = 0 for b = {0, 1}.

3 Solution

For a given Fα the goal of the simulation is to solve
for the curve c that satifies the equilibrium equation,
which is the sum of Eq. 4, 6 and 8 equal to zero:

Fp + Fe + Fd = 0 . (9)
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3.1 Direct Method

3.1.1 Set-up of the equation

A method to solve the problem is to try directly to
solve the constraint in Eq. 9 for the final resting state.
To solve Eq. 9 the damping force is not needed as the
curve goes in one step from the initial to the final
static state. Therefore, the damping term is equal to
zero. Moreover, the local coefficient f of the pres-
sure force in Eq. 1 can be used as a constant as the
curve does not evolve dynamically during the process.
Thus, Eq. 3 can be used instead of Eq. 4. The equi-
librium condition then gives a system of second order
non-linear differential equations F(c, c′, c′′) = 0:





− f
c′y(s)√

c′x
2(s) + c′y

2(s)
+

(
λ

(
cx − c0

x

)′)′
(s) = 0

f
c′x(s)√

c′x
2(s) + c′y

2(s)
+

(
λ

(
cy − c0

y

)′)′
(s) = 0

(10)
The system F(c, c′, c′′) = 0 is a boundary value

problem (BVP) with initial and final positions known.
In order to solve this system, a finite difference ap-
proach is used. This system of equations can be
rewritten in a more elegant formulation using com-
plex variable notation: z(s) = cx(s) + i cy(s). In the
case of a constant stiffness λ along the shape of the
curve, the system of equations is:

z′′ + i
f

λ

z′

|z′| = z0′′ . (11)

It is shown in the appendix that the forcing term z0 is
responsible for the global non linearity of the system
of equations.

3.1.2 Discretization

To solve the system of differential equations in Eq. 10,
the system is defined numerically at a set of N posi-
tions separated in material coordinates by ∆s. Since
a discrete form of the elastic force is known by the
problem, it is then probably better to keep this dis-
cretization. The pressure is discretized by a classi-
cal central second order method. The damping term
doesn’t need to be discretized to this level as it is
equal to zero. Each term of the equation Fp + Fe is
then discretized. The elastic force is separated into
Fe1 and Fe2 as seen in Fig 4. This process gives a sys-
tem of non-linear equations of dimension N − 2 with
the first and the last positions fixed. The equation
Fp + Fe1 + Fe2 = 0 can be expressed by:

−f
cy(n+1)−cy(n−1)s(

cy(n+1)−cy(n−1)

)2

+

(
cx(n+1)−cx(n−1)

)2

+λ
(
n + 1

2

)
((

cx(n+1)−cx(n)

)
−
(

c0
x(n+1)−c0

x(n)

))

∆t

+λ
(
n− 1

2

)
((

cx(n−1)−cx(n)

)
−
(

c0
x(n−1)−c0

x(n)

))

∆t
= 0

f cx(n+1)−cx(n−1)s(
cy(n+1)−cy(n−1)

)2

+

(
cx(n+1)−cx(n−1)

)2

+λ
(
n + 1

2

)
((

cy(n+1)−cy(n)

)
−
(

c0
y(n+1)−c0

y(n)

))

∆t

+λ
(
n− 1

2

)
((

cy(n−1)−cy(n)

)
−
(

c0
y(n−1)−c0

y(n)

))

∆t
= 0

The two considered forces in the discrete case are
shown in Fig. 4

(cxn−1
, cyn−1

)
(cxn+1

, cyn+1
)

(cxn
, cyn

)

−→

Fp

−→

Fe1

−→

Fe2

Fig. 4: Force due to pressure (in blue) and forces due to
elasticity (in red) on a discrete position (middle black dot).
Each position has two neighbors in which the forces of elasticity
are directed.

