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Abstract 
 

Experimental and Theoretical Studies on Mechanical Properties of Complex 
Oxides in Concrete 

 
by  

 
Juhyuk Moon 

 
Doctor of Philosophy in Engineering-Civil and Environmental Engineering 

 
University of California, Berkeley 

 
Professor Paulo J.M. Monteiro, Chair 

 
 
Despite the enormous amount of concrete consumed, fundamental understanding 
on the structural properties of hydrated oxides in concrete is still an open question.  
Due to the structural hierarchies and heterogeneous characteristics of concrete, 
accurate experimental and theoretical studies have not been well-developed for 
measuring mechanical properties of crystalline and amorphous materials in 
concrete.  Lack of the information makes the development of constitutive relation 
of them to the macroscopic concrete properties difficult.  

 
The objective of this thesis is to compute mechanical properties of various phases 
in concrete.  Unconventional methods of high pressure x-ray diffraction, 
absorption, and first-principles calculation are applied to calcium silicate hydrates 
(tobermorite 14 Å, 11 Å, 9 Å, and jennite), calcium aluminate hydrates (hemi-
carboalumiante, monocarboaluminate, strätlingite, and hydrogarnet), tricalcium 
aluminate, and alkali-silica reaction gel.  From the systematic comparison of both 
experiment and simulation, a comprehensive understanding of structural 
mechanism is achieved.   

 
For tobermorites, interlayer thickness which is related to the number of interlayer 
water molecules determines its compressibility.  Hemicarboalumiante and 
strätlingite shows a pressure-induced dehydration while monocarboaluminate with 
the full occupancy of carbon oxide group behaves stable and incompressible under 
pressure.  In the cases of tobermorite 14 Å and monocarboaluminate, linear 
density approximation in the first-principles calculation predicts the 
experimentally measured bulk modulus with high accuracy.  Based on the 
excellent agreement of bulk moduli between experiment and simulation, it can be 
concluded that computed elastic properties of shear and Young’s modulus, 
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Poisson’s ratio, and elastic tensor coefficients are highly reliable.  In addition, 
combining x-ray diffraction and absorption methods allows accurate measurement 
of density variation under pressure which is used to compute the bulk modulus of 
alkali-silica reaction gel. 

 
The fundamental structural properties obtained in both experiments and 
simulations given in this thesis will pave a path toward not just to increase our 
knowledge of the structural mechanism of concrete but also to optimize concrete 
design for better structural performance. 
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1. Introduction 
 
1.1 Research Motivation 
 

Concrete is the most widely used building material in the world.  Global 
concrete production is around 18 billion tons, enough to produce more than one 
cubic meter of concrete per person per year and it is expected to grow [1].  The 
main ingredients in concrete are water, aggregates, and cement.  Due to the 
abundance of raw materials, this very common combination of materials has 
provided a space for people to live for over 100 years.  Nevertheless, 
microstructure of concrete and its mechanical characteristic have not been fully 
understood due to its complexity.  The research in this thesis aims to investigate 
the fundamental mechanical properties of various hydration products and clinker 
in concrete, for better understanding its structural performance.  

 
Ordinary portland cement is the most commonly used cement for usual 

construction condition.  It is produced by heating clays and limestone up to 1550 
ºC, which involves a series of chemical transformations to form a coarse clinker.  
The resulting cement clinker contains alite (C3S), belite (C2S), aluminate (C3A), 
and ferrite (C4AF) crystalline phases.  Note that cement chemistry, such as that 
given in parenthesis, is used to simplify chemical equations; S=SiO2, C=CaO, 
A=Al2O3, and F=Fe2O3.  When finely milled cement powder and gypsum are 
mixed with water, chemical reactions and thermodynamic processes take place to 
form numerous phases, which combined make a hardened cement paste [1].  

 
Cement paste is a porous and hierarchical material consisting of various 

components.  It plays a key role of binding the ingredients of concrete together 
such as aggregates, unhydrated cement, and crystalline phases in the cement paste.  
The main components of cement paste are poorly crystalline calcium silicate 
hydrate (C-S-H gel) and crystalline phases of portlandite, ettringite, and Al2O3-
Fe2O3-mono (AFm) phases such as monosulfate and monocarboaluminate.  
Because of the intrinsic heterogeneity and compositional variance, cement paste 
has various levels of structures across different length scales.  Each scale has a 
different characteristic size and accordingly different structural properties, which 
yield the concrete a highly complex material.  The concrete can thus be interpreted 
as a hierarchy of distinct levels as shown in Fig. 1.1. 
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Figure 1.1 Structural hierarchies in concrete. The images in nano and micro scales are 
from Richardson [2]. The concrete image in macro scale is from Mehta and Monteiro [1]. 
The atomic structure in a red box is tobermorite 14Å, reproduced from [3].  
 

At a scale of meters, concrete is set with preinstalled reinforcing steel bars 
to compensate its weak tensile mechanical properties.  Several macroscopic 
material properties such as compressive strength, elastic modulus, and thermal 
expansion coefficient are considered for the design of concrete for a building and 
civil infrastructure.  At this macro scale, cement hydrates can be represented as 
homogeneous, with bulk physical and chemical properties.  In fact, the concrete is 
a composite of coarse and fine aggregates that are randomly dispersed in a matrix 
of hardened cement paste as shown in Fig. 1.1.  Various millimeters sized pores 
also co-exist with hydration products and unreacted clinker particles which yield 
heterogeneous appearance of concrete.  At a macro scale for engineering purpose, 
it can be assumed that concrete has homogeneous bulk properties.  However, 
heterogeneously distributed pores from admixtures or hydration process at the 
micro-scale, can lower the density of concrete and affect the mechanical 
performance of concrete [1]. 

 
The hardened cement paste is a heterogeneous composite of cement grains 

interspersed with hydration products of portlandite, AFm phases, and a poorly 
crystalline C-S-H at a scale of micrometers.  Among the different cement 
hydration products, the C-S-H gel constitutes more than 60 % of the volume and 
encompasses all the other phases.  Several morphologies are attempted to describe 
the C-S-H structure including: sheaf of wheat, needles, foils, fibril, and flakes [4-
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6].  These morphologies differ based on parameters such as water to cement ratio 
(w/c), hydration stage, and types of accelerators [7-9].  

 
At a scale of nanometers, the structure of C-S-H gel is similar with that of 

disordered layered silicates, while other embedded hydration products are 
perfectly crystalline structures [2, 4, 10, 11] which form large crystals, typically 1 
μm maximum.  The complex structure consisting of hydration products and voids 
at this scale level are referred to as the nanostructure of concrete.  The capillary 
voids exist when the spaces originally occupied with water do not get completely 
filled with the hydration products.  The size of capillary voids ranges from 10 nm 
to 1 μm, but in well-cured pastes with low w/c, they can be less than 100 nm [1, 12, 
13].  Although concrete has been in widespread use for over 100 years, many of 
nano-structural properties such as interaction between the components and 
physical and thermodynamical characteristics are unexplored.  

 
The C-S-H gel is the most important component in concrete.  Not only 

because it constitutes large volume of cement paste, but because it is responsible 
for numerous important properties of concrete including setting, hardening, 
shrinkage, and creep [1].  In spite of its role in concrete, not much known about 
the structural mechanism of the C-S-H gel.  The disordered nature, compositional 
and density variance makes research on the C-S-H gel difficult [2, 8, 14].  
Therefore, the structural manipulation of C-S-H gel is absent from actual concrete 
design practice.  In addition, structural repair related to the behavior of C-S-H gel 
is of huge cost, due to the ignorance of the nanostructure of the C-S-H gel.  For 
instance, the prevention methods for cracking in concrete or unexpected 
asymmetric strain induced by creep and shrinkage are still under development.  
Various advanced experimental techniques have been studied to characterize C-S-
H gel at the nano-scale including: Small Angle x-ray Spectroscopy (SAXS) [5, 
14]; Nuclear Magnetic Resonance (NMR) [15-19]; Scanning Electron Microscopy 
(SEM) [4, 20-22]; and x-ray Pair-Distribution Function (PDF) [23, 24].  The 
reaction of Ca3SiO5 (C3S) or β-Ca2SiO4 (C2S) with water produces C-S-H gel and 
Ca(OH)2 (CH).  C-S-H gel in cement paste is less ordered than synthetic C-S-H(I) 
or C-S-H(II) which have x-ray diffraction patterns of a broad band at 2.6-3.2 Å 
and a sharp peak at 1.82 Å.  It has been proposed that C-S-H(I) and C-S-H(II) are 
semi-crystalline versions of crystalline calcium silicate hydrate minerals, 
tobermorite 14 Å and jennite, respectively [25-27].  Alternatively, it has also been 
suggested that C-S-H gel is initially a mixture of tobermorite- and jennite-like 
structures.  The jennite-like structure becomes dominant with age [2, 5, 8, 13, 14].  
However, the accurate atomic arrangement and the structural mechanism of C-S-H 
gel is a still open question.  More detail description of the structure will be 
introduced in section 3.1.  
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 Compared to poorly crystalline material, the perfectly crystalline materials 
of portlandite, Ca(OH)2, AFm (Al2O3-Fe2O3-mono), and AFt (Al2O3-Fe2O3-tri) 
phases are also formed during the hydration of Portland cement.  The principal 
nanostructure of AFm and AFt phases is originated from portlandite.  Although 
the volumetric amount of those mineral phases is small (up to 15 % in concrete), 
they play a critical role in durability of the concrete [1].  In addition, these 
minerals are potential candidates for the retention of anionic species [28, 29] 
because of the positively charged surfaces of AFm and AFt phases.  For instance, 
they can be utilized as a cementitous repository for disposal of radioactive waste 
[30].  Given the huge amount of concrete used in the world, it also has a huge 
potential as a carbon sequestrator.  Two types of carbon containing AFm phases: 
monocarboaluminate and hemicarboalumiante will be discussed in more detail in 
chapter 4.   
 

This complexity of research on structural mechanism of concrete is from 
the lack of experimental data at a fundamental level.  The main objective of this 
thesis is to provide experimental and theoretical data for the mechanical 
characteristic of cementitous materials.  The understanding of mechanical 
properties of structural materials is crucial because the nano- and micro-scale of 
properties of any structural materials will govern the macro-scale and as such the 
overall behavior of them [1].  Relying on accurate experimental and theoretical 
data from this study, the microstructural properties of materials in concrete will 
provide a better understanding of the macro-properties for large-scale civil 
engineering application.  Last, the research on stability and mechanics of 
cementitous crystals will give us an insight on developing a next generation of 
concrete including investigating mechanical influence of carbon sequestration on 
concrete or optimization of the nanostructure of C-S-H gel for developing a high 
performance concrete.  
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1.2 Outline of Thesis 
 

This thesis is divided into six chapters.  The first chapter summarizes a 
review of nanostructure of concrete and general description of this thesis.  

 
Chapter 2 reviews experimental and theoretical techniques used in this 

thesis.  Section 2.1 introduces the general application of various synchrotron based 
x-ray techniques to concrete.  Section 2.2 presents an overview of first-principle 
calculation.  Section 2.3 summarizes a theoretical background of thermodynamics 
and micromechanics which will be used for calculating elastic properties in 
Chapters 3, 4, and 5.  

 
Chapter 3 discusses crystalline calcium silicate hydrates minerals.  Section 

3.1 introduces several mineral analogs of C-S-H gel and compares the crystal 
structures.  Section 3.2 presents the direct measurements of bulk modulus of 
crystalline calcium silicate hydrates of normal and anomalous tobermorite 11 Å, 
tobermorite 9 Å, and jennite by high pressure x-ray diffraction experiments.  
Section 3.3 focuses on the application of first-principles calculation on tobermorite 
14 Å and 9 Å, and Jennite.  Section 3.4 discusses the structural mechanism of the 
calcium silicate hydrates crystals based on the experimentally and theoretically 
obtained mechanical properties.  Section 3.5 summaries the main findings in 
chapter 3.  

 
Chapter 4 focuses on structural behavior of calcium aluminate oxides in 

concrete. Section 4.1 introduces calcium aluminate hydrate phases in concrete.  
Similarly to in chapter 3, sections 4.2 and 4.3 discuss the high pressure x-ray 
diffraction measurements and first-principles calculations on the AFm phases, 
respectively.  Also a similar study on clinker material of tricalcium aluminate will 
be discussed.  Section 4.4 discusses the mechanical characteristics of the calcium 
aluminate hydrates and tricalcium aluminate.  Section 4.5 outlines key results in 
chapter 4.  

 
Chapter 5 deals with amorphous material, alkali-silica reaction (ASR) gel 

and x-ray absorption experiment.  Section 5.1 introduces ASR gel and its atomistic 
characteristics.  Section 5.2 introduces the x-ray absorption experiment and its 
application to the ASR gel.  Section 5.3 presents the measured bulk modulus from 
the experiment and compares with that of amorphous silica to understand its 
expansion mechanism in concrete.  Section 5.4 is a summary of the outcomes 
drawn in chapter 5.  

 
Chapter 6 summarizes the major conclusions achieved in this work and 

proposes future research work.  
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2. Overview of Experimental and Theoretical Techniques 
 
2.1 Introduction to Synchrotron based x-ray experiments 
 

A significant number of x-ray diffraction studies on concrete provided 
fundamental information on the crystal structure of many phases of the cement 
paste in concrete.  However, deeper understanding on poorly crystalline phases or 
measuring mechanical and thermodynamical properties of crystals require 
advanced techniques.  Especially for highly complex heterogeneous materials like 
concrete, the conventional laboratory facilities such as laboratory based x-ray 
diffraction, nuclear magnetic resonance (NMR) or x-ray fluorescence (XRF)  are 
not enough to give detail short-range information on concrete due to its 
hierarchical and heterogeneous structure [31, 32].  On the other hand, electron 
microscopy in the scanning electron microscope (SEM) and transmission electron 
microscope (TEM) have been useful in understanding the morphology of C-S-H as 
well as of other hydration products [2, 8, 33] in various scales with high spatial 
resolution.  In addition, synchrotron-based microscopy [6, 9, 34] and/or x-ray 
spectroscopy such as scanning-transmission x-ray microscopy led to detailed 
information on the morphology and composition of polymer-modified and 
carbonated C-S-H [35-37].  In this section, synchrotron based x-ray diffraction 
method will be discussed with recent applications to concrete.  

 
The experimental work described in this dissertation has been performed at 

the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. This 
synchrotron radiation facility benefits from the hard x-ray radiation generated by a 
6T superconducting bending magnet [38].  The radiation is transferred from the 
superbend to the experimental enclosure by the brightness-preserving optics of 
beamlines.  To reduce possible correlated uncertainties, the x-ray energy is 
calibrated by absorption edge of standard materials such as Cu, Zn, Pd, Sn, Ag and 
Mo.  Then, some specific x-ray energies can be accurately calibrated by the 
derivative intensity attenuation, and the target energy can be achieved by driving 
the monochromator using a tuning program [38].  Due to the high intensity and 
tunabilitly, this synchrotron radiation facility has been widely used for powder x-
ray diffraction technique to characterize complex materials [39, 40].  For instance, 
the poorly crystalline features of C-S-H gel in concrete or geopolymeric gel could 
be detected using the synchrotron based x-ray diffraction [39, 41].  This allows 
differentiating the poorly crystalline binding materials of C-S-H gel and 
geopolymeric gel in green concrete.  Combining with diamond anvil cell (DAC), 
hydrostatic pressure can be generated up to 100 GPa.  X-ray diffraction, Extended 
x-ray Absorption Fine Structure (EXAPS), and x-ray imaging through the DAC 
can be obtained through the DAC [38].  Clark et al. was the first to  measure the 
bulk modulus of cement hydration product, ettringite (one of AFt phases in 
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concrete) by the high pressure x-ray diffraction technique [42].  Later Oh et al. 
successfully observed the volume variations of C-S-H(I) and zeolites such as 
hydroxycancrinite and basic sodalite under loading and unloading conditions [40, 
43, 44].  In addition to the pressure, combined with double-sided laser heating, 
synchrotron radiation has become a unique method for high pressure and high 
temperature studies.  The experimental melting temperature of Ni, Mo, Pt, and W 
were recently measured using the laser heating system in the Beamline [45].   

 
Although the x-ray diffraction allows to obtain detailed information of the 

crystalline material, it is still an experimental challenge to apply the diffraction 
method to amorphous materials under various conditions due to the limited 
information (i.e., small number of diffraction peaks) for amorphous materials.  
Eggert et al. established a new method of combining x-ray absorption and 
diffraction to study fluids and non-crystalline solids [46-49].  According to the 
absorption law, the density of a sample under various conditions can be 
determined by comparing transmitted x-ray absorption intensity of the sample with 
that of reference material.  Again, combined with the DAC and laser heating 
technique, density variation under extreme pressure and/or temperature condition 
can be measured.  Detail method and application to alkali-silica reaction (ASR) 
gel will be discussed in chapter 5.  
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(a)      (b)  

(c)      (d)  
Figure 2.1 Raw synchrotron x-ray powder diffraction patterns collected on (a) 
tobermorite 14 Å (Plombierite), (b) After heating the plombierite at 135 ºC for 1 day, (c) 
Pressurized at  6 GPa after the heating, and (d) synthesized C-S-H at ambient condition.  
 

 
Figure 2.2 Integrated synchrotron x-ray powder diffraction patterns of tobermorite 14 Å 
(Plombierite) at ambient condition, after heating at 135 ºC for 1 day, and pressurized at 6 
GPa after the heating. 
 

Figures 2.1 and 2.2 show some cases of synchrotron x-ray diffraction.  Pure 
crystalline material of tobermorite 14 Å from Crestmore, CA, US was measured at 
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ambient, after heating 135 ºC, and under 6 GPa of hydrostatic pressure using the 
DAC.  Mar3450 image detector shows perfectly radial x-ray diffraction patterns of 
each sample.  The white line in each Fig. 2.1(a) is from the shadow of a beam 
stopper which is to protect the detector.  Then, the overall experimental detail of 
the x-ray was refined by lattice parameter of standard materials. Standard 
reference material of lanthanum hexaboride 660 (From National Institute of 
Standard and Technology (NIST)) was selected due to its low strain broadening 
and distinct x-ray diffraction positions [45].  Integrating the 2D radial images in 
Fig. 2.1 yields regular powder diffraction patterns shown in Fig. 2.2.  From 
refining the high-resolution powder diffraction patterns, lattice parameters and 
detail atomic positions can be obtained.  As shown in Fig. 2.2, the lattice 
parameters are shifting under heating and pressing.  Its analysis will be discussed 
in more detail in chapters 3 and 4.  In addition, a preferred orientation in sample 
can be detected using the Mar3450 detector.  For instance, the density variation of 
a ring in Fig. 2.1(b) shows the preferred orientation at certain direction.  The 
orientation distribution of ettringite crystals was analyzed by Wenk et al. using 
micro-diffraction technique [50] and they provides elastic anisotropy of ettringite 
aggregates in concrete.  This phenomenon is especially important in earth and 
planetary science to determine seismic velocity in deep in the earth [51, 52].  

 
The x-ray source can be applied to two different types of materials; the first 

is based on the structure factor, which relates the diffraction pattern to lattice 
planes in the long-range ordered crystal [53].  Combining with Rietveld 
refinement, both lattice parameters and detail atomic position can be determined.  
The second method is to determine the distribution of atom pairs which yields 
radial-distribution function (RDF) or pair-distribution function (PDF).  This 
method is mainly applied to amorphous materials without long-range order or 
highly disordered structure [54].  The C-S-H gel, main binding material in cement 
is poorly crystalline material.  It does have few diffraction peaks but has long-
range disorder which makes the x-ray analysis on C-S-H gel difficult.  However, 
synchrotron x-ray diffraction has a potential to overcome the difficulty.  Recently 
Skinner et al. [23] suggests that the nanostructure of C-S-H resembled the crystal 
structure of tobermorite 11 Å by using reverse Monte Carlo simulation starting 
from the structure proposed by Merlino [55].  The conclusion was obtained by 
simulating the diffuse x-ray scattering due to the nanostructured features of the 
material by a Gaussian shape broadening of the structure factor of tobermorite 
family.  Also they proposed that the loss of coherent scattering on the C-S-H 
sample above about 3.5 nm reflects the maximum crystallite size of the material.  
Based on the results, Battocchio et al. [56] could refine nanostructure of C-S-H 
(Ca/Si=1.0 and 1.5, 4 months) by using high energy x-ray diffraction and the 
tobermorite phases as starting refining materials as well.  Similarly, the 
nanostructure of geopolymeric gel (main binding material in new green cement 
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made of fly ash and/or slag) were recently studied by total scattering measurement 
using synchrotron facilities [57-61].  In those works, they considered not only 
geometrical distribution of atoms but the electrical connectivity were also 
considered by combining a first-principle calculation.  In section 3.1, more 
detailed discussion on the analog of nanostructure between C-S-H gel and 
tobermorite family will be found.  
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2.2 First-Principles Calculation 
 

In this section, theoretical background on first-principles calculation will be 
introduced.  Atomistic modeling of materials has become an essential research tool 
to study various problems in physics, chemistry, material science engineering [62-
75].  First-principles or ab initio calculation refers to a method that is independent 
of any empirical input data and is only based on the electronic properties of a 
material.  Therefore, the first-principles calculation can be the most accurate as a 
bottom-up simulation approach, but also can be the most expensive calculation 
compared to other atomistic calculations including Molecular Dynamics (MD) or 
Monte-Carlo (MC) simulations [76].  The Schrödinger equation can theoretically 
describe the statics and dynamics of materials within the scale of molecules and 
atoms.  The ground-state energy E of an N-electron system can be found from the 
lowest-energy solution of the Schrödinger equation: 
 

Ĥ E            - (2.1) 
 
where Ĥ  is the Hamiltonian operator and E is the total energy of the system.  For 
a given system of n electrons and N nuclei, in the absence of external fields, the 
Hamiltonian can be written as below [77]:  
 

ˆ ˆ ˆ ˆ ˆ ˆ
e n en ee nnH T T V V V            - (2.2) 

 

where  T̂  and  V̂  stand for the kinetic and potential energy of the system and the 

subscribe e and n refers to electron and nuclei, respectively.  For example, êT  

shows the kinetic energy of electrons and ênV  total potential energy of the all 
interacting electrons with nuclei, and so on.  These energy operator terms can be 
expressed as,  
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In above equations, Zi is the atomic number of the nucleus i.  R


 and r


 are 

the vector distance of nuclei and electron, respectively.  me and MI are mass of 
electron of e and nuclei of I, respectively.  The wavefunction Ψi( r


) is not an 

observable, hence it doesn’t have a physical meaning, but its square specifies the 
probability distribution of finding electrons at a certain determinate state, r


.  