3.1.3 Method of solution

The system of equations can be seen as a
large vectorial function F of 2N variables
(cx1 , cy1 , cx2 , . . . , cxN , cyN ). The solution satisfies:

F
(
(cxi , cyi)i∈[[2,N−1]]

)
= 0R2

⇔




Fx
(
(cxi , cyi)i∈[[2,N−1]]

)
= 0

Fy
(
(cxi , cyi)i∈[[2,N−1]]

)
= 0

(12)

In order to solve this equation, Newton’s iterations
are used. Let us call Z the vector such that Z2n+1 =
cxn and Z2n = cyn . A starting position is chosen with
Z0 = (c0

x, c0
y), and the following iteration is performed

until convergence:
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Zn+1 = Zn −DF−1 (Zn) · F (Zn) , (13)

where DF is the Jacobian matrix defined by

DFij (Zn) =
∂Fi

∂Zn
j

(Zn) .

The Newton method is supposed to converge
quadratically if the solution is close enough to a root
of the function F : (c, c′, c′′) 7→ F(c, c′, c′′). However,
the initial position can be far from the final state and
the convergence can be slow as the function is not
quadratic.

In order to obtain a precise iteration, the Jacobian
is calculated exactly for the discrete problem:




∂Fx
n

∂cxn
= ∂Fy

n

∂cyn
= − 1

∆t

(
λn+ 1

2
+ λn− 1

2

)

∂Fx
n

∂cyn
= ∂Fy

n

∂cxn
= 0

∂Fx
n

∂cxn−1
= −f

(cxn+1−cxn−1) (cyn+1−cyn−1)
n3

n
+

λ
n− 1

2
∆t

∂Fx
n

∂cxn+1
= +f

(cxn+1−cxn−1) (cyn+1−cyn−1)
n3

n
+

λ
n+ 1

2
∆t

∂Fy
n

∂cyn−1
= +f

(cxn+1−cxn−1) (cyn+1−cyn−1)
n3

n
+

λ
n− 1

2
∆t

∂Fy
n

∂cyn+1
= −f

(cxn+1−cxn−1) (cyn+1−cyn−1)
n3

n
+

λ
n+ 1

2
∆t

∂Fx
n

∂cyn+1
= +f

[
(cyn+1−cyn−1)

2

n3
n

− 1
nn

]

∂Fx
n

∂cyn−1
= +f

[
(cyn+1−cyn−1)

2

n3
n

+ 1
nn

]

∂Fy
n

∂cxn+1
= −f

[
(cxn+1−cxn−1)

2

n3
n

− 1
nn

]

∂Fy
n

∂cxn−1
= −f

[
(cxn+1−cxn−1)

2

n3
n

+ 1
nn

]

(14)
where the discrete normalization factor nn is given
by:

nn =
√(

cxn+1 − cxn−1

)2 +
(
cyn+1 − cyn−1

)2. (15)

This Jacobian is a sparse 2N×2N block tridiagonal
matrix of bandwidth four. The iteration in Eq. 13 is
calculated until convergence defined by k < TOL,
where k is the norm of the sum of the forces Fp + Fe

and TOL = 10−4.

3.2 Evolving Method

The previous method gives a direct link between the
initial and final shape even if the final shape is far
from the initial state. However the convergence can
be very slow and the iterations oscillate as the con-
straint of being equal to 0 is too strong. In order to
obtain a more robust method which follows closer to
the physics, the dynamic Newton’s law can be used.

This method was used as well for solving the deforma-
tion of the material in [8]. The principle is to evolve
the curve by making the force act on the acceleration
of the evolution of the curve where an integration pro-
cess gives a new curve evolving in time t. This method
was also used to solve for the deformation in [11] for
cloth and in [10] for muscle.

3.2.1 Set-up of the equation

Let the curve c be parameterized in space by s and
evolve with the time parameter t, then the equation
of motion is:

∂

∂t

(
dm

∂c
∂t

)
(s, t) =

∑

i

Fi(c, s, t) , (16)

where dm is the mass of a small portion of the curve.
This density is supposed to be constant for each po-
sition and at any time. It can arbitrarily be taken
equal to one, for which the equation simplifies to:

∂2c
∂t2

(s, t) = Fp (c, s, t) + Fe (c, s, t) + Fd (c,t, s, t) ,

(17)
where c,s = ∂c

∂t . This is now a system of non-linear
PDEs of the second order. In this case, the curve
evolves along time and the complete Eq. 4 has to be
taken into account. Moreover, the damping term has
to be included to model the decrease in energy of the
strings in order to obtain a steady state. Using sim-
plified notation with ∂u