 
23 3

2 2( ) ... ( , ,..., )N nn r N d r d r r r r 
   

    - (2.8) 

 
3( )n r d r


 is the average number of electrons in volume element d3r at position r


, 

and also the probability to find one electron in this volume element.  However, as 
a consequence of the electron-electron pair interaction in the Hamiltonian operator 
H, Eqn. (2.1) is not so easy to solve for many-body system, N>1.  Thus, except for 
a few simple systems, the analytical solution of the Schrödinger equation is 
impossible [78, 79].   
 

However, the variational approach provides a convenient way to solve this 
many body problem.  It said that for any given trial wave function Ψtrial( r


), Etrial 

will only be minimal, (i.e. ground state energy) if Ψtrial( r


) is the ground state wave 
function.  Thus the foundation of constructing a wave function is minimizing the 
system energy (i.e., to find wave function of ground state) to get close as much as 
possible to the ground state energy.  The main difficulty is how to solve the 
Schrödinger equation of Eqn. (2.1) for the total wave functions for a large system 
of interacting electrons in a periodic potential set given by the positions of the 
nuclei.  Density functional theory (DFT) is a powerful theory to deal with this 
problem [80].  The DFT begins with the Born-Oppenheimer approximation [81].  
It provides a separation of electronic and nuclear motions, and allows one to treat 
the electrons with frozen nuclei positions.  Because the nuclei are thousands of 
times heavier than the electrons, it can be made that the Born-Oppenheimer 
approximation in which the electrons are in their ground state for each set of 
nuclear positions ( 1R


, 2R


 ,…).  Then the electronic ground-state energy 

E( 1R


, 2R


,…) serves as a potential energy surface for the nuclei.  Minimizing this 

function yields the equilibrium structure [82].  According to this approximation, 
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the wave function of a system can be separated into electronic (Φe) and nuclear 
(Φn) functions, hence Eqn. (3.1) simplifies to  

 
ˆ ( ) ( ) ( ) ( )e n total e nH r r E r r    

   
     - (2.9) 

 
In Eqn. (2.9), nuclei are first assumed to be frozen with respect to the 

motion of electrons.  In other words, the key of Born-Oppenheimer approximation 
is that electrons can instantaneously adjust to the nuclei positions for any 
movement of nuclei.  

 
In DFT, the electronic energy equals the sum of the electron-nuclear 

attraction, Coulomb energy, and a universal functional.  The universal functional 
consists of electronic kinetic energy and exchange-correlation energy.  The main 
point in DFT is the Coulomb energy and exchange-correlation energy can be 
described as functional forms of the electron densities with a great accuracy.  In 
other word, the central quantity is the electron probability density, ρ( r


), itself 

which is a function of the position r


.  Thus the energy, E, is a functional of ρ( r


) 
and is written as E[ρ].  This simply means that there is a single energy, E, 
corresponding to the entire function ρ( r


).  The exact ground state energy 

functional of an n-electron system can be expressed as 
 

         
Htotal KE NE E XCE E E E E            - (2.10) 

 
The square brackets denote a functional dependence.  In Eqn. (2.10), the 

first term is the kinetic energy of the electrons and its functional form is not 
known explicitly.  However, the concept of wave function by  [80] Kohn and 
Sham  can express the kinetic energy of electrons as  

 

 
2

* 2

1

( ) ( )
2

n

KE i i
ie

E r r dr
m

  


 
  

      - (2.11) 

 
In above, the one-electron orbital, ψi( r


), are the Kohn-Sham molecular 

orbitals.  They are related to, but different from, the ground state charge density, 
Ψi( r


).  The ψi( r


) orbitals are the solutions to the Kohn-Sham Equations discussed 

below.  The ground state charge density can be obtained from  
 

 
2

1

( )
n

i
i

r r 


 
      - (2.12) 

 
The second term in Eqn. (2.10) is the electron-nuclei interactions 

 



14 
 

 
2

1 0

- ( )
4 -

N
I

NE
I I

Z e
E r dr

r R
 



 
 

       - (2.13) 

 
where the summation is over all i nuclei; the ir r

 
 is the separation of 

point r


 and nucleus i; ε0 is the dielectric constant in vacuum and e is the charge of 
an electron.  The third term is the classical coulombic energy between the electron 
densities at point ar


 and point br


; 

 

 
2

0

1 ( ) ( )

2 4 -H

a b
a bE

a b

r r e
E d r r

r r

 


 
 

 
       - (2.14) 

 
This term is referred to as the Hatree energy, because it corresponds to the 

coulombic interactions between average electron densities at ar


 and br


.  The last 
term is Eqn. (2.10), EXC[ρ], is the exchange-correlation energy, which cannot be 
explicitly defined.  This term modifies the energy to take account for the fact that 
the motion of each electron is influenced by the motions of all the other electrons.  
EXC[ρ] can also be assumed as a function of the electron density.  It will be 
introduced below with two different approximations.   

 
It was mentioned above that the kinetic energy of the electrons is given in 

terms of the Kohn-Sham orbitals, ψi( r


), which are found by solving the Kohn-
Sham equations:  
 

 
22 2

2

1 0 0

( )
- - ( ) ( )

2 4 - 4 -

N
aI

XC i i i
I I a be

Z e r e
V r r

m r r r r

  
 

 
    
 
 

 


 
     - (2.15) 

 
 where the εi are the orbital energies and the exchange-correlation potential, 
VXC is  
 

[ ]
[ ] XC

XC

E
V

 


        - (2.16) 

 
Although the DFT is an exact method to deal with the ground state 

properties of systems, it depends on the exchange-correlation energy, EXC in Eqn. 
(2.16) that is unknown and can only be approximated as a functional of electron 
densities.  Commonly used exchange-correlation potentials are the local density 
approximation (LDA, [83, 84]) and generalized gradient approximation (GGA, 
[85]).  The LDA is based upon exact exchange energy for a uniform electron gas, 
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which can be obtained from the local values of the electron density at that point, or 
from the correlation energy of a uniform electron gas [86, 87]. 

 
    3[ ]LDA unif

XC xcE d r n r r   
      - (2.17) 

 
where   unif

xcε ρ r


is the exchange-correlation energy per electron for an 

electron gas of uniform spin densities, ρ.  The functional derivative gives the first-
order change of the functional with density.  However, for a molecule the 
electronic density is obviously not uniform.  For example, the LDA correctly 
predicts the mechanical behavior of silicates and oxides but tends to overbind 
structures [88].  Hence, as the alteration of LDA, the General Gradient 
Approximation (GGA), uses functional forms that are dependent on both the local 
electron density and its gradient at that point.  For an electron density that varies 
slowly over space, the exchange-correlation energy has an expansion in powers of 
the density gradients [89, 90].  The generalized gradient approximation is [85, 91-
95] 

 
      3[ ] ,GGA GGA

XC xcE d r n r r r    
      - (2.18) 

 
GGA predicts much more accurate atomization energies compared to that 

from LDA calculation.  Thus the GGA and its extensions are extensively used in 
chemistry.  This, however, is likely to underbind structures and overestimate 
mechanical properties.  For example, the equations of state for MgO from the 
LDA and GGA lie below and above experimental data, respectively [96].  
Ultimately, the appropriateness of the LDA and GGA should be evaluated by 
comparing its predictions to experiments.   

 
Another approximation is a pseudopotential approximation.  It substitutes 

the strong potential from the nucleus and core electrons for a slowly varying 
potential with the same scattering properties.  This allows one to apply plane-
waves to the basis functions to represent the electronic wave functions.  In 
chapters 3 and 4, ultrasoft pseudopotentials were applied where the projector 
augmented wave method is used to model the interactions between valence 
electrons and the core [97].  

 
The Kohn-Sham equations are solved iteratively and self-consistently 

because the solution, ρ( r


), itself is a part of the Hamiltonian (i.e., electron density, 
ρ) on the left hand side of Eqn. (2.15).  The self-consistent calculation starts from 
making a guess of the charge densities by superimposing the atomic densities.  
Then, assuming a functional form is available for EXC, the electron density can be 
used to solve Eqn. (2.15) to give an initial set of Kohn-Sham orbital ψi( r


).  From 
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these orbitals, an improved electron density can be found via Eqn. (2.12), which 
can be re-inserted into the Kohn-Sham equations of Eqn. (2.15).  This iterative 
process can be continued until the electron density and EXC have converged.  Then, 
the total energy can be obtained from Eqn. (2.10) [80].  Finally the equilibrium 
geometry of the system is determined by the condition that the forces acting on 
individual nuclei vanish. 

 
[ ]

- total
I

I

E
F

R

 


       - (2.19) 

 
where RI is the coordinate of the I-th nucleus.  During the self-consistent 

solutions, two main convergence criteria should be decided: the size of the basis 
and special integration points over reciprocal space.  In the pseudopotential 
method, the size of the basis is determined by the maximum kinetic energy of the 
plane waves.  Sampling of the Brillouin zone is treated with the special integration 
points, which has been proved to yield rapid convergence [98].  With the 
appropriate convergence criteria, the optimized atomic system can be found by 
iterating the self-consistent calculation until the forces between atoms in Eqn. 
(2.19) vanishes.  This first-principles technique based on DFT have demonstrated 
remarkable accuracy for materials in both ambient and external conditions [88].  
In chapters 3 and 4, application of the first-principles calculation and detail 
simulation criteria will be shown.  In addition, the performance of LDA and GGA 
pseudopotentials for calcium silicate hydrates and calcium aluminate hydrates will 
be evaluated by high-pressure x-ray experiments.  
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2.3 Review on equations of state and micromechanics 
 
In this section, thermodynamical equation of states and micromechanics 

will be reviewed.  To get macroscopic properties from micro-scale experiment 
and/or simulation, thermodynamics and micromechanics are prerequisite.  From 
high pressure x-ray diffraction, unit cell volume variation under pressure can be 
directly measured.  The equation of state allows computation of a bulk modulus, 
fundamental mechanical constant of a material.  In isothermal equation of state, a 
crystal is treated as a homogeneous, anisotropic medium.  Large finite strain is the 
frame invariant Eulerian strain f: 

 
1

( )
2ij ii ii ik ikE f f f f         - (2.20) 

1/3

01 1i
ii

i

a V
f

X V
     
 

      - (2.21) 

with 

i i ij jX a f X        - (2.22) 

 
where ai is the position vector of a point in a material in the unstrained state 

and Xi is the position vector of the same point after the material is compressed.  V0 
and V are unstrained volume and strained volume in assumption of cubic crystal 
structure of a material.  Therefore Eij in Eqn. (2.20) is invariably assumed to be 
isotropic in finite strain expansions of a free energy used to derive equation of 
state.  

 

ij ijE f          - (2.23) 

 
Substituting Eqn. (2.21) into Eqn. (2.20) yields the invariant Eulerian strain: 

 
2 /3

01
1

2

V
f

V

     
   

      - (2.24) 

 
Then the Helmholtz free energy of a compressed state can be expanded in a Taylor 
series in terms of the Eulerian strains.  
 

2 3( ) ...F f a bf cf df         - (2.25) 
 

Under isothermal state, thermodynamic pressure can be expressed as below. 
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T

F
P

V

    
       - (2.26) 

 
Since the reference state V0 is the zero pressure state, b term in Eqn. (2.25) 
vanishes.  
 

 22 3
T

f F f
P cf df

V f V

                    
     - (2.27) 

 
In addition, the isothermal bulk modulus K is a partial derivative of pressure with 
volume.  
 

P P f
K V V

V f V

                    
    - (2.28) 

 
Then, from Eqn. (2.24) and (2.27), the bulk modulus can be expressed in terms of 
volume and Eulerian strain.  
 

       
1 2

3/ 2 23 3
0

1
1 2 5 2 3 1 2 2 6

9
K V V f cf df f c df

 
      - (2.29) 

 
If we define isothermal bulk modulus at zero pressure as 

0

0
0

lim
f

V V

K K



 , the constant 

c in Eqn. (2.29) can be expressed in terms of K0 and V0.  
 

0 0

9

2
c K V        - (2.30) 

 
Then, the 2nd order Birch-Murnaghan equation of state can be derived as below 
[99].  
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  
         
     

    - (2.31) 

 

Similarly, additional definition of 
0

'
0

0
lim
f

V V

K
K

P






 yields the 3rd order Birch-

Murnaghan equation of state [99].  
 



19 
 

 
7 5 2

3 3 3
'

0 0
0 0 0

3 3
( ) 1 4 1

2 4

V V V
P V K K

V V V

      
                                   

- (2.32) 

 
At absolute zero temperature, the Helmholtz free energy, F is same with internal 
energy, E (F=E-TS).  This is important for theoretical calculation of isothermal 
bulk modulus, K0 and its derivative, K0´.  Then integrating pressure (in Eqn. 2.32) 
with volume gives below equation of state in terms of energy instead of pressure.  
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                                         

- (2.33) 

 
The 2nd order Birch-Murnaghan equation of state (Eqn. 2.31) is identical with 3rd 
order Birch-Murnaghan equation of state with K0´= 4 (Eqn. 2.32).  From curve 
fitting of Eqn. 2.31 and 2.32, isothermal bulk modulus and its pressure derivative 
can be obtained through high pressure x-ray diffraction experiment.  Detail 
application will be shown in chapters 3 and 4.  
 

In addition to the large strain finite strain, elastic constants of a crystal 
structure could be experimentally or theoretically computed from applying 
infinitesimal strains to the structure [100].  The elastic tensor coefficients are 
calculated from a simple stress-strain relationship,  

 
6

1
i ij j

j

C 


        - (2.34) 

 
where the tensor has 3 to 21 independent constants depending on the type of 
crystal systems.  Below 4 crystal systems are common in concrete system.  
 
Triclinic crystal system: 

11 12 13 14 15 16
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44 45 46

55 56
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ij
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C C C C
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sym C
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 
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  
 
 
 
  

     - (2.35) 

 
Monoclinic crystal system: 
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Orthorhombic crystal system: 
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Cubic crystal system: 
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     - (2.38) 

 
where C44=1/2(C11-C12) in isotropic cubic case.  The connection between the 
averaged elastic properties of an aggregate and a single crystal is studied by [101, 
102].  As a method for calculating the elastic moduli of an aggregate of crystals, 
Voigt (1928) proposed an equation of averaging over all possible lattice 
orientations with expressing the stress in a single crystal in terms of the given 
strain [103].  Reuss (1929) proposed, on the other hand, an averaging method of 
expressing the strain in terms of the given stress [104].  In the first Voigt model, it 
is assumed that the strain is uniform throughout an aggregate.  Thus, the forces 
between grains cannot be in equilibrium.  On the other hand, Reuss assumes that 
the stress is uniform so the distorted grains cannot fit together.  It was assumed by 
Voigt that 
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      - (2.39) 
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And by Reuss that 
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- (2.42) 

 
where the compliance tensor, S, is the inverse of the elasticity tensor, S = C-1.  It is 
interesting to note that only nine of the 21 independent elastic constants for the 
single crystal are considered in these equations for the macroscopic moduli.  
Finally, it is found that the measured moduli for the aggregate lie between the 
Reuss and Voigt values.  
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
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The corresponding estimates of Poisson’s ratio v and Young’s modulus E can be 
obtained by substituting the values of K and G in Eqns (2.43 and 2.44). 
.  

(3 2 )
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       - (2.46) 

 
In chapters 3 and 4, the presented tensor coefficients and averaged mechanical 
properties of various crystals will be calculated and compared with experiments.  
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3. High Pressure X-ray Diffraction and First-Principles Calculation 
Studies on Calcium Silicate Hydrates 
 
3.1 Calcium Silicate Hydrates in Concrete 
 

By mixing water and portland cement, calcium silicate hydrates (C-S-H) 
precipitates as the principal binding phase of concrete [1, 13, 105-107].  C-S-H is 
a nonstoichiometric compound and the hyphen refers to different arrangement of 
CaO, SiO2 and H2O.  While C-S-H in ordinary portland cement paste is called C-
S-H gel, synthesized C-S-H in laboratory refers to C-S-H(I) or C-S-H(II) 
depending on calcium silicon ratio.  

 
C-S-H(I) has a Ca/Si ratio around 1.  When CaO and SiO2, or C3S is reacted 

in dilute aqueous system, the C-S-H(I) [108] can be produced which results a 
broad basal reflection of x-ray powder diffraction.  That indicates that the material 
has roughly two-dimensional order.  Like C-S-H gel, C-S-H(I) can accommodate a 
considerable concentration of defects such as the omission of bridging tetrahedra 
[25], or variations in the contents of interlayer.  These changes allow variations in 
Ca/Si ratio and the silicate chain length.  On the other hand, C-S-H(II), first 
proposed by Taylor [108], is produced from a reaction of C3S or C2S with excess 
water [109].  X-ray diffraction, electron diffraction, infrared spectroscopy, and 
compositional analysis suggest that C-S-H(II) is an imperfect version of jennite, 
while C-S-H(I) is more similar to tobermorite phases [27, 110].  

 

 
Figure 3.1 The analogy of x-ray diffraction patterns between synthesized C-S-H (red, 
bottom) and crystalline calcium silicate hydrates (normal tobermorite 11 Å and jennite). 
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In 1952, Taylor first suggested that C-S-H(I) and C-S-H(II) are semi-
crystalline versions of crystalline calcium silicate hydrates: tobermorite 14 Å and 
jennite, respectively [25, 26].  His hypothesis is still recognized as the primary 
models for the nanostructure of C-S-H gel [107].  As described in chapter 2, due to 
its complexity, the precise structure of C-S-H gel is still unresolved at the 
nanoscale.  Even though C-S-H gel is poorly crystalline but it has some short-
range order at sub-nanometer scales.  Much of the findings at this level are 
obtained through comparison with fully crystalline calcium silicate hydrate 
minerals [108, 110-114].  For instance, Figure 3.1 shows the analog of x-ray 
diffraction patterns of C-S-H(I), tobermorite 11 Å, and jennite.  The tobermorite 
11 Å crystal was obtained from heating tobermorite 14 Å mineral from Crestmore, 
California, US.  The jennite mineral is from Zeilberg, Germany.  While the C-S-
H(I) has broad hump peak around 10-12 Å, tobermorite 11Å and jennite have 
distinct basal diffraction peaks.  It shows the similarity of nanostructure among the 
calcium silicate phases but more variation of layer thickness in C-S-H(I).  Detail 
argument on the analog of x-ray diffraction pattern will be discussed in section 3.4. 

 
Table 3.1 Crystallographic data of calcium silicate hydrates. 

Chemical 
formula 

Mineral 
name 

Crystal 
system 

Space 
group 

a 
(Å) 

b 
(Å) 

C 
(Å) 

α 
(º) 

β 
(º) 

γ 
(º) 

Ref. 

Ca5Si6O16(OH)2·7(H2O) Tobermorite 14 Å 
(Plombierite) 

Mono. B11b 6.74 7.43 27.99 90 90 123 [3] 

Tobermorite 14 Å 
(Plombierite) 

Ortho. I2mm 5.63 3.71 27.99 90 90 90 [115] 

Ca5Si6O16(OH)2 Tobermorite 9Å 
(Natural) 

Tri. C-1 11.2 7.30 9.57 101 93 90 [116] 

Clinotobermorite 
9Å 

Mono A2/m 5.58 3.65 18.78 90 92.8 90 [115] 

Tobermorite 9Å 
(riverseideite) 

Ortho. Pnmm 5.58 3.65 18.78 90 90 90 [115] 

Ca5Si6O17·2.5(H2O) 
Tobermorite 9Å 

(syn.) 
Ortho. - 11.1 7.32 19.2 90 90 90 [117] 

Ca9Si6O18(OH)6·8(H2O) Jennite Tri. P-1 10.9 7.27 10.93 101 97 110 [118] 

Ca9Si6O16(OH)10·2(H2O) Metajennite Tri. P-1 10.6 7.28 9.51 101 106 110 [118] 

Ca6Si6O17(OH)2 Xonotlite Mono. P-1 8.71 7.36 7.01 90 90 102 [119] 

Ca3Si2O6(OH)2·2(H2O) Awfillite Mono. C1c1 16.3 5.63 13.23 90 135 90 [120] 

Ca4Si6O15(OH)2·3(H2O) Gyrolite Hexa. P61 9.74 9.74 22.40 96 92 120 [121] 

 
Besides tobermorite and jennite, over 30 crystalline calcium silicate hydrate 

phases which have similar structure with the C-S-H gel have been proposed [122].  
Among many calcium silicate hydrate phases, the crystallographic data of several 
important minerals is summarized in Table 3.1.  The crystalline calcium silicate 
hydrates are still quite complex because of the large ionic radius and 
electropositive character of calcium, which allow a number of different types of 
coordination with oxygen [26].  The various coordination of oxygen can explain 
important characteristics of the calcium silicate hydrate phases such as variation in 
composition and degree of polymerization.  Figure 3.2 presents a schematic 
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stability diagram, in the Ca/Si ratio 0.6 to 1.0, and temperature range up to 300 ºC, 
presenting the relative stabilities of C-S-H phases [123].  This stability diagram 
also indicates C-S-H(I) is tobermorite-like structure and C-S-H(II) is jennite-like 
structure [4, 124]. 