∂x = u,x, the complete system
is written as:





cx,tt = −Fα

2π

1
∫

s
cy

√
c2
x,s + c2

y,s ds

cy,s√
c2
x,s + c2

y,s

+
(
λ

(
cx − c0

x

)
,s

)
,s
− µ cx,t

cy,tt =
Fα

2π

1
∫

s
cy

√
c2
x,s + c2

y,s ds

cx,s√
c2
x,s + c2

y,s

+
(
λ

(
cy − c0

y

)
,s

)
,s
− µ cy,t

(18)
The order of the system in time can be decreased

by using the matrix form with the vector U = (c, c,t).
In this case, Eq. 17 can be written as:

(
c
c,t

)

,t

=
(

0 1
0 0

) (
c
c,t

)
+

(
0∑
i Fi

)
. (19)

Denoting Msys =
(

0 1
0 0

)
and F =

(
0∑
i Fi

)
, the

matrix equation can be written as:
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U,t = Msys ·U + F .

3.2.2 Discretization with finite difference

In order to form a solution for the spatial derivative,
finite differences are used (method of lines) [12]. The
curve c is discretized by N positions separated by ∆s
(see Fig. 5).

0 2 4 6 8 10 12
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 5: Discretization of the initial position

Using the operator δ1 for the central derivative (ac-
curacy of second order),

δ1c(s) =
c(s + ∆s)− c(s−∆s)

2∆s
' c,s(s),

and the second order operator δ2 for the second
derivative such that:

δ2c(s) =
c(s + ∆s)− 2 c(s) + c(s−∆s)

2∆s
' c,ss(s) ,

the forces in Eq. 17 with a constant spring stiffness
can then be written in the discrete form:





Fp = F α

2π S0
1R

s
cy

√
(δ1cx)2+(δ1cy)2 ds

0
@ −δ1cy

δ1cx

1
A

√
(δ1cx)2+(δ1cy)2

Fe = λ δ2
(
c− c0

)

Fd = −µ c,t,

where Fp, Fe and Fd are three vectors of N compo-
nents each, and Eq. 19 can be transformed into an
ODE in time:

U,t = Msys U +
(

0
Fp + Fe + Fd

)

︸ ︷︷ ︸
F

, (20)

where U and F are now large vectors of 2N compo-
nents and Msys is a 2N×2N block matrix filled with
zeros and the identity bloc.

3.2.3 Method of solution

A basic approach for solving the system of ODEs
would be to use the forward Euler method in time
using the relationship:

U(t + ∆t) = U(t) + ∆t
(
Msys U(t) + F(s)

)
, (21)

where ∆t is the size of the time step of the discretiza-
tion. This method is easy to implement, however this
is a numerically explicit method and in order to have
a stable solution, the time step ∆t has to be taken
small enough [11], and thus makes the calculation
long. This phenomena appears especially if the coeffi-
cient λ is large, making the problem stiff [13]. More-
over, it is well known that an explicit method such
as the Forward Euler Method makes the solution di-
verge. It is then hard to keep the strings oscillating
in a bounded domain as they gain energy at each it-
eration. Therefore, an implicit method needs to be
used [8, 14].

In the implicit approach, Eq. 21 is modified to ob-
tain:

U(t+∆t) = U(t)+∆t
(
Msys U(t+∆t)+F(t+∆t)

)
.

(22)
In this case, the time step can be taken arbitrarily
large as the system becomes unconditionally stable
(the only limitation is the accuracy of the result).
However, solving Eq. 22 is much more complex, es-
pecially if the forces are non-linear. It is only advan-
tageous to use the implicit method if terms make the
system unstable.

The term Msys U(t + ∆t) is the integration term
for the speed. It is a linear term and can directly go
on the left hand side of the equation.

(
I−∆tMsys

)
U(t+∆t) = U(t)+∆tF(t+∆t). (23)

This linear system must now be solved at each step.
The force F has to be decomposed in order to be
calculated implicitly.