 

 
Figure 3.2 Schematic diagram showing the relative stability of part of the C-S-H 
compounds prepared under hydrothermal conditions [123]. 

 
The particular interest in the crystalline calcium silicate hydrates is 

stemmed not only from their analogous with C-S-H gel, but also from their 
properties as cation exchangers.  It indicates that the materials can be used in 
potential applications of nuclear and hazardous waste disposal.  That has 
motivated deep studies over few decades to understand the structural aspects of 
these minerals, especially in case of tobermorite 11 Å due to its ambiguous 
behavior under thermal treatment.  As described earlier, the interlayer space 
between Ca-O layers in tobermorite can accommodate a significant amount of 
water molecules and cause hydration of tobermorite.  Thus tobermorites can exist 
in several hydration states which can be characterized by basal spacings of 14.0, 
11.3, and 9.3 Å [25, 26, 125, 126].  McConnell [117] found natural tobermorite 
compounds of 11 Å-14 Å hydrates transform to tobermorite 11 Å upon heating at 
80-100 ºC; then transform to tobermorite 9 Å upon heating at 300 ºC.  The 
notations 9 Å, 11 Å, and 14 Å refer to the size of basal spacings of 9.3, 11.3, and 
14 Å.  In addition, he designated the tobermorite 9 Å as riverseideite and 
tobermorite 14 Å as plombierite [117].  Recently clinotobermorite found at Fuka, 
Japan [127, 128] which has a basal spacing of 11 Å and shrinks to 9 Å spacing 
upon heating at 300 ºC [127, 128]. Their crystallographic data is summarized in 
Table 3.1.  
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(a) (b)  
Figure 3.3 (a) The single dreierketten silicate structure in Hamid tobermorite 11 Å [129] 
(b) double (condensed) dreierketten silicate structure in Merlino tobermorite 11 Å [55]. 

 

(a) (b)  
Figure 3.4 (a) Silicate chains in tilleyite ribbon projected along [100] in jennite crystal 
structure. (b) Tilleyite ribbon projected along [010]. The silicate tetrahedra and calcium 
oxide octahedra are denoted in dark blue and light blue, respectively [118]. 

 
The crystal structure of the tobermorite 11 Å was determined by Hamid 

[129] and Merlino [55].  Si tetrahedron chains attached to Ca-O layers are 
covalently connected each other in Merlino structure and exist as an independent 
chain in the Hamid structure.  Various experimental techniques such as NMR were 
deployed to characterize the chains in tobermorite [130-134].  These chains are 
Wollastonite type or Dreierketten with finite lengths of 2, 5, 8, 3n-1, where n is an 
integer.  The minimum length of the repeating silicate oxide unit contains three 
tetrahedra (Fig. 3.3).  Two connected tetrahedra share an oxygen are called paired 
tetrahedra while the third tetrahedron, which is in a different chemical site and its 
vortex points out of the Ca-O layer, is called bridging tetrahedron shown in Fig. 
3.3 (b) [4, 8, 135].  In Merlino’s structure, two dreierketten silicate chains attached 
on the separate Ca-O layers are linked by chemical bonding (i.e., Si-O-Si bond), 
whereas in the Hamid model, no chemical bond exists between two silicate chains 
(i.e., independent layers).  The proposed chain types are visualized in Fig. 3.3.  In 
addition, Merlino et al. could explain their diffuse diffraction patterns and unusual 
systematic absences by order-disorder (OD) character [136-140].  In addition, 
there are some specimens of tobermorite 11 Å that do not shrink to 9 Å upon 
heating and are called anomalous tobermorite to distinguish them from normal 
tobermorite which shrink to 9 Å.  A possible reason for such strange behavior has 
been hypothesized by Merlino et al. [55, 116, 141].  Based on their hypothesis, 
additional Ca ions in interlayers make interlayer unstable under heating which 
causes collapse of the interlayer.  On the other hand, the crystal structures of 
jennite and its dehydrated phase (i.e. metajennite) have been recently resolved 
[118].  The silicate chain in jennite so called tilleyite ribbon is shown in Fig. 3.4.  
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The cell parameters and space groups of the various calcium silicate hydrates are 
collected in Table 3.1 and Table 3.2.  

 

 
Figure 3.5 Molecular model of C-S-H proposed by Pellenq et al. [142]. Silicon, calcium, 
oxygen, water molecules and hydroxyl groups are denoted with dark blue, light blue, red, 
white spheres, and black sticks, respectively. 

 
Structural models for C-S-H have been developed along with the structural 

determination of tobermorite family and jennite.  At first, Taylor proposed 
nanophasic model as a disordered layered structure consisting of a mixture of 
tobermorite 14 Å and jennite for C-S-H model [4].  In this model, two different 
sub-crystalline phases are sandwiched with small fragments of Ca-O layers and 
separated from each other on a nanometer length scale.  The compositional 
variations of Ca/Si and structural disorders can be explained in terms of the 
omission of silicate tetrahedra from dreierketten silicate chains [143].  The solid 
solution model was first proposed by Fujii and Kondo [144], and also other 
authors have explained the structure of C-S-H using two-component solid solution 
systems [15, 135, 143, 145].  This model describes C-S-H as a solid solution of a 
calcium silicate hydrate of tobermorite 14 Å or jennite with a low Ca/Si ratio and 
Ca(OH)2.  Recently, Pellenq et al. developed a molecular model of C-S-H particle. 
Given the Ca/Si ratio of 1.7 and density of 2.6 g/cm3 from small-angle neutron 
scattering measurement [14], a molecular model of C-S-H is computationally 
constructed from grand canonical Monte Carlo simulation [142].  The model is 
reproduced in Fig. 3.5.  
 

With increasing interests in mineral analogs of C-S-H at the nanoscale, 
their mechanical properties are undoubtedly an important part of the understanding 
of mechanical characteristics of C-S-H.  Section 3.2 reports the structural and 
mechanical properties of several C-S-H crystals from high-pressure x-ray 
diffraction experiments.  Section 3.3 presents first-principles calculations of the 
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structural and mechanical properties of tobermorite family and jennite minerals.  
Section 3.4 compares the experimental and theoretical results.  
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3.2 High Pressure X-ray Diffraction Experiments on Calcium Silicate 
Hydrates 

 
3.2.1 Normal tobermorite 11Å 

 
Section 3.2 presents the high pressure x-ray diffraction experiments on C-

S-H minerals (normal and anomalous tobermorite 11 Å, tobermorite 9 Å, and 
jennite).  Early x-ray diffraction studies of tobermorite 11 Å suggested single 
dreierketten (i.e., Hamid model), then later 29Si NMR data suggested double 
dreierketten which corresponds to Merlino model [114, 129].  Figures 3.6 and 3.7 
show the proposed crystal structure of tobermorite 11 Å by Hamid [129] and 
Merlino et al. [55, 116], respectively.  

 
The whole compositional range for tobermorite 11 Å, without considering 

substitution of silicon by aluminum in the tetrahedra, spans between 
Ca4Si6O15(OH)2·5(H2O) and Ca5Si6O17·5(H2O) as summarized in Table 3.2.  If 
there is a Al substitution with Si, the charge imbalance is compensated by a higher 
Ca content or higher hydroxide substitution [146].  That has been confirmed by the 
structural determination on a synthetic specimen of tobermorite 11 Å of 
composition of Ca5Si5.5Al0.5O16(OH)·5(H2O), through Rietveld refinement of 
synchrotron radiation powder diffraction data [147].  Taylor and McConnell found 
the lattice parameters of a = 11.3 Å, b = 7.3 Å, and c = 22.6 Å as orthorhombic 
structure [117, 125].  Starting from the ‘average’ structure of orthorhombic 
structure, various crystallographic determinations have been conducted 
(Summarized in Table 3.2).  One of ordered tobermorite 11 Å is monoclinic, space 
group P21, with the unit cell dimensions of a = 6.69 Å, b = 7.39 Å, c = 22.779 Å, 
and γ = 123.49 º [129].  
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(a)  (b)  
Figure 3.6 Crystal structure of tobermorite 11 Å projected along (a) [110] and (b) [010] 
proposed by Hamid [129]. Silicate chains, calcium octahedral, and oxygen atoms are 
shown as dark blue, light blue tetrahedra, and red spheres, respectively. 
 

(a)  (b)  
Figure 3.7 Crystal structure of tobermorite 11 Å projected along (a) [110] and (b) [010] 
proposed by Merlino et al. [55]. Same graphical notation in Fig. 3.1 is used. 
 

As described in previous section, some tobermorite 11 Å, often referred as  
normal tobermorite, shrink to tobermorite 9Å form upon heating at 300 ºC, while 
others, called anomalous tobermorite, do not [126].  The mechanism of the 
formation of the 9 Å phase in the dehydration process is not cleared yet.  This 
phenomenon had been previously explained with the existence of interlayer Si-O-
Si linkage: (double chains) in anomalous tobermorites and their absence (single 
chains) in normal tobermorite.  But, Merlino et al. proposed another hypothesis 
based on zeolitic calcium cations in the cavities of the structure considering NMR 
experimental data [55, 115, 116].  They referred the case of clinotobermorite, 
Ca5Si6O17·5H2O which has the zeolitic calcium cations in the cavities and double 
silicate chains.  Upon heating at 300 ºC, the water molecules are lost and a wide 
rearrangement occurs around the Ca cations involving decondensation.  Based on 
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the hypothesis, they resolved several normal and anomalous tobermorite 11 Å with 
different calcium occupancy using Order-Disorder (OD) theory.  The resulting 
crystal chemical formula of the normal tobermorite from Urals is 
Ca4.5Si6O16(OH)·5(H2O).  The crystal structures of the Hamid model and 
anomalous tobermorite 11 Å models are summarized in Table 3.2.  
 

Table 3.2 Crystallographic data of tobermorite 11 Å. 
Chemical 
formula 

Mineral 
name 

Crystal 
System 

Space 
group 

a 
(Å) 

b 
(Å) 

c 
(Å) 

α 
(º) 

β 
(º) 

γ 
(º) 

Ref. 

Ca2.25Si3O7.5(OH)1.5·H2O Hamid model Mono. P1121 6.69 7.39 22.77 90 90 123 [129] 

Hamid model Ortho. Imm2 5.59 3.70 22.78 90 90 90 [129] 

Ca4Si6O15(OH)2·5(H2O) Anomalous-Merlino Mono. B11m 6.74 7.39 22.49 90 90 123 [55] 

Anomalous-Merlino Ortho. F2dd 11.3 7.39 44.97 90 90 90 [55] 

Ca5Si6O17·5(H2O) Clinotobermorite Mono. A2/m 5.64 3.67 22.64 90 97 90 [115] 

Merlino model Ortho. I2mm 5.63 3.69 22.49 90 90 90 [115] 

Ca4.5Si6O16(OH)·5(H2O) Normal-Merlino Mono. B11m 6.73 7.37 22.68 90 90 123 [55] 

Ca4.9Si5.5Al0.5O16.3 

(OH)0.7·5(H2O) 
Normal-Yamazaki Mono. B11m 6.73 7.35 22.61 90 90 123 [147] 

 
In the present study, tobermorite 14 Å from Crestmore, California, US 

which is identical sample with Bonaccorsi et al. (Ca5Si6O16(OH)2·7H2O)[3] was 
examined for high pressure x-ray diffraction measurements of normal tobermorite 
11 Å and tobermorite 9 Å.  Previously, Oh et al. [148] conducted high pressure x-
ray diffraction experiment on the tobermorite 14 Å.  The major element 
composition analysis was performed in the UC Berkeley Electron Microprobe 
Laboratory on a SX-51 electron microprobe equipped with five tunable 
wavelength dispersive spectrometers using the software, Probe for EPMA.  
Operating conditions were 40 degrees takeoff angle, a beam energy of 15 
keV, beam current of 10 nA, and the beam diameter of 1 micron.  Oxygen was 
calculated by cation stoichiometry and included in the matrix correction.  The 
obtained chemical composition is summarized in Table 3.3.  Although there is a 
4 % Al substitution, main Ca/Si ratio of 0.77 is similar with that of Bonaccorsi et 
al. (Ca5Si6O16(OH)2·7H2O, Ca/Si=0.83) [3]. 
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Table 3.3 Chemical composition of normal tobermorite 11 Å (Major oxide weight %). 
 SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O BaO TOTAL 

Tobermorite 
14 Å 

(Crestmore, 
California, US) 

28.39 4.15 -0.01 0.00 -0.09 -0.01 21.97 0.19 1.23 0.07 55.79 

33.65 4.13 -0.01 -0.17 0.10 -0.01 28.36 0.19 1.93 0.12 68.25 

41.52 6.05 0.01 0.03 -0.08 0.00 28.37 0.23 1.72 0.20 77.94 

36.76 5.26 0.00 0.01 0.13 -0.02 27.86 0.20 1.61 0.05 71.77 

25.46 3.63 -0.01 -0.01 -0.03 -0.01 20.25 0.28 2.07 0.06 51.63 

26.26 3.30 -0.02 -0.08 -0.15 0.02 19.57 0.33 2.00 0.03 51.23 

21.40 3.34 0.01 -0.03 0.23 0.02 19.49 0.30 1.75 0.16 46.60 

25.24 2.67 -0.01 -0.06 -0.04 0.00 16.54 0.24 2.05 0.04 46.67 

40.78 5.24 0.01 0.05 -0.04 -0.02 30.29 0.26 1.57 0.14 78.24 

32.63 4.40 0.00 0.05 0.02 -0.01 28.44 0.42 2.29 0.16 68.37 

Average 31.21 4.22 0.00 -0.02 0.01 0.00 24.11 0.26 1.82 0.10 61.71 

 
The thermal study carried on the tobermorite 14 Å in Advanced Light 

Source.  The sample was vacuum-heated at targeting temperature (125, 135, 150, 
180, 300, 330, and 400 ºC) for 24 hours then x-ray of 0.6199 Å wavelength was 
exposed.  The variation of basal spacing is shown in Fig. 3.9.  A first collapse of 
basal peak occurs at 125 ºC, when the tobermorite 11 Å phase forms [149].  A 
broad x-ray diffraction peak around 11.3 Å indicates some variations of layer 
thickness.  As temperature increases, the broad peak becomes sharper until 180 ºC 
then diffuse at higher temperature.  At 300 ºC, 9.3 Å peak which indicates the 
formation of tobermorite 9 Å was observed with coexistence of broad peak around 
11 Å.  At 400 ºC, the 11Å peak was totally disappeared and only 9.3 Å peak has 
survived.  It is interesting to note that unexpected basal peak at 10 Å was observed 
at 180 ºC which indicates a meta-stable phase between tobermorite 11 Å and 9 Å.  
For high pressure x-ray diffraction, a sample should be pure as much as possible to 
reduce any factors affecting the experiment.  Thus tobermorite 14 Å heated at 150 
ºC and 400 ºC for 24 hours were selected for high pressure x-ray diffraction 
experiments of tobermorite 11 Å and 9 Å, respectively.  
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Figure 3.8 Variation of basal spacing of tobermorite 14 Å under heating. 

 
Ambient condition phase identification and the high pressure powder x-ray 

diffraction experiment of normal tobermorite 11 Å were carried out at beamline 
12.2.2 of the Advanced Light Source [38], using a synchrotron monochromatic x-
ray beam.  The wavelength of the beam was 0.6199 Å.  The National Bureau of 
Standards LaB6 powder diffraction standard was used to calibrate the distance 
between the sample and detector (i.e. 280.6 mm).  High pressures were generated 
using a diamond anvil cell (DAC).  The mineral was finely ground and mixed with 
a pressure medium and a few chips of ruby.  Samples were placed into a sample 
chamber within a gasketed diamond anvil cell.  The sample chamber size was 180-
μm diameter, with 75 μm thickness.  The sample was equilibrated for about 20 
min at each pressure.  Exposure times of 600 sec were chosen to collect powder 
diffraction patterns.  A 4:1 mixture of methanol:ethanol was used as a pressure-
transmitting medium.  The pressure was measured at off-line using the ruby 
fluorescence technique [150].  

All two-dimensional x-ray data were radially integrated to give powder 
diffraction patterns using the fit2d program [151].  The integrated x-ray 
diffractions at different pressures are compared in Fig. 3.10 with arbitrary peak 
intensity.  Diffraction peak positions of (002), (110), (017), (0010), (127), (130), 
and (217) were used to calculate the orthorhombic unit cell volume of normal 
tobermorite 11 Å [115, 129].  Changes in lattice parameters and a unit cell volume 
of the samples were computed using the  XFit [152] and Celref program [153] (Fig. 
3.10 and Table 3.4).  Accurate volume (around 1% error) was refined up to 6 
hydrostatic pressure.  However, the basal spacing became significantly diffuse 
around the 6 GPa and totally disappeared at 6.3 GPa.  Repeated measurement at 
6.3 GPa confirmed the collapse of layer structure of normal tobermorite 11 Å as 
shown in Fig. 3.10.  
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Figure 3.9 Measured x-ray diffraction patterns of normal tobermorite 11 Å (λ = 0.6199 
Å) with alcohol mixture (Methanol:ethanol=4:1). Bottom peaks indicate reference peak 
positions from [129]. 

 
Table 3.4 High pressure x-ray diffraction results of normal tobermorite 11 Å. 

Normal tobermorite 11 Å experiment 
(M:E=4:1) 

P (GPa) a (Å) b (Å) c (Å) V (Å3) 

ambient 5.59(2) 3.64(1) 22.71(9) 462(3) 

0.8(1) 5.57(2) 3.62(1) 22.62(8) 457(3) 

1.3(1) 5.57(2) 3.61(1) 22.58(9) 455(3) 

2.8(2) 5.54(3) 3.60(2) 22.2(1) 445(5) 

2.9(2) 5.54(3) 3.60(2) 22.2(1) 444(5) 

3.7(3) 5.52(3) 3.60(2) 22.1(1) 441(5) 

4.6(3) 5.51(3) 3.58(2) 22.0(1) 436(5) 

5.8(4) 5.48(3) 3.58(2) 22.0(2) 433(6) 

6.0(4) 5.48(3) 3.58(2) 21.9(2) 431(5) 

 
At ambient pressure with the lattice parameter a = 5.59(2) Å , b = 3.64(1) Å, 

c = 22.71(9) Å, and unit-cell volume V=462(3) Å3 that agree well with a previous 
study by Bonaccorsi et al. [115], which found a = 5.63 Å , b = 3.69 Å, c = 22.49 Å, 
and unit-cell volume V=467 Å3 within I2mm orthorhombic crystal structure.  The 
error ranges of lattice parameters contained in Table 3.4 and shown in Fig. 3.11(a) 
are seen to increase at high pressure.  This is due to a peak broadening effect in the 
DAC.  A weighted linear least-squares fit was applied to the data to assess both 
pressure and volume errors [154].  The pressure normalized volume data were 
fitted by a second- and third- order finite strain equation of state (i.e., Murnaghan 
and Birch-Murnaghan equation of state) [99].  The below Birch-Murnaghan 
equation of state (BM EoS) is driven in section 2.3.  
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where V is volume of the unit cell, V0 is initial volume of the unit cell at ambient 
pressure, P is the pressure applied to a material, K0 is the bulk modulus at zero 
pressure, and K0´ is the derivative of the bulk modulus at zero pressure.  By 
defining the normalized pressure, F and the Eulerian strain, f, the third order BM 
EoS is reorganized into the linear form: 
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     - (3.3) 

 
In a plot of F versus f, the y-intercept and slope of graph gives the bulk 

modulus K0 and its derivative K0´ by the weighted linear least-squares fitting.  The 
3rd BM EoS determines a bulk modulus of 62(4) GPa, a derivative of 9.7 and 
ambient volume of 463(3) Å3 with a goodness of fit of R2 = 0.995.  In addition, the 
2nd BM EoS fit gives a bulk modulus of 71(4) GPa and same initial volume with 
R2 = 0.989.  The 2nd and 3rd BM EoS fitting results are shown in Fig. 3.10 (b) and 
3.11.  
 

(a) (b)  
Figure 3.10 (a) Variation of axial lattice parameters of normal tobermorite 11 Å under 
pressure. (b) Refined unit cell volumes of normal tobermorite 11 Å under pressure. The 
2nd and 3rd order BM EoS fittings give the bulk modulus of 71(4) GPa and 62(4) GPa. 
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Figure 3.11 F-f plot of normal tobermorite 11 Å. 
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3.2.2 Anomalous tobermorite 11 Å 
 
As discussed in section 3.2.1, the thermal mechanism of anomalous 

tobermorite 11 Å was recently proposed by Merlino et al. [55, 115, 116].  Based 
on the hypothesis, while the substantial zeolitic calcium causes the collapse of 
basal spacing, few zeolitic calcium cations reside in the cavities of anomalous 
tobermorite 11 Å.  Therefore, no requirement of proper calcium coordination is 
caused by the dehydration and the specimen preserves the basal spacing of 11.3 Å.  
Due to the absence of the zeolitic cation and the weakness of the hydrogen 
bonding of the water molecules with the oxygen atoms of the framework, it was 
concluded that the crystal chemical formula of the anomalous tobermorite from 
Wessels Mine is Ca4Si6O15(OH)2·5H2O.  Similarly, the crystal structure of 
anomalous tobermorite 11 Å was resolved by OD theory and its crystal system can 
be monoclinic with B11m and orthorhombic with F2dd.  Lattice parameters with 
the two systems are summarized in Table 3.2.  Figure 3.12 compares the crystal 
structure of anomalous and normal tobermorite 11 Å proposed by Merlino et al. 
[55, 115, 116] .  