The term Fe is the elastic term. It oscillates and
needs to be made stable. The force is linear and can
be expressed easily in matrix form:

(
0
Fe

)
=

(
0 0

λδ2 0

)
U− λ δ2

(
0
c0

)
= Me U−F0

d

(24)
It is well known from the spring-mass model used
in cloth modeling that a better behavior (less de-
formable) is obtained by using more neighbors than
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the two closest ones. Therefore, the elastic force was
implemented by taking into account the first four
neighbors at each position. The last two are given
a smaller stiffness coefficient λ2.

The term Fp is more complex in the sense that it
is non-linear. This term cannot be solved directly by
taking the inverse function. As it is linked to the
derivative of the curve, this term also plays a role in
the stiffness of the equation. In order to get a more
stable behavior, a correction factor can be calculated
by linearizing this force (see [15]). The function Fp

depends on the vector c. Therefore, approximating
by a Taylor expansion, we have

Fp

(
c(t + ∆t)

)
' Fp

(
c(t) + ∆t

∂c
∂t

(t + ∆t)
)

.

Next expanding the right hand side in a Taylor series
gives the following expression:

Fp

(
c(t + ∆t)

)
' Fp

(
c(t)

)

+
∑

j

∆t
∂cj

∂t
(t + ∆t)

∂Fp

∂cj

(
c(t)

)

Using the fact that c,t is a variable of the system, the
linearization is given in the following expression:

Fp(t + ∆t) = Fp(t) + ∆t
∑

j

∂Fp

∂cj
cj

,t(t + ∆t). (25)

Let us denote the Jacobian matrix as ∂Fp

∂c such that:

(
∂Fp

∂c

)

i,j

=
∂Fi

p

∂cj
.

Eq. 25 is linear in c and can be written in the matrix
form:

(
0

Fp(t + ∆t)

)
=

(
0

Fp(t)

)
+ ∆t

(
0 0

0
∂F
∂c

)
U.

(26)

The matrix ∆t

(
0 0
0 ∂F

∂c

)
is denoted as dMp. This

term will correct the instability during the iteration
by adding it on the left hand side of Eq. 23.

The damping term is linear and can be placed on
the other side as well, however this term is already
a stabilization term. It makes very little difference
whether it is used as an implicit one or not. This
force can also be expressed in matrix form:

(
0
Fd

)
= −µ

(
0 0
0 I

)
U = Md U. (27)

Now Eq. 24, 26 and 27 are substituted into Eq. 23 to
give:

[
I−∆t

(
Msys −Me −∆t dMp

)]
U(t + ∆t) =

(
I + ∆tMd

)
U(t) +

(
0

Fp(t)

)
−

(
0
F0

d

)
,

(28)
or in matrix block form:

(
I −∆t I

−∆t λ δ2 I− (∆t)2
∂Fp

∂c

) (
c
ct

)
(t + ∆t) =

(
I 0
0 (1− µ) I

) (
c
ct

)
(t) +

(
0

Fp

)
(t)−

(
0
F0

d

)
.

(29)
This equation is solved for at each iteration and the
stopping condition is reached when the sum of forces
‖Fe + Fe‖ < ε with ε ' 10−4. The Jacobian is calcu-
lated numerically by finite differences. Some trade-off
between convergence and calculation speed is done by
recalculating this matrix only at some iterations (typ-
ically every ten iterations).

3.3 Numercial Calculation of the
Length, Area and Volume

The shape is discretized for the desired resolution,
then characteristics such as length, area and filled
volume have to be calculated based on the discrete
case. The shape is assumed to be piecewise linear
between the discrete positions. Exact formulas can
then be taken to calculate these characteristics with
this hypothesis. The approximation of the real vol-
ume therefore has an accuracy of second order. Let
us call ck the kth component of c.

3.3.1 Length

The length of the curve is calculated by summing the
length of all the linear sections:

L =
i=N−2∑

i=0

√(
ci+1
x − ci

x

)2

+
(
ci+1
y − ci

y

)2

. (30)

3.3.2 Area

The area under the 2 dimensional curve is calculated
by summing each trapezoid between each discrete po-
sition (see Fig. 6):

A =
1
2

i=N−2∑

i=0

∣∣(ci+1
x − ci

x

) (
ci+1
y + ci

y

)∣∣ . (31)
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A1 = ∆x cix

A2 =
1
2
∆x ∆yciy

∆x

cix

∆y

Fig. 6: Calculation of the area under the curve

3.3.3 Volume

The volume filled by the balloon is calculated by sum-
ming the portion of cones along the axis of rotation.
(see Fig. 7) Each cone has a volume:

���������
	���������������

ci+1
y

ci+1
x

cix
ciy

Vi

Fig. 7: A cone used to approximate a portion of the balloon
in three dimensions

Vi =
∫ ci+1

x

ci
x

π c2
y(s) ds (32)

with

cy(s) = ci
y

(
ci+1
x − s

ci+1
x − ci

x

)
+ ci+1

y

(
s− ci

x

ci+1
x − ci

x

)
,

Changing variables, Eq. 32 can be rewritten as:

Vi = π
(
ci+1
x − ci

x

) ∫ 1

0

(
ci+1
y s + ci

y (1− s)
)2

ds.

With a second change of variables, Z = ci+1
y s+ci

y (1−

s):




Vi = π
(
ci+1
x − ci

x

) 1
ci+1
y − ci

y

∫ ci+1
y

ci
y

Z2 dZ

if ci+1
y 6= ci

y

Vi = π
(
ci+1
x − ci

x

) ∫ 1

0

(
ci
y

)2
ds

if ci+1
y = ci

y

⇒ Vi =
π

3
(
ci+1
x − ci

x

) [(
ci+1
y

)2
+ ci+1

y ci
y +

(
ci
y

)2
]
.

(33)
Therefore the volume of the balloon is known from
points only in the right hand side of the cone (where
ci
y > 0):

V =
π

3

i< N
2∑

i=0

(
ci+1
x − ci

x

) [(
ci+1
y

)2
+ ci+1

y ci
y +

(
ci
y

)2
]
.

(34)

4 Results

4.1 Direct Method

With the direct solution using Newton’s method of
finding the roots, the balloons converge to a shape
which is effectively different from a sphere (see Fig. 8).
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Fig. 8: Shape obtained with the direct method for different
pressures. The parameter A corresponds to the normalized
area filled by the interior curve.

However, the iterations oscillate with overshoots dur-
ing the solving process and converge slowly when the
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pressure becomes too large. In order to obtain faster
convergence, the second method is used.

4.2 Evolving Method

This method gives a convergence without oscillations,
and the stability is far better. The balloons can be
dilated without slowing down the convergence. The
evolution of the force due to pressure and the mem-
brane action at each position is shown for some iter-
ations between the initial and final states in Fig 9.
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Fig. 9: Evolution of the convergence of a balloon for a fixed
pressure. The red points are the discrete positions, the magenta
lines shows the elastic forces acting on the membrane and the
black vectors are the forces of pressure acting at each position.
When the equilibrium is reached, pressure and elastic forces
compensate each other.

The evolution of the norm ‖Fp + Fe‖ during the
iterations is shown in Fig. 10. Notice that the value
of this sum is always decreasing with each iteration
which makes the method very stable, and the con-
vergence is linear close to the solution of the static
state.
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Fig. 10: Plot of the norm of the sum of elastic and pressure
forces for each iteration illustrating convergence of the method

Figure 11 shows the deformation between the two
membranes. The deformation of the midwall can be
seen. Except for some elongation, the base doesn’t
have significant deformation due to the fixed posi-
tions. However, a change in the wall thickness can
be seen at the apex by a contraction of the mesh.
The three dimensional volume can be reconstructed

Fig. 11: Deformation of the two membranes and mesh inter-
posed between them. Three increasing pressures are applied
to the inter membrane. The mesh is interpolated between the
two membranes.

by revolution. A realistic shape of a dilated and con-
tracted balloons can be seen in Fig. 12.