 

(a) (b)  
Figure 3.12 Crystal structure of anomalous tobermorite 11 Å from Wessels mine, South 
Africa (a) and normal tobermorite 11 Å from Bashenov, Urals (b). The structures are 
projected along [010] and proposed by Merlino et al. [55, 116]. Same graphical notation 
in Fig. 3.1 is used. 

 
In this study, anomalous tobermorite 11 Å was found from Mine Lac 

D’Amiante, Quebec, Canada.  Ambient x-ray diffraction experiments show it did 
not shrink under heating over 300 ºC for 24 hours.  Electron microprobe analysis 
(i.e., identical procedure described in section 3.2.1) indicates it does not have any 
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Al while tobermorite 14 Å from Crestmore, CA contains 4 % Al.  The microprobe 
result is summarized in Table 3.5.  It is interesting to note that the measured Ca/Si 
ratio is 1.1 which has almost 40 % more calcium contents compared to another 
anomalous tobermorite 11 Å from Wessels mine (Ca/Si = 0.67) [55].  More 
detailed discussion on chemical composition and compressibility of normal and 
anomalous tobermorite will be presented in section 3.4.  

 
Table 3.5 Chemical composition of anomalous tobermorite 11 Å (Major oxide weight %). 

 SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O BaO TOTAL 

Anomalous 
Tobermorite 

11 Å 
(Lac D’Amiante  
Mine, Quebec, 

Canada) 

34.91 0.00 0.00 0.02 0.10 0.02 38.06 0.06 0.01 -0.04 73.13 

35.18 0.07 -0.01 0.04 -0.08 -0.01 38.22 0.05 -0.01 0.00 73.38 

36.18 0.09 -0.05 0.17 0.02 0.03 39.03 0.02 0.03 0.08 75.52 

36.26 0.21 0.04 0.09 0.03 0.03 38.56 0.04 0.04 -0.11 75.11 

35.67 0.22 -0.03 0.14 0.02 0.22 38.52 0.05 -0.01 -0.06 74.70 

35.47 0.02 -0.02 -0.04 -0.11 -0.01 37.80 0.04 0.04 0.01 73.17 

36.49 0.00 0.02 0.11 -0.12 0.03 37.52 0.12 0.02 0.01 74.18 

35.97 0.00 0.00 -0.05 -0.01 0.01 37.76 0.06 0.03 -0.03 73.63 

36.52 -0.01 0.00 0.05 -0.15 0.00 39.02 0.05 0.00 0.03 75.44 

36.02 0.01 0.00 -0.12 -0.10 0.07 37.49 0.08 0.01 -0.06 73.37 

Average 35.87 0.06 0.00 0.04 -0.04 0.04 38.20 0.06 0.02 -0.02 74.22 

 
Ambient condition phase identification and the high pressure powder x-ray 

diffraction experiments were carried out at beamline 12.2.2 of the Advanced Light 
Source [38], using a synchrotron monochromatic x-ray beam of λ=0.6199 Å and 
sample-to-detector distance of 221.9 mm.  The same pressure-transmitting 
medium of 4:1 methanol:ethanol was selected.  Identical DAC used for normal 
tobermorite 11 Å was chosen for generating hydrostatic pressure.  Integrated x-ray 
diffraction patterns are shown in Fig. 3.13.  Peak positions based on orthorhombic 
unit cell with I2mm space group shows excellent agreement with a previously 
refined by Bonaccorsi et al. [115]. 
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Figure 3.13 Measured x-ray diffraction patterns of anomalous tobermorite 11 Å (λ = 
0.6199 Å) with alcohol mixture (Methanol:ethanol=4:1). Bottom peaks indicate reference 
peak positions from [129]. 
 

Table 3.6 High pressure x-ray diffraction results of anomalous tobermorite 11 Å. 
Anomalous tobermorite 11 Å experiment 

(M:E=4:1) 

P (GPa) a (Å) b (Å) c (Å) V (Å3) 

ambient 5.621(2) 3.696(2) 22.795(9) 473.6(4) 

0.5(1) 5.604(2) 3.694(2) 22.775(8) 471.5(3) 

1.2(1) 5.592(2) 3.687(1) 22.699(7) 468.0(3) 

1.6(1) 5.579(1) 3.680(1) 22.639(6) 464.9(2) 

2.0(2) 5.571(2) 3.674(2) 22.59(1) 462.4(4) 

2.2(2) 5.564(2) 3.670(1) 22.571(8) 461.0(3) 

2.7(2) 5.553(1) 3.662(1) 22.487(7) 457.3(2) 

3.0(2) 5.545(2) 3.656(1) 22.461(8) 455.4(3) 

3.4(3) 5.536(2) 3.653(1) 22.408(8) 453.1(3) 

3.6(3) 5.529(2) 3.649(2) 22.384(9) 451.6(3) 

3.8(3) 5.528(2) 3.647(2) 22.34(1) 450.5(4) 

4.0(3) 5.521(1) 3.641(1) 22.309(8) 448.5(2) 

4.5(3) 5.514(2) 3.638(2) 22.299(9) 447.4(3) 

 
Diffraction peak positions of (002), (004), (011), (101), (015), (110), (112), 

(017), (022), (024), (107), (019), (0010), (123), (118), (125), (200), (130), and 
(217) were used to calculate the orthorhombic unit cell volume of tobermorite 11 
Å [115].  More diffraction peaks survived in the DAC compared with normal 
tobermorite 11 Å which would increase the accuracy of high pressure experiment.  
At ambient pressure, the refined lattice parameters are a = 5.621(2) Å, b = 
3.696(2) Å, c = 22.795(9) Å, and unit-cell volume V=473.6(4) Å3.  As expected, 
smaller range of error (less than 0.1% of volume error) was achieved while 
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ambient volume refinement of normal tobermorite 11 Å shows 1% volume error.  
The ranges of lattice parameters and applied pressure are shown in Table 3.6 and 
Fig. 3.14.  Same fitting procedure described in section 3.2.1 was applied to 
pressure-volume data of anomalous tobermorite 11 Å.  The 3rd BM EoS 
determines a bulk modulus of 67(2) GPa, a pressure derivative of 1.8 and ambient 
volume of 475.9(4) Å3 with a goodness of fit of R2 = 0.996.  In addition, the 2nd 
BM EoS fit gives a bulk modulus of 63(2) GPa and same initial volume with R2 = 
0.997.  The 2nd and 3rd BM EoS fitting results are shown in Fig. 3.14 (b) and 3.15 
(a).  Figure 3.15 (b) shows the comparison of compressibility of different types of 
tobermorite 11 Å.  While the compressibility (i.e., slope of pressure-volume plot) 
looks similar among high pressure experiments and first-principles calculation by 
Shahsavari et al. [155], the ambient volumes and its error ranges from experiments 
differ.  Section 3.4 will cover systematic discussion on this observation.  
 

(a) (b)  
Figure 3.14 (a) Variation of axial lattice parameters of anomalous tobermorite 11 Å under 
pressure. (b) Refined unit cell volumes of anomalous tobermorite 11 Å under pressure. 
The 2nd and 3rd order BM EoS fittings give the bulk modulus of 63(2) GPa and 67(2) GPa. 
 

(a) (b)  
Figure 3.15 (a) F-f plot of anomalous tobermorite 11Å. (b) Pressure dependent behavior 
of normal and anomalous tobermorite 11 Å. First-principles calculations result is 
reproduced from RVH bulk modulus of Shahsavari et al. [155]. 
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3.2.3 Tobermorite 9 Å 
 
It was found that clinotobermorite 9 Å and tobermorite 9 Å (riverseideite) 

can be obtained by heating of clinotobermorite and tobermorite 11 Å at 300 ºC, 
respectively [116].  The unit cell parameters of clinotobermorite 9 Å and 
natural/synthetic tobermorite 9 Å are summarized in Table 3.1.  The crystal 
chemical formula is resolved as Ca5Si6O16(OH)2 [116]. The structure of 
tobermorite 11 Å is built up by complex modules and after the decondensation of 
the double chains, the complex layers will face each other.  An ordered 
rearrangement occurring on both sides of each complex layer gives rise to the 
structure of tobermorite 9 Å.  The crystal structure resolved by Merlino et al. [116] 
is visualized in Fig. 3.16.  
 

(a) (b)  
Figure 3.16 (a) A unit cell structure of tobermorite 9 Å projected along [010]. (b) Crystal 
structure of tobermorite 9 Å  projected along [100] proposed by Merlino et al.[116]. 
Same graphical notation in Fig. 3.1 is used. 
 

Tobermorite 9 Å was prepared by heating tobermorite 14 Å from 
Crestmore, California, US at 400 ºC for 24 hours.  The x-ray diffraction in Fig. 3.8 
shows sharp 9 Å basal peak without any other basal peaks which indicates an 
appropriate purity for high pressure x-ray diffraction experiment.  The ambient 
condition phase identification and the high pressure x-ray diffraction experiment 
were performed with a synchrotron monochromatic x-ray beam of λ = 0.4959 Å 
and sample-to-detector distance of 235.3 mm.  Identical DAC preparation 
described in section 3.2.1 was applied to generate pressure with a 4:1 mixture of 
methanol:ethanol.  The integrated x-ray diffractions at different pressures are 
compared in Fig. 3.17 with arbitrary peak intensity.  Diffraction peak positions of 
(105), (123), (108), (503), (430), (3110), (246), and (837) were used to calculate 
the orthorhombic unit cell volume of tobermorite 9 Å [117].  Although the basal 
peak of (101) was disappeared with the pressure-transmitting medium in DAC, the 
remaining peaks were survived at rather high pressure of 8.5 GPa.  
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Figure 3.17 Measured x-ray diffraction patterns of tobermorite 9 Å  (λ = 0.4959Å) with 
alcohol mixture (Methanol:ethanol=4:1). Bottom peaks indicate reference peak positions 
from [116]. 
 

The refined ambient lattice parameters agree well with the results of 
McConnell [117] with less than 1.5 % error (Table 3.1 and 3.7).  Refined 
orthorhombic unit-cell volume is 2 % smaller than that of [117].  The identical 
fitting procedure described in section 3.2.1 was applied to the tobermorite.  The 3rd 
BM EoS determines a bulk modulus of 86(6) GPa, a derivative of 20.9 and 
ambient volume of 1471(1) Å3 with a goodness of fit of R2 = 0.991.  Next, the 2nd 
BM EoS fit gives a bulk modulus of 115(14) GPa and same initial volume with R2 
= 0.989.  The 2nd and 3rd BM EoS fitting results are shown in Fig. 3.18 and 19.  

 
Table 3.7 High pressure x-ray diffraction results of tobermorite 9 Å. 

Tobermorite 9 Å experiment 
(M:E=4:1) 

P (GPa) a (Å) b (Å) c (Å) V (Å3) 

ambient 10.95(6) 7.25(7) 19.18(9) 1472(1) 

0.5(1) 10.93(3) 7.29(5) 18.39(6) 1467.0(8) 

0.8(1) 10.90(4) 7.26(7) 18.40(8) 1457(1) 

1.4(1) 10.90(3) 7.25(6) 18.36(7) 1452.5(9) 

2.2(2) 10.90(2) 7.21(3) 18.32(4) 1441.6(5) 

3.0(2) 10.87(4) 7.18(6) 18.33(8) 1432(1) 

4.2(3) 10.85(3) 7.13(5) 18.34(7) 1420.1(9) 

5.0(4) 10.84(2) 7.13(3) 18.30(4) 1416.9(5) 

6.1(4) 10.84(1) 7.11(1) 18.24(2) 1407.2(2) 

7.0(5) 10.828(6) 7.073(9) 18.24(1) 1397.8(1) 

7.7(5) 10.81(1) 7.05(2) 18.24(3) 1391.9(4) 

8.5(6) 10.82(1) 7.02(2) 18.24(2) 1387.6(3) 
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(a) (b)  
Figure 3.18 (a) Variation of axial lattice parameters of tobermorite 9 Å under pressure. 
(b) Refined unit cell volumes of tobermorite 9 Å under pressure. The 2nd and 3rd order 
BM EoS fittings give the bulk modulus of 115(14) GPa and 86(6) GPa. 
 

 
Figure 3.19 F-f plot of tobermorite 9 Å. 
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3.2.4 Jennite 
 

Jennite, Ca9(Si6O18)(OH)6·8H2O, also occurs as a natural mineral, usually 
in contact with tobermorite 14 Å [156].  The large amount of research on 
structural determination has performed on the natural and synthetic samples of 
jennite suggested structural similarities with tobermorite 14 Å.  The atomic 
structure of jennite is based on a central Ca-O corrugated sheet flanked by rows of 
dreierketten and OH groups [15, 132, 157, 158].  It can be synthesized in 
suspensions of Ca(OH)2 and hydrous silica at 60-100 ºC [159] and has an ideal 
Ca/Si ratio of 1.5.  The ratio is significantly higher than that of tobermorite 14Å 
which only forms to Ca/Si ratios of 1.1-1.2 [160].  As discussed in section 3.1, the 
structure of jennite is a suitable model for C-S-H at high Ca/Si ratios, especially 
that formed in Ca3SiO5 pastes.  

 
The crystal structure of jennite has recently been determined by direct 

method [118].  The structure of jennite is built up with three main characters of (1) 
the tilleyite ribbons of edge-sharing calcium octahedral; (2) the Si-O dreierketten 
chains running along [010]; and (3) the additional calcium octahedral sitting on 
inversion centers, which are shown as Ca5 in Fig. 3.20 (a).  Dehydration also 
occurs as tobermorite 14 Å.  Upon dehydration at 70-90 ºC, water molecules are 
lost which creates a deficiency of atomic coordinate of interlayer Ca.  To be a 
stable configuration, the structure shrinks in the c direction and it leads to 
metajennite, Ca9[Si6O16(OH)2](OH)8·2H2O.  Above 350 ºC, the Ca-OH groups of 
metajennite are eliminated, forming an amorphous phase, which finally transforms 
to wollastonite and larnite (β-Ca2SiO4) above 800 ºC [20].  The resolved crystal 
structure of jennite is shown in Fig. 3.20.  The unit cell parameters of jennite and 
metajennite are summarized in Table 3.1. 
 

(a) (b)  
Figure 3.20 (a) A unit cell structure of jennite projected along [010]. (b) Crystal structure 
of jennite projected along [010] proposed by Bonaccorsi et al.[118]. Same graphical 
notation in Fig. 3.1 is used. 
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Figure 3.21 Jennite collected from Zeilberg, Bavaria, Germany. The crystal was 
purchased from http://minernet.it.   
 

Pure jennite from Zeilberg, Bavaria, Germany (Fig. 3.21) was studied.  
Ambient and high pressure x-ray diffraction experiments were also carried out at 
beamline 12.2.2 of the Advanced Light Source [38], using a synchrotron 
monochromatic x-ray beam.  Experimental detail is given in section 3.2.1.  For 
high pressure test, a 4:1 mixture of methanol:ethanol was used in the first run and 
silicone oil for the second run.  For the alcohol mixture, x-ray wavelength of 
λ=0.6199 Å and sample-to-detector distance of 221.4 mm was selected.  For 
silicone oil, different setting of λ=0.4959 Å and 387.5 mm were chosen.  The 
ambient and high pressure x-ray diffraction patterns of jennite are shown in Fig. 
3.22 and 3.23 measureing with alcohol mixture and silicone oil, respectively.  The 
position and relative intensities of ambient x-ray reflections agree with the data of 
[22].  

 
Figure 3.22 Measured x-ray diffraction patterns of jennite (λ = 0.6199 Å) with alcohol 
mixture (Methanol:ethanol=4:1). Bottom peaks indicate reference peak positions from 
[118]. 
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Figure 3.23 Measured x-ray diffraction patterns of jennite (λ = 0.4959 Å) with silicone oil. 
Bottom peaks indicate reference peak positions from [118]. 

 
Selected peak positions were summarized in Table 3.8 and 3.9.  Due to its 

low symmetry crystal structure, it is quite complex to refine the lattice parameters 
of jennite.  The relation between d-spacings and Miller indices in triclinic 
symmetry is,  

 

 2 2 2
11 22 33 12 23 132 2

1 1
2 2 2S h S k S l S hk S kl S hl

d V
       - (3.4) 

where  2 2 2
11 sinS b c   

2 2 2
22 sinS a c   

2 2 2
33 sinS a b   

 2
12 cos cos cosS abc      

 2
23 cos cos cosS a bc      

 2
13 cos cos cosS ab c     . 

 
Unit cell volume of triclinic system is, 

 
2 2 21 cos cos cos 2cos cos cosV abc           . - (3.5) 

 
Least squares estimation in nonlinear regression method was used to 

calculate the lattice parameters of jennite [161].  X-ray diffraction peaks given in 
Table 3.8 and 3.9 were selected for the nonlinear regression method.  Given the d-
spacing and hkl information, lattice parameters of a, b, c, α, β, and γ were 
successfully refined by iteratively solving the Eqn. (3.4).  However, at higher 
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pressure above 2.9 GPa, x-ray diffraction peaks overlapped too much so 
refinement of unit cell was unsuccessful over the pressure range regardless of the 
type of pressure-transmitting medium.  The refined lattice parameters with alcohol 
mixture and silicone oil are summarized in Table 3.10 and 3.11, respectively.  

 
Table 3.8 Measured peak positions (Å) of jennite at ambient and under pressure  

(Methanol:Ethanol = 4:1). 

   
[118] This study Methanol:Ethanol = 4:1 

h k l ambient ambient 
0.3(1) 
 GPa  

0.5(1) 
 GPa  

1.3(1) 
 GPa  

1.6(1) 
 GPa  

2.0(2) 
 GPa  

2.6(2) 
 GPa  

0 0 1 10.4961 10.4835 10.4629 10.4183 10.3529 10.3262 10.2888 10.2193 

0 1 0 9.7528 9.7680 9.7478 9.7324 9.7158 9.7144 9.6994 9.6898 

0 1 1 6.5156 6.4933 5.0321 5.0195 5.0002 4.9959 4.9899 4.9782 

0 0 2 5.2480 5.2291 - - - - - - 

1 1 -1 4.8438 4.8212 4.8271 4.8374 4.8186 4.8078 4.7934 4.7848 

1 0 -2 4.7378 4.7338 - - - - - - 

1 -2 1 4.4545 4.4619 4.4547 4.4415 4.4314 4.4233 4.4125 4.4083 

0 1 2 4.2737 4.2699 - - - - - - 

1 1 -2 4.1312 4.1196 4.1198 4.1001 4.0977 4.0917 4.0828 4.0658 

1 -1 2 3.9271 3.9224 - - - - - - 

0 0 3 3.4987 3.4794 3.4788 3.4650 3.4486 3.4459 3.4421 3.4396 

0 3 -1 3.3005 3.2936 3.2938 3.2879 3.2813 3.2779 3.2725 3.2675 

0 2 2 3.2578 3.2508 - - - - - - 

2 -1 1 3.1847 3.1729 3.1760 3.1687 3.1568 3.1533 3.1420 3.1329 

0 3 -2 3.0551 3.0481 3.0502 3.0418 3.0326 3.0294 3.0229 3.0181 

0 3 1 2.9413 2.9340 2.9306 2.9257 2.9181 2.9152 2.9090 2.9034 

2 -3 -1 2.8451 2.8244 - - - - - - 

0 3 -3 2.6666 2.6600 2.6578 2.6511 2.6402 2.6373 2.6314 2.6279 

2 -2 -3 2.5886 2.5930 - - - - - - 

2 0 2 2.5255 2.5252 2.5084 2.5019 2.4956 2.4927 2.4904 2.4845 

-4 1 -2 2.2438 - 2.2413 2.2356 2.2282 2.2286 2.2247 2.2210 

2 2 1 2.1780 - 2.1676 2.1638 2.1552 2.1525 2.1476 2.1441 

-5 2 0 2.0433 - 2.0425 2.0382 2.0338 2.0330 2.0293 2.0259 

-5 2 -1 1.9848 - 1.9845 1.9836 1.9774 1.9765 1.9737 1.9730 

4 -2 -1 1.8154 1.8100 1.8113 1.8101 1.8048 1.8010 1.7999 1.7966 
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Table 3.9 Measured peak positions (Å) of jennite at ambient and under pressure 
(Silicone oil). 

   
[118] This study Silicone oil 

h k l ambient ambient 
0.1(1) 
 GPa 

0.5(1) 
 GPa 

0.9(1) 
 GPa 

1.3(1) 
 GPa 

2.0(1) 
 GPa 

 

0 0 1 10.4961 10.4835 10.4610 10.4020 10.3514 10.3261 10.2587  

0 1 0 9.7528 9.7680 9.7281 9.7161 9.7081 - 9.7041  

0 1 1 6.5156 6.4933 6.5030 6.4921 6.4565 6.4483 6.3991  

0 0 2 5.2480 5.2291 5.2245 5.2020 5.1846 5.1672 5.1398  

1 1 -1 4.8438 4.8212 4.8212 4.8170 4.8058 4.8030 4.6881  

1 0 -2 4.7378 4.7338 4.7326 4.7133 4.6937 4.6783 -  

1 -2 1 4.4545 4.4619 4.4498 4.4476 4.4243 4.4215 -  

0 1 2 4.2737 4.2699 4.2542 4.2475 - - -  

1 1 -2 4.1312 4.1196 4.1220 4.1078 4.0980 4.0939 4.0772  

1 -1 2 3.9271 3.9224 3.9295 3.9061 3.8858 - -  

0 0 3 3.4987 3.4794 3.4841 3.4673 3.4523 3.4449 3.4253  

0 3 -1 3.3005 3.2936 3.2924 3.2892 3.2821 3.2821 3.2726  

0 2 2 3.2578 3.2508 3.2496 - - - -  

2 -1 1 3.1847 3.1729 3.1721 3.1681 3.1539 3.1523 -  

0 3 -2 3.0551 3.0481 3.0481 3.0391 3.0317 3.0280 -  

0 3 1 2.9413 2.9340 2.9355 2.9271 2.9178 2.9141 2.9141  

2 -3 -1 2.8451 2.8244 2.8244 2.8234 2.8206 2.8113 2.8123  

0 3 -3 2.6666 2.6600 2.6590 2.6521 2.6410 2.6382 2.6234  

2 -2 -3 2.5886 2.5930 2.5907 2.5910 2.5826 2.5734 2.5734  

2 0 2 2.5255 2.5252 2.5206 2.5132 2.5012 2.4799 -  

-4 1 -2 2.2438 - - - - - -  

2 2 1 2.1780 - - - - - -  

-5 2 0 2.0433 - - - - - -  

-5 2 -1 1.9848 - - - - - -  

4 -2 -1 1.8154 1.8100 1.8120 1.8107 1.8052 1.8066 1.8066  

 
Table 3.10 High pressure x-ray diffraction results of jennite (Methanol:Ethanol = 4:1). 