Physically, the spaces separating the two balloons
are filled with water. The hypothesis of the incom-
pressibility of water should then result to a constant
volume (or area in 2D) between the two membranes.
In the simulation, even with large deformations, the
difference in area between rest and dilated position
is less than a percent (due to the discretization and
numerical errors).

5 Tomography

5.1 Methods

5.1.1 Filling and orientation of the balloon

In order to evaluate a tomographic experiment using
the Jaszczak Dynamic Phantom a simulation of the
two balloons with realistic motion was performed. To
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Fig. 12: Deformation of the balloons in 3D. Pictures at the
top are volumetric visualizations and the pictures on the bot-
tom show a mesh for the outer simulated wall of the heart. For
top and for bottom the visualization shows the rest state (left)
and the final state (right) for an interior volume increased by
sixty percent.

be consistent with the realized study, the initial state
was a cylindrical shape. The balloons were then di-
lated to reach an ejection fraction of 60% calculated
as

Vdilate − Vrest

Vrest
= 0.6 . (35)

The balloon was also rotated into a position that sim-
ulated the orientation of the heart in the body when
the camera is rotating around it. An angle of rota-
tion of 45◦ was chosen around the two axes ex and ey

(where ey is the long axis of the body) in Fig. 13.

5.1.2 Camera and timing settings

The simulation was set-up so that the camera rotated
around the z axis in Fig. 13. Parallel ray projections
were formed over the entire volume of the heart. It
was assumed that the heart beat at a rate of 65 beats
per minute. The camera rotated around 180◦ and 90
angular samples were taken.

−→
ex

−→
ey

−→
ez

−→
ez

−→
ex

−→
ey

Fig. 13: The picture on the left shows the initial orientation
without rotation, the picture on the right shows the orientation
of the heart as in the body with ey aligned with the long axis
of the body.

5.1.3 Projection and reconstruction settings

For each angle, a projection image was calculated.
Figure 14 shows an example of projection images at
three angular positions.

Fig. 14: Example of projections for three angles around the
balloon. The balloon is inclinated at 45◦ and is static in this
case.

In the dynamic case, each projection at a particular
angle depended upon the heart position in the cardiac
cycle. Thus for a particular time (angle), the cor-
responding position of the heart was calculated and
then the corresponding volume was projected. The
projected data consisted of 90 projections which were
not consistent due to the motion. Each reconstructed
intensity distribution was voxelized in a volume of
2563 voxels. The reconstruction of the volume was
performed by filtered-back projection, slice by slice.
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5.2 Results

A simulation of a static case (no beating heart) was
first performed. For this example the reconstruction
gave exactly the original shape of the balloon as seen
in Fig. 15.

Figure 16 shows the results for the first dynamic ex-
periment where the data were assumed to be acquired
during a very short period of time like a dynamic CT
measurement. For each angle, virtually an instanta-
neous projection was performed by rotating the cam-
era at 2◦ per second. It was assumed that this short
acquisition was not subject to noise, so only the ar-
tifacts due to the motion could be visible (and the
artifacts due to the sampling of the angle).

The angle to angle inconsistency of the projected
data creates artifacts which lead to a non-uniformity
for the reconstruction of the tracer intensity on the
wall and a non-null intensity outside of the boundaries
of the wall. The exact non-uniformity depends on the
position of the heart for each angle and also depends
on the frequency of the beating. The results of the
reconstruction are shown in Fig. 16 for a normal heart
beating at 65 beats per minutes.

Figure 17 shows results of the simulation of a long
acquisition time much like that performed in a PET
or SPECT study. In this case, for each angle, the
camera was stationary during enough time to record
at least a full cardiac cycle. The projections were
then the average of the complete motion. Thus for
each angle the projections were summed over time.
In this case, the artifacts caused by the motion are
a blurring in the direction of the displacement. The
apex of the balloon which has a displacement along
the axis of the cylinder shows a large blurring effect
along that axis. The wall of the balloon is essentially
displaced in the perpendicular direction.