Jennite experiment 
(M:E=4:1) 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

ambient 10.52(1) 7.25(1) 10.92(2) 101.4(1) 96.9(1) 109.4(1) 755(2) 

0.3(1) 10.569(7) 7.248(4) 10.87(2) 101.4(1) 96.96(9) 109.80(9) 751(1) 

0.5(1) 10.552(8) 7.244(5) 10.82(2) 101.5(1) 96.9(1) 109.8(1) 746(1) 

1.3(1) 10.524(7) 7.222(4) 10.77(2) 101.4(1) 96.94(9) 109.85(9) 739(1) 

1.6(1) 10.519(7) 7.207(4) 10.77(2) 101.4(1) 96.89(9) 109.90(8) 736(1) 

2.0(2) 10.496(7) 7.202(4) 10.76(2) 101.5(1) 96.82(9) 109.95(9) 733(1) 

2.6(2) 10.483(9) 7.189(6) 10.74(2) 101.5(1) 96.7(1) 109.9(1) 730(1) 
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Table 3.11 High pressure x-ray diffraction results of jennite (Silicone oil). 
Jennite experiment 

(Silicone oil) 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

ambient 10.53(1) 7.245(5) 10.92(1) 101.4(1) 96.9(1) 109.4(1) 754(1) 

0.1(1) 10.53(1) 7.251(4) 10.92(1) 101.5(1) 96.94(9) 109.4(1) 754(1) 

0.5(1) 10.52(1) 7.247(5) 10.88(1) 101.6(1) 96.8(1) 109.5(1) 749(1) 

0.9(1) 10.49(1) 7.241(4) 10.83(1) 101.7(1) 96.77(9) 109.5(1) 743(1) 

1.3(1) 10.48(1) 7.237(4) 10.80(1) 101.7(1) 96.66(9) 109.6(2) 740(1) 

2.0(2) 10.46(4) 7.22(1) 10.73(4) 101.7(5) 96.5(2) 109.6(4) 733(4) 

 
The refined ambient lattice parameters agree well with the results of 

Bonaccorsi et al. [118] with less than 1 % error range except a lattice parameter 
(Table 3.1, 3.10 and 3.11).  They found the reflections with odd k were 
systematically weak due to disorder in the sequence of the structural layers along a 
direction [118, 162, 163].  The existence of the disorder in crystal system makes it 
difficult to apply the Rietveld refinement method.  The a parameter is 3 % smaller 
than that of [118].  However, it is an acceptable error range considering the 
complexity of crystal structure of jennite.  The variation of lattice parameters is 
shown in Fig. 3.24.  It shows almost identical results with different pressure-
transmitting media.  The same fitting procedure described in section 3.2.1 was 
applied to the jennite with two different pressure-transmitting media.  In the case 
of alcohol mixture, the 3rd BM EoS determines a bulk modulus of 45(5) GPa, a 
derivative of 42.3, and ambient volume of 754(2) Å3 with a goodness of fit of R2 = 
0.997.  In addition, the 2nd BM EoS fit gives a bulk modulus of 68(5) GPa and 
same initial volume with R2 = 0.970.  In the case of silicone oil, the 3rd BM EoS 
determines a bulk modulus of 61(4) GPa, a derivative of 9.9, and ambient volume 
of 755(1) Å3 with a goodness of fit of R2 = 0.964.  In addition, the 2nd BM EoS fit 
gives a bulk modulus of 64(2) GPa and same initial volume with R2 = 0.956.  The 
2nd and 3rd BM EoS fitting results are shown in Fig. 3.25.  
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(a) (b)  
Figure 3.24 Variation of (a) axial and (b) angular lattice parameters of jennite under 
pressure. Closed and open symbols correspond to refined parameters measured with 
alcohol mixture (Methanol:ethanol=4:1) and silicone oil, respectively. 
 

(a) (b)  
Figure 3.25 (a) Refined unit cell volumes of jennite under pressure. (b) F-f plot of jennite. 
The 2nd order BM EoS fittings give the bulk modulus of 68(5) GPa and 64(2) GPa with 
alcohol mixture and silicone oil, respectively. 
 

The measured bulk modulus, its first derivative, and ambient unit-cell 
volume according to the 2nd and 3rd BM EoS of calcium silicate hydrate minerals 
are summarized in Table. 3.  The values of first pressure derivative might not be 
reliable due to the relatively small number of data points in F-f plots of Fig. 3.11, 
3.15(a), 3.19, and 3.25(a).  Jennite shows K0 value of 64-68 GPa.  In case of 
tobermorite family, layer spacing determines the compressibility of the crystals.  
More systematic comparison will be discussed in section 3.4.  
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Table 3.12 Bulk modulus, its first derivative and ambient volume of calcium silicate 
hydrates according to the Birch-Murnaghan equation of state. The high pressure 

experimental data of tobermorite 14Å is reproduced from Oh. et al. [148]. 
Tob 14 Å Normal Tob 11 Å Anomalous Tob 11 Å Tob 9 Å Jennite Jennite 

M:E=4:1 M:E=4:1 M:E=4:1 M:E=4:1 M:E=4:1 Silicone oil 

3rd EoS 

K0 
(GPa) 

53(2) 62(4) 67(2) 86(6) 45(5) 61(4) 

K0' 0.8 9.7 1.8 20.9 42.3 9.9 

V0 
(Å3) 

577.9(4) 463(3) 475.9(4) 1471(1) 754(2) 755(1) 

2nd EoS 
K0 47(4) 71(4) 63(2) 115(14) 68(5) 64(2) 

V0 
(Å3) 

577.9(4) 463(3) 475.9(4) 1471(1) 754(2) 755(1) 
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3.3 First-Principles Calculations on Calcium Silicate Hydrates 
 

3.3.1 Tobermorite 14 Å 
 

In this section, the structure, elasticity, and strength properties of several C-
S-H crystals are comprehensively simulated based on the first-principles 
calculations.  The crystal structure of tobermorite 14 Å (plombierite) was resolved 
by Bonaccorsi et al. in 2005 [3].  It is built up by the same complex module of 
tobermorite 11 Å whole crystal structure is explained in section 3.2.1.  However, 
the wollastonite-type chains facing each other on adjacent layers are not 
condensed into double chains.  Furthermore, they are shifted by b/2.  The space in 
between contains calcium cations and a larger amount of water molecules 
compared to the 11 Å phase.  Some water molecules in the interlayer region as 
well as a Ca cation have half occupancies, whereas the other waters are fully 
occupied.  The monoclinic polytype of plombierite is represented in Fig. 3.26.  
The crystal chemical formula indicated by the structural study [3] is 
Ca5Si6O16(OH)2·7H2O in agreement with chemical, thermal, and NMR data [15, 
126, 130, 132, 149, 164].  
 

(a)  (b)  
Figure 3.26 Geometrically optimized tobermorite 14 Å projected along (a) [010] and (b) 
[110]. Silicate chains, calcium octahedral, and oxygen atoms are shown as dark blue, 
light blue tetrahedra, and red spheres, respectively. Hydroxyl groups and hydrogen atoms 
in water molecules are denoted with black sticks. 

 
All calculations reported in this section are performed by the Density 

functional theory (DFT) to address the elasticity of calcium silicate hydrates.  As a 
starting system, the monoclinic crystal structure with B11b resolved by 
Bonaccorsi et al.[3] was chosen (a = 6.735Å, b = 7.425Å, c = 27.987Å, α = 90º, β 
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= 90º, and γ = 123.25º).  The crystal symmetry and lattice parameters are 
summarized in Table 3.1.  The missing positions of hydrogen atoms were added 
adjacent to oxide atoms of water molecules and hydroxides with a distance of 1 Å.  
The half occupancy of Ca2, W2, W3, and W4 molecules was appropriately 
considered by removing the molecules in the unit cell.  The computations were 
performed on Linux clusters in the Molecular Graphics and Computation Facility 
at the University of California, Berkeley.  The DFT calculations were performed 
using Linear-Density-Approximation (LDA) and Perdew-Burke-Ernzerhof (PBE) 
GGA [85] exchange-correlation functionals and plane wave techniques 
implemented in the Quantum ESPRESSO distribution [165].  Ultrasoft type 
pseudopotentials [166] were used with a plane-wave energy cut-off of 1600 eV.  
The reference valence configurations and core radii for GGA and LDA 
pseudopotentials were chosen as 3s2, 3p6, 4s2, r_c = 1.2 Å for Ca, 3s2, 3p2, r_c = 
1.2 Å for Si, 2s2, 2p4, r_c = 0.8 Å for O, and 1s1, for H. γ-points sampling [98] 
were selected due to large size of the system.  

 
Before calculating structural and elastic properties, structural optimizations 

were performed at zero pressure.  Atomic positions and lattice parameters were 
optimized until atomic forces were smaller than 10-4 eV/Å and total energy 
converged within 10-6 eV.  The final residual stress components of the optimized 
structure were less than 0.1 kbar.  The geometrically optimized crystal structure is 
shown in Fig. 3.26.  Resulting lattice parameters and fractional atomic positions 
are summarized in appendix Table A1.  Static equilibrium structures at arbitrary 
pressures were obtained using damped variable cell shape molecular dynamics 
[167] for predicting pressure-volume behavior.  Computed lattice parameters at 
different pressures using LDA and GGA pseudopotentials are summarized in 
Table 3.13 and 3.14, respectively.  Comparison with high pressure experiment on 
tobermorite 14 Å [148] is shown in Fig. 3.27.  The LDA and GGA compression 
curves compare well with the experimental data, with the LDA giving a better 
agreement.  GGA overestimates its volume at ambient by 4 % (i.e., 1220.12 Å3 in 
GGA vs. 1170.43 Å3 from [3]) while LDA underestimates the volume by 1% (i.e., 
1154.7 Å3 in LDA vs. 1170.43 Å3 from [3]).  The discrepancy is mainly due to c 
lattice parameter as shown in Fig. 3.27 (a).  GGA predicted the c parameter to be 
2 % larger but the monoclinic symmetry was slightly broken at relaxed and 
constrained structure.  This causes large error of unit-cell volumes at zero and high 
pressure.  

 



53 
 

Table 3.13 First-principles calculation results of tobermorite 14 Å (LDA). 
Tobermorite 14 Å LDA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

-1.0 7.140 7.734 25.65 90.00 90.00 123.56 1180.57 

0.0 7.115 7.703 25.28 90.00 90.00 123.56 1154.70 

1.0 7.090 7.664 24.96 90.00 90.00 123.54 1130.69 

2.0 7.071 7.623 24.61 90.00 90.00 123.53 1105.78 

3.0 7.057 7.570 24.25 89.99 90.00 123.42 1081.47 

4.0 7.034 7.543 24.13 90.00 90.01 123.45 1067.94 

5.0 7.013 7.513 23.94 89.99 90.00 123.51 1051.77 

6.0 7.000 7.475 23.77 90.00 90.00 123.51 1037.26 

7.0 6.983 7.431 23.66 89.99 90.00 123.50 1023.98 

 
Table 3.14 First-principles calculation results of tobermorite 14 Å (GGA). 

Tobermorite 14 Å GGA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

-1.0 6.818 7.528 29.038 90.03 89.80 122.91 1251.24 

0.0 6.789 7.507 28.650 90.26 89.76 123.32 1220.12 

0.9 6.690 7.423 28.297 90.71 89.27 122.59 1183.83 

1.9 6.643 7.387 27.969 91.06 89.07 122.59 1156.26 

3.0 6.606 7.365 27.675 91.25 88.81 122.64 1133.58 

4.0 6.573 7.340 27.397 91.42 88.49 122.69 1111.98 

5.0 6.541 7.310 27.125 91.63 88.10 122.68 1090.92 

6.0 6.514 7.286 26.822 91.88 87.61 122.74 1069.68 

7.0 6.490 7.265 26.517 92.13 87.07 122.84 1049.05 

 

(a) (b)  
Figure 3.27 Comparison of (a) axial and (b) volumetric compressibilities of tobermorite 
14 Å from high pressure experiment and LDA (red line) and GGA (black line) simulation. 
First-principles calculations result is reproduced from RVH bulk modulus of Shahsavari 
et al. [155]. 
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Elastic coefficients for these structures were calculated based on a stress-
strain relation.  For infinitesimal strains this relation is linear and at 0 GPa it is 
simply: 

 
6

1
i ij j

j

C 


          - (3.6) 

 
Individual strains were applied to the equilibrium structure (i.e., structural 
optimization at 0 GPa). Next, internal structural degrees of freedom were re-
optimized.  Residual stress components for these optimized and re-optimized 
structures were less than 0.1 kbar.  This allows computations of elastic coefficients 
with well constrained and small errors [100].  The elastic tensor of a monoclinic 
structure has thirteen independent constants as described in Eqn. (2.36) in chapter 
2: 
 

The elastic constants are defined in an orthogonal coordinate system, thus 
cell parameters are related to a Cartesian coordinate XYZ setting:  X a

 
, Z a b

 
 

and Y Z X
  

.  The Lagrangian strains in Cartesian coordinates:  
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6

0 / 2 0

/ 2 0 0

0 0 0


 

 
   
 
 

       - (3.8) 

 
where the indices are given in Voigt notation were applied to the relaxed crystal 
structure.  Sufficiently small strains of δ = ± 0.5 % were applied and elastic 
coefficients were obtained by averaging stresses resulting from positive and 
negative strains.  Table 3.15 summarizes the computed elastic coefficients of 
tobermorite 14 Å from LDA and GGA pseudopotentials.  
 

Adiabatic mechanical constants can be derived from the computed elastic 
constants.  Poly-crystalline averages are difficult to estimate since they involve 
statistical averages over grain sizes and orientations.  But a scheme has been 
devised to give upper and lower bounds to the bulk modulus, K, and to the shear 
modulus, G, in terms of the elastic coefficients.  This is the Reuss-Voigt-Hill 
(RVH) averaging method [101, 102].  The Voigt moduli correspond to a situation 
in which the aggregate is subjected to uniform strain.  It provides the upper bounds 
for K and G.  The Reuss moduli correspond to the situation of uniform stress and 
give the lower bounds.  The RVH moduli are the average of Voigt and Reuss 
moduli and correspond roughly to the situation in which neither stress or strain are 
uniform [101, 102].  Detail derivations on RVH average are introduced in chapter 
2.  The bound values were computed using elastic coefficients, C, determined by 
first-principles from Eqn. (3.6).  From the computed KRVH and GRVH, the Young’s 
modulus (E) and Poisson ratio (η) could be also calculated.  The computed LDA 
and GGA properties for tobermorite 14 Å structure are summarized in Table 3.15.  
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Table 3.15 Calculated elastic coefficients of tobermorite 14 Å. 
Tobermorite 14 Å computation 

LDA GGA [155] LDA GGA [155] 

c11 125.5 71.4 77.6 K_Voigt 59.4 30.8 42.1 

c12 41.2 18.5 35.9 K_Reuss 55.0 29.8 29.7 

c13 35.3 5.7 20.2 K_RVH 57.2 30.3 35.9 

c14 0.0 2.9 0.0 G_Voigt 42.9 24.5 24.2 

c15 0.0 1.6 0.0 G_Reuss 39.3 19.1 17.0 

c16 -11.1 6.5 3.1 G_RVH 41.1 21.8 20.6 

c22 121.7 53.0 104.5 E_RVH 99.5 52.8 51.9 

c23 30.5 26.6 26.3 v_RVH 0.2 0.2 0.3 

c24 0.0 1.7 0.0     

c25 -0.1 3.6 0.0     

c26 -4.9 -6.1 -1.8     

c33 73.5 51.2 32.1     

c34 -0.1 2.6 0.0     

c35 0.0 1.2 0.0     

c36 2.3 -3.5 3.0     

c44 57.8 39.6 24.5 

c45 4.9 -7.5 -9.4 

c46 0.1 -1.2 0.0 

c55 46.7 16.6 14.7 

c56 0.0 -1.2 0.0 

c66 38.7 24.8 38.1 

 
The Young’s modulus for uniaxial compression along arbitrary directions 

was computed.  The general definition of the directional Young’s modulus in 
terms of unit vectors, n̂ , along the compression axis is: 

 

1

1
ˆ ˆ ˆ ˆ[ : ( )]ani T

E
n C n n n

  
       -(3.9) 

 
This expression was used to investigate the anisotropy of tobermorite 14 Å (Fig. 
3.28).  Magnitudes of the LDA and GGA Young’s modulus are represented in 
colors on the surface a ‘sphere’ with unit radius.  X, Y, and Z directions are 
defined by a setting of ( X a

 
, Z a b

 
, and Y Z X

  
).  The large structural 

anisotropy of tobermorite 14 Å is evident in this figure.  The softest direction of 
[001] was computed as the direction perpendicular to the principal layer.  The 
GGA shows slightly different modulus profile because the monoclinic symmetry 
was not broken after relaxation.  
 



57 
 

(a) (b)  
Figure 3.28 Directional Young’s modulus of tobermorite 14 Å using (a) LDA and (b) 
GGA functionals. Scale bars indicate Young’s modulus in GPa. 
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3.3.2 Tobermorite 9 Å 
 

Identical DFT calculation was performed to tobermorite 9 Å crystal 
structure.  Triclinic crystal structure with 1C  was selected (a = 11.156 Å, b = 
7.303 Å, c = 9.566 Å, α = 101.08 º, β = 92.83 º, and γ = 89.98 º) for initial system.  
The four missing hydrogen atoms in [115] were added adjacent to oxide atoms of 
hydroxides with a distance of 1 Å.  The DFT calculations were performed using 
LDA and GGA [85] exchange-correlation functionals and the Quantum 
ESPRESSO distribution [165].  Ultrasoft type pseudopotentials [166] were used 
with a plane-wave energy cut-off of 1600 eV.  K-points grid of 2 by 2 by 2 [98] 
was selected for convergence criterion.  
 

(a) (b)  
Figure 3.29 Geometrically optimized tobermorite 9 Å projected along (a) [010] and (b) 
[100]. Silicate chains, calcium octahedral, hydrogen atoms, and oxygen atoms are shown 
as dark blue, light blue tetrahedral, black spheres, and red spheres, respectively. 
 

Same structural optimization procedure in section 3.3.1 was performed at 
zero and arbitrary pressures [167].  The geometrically optimized crystal structure 
is shown in Fig. 3.29.  Resulting lattice parameters and fractional atomic positions 
of tobermorite 9 Å at zero pressure are summarized in appendix Table A2.  
Computed lattice parameters using LDA and GGA at different pressures are 
summarized in Table 3.16 and 3.17, respectively.  Comparison with high pressure 
experiment on tobermorite 9Å is shown in Fig. 3.30.  The LDA and GGA 
compression curves agree well with previous DFT-GGA study by [155] but there 
is a difference with high pressure experiment, especially over 2 GPa.  At zero 
pressure, LDA and GGA overestimate the experimental volume by 12 % and 3 %, 
respectively.  It is worth to note that triclinic crystal structure was used for DFT 
calculation while orthorhombic crystal system was used for the refinement of high 
pressure experiment.  The possible reasons of the discrepancy are discussed in 
section 3.4.  
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Table 3.16 First-principles calculation results of tobermorite 9 Å (LDA). 
Tobermorite 9 Å LDA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

0.0 11.901 7.544 9.668 97.03 91.33 90.93 861.19 

1.0 11.862 7.519 9.607 97.14 91.40 91.02 849.81 

2.0 11.824 7.494 9.562 97.17 91.43 91.04 840.29 

3.0 11.786 7.474 9.518 97.23 91.46 91.06 830.40 

4.0 11.798 7.394 9.473 98.29 91.36 91.38 817.14 

5.0 11.771 7.359 9.445 98.62 91.40 91.51 808.34 

6.0 11.732 7.340 9.413 98.65 91.46 91.60 800.74 

7.0 11.691 7.323 9.383 98.62 91.49 91.65 793.58 

8.0 11.646 7.311 9.353 98.58 91.52 91.69 786.71 

 
Table 3.17 First-principles calculation results of tobermorite 9 Å (GGA). 

Tobermorite 9 Å GGA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

0.0 11.247 7.364 9.620 98.54 91.87 90.52 787.55 

1.0 11.209 7.336 9.522 98.73 92.16 90.67 773.06 

2.0 11.174 7.308 9.465 98.85 92.18 90.68 763.02 

3.0 11.139 7.280 9.408 98.96 92.27 90.75 752.90 

4.0 11.102 7.253 9.359 99.06 92.34 90.83 743.47 

5.0 11.069 7.225 9.316 99.14 92.40 90.89 734.80 

6.0 11.038 7.197 9.274 99.27 92.45 90.97 726.25 

7.0 11.007 7.171 9.239 99.34 92.48 91.03 718.69 

8.0 10.976 7.145 9.209 99.43 92.49 91.11 711.61 

 

(a) (b)  
Figure 3.30 Comparison of (a) axial and (b) volumetric compressibilities of tobermorite 9 
Å from high pressure experiment and LDA (red line) and GGA (black line) simulation. 
First-principles calculations result is reproduced from RVH bulk modulus of Shahsavari 
et al. [155]. 
 