6 Conclusion and Future Work

Physical forces were taken into account to set-up
equations of equilibrium and equations of motion for
an elastic membrane filled with water which exerted
an internal pressure on the elastic membrane. Two
methods were used to solve the physical problem.
One method involved obtaining a direct solution of
the equations of equilibrium (static method) whereas
the second method involved a method of evolution
were the force of acceleration acts upon the system as
it evolves over time (dynamic method). The two ap-
proaches provide two different systems of non-linear
equations which were both solved numerically using
finite difference methods. The results for both con-

verge to similar non-trival2 shapes.
The two finite difference methods are differenti-

ated by their speed of convergence. For a very small
change of internal pressure, the first method con-
verges quickly to the final solution since the shape
is initially very close to the final one. However, for a
larger pressure force, oscillations and overshoots are
visible during the iteration process. The stability of
the method due to numerical errors then becomes a
problem. Moreover, the water filled region between
the two membranes should be constant due to con-
servation of volume. However, since the simplified
Eq. 3 is used, it is not obvious how to scale the factor
f in order to insure that the area of this region is con-
stant. This factor indeed depends on the volume of
the balloon and then on the final position of c. So f
has to be chosen differently for the exterior membrane
than for the interior membrane. But this relationship
is not known a priori since the final shape has not
been determined. Therefore to obtain this condition
f has to be determined by trial and error.

For these reasons, the second method is preferred,
especially when the deformation becomes large. The
shape does not oscillate during convergence and the
norm of the sum of the forces is always decreasing
indicating good stability. In this case, the complete
equation is taken so the link between the two mem-
branes is then automatically taken into account. An
implicit method is used to solve the system of dis-
cretized ODEs for each step.

It can be noticed that the string term Fe of Eq. 6 is
intended to create an oscillation with a constant en-
ergy in time. However, since the first order implicit
Euler’s method is used, it is well known that the solu-
tion will decrease to zero if the time step is too large.
This phenomena can be avoided by using the trape-
zoidal rule and mixing half implicit with half explicit
numerical methods [12, 13]. However, the decreasing
phenomenon is not a problem since this is the desired
behavior. Moreover, this numerical decrease is small
compared to the decrease effect caused by the addi-
tion of a damping force.

The system of PDEs of the second method is more
complex than for the first method, and in that case,
the Jacobian of the pressure force is only calcu-
lated approximately and is not updated at each itera-
tion. However, the dynamic method evolves the curve
smoothly between the initial and the final position, so
the exact value is not necessary for convergence.

The methods presented for solving for the shapes of
the balloons can be used to simulate a beating heart
in a tomographic simulation. Two dynamic experi-
ments were tested: one with a short and one with a

2in the sense that the final form is not circular
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(a) (b) (c)

Fig. 15: Reconstruction for the static case. Figure (a) shows a single slice of the reconstruction following the correct boundaries
of the balloon with zero intensity outside. Figure (b) shows some slices of the balloon. Figure (c) is the visualization of a large
number of slice showing the reconstructed shape of the balloon in space.

(a) (b) (c)

Fig. 16: Reconstruction of the short sampling for the dynamic acquisition. Figure (a) shows a single slice of the reconstruction,
the non-uniformity in the heart wall is visible. Figure (b) shows some slices of the wall. The boundary is oscillatory and some
artifacts propagate outside the wall. Figure (c) is a reconstruction of a large number of slices, the dissipation of the artifacts
outside of the wall can be noticed.

longer acquisition time. In the simulations the follow-
ing approximations were assumed:

1. The dynamics of the balloon modeled motion of
the left ventricle.

2. The projections were free of attenuation.

3. The projections were free of noise.

4. The camera rotated around the heart, simulated
by the balloon, in a perfect circle.

5. The projections were performed on a voxelized
volume where each voxel was assumed to have

the same concentration of tracer, despite the fact
that there was contraction and dilation of the
volume.