In addition, elastic coefficients for tobermorite 9 Å were calculated based 
on the stress-strain relation of Eqn. (3.6).  Same procedure in section 3.3.1 was 
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applied with identical convergence criteria.  The elastic tensor of a triclinic 
structure has twenty-one independent constants as described in Eqn. (2.35) in 
chapter 2: 
 

In the cases of tobermorite 9 Å and jennite, elastic constants were 
computed in two crystallographic settings of ( Z c

 
, Y c a
  

, and X Y Z
  

) and 

( X a
 

, Z a b
 

, and Y Z X
  

).  The Z c
 

 setting is conventional for triclinic system 

[168, 169] while the X a
 

 setting is for systematic comparison of the elastic 

constants for different crystal systems.  The six Lagrangian strains of ± 0.5 % of 
Eqn. (3.7 and 3.8) were applied to the relaxed crystal structure.  Table 3.18 
summarizes the computed elastic coefficients of tobermorite 9 Å from LDA and 
GGA pseudopotentials with two different crystallographic settings.  In addition, 
averaged mechanical properties were computed and summarized in the Table 3.18.  

 
Table 3.18 Calculated elastic coefficients of tobermorite 9 Å. 

Tobermorite 9 Å computation 

 

LDA GGA [155] 

 

LDA GGA [155] 

Z//c X//a Z//c X//a X//a Z//c X//a Z//c X//a X//a 

c11 180.2 180.2 178.8 179.1 169.2 K_Voigt 88.1 85.7 78.7 78.0 76.4 

c12 76.7 79.3 53.3 51.0 54.5 K_Reuss 82.5 77.5 69.8 69.6 66.4 

c13 37.7 36.6 39.0 38.8 37.5 K_RVH 85.3 81.6 74.2 73.8 71.4 

c14 -2.1 0.0 -1.7 -0.4 -1.1 G_Voigt 55.9 54.8 52.1 52.3 41.1 

c15 -0.2 -0.3 -2.3 -2.1 -8.9 G_Reuss 52.2 50.8 48.0 48.2 33.3 

c16 -6.2 -6.3 -2.9 -3.0 2.7 G_RVH 54.1 52.8 50.1 50.3 37.2 

c22 171.2 174.4 164.6 168.5 170.0 E_RVH 134.0 130.3 122.6 122.9 95.1 

c23 39.5 33.8 39.0 37.9 36.2 v_RVH 0.2 0.2 0.2 0.2 0.3 

c24 -17.7 -16.1 -14.6 -12.1 3.6       

c25 -9.8 -9.4 -13.9 -14.4 -11.8       

c26 -3.5 -1.8 -2.9 -0.1 -1.1       

c33 133.7 117.7 102.3 98.8 92.7       

c34 -6.6 -6.3 -14.5 -10.7 2.6       

c35 5.5 4.7 0.0 0.5 -3.5       

c36 -2.5 -3.8 0.7 -1.1 0.6 

c44 55.3 52.7 53.0 53.1 40.6 

c45 1.0 -0.7 1.5 -0.3 0.4 

c46 -9.8 -9.7 -10.8 -10.7 -5.5 

c55 44.2 44.0 42.3 42.3 17.9 

c56 0.8 2.7 1.3 2.8 -1.9 

c66 69.8 69.8 60.3 59.9 45.7 
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The Young’s modulus for uniaxial compression along arbitrary directions 
was computed based on the Eqn. (3.9).  The visualized magnitude of the 
anisotropic Young’s modulus is given in Fig. 3.31 which is computed based on the 
setting of ( X a

 
, Z a b

 
, and Y Z X

  
).  Although the predicted volume from LDA 

calculation is larger than that from GGA, it shows mechanically stiffer structure as 
presented in Table 3.18 and Fig. 3.31.  Like the case of tobermorite 14 Å, the layer 
direction of tobermorite 9 Å is the softest direction in terms of stiffness regardless 
of types of LDA and GGA pseudopotentials.  
 

(a) (b)  
Figure 3.31 Directional Young’s modulus of tobermorite 14 Å computed from (a) LDA 
and (b) GGA functionals. Elastic constants calculated in the coordinate system of 

( X a
 

, Z a b
 

, and Y Z X
  

) are used. Scale bars indicate Young’s modulus in GPa. 
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3.3.3 Jennite 
 

This section discusses the DFT calculation of jennite whose crystal 
structure is reported in section 3.2.4.  It is built up by tilleyite ribbons of edge-
sharing calcium octahedral, silicate chains of wollastonite-type, and additional 
calcium octahedral.  The ribbons are firmly connected through the silicate chains 
running on both sides of it.  The silicate chains present in jennite is close to those 
in tobermorite, (i.e., Dreierketten, Fig. 3.32).  The crystal structure used for DFT 
simulation is triclinic system of a = 10.576 Å, b = 7.265 Å, c = 10.931 Å, α = 
101.3º, β = 96.98 º, and γ = 109.65 º.  The missing hydrogen atoms from x-ray 
diffraction experiment were recently proposed through DFT calculation by 
Churakov in 2008 [170].  This hydrogen bonding scheme was chosen for 
investigating mechanical performance of jennite crystal in this study.  The 
calculation procedures described in sections 3.3.1 and 3.3.2 were applied with a 
plane-wave energy cut-off of 1900 eV and 4 by 2 by 2 k-points sampling [98].  
 

 
Figure 3.32 Geometrically optimized jennite projected along [010]. Silicate chains, 
calcium octahedra, and oxygen atoms are shown as dark blue, light blue tetrahedra, and 
red spheres, respectively. Hydroxyl groups and hydrogen atoms in water molecules are 
denoted with black sticks. 
 

The result of geometrically optimization is shown in Fig. 3.32.  The 
relaxed lattice parameters and fractional atomic positions of jennite at zero 
pressure are summarized in appendix Table A3.  Computed lattice parameters at 
different pressures using LDA and GGA are summarized in Table 3.19 and 3.20, 
respectively.  Fig. 3.33 and 3.34 show the comparison of pressure-volume 
behavior with the result of high pressure experiment in section 3.2.4.  The DFT 
calculations predict the mechanical behavior quite accurately.  Although LDA 
overestimates the initial volume as 6 %, GGA predicts the value precisely within 
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0.7 % difference.  Overall, in terms of pressure-volume behavior, the LDA and 
GGA provide the upper and lower bounds of experimental results as shown in Fig. 
3.34.  Nevertheless, there is a significant difference with former GGA calculation 
by Shahsavari et al. [155].  It might be due to different initial hydrogen bonding 
scheme or poor convergence criteria.  

 
Table 3.19 First-principles calculation results of jennite (LDA). 

Jennite LDA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

-1.0 10.894 7.664 11.184 102.25 96.26 109.82 841.65 

0.0 10.762 7.584 11.046 102.14 96.38 109.94 811.99 

1.0 10.746 7.564 10.940 102.29 96.48 110.00 799.61 

2.0 10.730 7.544 10.834 102.45 96.58 110.06 787.23 

3.0 10.663 7.510 10.807 102.42 96.62 110.04 776.93 

4.0 10.627 7.491 10.766 102.45 96.75 110.04 768.90 

5.0 10.619 7.485 10.663 102.60 97.23 110.07 758.07 

 
Table 3.20 First-principles calculation results of jennite (GGA). 

Jennite GGA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) 

-1.0 10.673 7.327 11.006 100.90 97.76 109.33 779.20 

0.0 10.626 7.292 10.912 100.98 97.71 109.35 765.22 

1.0 10.579 7.261 10.826 101.00 97.81 109.34 752.22 

2.0 10.535 7.234 10.742 101.03 97.85 109.36 740.12 

3.0 10.506 7.210 10.628 101.05 97.95 109.32 727.70 

4.0 10.472 7.187 10.542 101.08 98.02 109.31 716.95 

5.0 10.440 7.166 10.462 101.14 98.00 109.33 707.04 

 

(a)  (b)  
Figure 3.33 Comparison of (a) axial and (b) angular compressibilities of jennite from 
high pressure experiment and LDA and GGA simulation. 
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Figure 3.34 Comparison of volumetric compressibilities of jennite from high pressure 
experiment, LDA (red line), and GGA (black line) simulations. First-principles 
calculations result is reproduced from RVH bulk modulus of Shahsavari et al. [155]. 
 

Twenty-one independent elastic coefficients for jennite were calculated 
based on two different crystallographic settings of ( Z c

 
,Y c a
  

, and X Y Z
  

) 

and ( X a
 

, Z a b
 

, and Y Z X
  

) described in section 3.3.2.  The results were 

summarized in Table 3.21.  The former GGA calculation [155] used the setting of 
( X a
 

, Z a b
 

, and Y Z X
  

).  Similar with the pressure-volume behavior, there is 

a difference of elastic constants especially in the case of C22 and C33.  Detail 
investigation of this difference will be discussed in next section.  

 
RVH mechanical properties were computed and summarized in the Table 

3.18.  In addition, the Young’s modulus for uniaxial compression along arbitrary 
directions was computed.  The visualized magnitude of the anisotropic Young’s 
modulus is given in Fig. 3.35 which is computed based on the setting of 
( Z c
 

, Y c a
  

, and X Y Z
  

).  Although relaxed lattice volume from LDA 

calculation is 6 % larger than that from GGA, it shows quite similar range of the 
Young’s modulus and tendency of variation depending on directions. 
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Table 3.21 Calculated elastic coefficients of jennite. 
Jennite computation 

 

LDA GGA [155] 
 

LDA GGA [155] 

Z//c X//a Z//c X//a X//a Z//c X//a Z//c X//a X//a 

c11 99.9 100.0 111.7 110.4 100.1 K_Voigt 63.1 64.5 61.2 60.8 36.8 

c12 44.5 49.0 41.6 40.9 26.9 K_Reuss 59.8 61.4 57.9 58.2 26.8 

c13 45.9 46.6 39.2 41.1 32.0 K_RVH 61.5 63.0 59.6 59.5 31.8 

c14 -8.4 -6.7 0.0 1.5 1.3 G_Voigt 30.1 29.6 33.8 33.9 23.3 

c15 4.4 4.9 2.6 5.1 1.5 G_Reuss 26.8 26.2 31.5 31.9 20.6 

c16 -1.9 -3.0 4.2 1.9 3.3 G_RVH 28.4 27.9 32.7 32.9 22.0 

c22 128.2 127.5 130.1 126.9 45.7 E_RVH 73.9 72.9 82.8 83.3 53.6 

c23 39.6 41.7 33.6 33.9 4.4 v_RVH 0.3 0.3 0.3 0.3 0.2 

c24 -4.2 3.0 -1.9 1.2 7.4       

c25 -3.1 -4.9 -2.3 -5.7 -6.2       

c26 -10.4 -6.9 -9.8 -9.6 -3.2       

c33 80.3 78.8 80.3 78.4 59.2       

c34 -0.5 0.3 -5.0 -2.6 -1.3       

c35 -8.2 -6.0 -6.4 -1.5 1.4       

c36 0.2 -1.4 3.5 3.1 0.1 

c44 24.0 23.3 32.0 32.5 22.0 

c45 -0.7 -3.2 0.5 -0.2 -1.7 

c46 -4.2 1.8 -1.5 -0.3 -1.6 

c55 31.7 27.0 27.7 30.3 21.0 

c56 -1.6 -0.6 1.7 1.2 2.7 

c66 35.1 41.1 40.2 40.2 26.6 

 

(a) (b)  
Figure 3.35 Directional Young’s modulus of jennite computed from (a) LDA and (b) 
GGA functionals. Elastic constants calculated in the conventional orthogonal coordinate 

system ( Z c
 

,Y c a
  

, and X Y Z
  

) are used. Scale bars indicate Young’s modulus in 

GPa. 
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The (isothermal) bulk modulus can be obtained by fitting a finite strain 
expansion to the calculated free energy versus volume relation.  For large 
compression, it is standard to expand the free energy in terms of an isotropically 
defined Eulerian strain, f:  

 
2 /3

01
1

2

V
f

V

     
   

        - (3.9) 

 
where V0 and V are a reference volume and compressed volume under pressure, 
respectively.  Then the Helmholtz free energy versus volume relation is expanded 
in a power series in terms of the Eulerian strains.  In all DFT calculations in this 
work, the Helmholtz free energy, F, is the same as the internal energy, E (F=E-TS) 
since T = 0 K.  The Birch-Murnaghan equation of state corresponds to a finite 
strain expansion to third power in the strain [99].  

 
3 22 2 2

- - -
3 3 3

'0 0
0 0

0 0 0

9V K V V V
E(V)=E + -1 K + -1 6-4

16 V V V

      
                                       

  - (3.10) 

 
This is the 3rd order Birch-Murnaghan equation of state in terms of energy instead 
of pressure.  When the Eqn. (3.10) is differentiate with respect to volume, V, the 
same 3rd order BM EoS can be found as Eqn. (2.32) in chapter 2.  The fitting gives 
the reference volume, isothermal bulk modulus at zero pressure, and its pressure 
derivative at 0 GPa.  Results for the fitting to tobermorite 14 Å and 9 Å and jennite 
are summarized in Table 3.22.  In the table, the fitting results of 2nd order BM EoS 
(i.e., Murnaghan equation of state) are also summarized.  This equation results 
from a finite strain expansion of the free energy to second power in strain.  It is 
equivalent to Eq. (2.32) but with fixed K0´ as 4.  
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Table 3.22 Computed elasticity of calcium silicate hydrates from first-principle 
calculations. 

Tobermorite 14 Å Tobermorite 9 Å Jennite 

LDA GGA [155] [171] LDA GGA [155] [171] LDA GGA [155] [171] 

3rd 
EoS 

K0 

(GPa) 
39(1) 33(2) - - 70(3) 56(1) - - 62(7) 57(1) - - 

K0' 6.6 4.7 - - 4.6 6.8 - - 5.1 2.4 - - 

V0 

(Å3) 
1155 1220 - - 861 787 - - 812 765.2 - - 

2nd 
EoS 

K0 

(GPa) 
44(1) 34.9(9) - - 71(4) 63(1) - - 63(1) 54.2(8) - - 

V0 

(Å3) 
1155 1220 1213 - 861 787 784.0 - 812 765.2 775 - 

RV
H 

K 
(GPa) 

57(2) 30(1) 36(6) 46 82(4) 74(4) 71(5) 68 63(2) 60(1) 32(5) 43 

G 
(GPa) 

41(2) 22(3) 21(4) 39 53(2) 50(2) 37(4) 67 28(2) 33(1) 22(1) 26 

E 
(GPa) 

99.5 52.8 51.9 91 130.3 122.9 95.1 152 72.9 83.3 53.6 66 

v 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.1 0.3 0.3 0.2 0.2 
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3.4  Discussion on Structural Mechanism of Calcium Silicate Hydrates 
 

Figure 3.36 shows x-ray diffraction analog of various calcium silicate 
hydrates.  All calcium silicate hydrates give strong x-ray peaks in the 3 Å and 1.8 
Å regions, indicating that the peaks correspond to important repeat distances in the 
Ca-O structures within individual layers.  For a Bragg reflection to be observed, 
about 5-10 ordered lattices have to be repeated perpendicular to the diffracting 
plane.  In the case of tobermorite peak at 3 Å, 5-10 repeat along the (200) direction 
means good atomic ordering parallel to the c-axis of 15-30 Å.  Thus the analog of 
the peaks suggests the resembling presence of well-ordered Ca-O layers in these 
structures.  However, C-S-H gel in hydrated portland cement does not have a 
strong basal peak while other calcium silicate hydrates show strong intensity of the 
basal peak over 10 Å.  This indicates that, even though the C-S-H gel is a well-
known ‘layered’ structure, the degree of ordering in the layer direction is not 
enough to make a Bragg reflection.  That agrees with the recent experimental 
observation about the size of C-S-H. Skinner et al. suggests that C-S-H exists as a 
nano-particle whose size is less than 40Å [23].  The basal spacing of C-S-H (I) is 
around 10-12 Å as shown in Fig. 3.36.  Thus the small size of C-S-H gel particle 
(50 Å < 70-120 Å) may result in missing the basal peak in x-ray diffraction 
experiment.  

 

 
Figure 3.36  X-ray diffraction patterns of calcium silicate hydrates and hydrated Portland 
cement. In hydrated cement, ▬, ■, and ● indicate C-S-H gel, AFm, and AFt phase, 
respectively.  
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The tobermorite 11 Å structure is normally orthorhombic, although possible 
monoclinic forms have been proposed [55, 115, 129, 147].  A first structural 
model of tobermorite 11 Å was proposed by Megaw and Kelsey on the basis of 
single crystal data [114].  According to their description, the ‘pseudo-
orthorhombic’ structure is based on layers parallel to (001), 11.3Å thick, built up 
by a central sheet of CaO2 stoichiometry.  Since Merlino et al. proposed the double 
chain of SiO4 tetrahedra in the orthorhombic structure, which is well in accordance 
with 29Si NMR experiment, the model is widely accepted [55, 116].  Moreover, 
they proposed the crystal structures of normal and anomalous tobermorite through 
x-ray diffraction based on OD theory.  According to them, the most distinctive 
feature of the two tobermorites is the content of the structural cavities.  While only 
water molecules were found in anomalous one, both ‘zeolitic’ calcium cations and 
water molecules were found in normal one [55].  The proposed chemical formula 
of normal and anomalous tobermorite 11 Å are Ca4.5Si6O16(OH)·5(H2O) and 
Ca4Si6O15(OH)2 ·5(H2O), respectively [55, 116].  Merlino et al. explain the 
thermal behavior by the existence of ‘zeolitic’ calcium cations in the cavities of 
tobermorite 11 Å.  Upon heating at 300ºC, significant structural rearrangement 
occurs around the ‘zeolitic’ calcium which yields chain decondensation.  However, 
it does not need to be contracted without the ‘zeolitic’ calcium cations.   
 

According to the Merlino’s hypothesis, the normal tobermorite should have 
more calcium ions in the structure.  The average values of 10 measurements in the 
normal tobermorite 14 Å found in this study were 0.77 and 0.68 for Ca/Si and 
Ca/(Si+Al), respectively.  The Ca/(Si+Al) of 0.68 is well in accordance with ratios 
(0.77-0.91) in previous reports regarding the hydrothermally formed Al-
substituted tobermorites [126, 172, 173].  In addition, it agrees with the ratio 
proposed by Merlino et al. (i.e., 0.75).  However, anomalous tobermorite 11 Å 
tested in this study had Ca/Si = 1.1.  This high value of Ca/Si ratio in anomalous 
tobermorite might be due to short length of silicate chains in the system.  
Additional Nuclear Magnetic Resonance (NMR) studies could explain the high 
Ca/Si ratio in anomalous one.  In addition, it is interesting to note that the d-
spacing of 10 Å was observed with 9 and 11 Å at 150ºC heating (Fig. 3.8), which 
indicates instantaneously unstable structure of tobermorite 10 Å.  Based on the 
hypothesis by Merlino et al. the partial occupancy of the ‘zeolitic’ calcium will 
determine the thermal shrinkage of normal tobermorite 11 Å.  Then it may be 
possible to have a metastable tobermorite 10 Å depending on spatial distribution 
of the ‘zeolitic’ calcium cations.  
 

Tobermorite 11 Å has two different types of SiO4 tetrahedra. One is chain 
middle group SiO4, and the other is bridging SiO4.  Komarneni and Tsuji 
suggested that Al atoms preferably substitute at the chain middle group SiO4 by 
29Si NMR measurements [174].  In contrast, Sasaki et al. reported that the Al 
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substitution preferably occurs at the bridging SiO4 [175].  The previous structural 
determination of tobermorite crystals did not consider the Al substitution due to 
the fact that it is difficult to distinguish Si and Al by x-ray experiment [55, 129].  
Up to now, the accurate crystal structure of Al substituted tobermorite is still 
unknown.  In case of partial substitution of silicon by aluminum in the bridging 
tetrahedra [176, 177], it was suggested that general and local charge balance is 
restored through additional OH- for O2- substitutions.  These coupled substitutions 
may explain the results of the ionic content of tobermorite and the growth of 
silicate chains in hydrated cement paste.  However, the lack of information on Al 
substituted tobermorite makes further discussion difficult in this study.  
 

The other interesting observation is the stability under high pressure.  The 
normal tobermorite 11 Å exhibits pressure-induced amorphization at high pressure 
(Fig. 3.9).  The basal peak completely disappeared over 6 GPa.  This 
amorphization might be associated with dehydration of the structure as observed 
during thermal process [178] or disruption of hydrogen bonding network.  But 
anomalous tobermorite 11 Å shows stable behavior (Fig. 3.13).  Furthermore it 
shows greater number of distinct diffraction peaks in ambient and under high 
pressure.  Under hydrostatic pressure, variations of a and b lattice parameters in 
both tobermorite 11 Å were small compared to that of c lattice parameter (Fig. 
3.10 and 3.10).  That means the areas of the ab-plane of a unit cell were almost 
equal but c-axis was mostly contracted under hydrostatic pressure.  Figure 3.37 
shows measured pressure-volume behavior of tobermorite 11 Å comparing with 
First-principles calculation by Shahsavari et al. [155].  The First-principles 
calculation result was reproduced from RVH based bulk modulus of Merlino’s 
tobermorite 11 Å.  The experimentally measured data agree quite well with the 
simulation.  Smaller number of diffraction peaks yields relatively larger error 
ranges for normal tobermorite 11 Å.  Furthermore, the ambient volume of Al-
substituted normal tobermorite is larger than Al-free anomalous tobermorite.  
However, overall pressure behaviors are similar regardless of the different thermal 
behavior.  
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Figure 3.37 (Fig.3.10(b)) Pressure dependent behavior of normal and anomalous 
tobermorite 11 Å. First principles calculations result is reproduced from RVH bulk 
modulus of Shahsavari et al. [155]. 
 