The first assumption indeed results in a large ap-
proximation. The balloon is an extremely simplified
model for the left ventricle. The base is not moving
and no twisting motion due to the presence of muscle
fibers is taken into account [16, 17]. A 2-dimensional
curve, such as used in this study, cannot model this
complex motion. However, this experiment gives a
rough approximation to the motion of the boundaries
of the heart wall, especially for a low quality acqui-
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(a) (b) (c)

Fig. 17: Reconstruction of the long sampling for the dynamic acquisition. Figure (a) shows a single slice of the reconstruction,
the blurring surrounding the heart wall is visible. Figure (b) shows some 3D slices of the heart. The artifacts don’t propagate
outside of the wall. Figure (c) is a reconstruction of a large number of slices, the global form of the balloon is conserved but the
motion blurs the boundaries.

sition such as SPECT. The results help to give an
idea of some of the artifacts due to the heart beating.
It also can be used to compare with imaging experi-
ments using the Jaszczak Dynamic Cardiac Phantom.

The following two assumptions are also large ap-
proximations. It is hard to compare this model with
a real SPECT experiment but may be more repre-
sentative of an x-ray CT acquisition. Especially in
the short time acquisition, the noise of the data is
very large due to the lack of counts. However, the
model was performed to simulate the motion, so that
attention is given only to the motion distortion with-
out taking in account other kinds of artifacts such as
those due to noise.

The fourth point would have to be taken into ac-
count for a true SPECT simulation where attenuation
results in inconsistencies in the data. The backpro-
jection of rays will propagate artifacts in a direction
which depends on the position of the balloon.

The last assumption does not produce large errors
in the study. The variation of tracer concentration per
voxel is actually very small, especially since a large
volume is used (2563 voxels).

The results of this study show that the long acquisi-
tion time actually gives a better approximation of the
motion than a fast dynamic acquisition due to the av-
eraging of the projections. There is less propagation
of the artifacts into the background.

Future work includes the validation of the numer-
ical solutions by comparing the results with a CT
and a SPECT scan of the real beating balloon in the
Jaszczak Dynamic Cardiac Phantom. A study in real
3D of the motion could be performed. In this case,
the twisting movement of the heart could be studied
by adding constraints on the shape.

Appendix:
Particular Analytical Solution to
the Differential Equation

We show in this appendix that the term z0 of the ini-
tial shape in Eq. 11 is actually responsible for making
the equation non-linear. The equation is then consid-
ered with a rest state for the spring at z0′′ = 0. This
means that the springs are initially contracted in a
single line between the two fixed positions (in three
dimension, the initial shape is therefore a disc). Then
the new equation is

z′′ + i
f

λ

z′

|z′| = 0 .

It is first shown than the non-linear term |z′| is actu-
ally constant. This can be easily shown in the com-
plex case by expressing the derivative of the squared
modulus of a complex function:

(
|z|2

)′
= 2Re(z z′).

So taking the derivative:

(
|z′|2

)′
= 2Re(z′ z′′) ,

and using the equation:

(
|z′|2

)′
= −2

f

λ
Re(i

z′ z′

|z′| )

⇒
(
|z′|2

)′
= −2

f

λ
Re(i|z′|) = 0.
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Let us denote C the constant |z′|. The new equation
is now linear

z′′ + i
f

λ C
z′ = 0 .

This is now easily solved with the initial condition
z(0) = i R and z(1) = −i R. Setting µ = f

λ C we
have:

z(s) =
2i R

1− e−iµ
e−i µs − R

(
1− e−i µ

)

1− e−iµ
.

In real variable notion this reduces to:{
cx(s) = α sin(µ s− ϕ) + β
cy(s) = α cos(µ s− ϕ) , (36)

where 



α =
2 R

cos(µ)− 1
sin

(µ

2

)

β =
R

cos(µ)− 1
sin(µ)

ϕ = Arctan
(

sin(µ)
cos(µ)− 1

)

Finally, C can be expressed with the initial shape.
|z′| is constant so |z′| = |z0′| with z0 = (1− 2 s) iR.
Then |z′| = C = 2R. An example is shown in Fig. 18
where the initial position is a straight line.
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Fig. 18: Numerical validation of the circle solution for an
initial position with vanishing second derivative. The picture
on the left shows the initial position of the membrane making
a straight line from the first to the last point. The picture on
the right is the final shape after dilatation. This shape has
converged to a portion of a circle.
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