Although calcium silicate hydrate crystals are the most important crystals in 
cement and concrete system, there has been no reported experimental bulk 
modulus except for tobermorite 14 Å [148].  Theoretically, a large number of 
studies using first-principles calculations and molecular dynamics have been 
applied to predict mechanical properties of calcium silicate hydrate crystals.  The 
results have yielded various bulk modulus values depends on its crystal model and 
Ca/Si ratio [142, 171, 179].  Gmira et al. theoretically calculated the bulk modulus 
of tobermorite-like C-S-H gel (71.8 GPa) using both Hamid and Merlino models 
of tobermorite 11 Å [179].  However, Pellenq et al. predicted a value of 61.9 GPa 
for the tobermorite-like C-S-H structure [142].  Manzano et al. reported 46 GPa 
for tobermorite 14 Å, 74 GPa for tobermorite 11 Å, and 68 GPa for tobermorite 9 
Å [171].  Recently, Shahsavari et al. used accurate first-principles calculation to 
determine mechanical properties of tobermorite phases considering varying Ca/Si 
ratios and jennite [155].  In the results, Merlino tobermorite 11 Å is stronger than 
Hamid tobermorite 11 Å due to double silicate tetrahedron chains (condensed 
wollastonite chains).  Also, additional Ca cations with octahedral coordination 
make the crystal stronger as well [129].  About the Al incorporation on 
tobermorite like materials, the bulk modulus of Al substituted C-S-H from an 
alkaline activated slag experimentally gives a similar value with a synthesized C-
S-H(I) as 33-35 GPa [40].  
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In the present study, high-pressure x-ray diffraction tests were performed to 
entire tobermorite family, which makes the systematic comparison possible.  
Figure 3.38 compares the experimentally measured pressure behaviors of 
tobermorite 14Å, normal 11 Å, anomalous 11 Å, and 9 Å.  As expected from 
simulation [155], the compressibility is correlated with the interlayer distance of 
the principal layers of tobermorite.  In all cases, the variations of a and b lattice 
parameters were negligible compared to that of c lattice parameter, suggesting that 
the incompressibility of layer direction determines the overall pressure behavior.  
The principal ab-plane of a unit cell does not change but c-axis is mainly 
contracted under ‘hydrostatic’ pressure.  Thus, larger interlayer spacing makes the 
crystal more compressible in tobermorite cases.  
 

However, there is a difference in case of tobermorite 9 Å between 
simulation and experiment.  Molecular dynamic (MD) simulation by Manzano et 
al. [171] predicted the bulk modulus of tobermorite 9 Å as 68 GPa while 
tobermorite 11Å as 74 GPa.  It might be possible that interlayer water molecules 
are resistant against compression in tobermorite 11Å.  Then, it could yield larger 
bulk modulus than that of tobermorite 9 Å.  However, it was not the case in 
tobermorite system.  The possible error sources in the MD simulation are the 
empirical force-fields they used in their research which were not designed for the 
tobermorite crystals.  In addition, accurate equilibrium positions of interlayer 
waters are not obtainable through the MD simulation.  On the other hand, the more 
accurate (but expensive) simulation method of first-principles calculation yields 
similar pressure behaviors with experiments.  Detail comparison on each 
tobermorite family will be followed.  
 

(a) (b)  
Figure 3.38 Comparison of experimentally measured pressure-volume (a) and pressure-
layer thickness (b) behaviors of tobermorite series. Rectangular symbols indicate 
identical tobermorite source from Crestmore, CA with different thermal treatments.  
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Figure 3.38 shows an interesting behavior of normal and anomalous 
tobermorite 11 Å.  Although they show exact same pressure-volume behavior (Fig. 
3.38(a)), layer thickness of anomalous one is stiffer than one of normal case (Fig. 
3.38(b)).  If Merlino’s hypothesis is correct [55, 115, 116], the normal tobermorite 
should have more incompressible layer because of the existence of abundant 
additional Ca atoms in their interlayers.  It conflicts with experimentally observed 
pressure-layer thickness behavior as well as chemical compositions (normal 
tobermorite Ca/(Al+Si) = 0.68 in Table 3.3 and anomalous tobermorite Ca/Si = 
1.05 in Table 3.5).  It points out that additional explanation in terms of the crystal 
structure of tobermorite system may be required.  

 
Recently, Oh et al. experimentally measured a bulk modulus of tobermorite 

14 Å by high pressure x-ray diffraction method [148].  They refined unit cell 
volumes using different crystal systems of monoclinic and orthorhombic, but they 
produced identical bulk modulus of 47(4) GPa.  On the other hand, first-principles 
calculation based on GGA pseudopotential were performed by Shahsavari et al. 
[155] and predicted RVH based bulk modulus as 36(6) GPa.  In section 3.3.1, both 
LDA and GGA pseudopotentials were tested for monoclinic tobermorite 14 Å 
structure.  Along with the RVH based elastic properties, isothermal bulk modulus 
could be directly computed by applying isotropic pressure on the crystal.  The 
calculated bulk modulus can be used to verify the overall accuracy of the 
simulation by comparing with high pressure x-ray diffraction.  

 
The calculated isothermal bulk modulus using LDA (44 GPa) agrees well 

with experimentally measured value of 47(4) GPa.  In addition, GGA calculation 
yields similar values of elastic constants with previous simulation by Shahsavari et 
al.[155] (shown in Table 3.23).  Although the first-principles calculation can 
predict material properties without any assumptions, the exchange-correlation 
potential is still unknown and can only be approximated as a functional of 
linearized electron density (LDA case) or gradient form of electron density (GGA 
case).  As described in section 2.2, LDA pseudopotential usually tends to overbind 
atoms and overestimate the mechanical properties of material [82, 180, 181].  
Therefore the large value of bulk modulus of tobermorite 14 Å from LDA 
calculation is acceptable.  In addition, under pressure, the LDA calculation shows 
that it maintains the monoclinic crystal structure up to 7 GPa (Table 3.13).  
However, the monoclinic crystal structure breaks under pressure in case of the 
GGA calculation (Table 3.14).  The broken symmetry definitely affects the overall 
crystal properties.  The other error source could be van der Waals interaction.  
DFT used in this study may not yield accurate VdW dispersion forces due to its 
long-range electrostatic characteristics.  Thus, the excellent agreement between the 
LDA calculation and experiment reported herein might be not just because LDA 
can well simulate the exchange-correlation energy in the system but because of a 
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result of complex undefined interactions between exchange-correlation energy and 
the VdW interaction.  Furthermore, electron probe analysis verified Al substitution 
in tobermorite 14 Å (Al/Si = 0.14) as shown in Table 3.3.  This also affects the 
mechanical properties of tobermorite 14 Å.  Nevertheless, the LDA calculation 
predicts the pressure behavior quite well while the GGA calculation 
underestimates the bulk modulus.  
 

Table 3.23 Summary of nanomechanical properties of tobermorite 14 Å. 
Tobermorite 14 Å 

 
LDA GGA 

GGA 
[155]  

 LDA GGA 
GGA 
[155] 

MD 
[171] 

Exp. [148] 

c11 125.5 71.4 77.6 

3rd EoS 

K0 39(1) 33(2) - - 53(2)* 

c12 41.2 18.5 35.9 K0’ 6.6 4.7 - - 0.8 

c13 35.3 5.7 20.2 V0 1156 1220 - - 1156(1)** 

c16 -11.1 6.5 3.1 
2nd EoS 

K0 44(1) 34.9(9) - - 47(4) 

c22 121.7 53.0 104.5 V0 1156 1220 1213 - 1156(1)** 

c23 30.5 26.6 26.3 

RVH 

K 57(2) 30(1) 36(6) 46 - 

c26 -4.9 -6.1 -1.8 G 41(2) 22(3) 21(4) 39 - 

c33 73.5 51.2 32.1 E 99.5 52.8 51.9 91 - 

c36 2.3 -3.5 3.0 v 0.2 0.2 0.3 0.2 - 

c44 57.8 39.6 24.5        

c45 4.9 -7.5 -9.4        

c55 46.7 16.6 14.7        

c66 38.7 24.8 38.1        

* Data was reproduced from  [148]. ** Volume is refined using monoclinic (B11b) 
crystal structure of tobermorite 14Å [148]. Elastic constants and RVH bounds are 

computed based on X//a setting. Most reliable results are in bold. 
 
 In sections 3.2.1 and 3.2.2, high pressure x-ray diffraction experiments on 
normal and anomalous tobermorite 11 Å are discussed.  Although overall 
pressure-normalized volume plots look almost identical (Fig. 3.38 (a)), the fitted 
isothermal bulk moduli are somewhat different: 71 GPa and 63 GPa for normal 
and anomalous tobermorite 11 Å, respectively.  The reason of the difference is due 
to the unusual data points of normal tobermorite over 5 GPa (Fig. 3.15).  At that 
pressure range, the pressure-induced amorphization makes difficult to identify the 
accurate x-ray diffraction positions which could lower the accuracy of the 
experiment (Fig. 3.9).  Ignoring the two points over 5 GPa would lower the fitted 
bulk modulus significantly.  
 

Table 3.24 summarizes experimentally and theoretically calculated elastic 
constants including bulk modulus of tobermorite 11 Å.  Considering the fact that 
the GGA calculation tends to underestimate the mechanical properties of a 
material, the slightly smaller value of 67 GPa as a RVH based bulk modulus of 
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Merlino’s tobermorite 11 Å looks reasonable.  However, there is still no reliable 
crystal structure for normal and anomalous tobermorite 11 Å in terms of thermal 
behavior, pressure-induced amorphization, Al substitution, and different 
compressibility of layer thickness.  It questions the results of theoretical 
calculation.  Further studies on accurate crystallographic determination on various 
tobermorite 11 Å and computational simulations on the models are necessary.  
 

Table 3.24 Summary of nanomechanical properties of tobermorite 11 Å. 
Tobermorite 11Å 

 
GGA 
[155]  

   
GGA 
[155] 

MD 
[171] 

Exp. 
Normal 

Exp. 
Anomalous 

c11 117 

3rd EoS 

K0 - - 62(4) 67(2) 

c12 45.8 K0’ - - 9.7 1.8 

c13 27.9 V0 - - 463(3) 475.9(4) 

c22 126.1 
2nd EoS 

K0 - - 71(4) 63(2) 

c23 46.2 V0 480.9* - 463(3) 475.9(4) 

c33 126.35 

RVH 

K 67(1) 74 - - 

c44 30.2 G 32(4) 29 - - 

c55 20.8 E 83.1 77 - - 

c66 44.4 v 0.3 0.3 - - 

* Volume is reproduced (i.e., divided by 2) for the comparison of I2mm symmetry of 
experimental tobermorite 11Å. Elastic constants and RVH bounds are computed based on 

X//a setting. 
 

(a) (b)  
Figure 3.39 Volumetric compressibilities of tobermorite 14 Å (a) and 9 Å (b) from high 
pressure experiment and LDA (red line) and GGA (black line) simulation. First principles 
calculations result is reproduced from RVH bulk modulus of Shahsavari et al. [155]. 
 

Despite of the good agreements of tobermorite 14 Å and 11 Å in 
experiments and simulations, there is a significant difference in case of 
tobermorite 9 Å as shown in Fig. 3.39(b).  The result of first-principles calculation 
in section 3.3.2 predicts that the LDA computation is somewhat closer to the 
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experimental result up to 2 GPa.  However, experimentally observed volume 
shows much stiffer behavior above 2 GPa.  Thus the predictions from the first-
principles calculation were not valid at high pressure.  Possible error sources could 
be the infiltration of pressure-transmitting medium in high pressure x-ray 
experiment [182].  If there is a space in crystal structure, the solution might fill the 
space and affect the compressibility of crystal framework.  The interlayer space in 
tobermorite 9 Å is smaller than those of 11 Å and 14 Å, suggesting that the 
infiltration does not affect the compressibility of crystal structure with larger 
cavities.  In addition, the tobermorite 9 Å sample used in the experiment has Al-
substitution (Al/Si = 0.14) while there is no Al in the crystal system in simulation.  
Further NMR and Rietveld studies are necessary for structural determination of Al 
substituted tobermorite 9 Å.  
 

In Fig. 3.39 (b), the LDA computation in this study was rather similar with 
the GGA computation by Shahsavari et al. [155].  This is possible by setting 
different convergence criteria during the computation.  The criteria such as energy 
cut-off and k-point sampling are critical in first-principles calculation because they 
will decide the accuracy of simulation and computational time.  The higher 
convergence criteria were used in section 3.4 (but computationally more 
expensive) compared to the calculation of [155].  
 

Figure 3.40 compares x-ray diffraction patterns of tobermorite 9Å in 
ambient condition (middle), with diamond anvil cell (top) and of ICSD database 
(bottom, #90037).  Unlike the cases of tobermorite 11 Å and 14 Å, the intensity of 
basal peak is not strong, which means the layer character of this material is rather 
weak.  Furthermore, the basal peak almost disappears with pressure-transmitting 
solution (methanol:ethanol=4:1) in diamond anvil cell (Fig. 3.40).  Possible 
explanation is the size of crystal system in the solution.  As discussed before, 
about 5-10 ordered lattice repeat is required for a clear Bragg reflection to be 
observed.  Therefore, if the particle-cluster size of tobermorite 9 Å in the solution 
is less than 50 Å, the peak will be disappeared before being pressured.  More 
fundamental study on the particle dispersion effect in high pressure x-ray 
experiment is necessary.  
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Figure 3.40 X-ray diffraction patterns of tobermorite 9 Å. Reference profile (red line) 
was reproduced from [116]. Tobermorite 9 Å was made from heating the tobermorite 
14Å at 360 ºC for 24 hours. Black and dotted lines represent the x-ray profile at ambient 
condition and mixed with alcohol mixture in DAC, respectively.  
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Table 3.25 Summary of nanomechanical properties of tobermorite 9 Å. 
Tobermorite 9 Å 

 
LDA GGA 

GGA 
[155]  

 LDA GGA 
GGA 
[155] 

MD 
[171] 

Exp. 

c11 180.2 179.1 169.2 

3rd EoS 

K0 70(3) 56(1) - - 86(6) 

c12 79.3 51.0 54.5 K0’ 4.6 6.8 - - 20.9 

c13 36.6 38.8 37.5 V0 861 787 - - 1472(1)* 

c14 0.0 -0.4 -1.1 
2nd EoS 

K0 71(4) 63(1) - - 115(14) 

c15 -0.3 -2.1 -8.9 V0 861 787 784.0 - 1472(1)* 

c16 -6.3 -3.0 2.7 

RVH 

K 82(4) 74(4) 71(5) 68 - 

c22 174.4 168.5 170.0 G 53(2) 50(2) 37(4) 67 - 

c23 33.8 37.9 36.2 E 130.3 122.9 95.1 152 - 

c24 -16.1 -12.1 3.6 v 0.2 0.2 0.3 0.13 - 

c25 -9.4 -14.4 -11.8        

c26 -1.8 -0.1 -1.1        

c33 117.7 98.8 92.7        

c34 -6.3 -10.7 2.6        

c35 4.7 0.5 -3.5        

c36 -3.8 -1.1 0.6        

c44 52.7 53.1 40.6        

c45 -0.7 -0.3 0.4        

c46 -9.7 -10.7 -5.5        

c55 44.0 42.3 17.9        

c56 2.7 2.8 -1.9        

c66 69.8 59.9 45.7        

* In the high-pressure experiment, orthorhombic unit cell was used for refinement. On 
the other hand, triclinic (C-1) crystal structure is used for DFT simulation. Elastic 

constants and RVH bounds are computed based on X//a setting.  
 

Table 3.26 summarizes the mechanical properties of jennite obtained from 
high pressure x-ray diffraction and first-principles calculation.  First of all, the 
large K0´ value in 3rd order EoS is not realistic which is mainly due to the small 
number of data points.  Therefore, the fitting result of 2nd order EoS is used to 
verify the simulation results.  In general, LDA calculation accurately predicts the 
pressure-volume behavior while GGA slightly underestimates the values of the 
stiffness.  In the case of oxide mineral, the LDA calculation usually tends to 
overestimate the mechanical properties while GGA is the opposite [82, 180, 183].  
Not only in terms of the pressure-volume behavior, but the variation of lattice 
parameters of triclinic crystal system was also well predicted as an upper and 
lower bound (Fig. 3.33).  Therefore, it can be safely suggested that the elastic 
tensor coefficient (Table 3.21) and anisotropic feature (Fig. 3.35) from the first-
principle calculation are quite reliable.  
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Table 3.26 Summary of nanomechanical properties of jennite. 
Jennite 

 LDA GGA 
GGA 
[155]  

 LDA GGA 
GGA 
[155] 

MD 
[171] 

Exp. 
(M:E) 

Exp. 
(SO) 

c11 100.0 110.4 100.1 

3rd EoS 

K0 62(7) 57(1) - - 45(5) 61(4) 

c12 49.0 40.9 26.9 K0’ 5.1 2.4 - - 42.3 9.9 

c13 46.6 41.1 32.0 V0 812 765.2 - - 754(2) 755(1) 

c14 -6.7 1.5 1.3 
2nd EoS 

K0 63(1) 54.2(8) - - 68(5) 64(2) 

c15 4.9 5.1 1.5 V0 812 765.2 775 - 754(2) 755(1) 

c16 -3.0 1.9 3.3 

RVH 

K 63(2) 60(1) 32(5) 43 - - 

c22 127.5 126.9 45.7 G 28(2) 33(1) 22(1) 26 - - 

c23 41.7 33.9 4.4 E 72.9 83.3 53.6 66 - - 

c24 3.0 1.2 7.4 v 0.3 0.3 0.2 0.2 - - 

c25 -4.9 -5.7 -6.2         

c26 -6.9 -9.6 -3.2         

c33 78.8 78.4 59.2         

c34 0.3 -2.6 -1.3         

c35 -6.0 -1.5 1.4         

c36 -1.4 3.1 0.1         

c44 23.3 32.5 22.0         

c45 -3.2 -0.2 -1.7         

c46 1.8 -0.3 -1.6         

c55 27.0 30.3 21.0         

c56 -0.6 1.2 2.7         

c66 41.1 40.2 26.6         

* Most reliable results are in bold. 
 

 
Figure 3.41 (Fig. 29) Comparison of volumetric compressibilities of jennite from high 
pressure experiment, LDA (red line), and GGA (black line) simulations. First-principles 
calculations result is reproduced from RVH bulk modulus of Shahsavari et al. [155]. 
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However, there is a significant difference with the previous calculations 

using first-principle calculation and molecular dynamic simulation (Fig. 3.41 and 
Table 3.26).  As discussed previously, MD simulation cannot be precise unless the 
empirical force fields are accurately designed for specific environment of a system.  
The force fields are typically designed based on accurate values of elastic 
constants and partial charges from first-principles calculation or experiments [184].  
Therefore it is unfruitful to discuss the accuracy of MD simulation results at this 
stage.  On the other hand, first-principles calculation does not depend on anything 
except exchange-correlation potential.  In this study, the LDA and GGA 
calculation predict RVH based bulk modulus as 63 GPa and 60 GPa, respectively.  
The GGA calculation by Shahsavari et al.[155] predicted the bulk modulus as 32 
GPa which is much lower than that from high pressure x-ray experiment (64 GPa, 
2nd order EoS, SO).  The RVH properties are determined from elastic tensor 
coefficient derived in Eqn. (2.39) to (2.44).  Therefore, the lower values of C22 and 
C33 in their computations are responsible for the lower bulk modulus.  Considering 
electron densities, the C22 should be the stiffest direction in the crystal system of 
jennite as shown in Fig. 3.42.  The reason is C11 and C33 directions contain 
interlayer space but C22 is perpendicular direction to the interlayer.  The possible 
error can be unrealistic starting structure especially with respect to water 
molecules and hydroxides.  In addition, the convergence criteria are the important 
parameters in first-principles calculation (this study: 1900 eV for energy cut-off, 4 
× 4 ×2 k-points sampling, and 0.001 eV/Å for force convergence).  The criteria 
used in their simulation (i.e., 420 eV for energy cut-off, 2 × 2 ×1 k-points 
sampling, and 0.01 eV/Å for force convergence) may be too rough to get accurate 
simulation results.  Further study may be necessary to verify this issue.  Even so, 
this issue suggests high pressure x-ray diffraction can be the unique technique to 
validate the performance of first-principles calculations.  
 

 
Figure 3.42 Standard directions of elastic constants in triclinic crystal system of jennite.  
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3.5 Chapter Summary 
 

In chapter 3, the mechanical properties of calcium silicate hydrate phases 
were investigated.  C-S-H gel in hydrated portland cement is poorly crystalline 
material with varying Ca/Si ratio.  Systematic measurements of modulus of 
crystalline calcium silicate hydrate could give insights on the interpretations of 
structure at the small scale and on the deformation properties of C-S-H gel.  High 
pressure x-ray diffraction and first-principles calculation are possible approaches.  
In addition, in order to investigate thermodynamic stability of a material, the first 
derivative of the energy should be calculated.  Moreover, the second derivative of 
the energy also has to be considered to identity the relative thermodynamical 
stability of a material.  The experimentally and theoretically calculated bulk 
moduli of materials which are the second derivative of the energy can be useful.  
 

Up to the present time, there has been no reported experimentally measured 
bulk modulus of the tobermorites except for tobermorite 14 Å.  In chapter 3, high 
pressure x-ray diffraction experiments were performed to study normal and 
anomalous tobermorite 11 Å, tobermorite 9 Å, and jennite.  First-principle 
calculations of tobermorite 14 Å, 9 Å, and jennite support the experimental results 
and provides additional elastic properties of the materials.  Overall, the 
compressibility of crystalline calcium silicate hydrate is related with the interlayer 
thickness of the materials.  In the cases of tobermorite crystals, the layer thickness 
is a function of the number of contained water molecules in the interlayer.  Under 
pressure, the variations of a and b lattice parameters were small compared to that 
of c lattice parameter.  Furthermore, larger interlayer space makes the crystal more 
compressible, suggesting that the number of water molecules determines not only 
the interlayer space but overall compressibility of tobermorite.  Since the C-S-H 
gel possesses single dreierketten chain, the phenomenon described above may not 
directly apply to C-S-H gel.  Nevertheless, the mechanism proposed here suggests 
that the content of the interlayer space of calcium silicate hydrates can have an 
influence on both macroscopic mechanical properties of cement paste and 
thermodynamical stability.  

 
However, there is a difference in case of tobermorite 9 Å between 

simulation and experiment.  The result of first-principles calculation predicts well 
the initial pressure-volume behavior, but the experimentally observed volume 
transforms to much stiffer from 2 GPa.  The difference can be due to the 
infiltration of pressure-transmitting medium in the high pressure x-ray experiment 
or the mechanical impact of Al substitution.  Further NMR and Rietveld studies 
are required for structural determination of Al substituted tobermorite 9 Å in order 
to understand the computational results.  Although the first-principles calculation 
is the most accurate method to predict the material properties, the calculation 
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result of jennite is significantly different with previous GGA calculation.  The 
high pressure x-ray diffraction is the ideal method to validate the performance of 
different simulation results.  Setting high convergence criteria in the first-
principles calculation is a key to avoid some local minima of potential energy.  
  

There is a slight difference in layer compressibility between normal and 
anomalous tobermorite 11 Å.  According to Merlino’s hypothesis, normal 
tobermorite has additional ‘zeolitic’ Ca cations in the interlayer of tobermorite 11 
Å with a half occupancy, which results in thermal shrinkage to tobermorite 9 Å.  
However, measured chemical composition of normal and anomalous tobermorite 
used in this study are Ca/(Al+Si) = 0.68 and Ca/Si = 1.05, respectively.  Opposite 
to the Merlino’s hypothesis, anomalous tobermorite has more Ca atoms in 
structure, which might results in stiffer behavior of layer under pressure.  However, 
overall pressure-volume behavior of normal and anomalous tobermorite 11 Å was 
almost identical.  Further study on structural determination of tobermorite 11 Å is 
necessary to explain the pressure behavior and chemical composition.  
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4. High Pressure X-ray Diffraction and First-Principles Calculation 
Studies on Calcium Aluminate Oxides 
 
4.1 Calcium Aluminate Hydrates in Concrete 
  

During the hydration of portland cement, AFm (Al2O3-Fe2O3-mono) 
phases are formed when ions are brought together in appropriate concentrations in 
aqueous systems at room temperature or formed hydrothermally, i.e. in the 
presence of water under pressure above 100 ˚C.  AFm phases have a layer 
structure derived from that of portlandite, Ca(OH)2, whereby one third of Ca2+ 
ions is replaced by a trivalent ion, nominally Al3+ or Fe3+ ion.  The principal layer 
has the chemical formula [Ca2(Al,Fe)(OH)6]

+.  Between the principal layer it 
includes charge-balancing X anions and water molecules [185].  This interlayer 
region thus has the composition [XnH2O]-.  The X anion could be hydroxide, 
silicate, sulfate, chloride, or carbonate.   

 
Carbonate sources in portland cement arise from numerous sources: from 

kiln dust, calcite, impurity in gypsum, or simply by reaction with the atmosphere 
to form carbonate- containing AFm phases, e.g. monocarboaluminate ( 4 11C ACH , 

triclinic, P1 or P1) [186, 187] and hemicarboaluminate ( 0.54 12C AC H , trigonal, R3 c 
or R3c) [188].  These varied sources of potential carbonate are sufficient to 
stabilize hemicarboaluminate or monocarboaluminate, or both in fresh and 
nominally uncarbonated cement.  Monocarboaluminate is stable in contact with 
calcite, CaCO3, but hemicarboaluminate is stable only over a limited range of CO2 
activities.  Thus the hemicarboaluminate is not often observed in real concrete 
systems due to the difficulty of excluding CO2 [189].  Damidot et al. showed that 
with rising carbonate activity, hydroxyl-AFm was replaced first by 
hemicarboaluminate and then by monocarboaluminate [190].  Thus small amounts 
of carbonate can influence the nature and stability of the AFm phase.  Although 
hemicarboaluminate and monocarboaluminate contain only 3.8 and 7.7 wt.% CO2, 
respectively, particular interest to the constitution of modern cement paste is the 
formation of ettringite as a consequence of carbonate additions to cement: sulfate 
displaced from AFm in the course of forming hemicarboaluminate and 
monocarboaluminate contributes to the formation of ettringite [188, 189].  In 
addition, carbon sequestration technique is being actively developed due to global 
carbon emission problem.  In spite of concrete’s remarkable mechanical properties 
and chemical durability as the world’s premier construction material, the massive 
quantity of CO2 emitted during the manufacturing of portland cement is 
responsible for roughly 7-10 % of global anthropogenic CO2 emissions [1], 
making it problematic despite its widespread use.  On the other hand, concrete has 
a great potential as a vast tank of carbon sequestration because of its enormous 
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global usage.  Thus research related to AFm phases containing carbon can provide 
better understanding on the role of concrete as the carbon sequestration. 

  

(a) (b)  
 

Figure 4.1 Crystal structure of (a) strätlingite [191] (b) monocarboaluminate [187]. 
Calcium-aluminate ions are shown as dark blue octahedral, silicate/aluminate ions in 
interlayers are shown as light blue tetrahedra, and oxygen ions are represented as red 
spheres. Water and hydroxyl groups in monocarboaluminate are denoted with red spheres 
and black sticks for oxygen and hydrogen atoms, respectively. 

 
Crystal structures of AFm phases containing silicate and carbonate anion 

are shown in Fig. 4.1.  The summary of crystallographic data of AFm phases is 
given in Table 4.1.  The layer thickness depends on the nature of the X anion and 
the amount of interlayer water, which can be varied by stepwise dehydration at 
different temperature and humidity conditions [185, 192].  Changes in the water 
content associated with concomitant relaxation of the AFm framework have been 
observed in numerous variable-temperature studies, which explain why AFm 
phases undergo several dehydration stages at higher temperatures (see Table 4.1).  
However, the effects of pressure on the structure and the detailed crystal properties 
of dehydrated AFm phases are less well studies.  Recently, Clark et al. calculated 
the bulk modulus of ettringite—one of AFt phases—using x-ray diffraction and 
infrared study [42].  But for AFm phases that are often less stable compared to the 
AFt phase, high pressure structural data are not yet available.  
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Table 4.1 Crystallographic data of calcium aluminate hydrates. 
Mineral 
name 

Chemical 
formula 

Space 
group 

Drying 
condition 

Layer 
thickness 

(Å) 

a 
(Å) 

c 
(Å) 

Vol. 
(Å3) 

Ref. 

Strätlingite 

Ca2Al2SiO7·8H2O R3, 
R-3 

27ºC 37% RH 12.55 5.747 37.64 1076.6 [193] 

27ºC - 5.737 37.59 1071.5 [194] 

27ºC - 5.745 37.77 1079.6 [193] 

30ºC - 5.747 37.64 1076.6 [195] 

Ca2Al2SiO7·4H2O > 135ºC 11.2 - - - [193] 

Ca2Al2SiO7·7.25H2O R-3m 27ºC - 5.745 37.77 1079.6 [191] 

Hemicarbo 
aluminate 

Ca4Al2(CO3)0.5(OH)13 

·5.5H2O 

R3c, 
R-3c 

22ºC 36% RH 8.193 5.770 49.16 1417.4 [196] 

30ºC - 5.761 49.25 1415.6 [195] 

Ca4Al2(CO3)0.5(OH)13 

·4.75H2O 
35ºC 7.63 - - - [196] 

Ca4Al2(CO3)0.5(OH)13 

·4H2O 
80ºC 7.26 - - - [196] 

Ca4Al2(CO3)0.5(OH)13 105ºC 6.6 - - - [196] 

Monocarbo 
aluminate 

Ca4Al2(CO3)(OH)12 

·5H2O 
P1, 
P-1 

27ºC 7.56 5.781 7.855 217.3 [196] 

Ca4Al2(CO3)(OH)12 

·2H2O 
95ºC 7.2 - - - [196] 

Ca4Al2(CO3)(OH)12 130ºC 6.6 - - - [196] 

Hydrogarnet Ca3Al2O6·6H2O IA-3D 

25ºC - 12.576 - 1988.7 [197] 

- - 12.56 - 1981.4 [198] 

27ºC - 12.57 - 1985.9 [199] 

 
This chapter reports the behavior of strätlingite, hemicarboaluminate, 

hydrogarnet (with hemicarboaluminate as a minor phase), monocarboaluminate, 
and tricalcium aluminate under pressure from high-pressure x-ray diffraction 
experiments.  In addition, first-principles calculation has been applied to 
monocarboaluminate hydrates and tricalcium aluminate.  As discussed in chapter 3, 
two different exchange-correlation functionals have been tested for 
monocarboaluminate.  The accuracy of the functional is investigated by comparing 
results with high pressure x-ray diffraction experiments.  Furthermore, full elastic 
tensor coefficients, averaged mechanical properties, and static bulk moduli of the 
materials have been computed.  
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4.2 High Pressure X-ray Diffraction Experiments on Calcium 
Aluminate Oxides 
 
4.2.1 Strätlingite 
 

Dicalcium aluminate monosilicate-8-hydrate Ca2Al2SiO7 ·8H2O, trigonal, 
R3 , R3 or R3 m (also called gehlenite hydrate) occurs in nature as strätlingite [191, 
200].  Its interlayer content is [AlSi(OH)8·H2O]- and the Al is tetrahedrally 
coordinated [201].  This phase also appears in the hydration of slag-containing 
portland cements or blended cements and contributes to compressive strength 
development in commercial high alumina cement [194].  

 
The strätlingite used in the present study was synthesized following the 

methods of Matschei et al. [188].  High pressures were generated using a diamond 
anvil cell.  Ambient condition phase identification and the high pressure powder x-
ray diffraction experiment were carried out at beamline 12.2.2 of the Advanced 
Light Source [38], using a synchrotron monochromatic x-ray beam (λ = 0.6199 Å).  
All samples were finely ground and mixed with a pressure medium of silicone oil 
(a mixture composed of polysiloxane chains with methyl and phenyl groups) and a 
few chips of ruby in a glove box to avoid carbonation [188].  The sample was 
equilibrated for about 20 minutes at each pressure.  Exposure times of 300 sec 
were sufficient to give adequate signals for powder diffraction patterns.  The 
pressure was measured at off-line using the ruby fluorescence technique [150].  
All two-dimensional x-ray data were radially integrated to give powder diffraction 
patterns using the fit2d program [151].  

 
Figure 4.2 Measured x-ray diffraction patterns of strätlingite (λ = 0.6199Å). Bottom 
peaks indicate reference peak positions from [191]. The numbers indicate measured 
pressure (GPa) corresponding to each x-ray pattern. 
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The ambient x-ray diffraction pattern and high pressure patterns of 

strätlingite are shown in Fig. 4.2.  The position and relative intensities of x-ray 
reflections of the strätlingite agree with the data of Kuzel [193] and Rinaldi et al. 
[191].  Diffraction peak positions of (003), (006), (009), (110), and (021) were 
used to calculate the unit cell volume of strätlingite.  Changes in lattice parameters 
and a unit cell volume of the samples were calculated using the software XFit 
[152] and Celref program [153].  The calculated lattice parameters as a function of 
pressure are shown in Table 4.2 and Fig. 4.3.  

 
Table 4.2 High pressure x-ray diffraction results of strätlingite (Silicone oil). 

Strätlingite experiment 
(Silicone oil) 

P (GPa) a (Å) c (Å) V (Å3) 

ambient 5.754(7) 37.56(1) 1077.30(2) 

0.1(1) 5.75(1) 37.56(1) 1075.57(3) 

0.8(2) 5.697(5) 36.887(4) 1036.96(1) 

1.5(2) 5.669(5) 36.678(5) 1020.99(1) 

2.2(2) 5.654(3) 36.603(3) 1013.43(1) 

2.9(3) 5.646(4) 36.480(4) 1007.16(1) 

3.4(3) 5.638(2) 36.456(3) 1003.72(1) 

 

(a) (b)  
Figure 4.3 (a) Variation of lattice parameters of strätlingite under pressure. (b) Refined 
unit cell volume of strätlingite under pressure. 2nd order BM EoS fitting gives the bulk 
modulus of 23(2) GPa at low pressure range and 100(3) GPa at higher pressure range. 

 
The pressure-normalized volume data was fitted by a Birch-Murnaghan 

equation of state (BM EoS).  In the relationship of F versus f in BM EoS, the y-
intercept and slope of the weighted least-squares fit provide the bulk modulus K0 
and its derivative K0´, respectively [99].  A weighted linear least-squares fits with 
errors was applied to consider both pressure and volume error [154].  Due to its 
anomalous compressibility, the bulk modulus of strätlingite was calculated in two 
pressure ranges of 0.1-1.5 GPa and 1.5-3.4 GPa.  In the second pressure range, the 
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initial volume for BM EoS at the point of the convergence was estimated at a 
value of 1035.67 Å3 [202].  Based on the initial volume, the bulk modulus K0 and 
its derivative K0´ were calculated with R2=0.978 and 0.996 fitting convergence, 
shown in Fig. 4.3 (b).  At the first pressure stage, because the number of volume-
pressure points was too small to get a reasonable K0´ value, the value of K0´ was 
fixed at 4.0.  The compressibility data for the BM EoS yielded a bulk modulus of 
K0 = 23(2) and 100(3) GPa from 0.1 to 1.5 GPa and from 1.5 to 3.4 GPa, 
respectively.  
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4.2.2 Hemicarboaluminate 
 

Tetracalcium aluminate hemicarbonate-12-hydrate (also called 
hemicarboaluminate), Ca4Al2(CO3)0.5(OH)13·5.5H2O, trigonal,  3R c  or R3c 
system [196] is another AFm phase that occurs during the hydration of ordinary 
portland cement with very low carbonate contents.  There are two types of carbon-
containing AFm phases: CO3

2- anion monocarboaluminate ( 4 11C ACH , triclinic, 1P  

system [187]) and hemicarboaluminate ( 4 0.5 12C AC H ).  At ambient conditions, 
monocarboaluminate and hemicarboaluminate have [1/2(CO3

2-)·5/2H2O]- and 
[1/4(CO3

2-)·1/2(OH-)·11/4H2O]- as interlayer contents, respectively.  The 
interlayer contents and layer thickness of hemicarboaluminate at varying hydration 
stages were studied by Fischer and Kuzel [196] are summarized in Table 4.1.  

 
During the synthesis of the AFm phases, the low stability of hydroxyl 

AFm results in the appearance of other phases in the course of synthesis, notably 
hydrogarnet with hemicarboaluminate [203].  Hydrogarnet, Ca3Al2(OH)12, cubic, 
Ia3d, whose structure is related to that of grossularite garnet  [107], appears more 
readily in nominally sulfate-free cements.  However, it is strongly destabilized by 
sulfate at low temperatures, (<50 ˚C) thus it does not generally appear during the 
hydration of portland cement unless the cement has been heat cured.  Due to its 
importance in geophysics, the behavior of hydrogarnet under pressure has been 
well studied [204-206].  
 

For strätlingite, silicone oil was used as the pressure medium.  For 
hemicarboaluminate, a 4:1 mixture of methanol:ethanol was used in the first run 
(λ=0.4133 Å) and the silicone oil for the second run (λ=0.4959 Å).  Diffraction 
patterns were collected with incremental rising and falling pressure for all 
experiments.  Fig. 4.4 and 4.5 show the whole x-ray stack of hemicarboaluminate 
with different pressure-transmitting media.  Newly emerging peaks observed in 
the post-compression sample were due to the steel gaskets and ruby chips which 
were present during the collection of the post-compression pattern while they were 
absent at ambient condition.  
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Figure 4.4 Measured x-ray diffraction patterns of hemicarboaluminate (λ = 0.4133 Å) 
with alcohol mixture (Methanol:ethanol=4:1). Hydrogarnet peaks are denoted as (*). 
Bottom peaks indicate reference peak positions from [196]. The numbers indicate 
measured pressure (GPa) corresponding to each x-ray pattern. The (D) means data 
collected in decompression.  

 
Figure 4.5 Measured x-ray diffraction patterns of hemicarboaluminate (λ = 0.4959 Å) 
with silicone oil. Hydrogarnet peaks are denoted as (*). Bottom peaks indicate reference 
peak positions from [196]. The numbers indicate measured pressure (GPa) corresponding 
to each x-ray pattern. The (D) means data collected in decompression.  

 
The reflection data for hemicarboaluminate agreed with the data obtained 

by Fischer and Kuzel [196].  Matschei et al. suggested that monocarboaluminate 
and hydrogarnet could be found coexisting with hemicarboaluminate [188].  Also 
with rising temperature, the high temperature formation of portlandite in 
stoichiometric mixtures arises from the increasing destabilization of 
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hemicarboaluminate.  However, some differences of basal reflections which are 
not consistent with those of monocarboaluminate or portlandite at ambient 
pressure can be explained by the different water contents in the interlayer of the 
hemicarboaluminate.  In the hemicarboaluminate the dehydration is very likely to 
happen as indicated by relatively low temperature of dehydration (Table 4.1).  The 
layer thickness of 8.193 Å of 4 0.5 12C AC H   and 7.63Å of 4 0.5 11.25C AC H   agree with 

those of the ambient diffraction patterns [196], indicating that both 4 0.5 12C AC H  and 

4 0.5 11.25C AC H  coexist in the ambient sample.  Figure 4.6 shows powder diffraction 
pattern corresponding to the basal reflections of the hemicarboaluminate contained 
in a diamond anvil cell with 4:1 methanol:ethanol pressure-transmitting medium.  
As pressure increased, however, those two basal reflections merged together to 
one intense peak.  

 

 
Figure 4.6 Variation of basal peak of hemicarboaluminate (λ = 0.4133 Å) with alcohol 
mixture (Methanol:ethanol=4:1). The numbers indicate measured pressure (GPa) 
corresponding to each x-ray pattern. The (D) means data collected in decompression.  
 
 To calculate the volume of hemicarboaluminate, the (006), (018), (110), 
(119), and (024) peaks were selected.  Like the case of strätlingite, the XFit [152] 
and Celref programs [153] were used to define peak positions at each pressure 
point and compute unit cell volumes and corresponding volume errors.  Similarly, 
the hemicarboaluminate also showed anomalous compressibility.  To understand 
the relationship between this unusual compressibility and the pressure medium, 
the same experiment was performed again with different pressure transmitting 
medium.  The results show that the nature of the pressure-transmitting medium 
itself does not significantly affect these unusual high-pressure phenomena (Table 
4.3 and Fig. 4.7). 
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Table 4.3 High pressure x-ray diffraction results of hemicarboaluminate 
(Methanol:ethanol=4:1 and silicone oil). 

Hemicarboaluminate experiment 
(Silicone oil) 

Hemicarboaluminate experiment 
(M:E=4:1) 

P (GPa) a (Å) c (Å) V (Å3) P (GPa) a (Å) c (Å) V (Å3) 

ambient 5.770(2) 49.181(5) 1418.04(1) ambient 5.765(8) 49.28(5) 1418.94(4) 

0.1(1) 5.771(1) 49.222(9) 1419.98(1) 0.1(1) 5.774(6) 48.92(4) 1412.68(3) 

0.5(1) 5.754(9) 48.29(4) 1385.1(3) 0.9(2) 5.750(1) 46.3(3) 1326.9(2) 

1.1(2) 5.74(8) 46.3(3) 1323.8(2) 1.8(2) 5.71(8) 45.2(3) 1279.3(3) 

2.4(2) 5.70(8) 45.0(3) 1270.7(3) 3.4(3) 5.69(9) 44.0(4) 1237.0(3) 

3.6(3) 5.6(1) 43.9(4) 1232.3(3) 3.8(3) 5.6(1) 43.7(5) 1217.5(4) 

5.4(4) 5.6(1) 43.3(4) 1205.0(3) 4.2(4) 5.6(1) 43.6(5) 1211.3(4) 

 

(a) (b)  
Figure 4.7 (a) Variation of lattice parameters of hemicarboaluminate under pressure. (b) 
The refined unit cell volumes of hemicarboaluminate under pressure. Closed and open 
symbols correspond to pressure medium of alcohol mixture and silicone oil, respectively. 
Black and gray lines indicate BM EoS fitting results of alcohol mixture and silicone oil, 
respectively. 
 

The calculated lattice parameters as a function of pressure are given in 
Table 4.3.  Unlike strätlingite, hemicarboaluminate was found to reversibly 
transform to the initial volume phase with silicone oil as the pressure decreased to 
ambient.  The compressibility of a/a0, c/c0, and volume decreased with increasing 
hydrostatic pressure as shown in Fig. 4.7 (a).  Again, the pressure range could be 
divided into two regions.  In the second pressure range, the initial volume for BM 
EoS calculation provided values of 1361.25 Å3 and 1351.57 Å3 for the silicone oil 
and the methanol and ethanol solution, respectively.  Finally, the compressibility 
data for the BM EoS yielded a bulk modulus of K0 = 15(2) and 14(1) GPa from 
0.1 to 1.1 GPa with silicone oil and from 0.1 to 1.8 GPa with the methanol and 
ethanol solution, respectively (Fig. 4.7(b)).  For the second phase, K0 = 32(2) and 
31(1) GPa from 1.1 to 5.4 GPa with silicone oil and from 1.8 to 4.2 GPa with the 
methanol and ethanol solution, respectively.  The obtained bulk moduli are within 
error limits of standard deviations regardless its pressure medium.  
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Table 4.4 Measured lattice parameters of hydrogarnet in hemicarboaluminate 

(Methanol:ethanol=4:1 and silicone oil). 
Hydrogarnet as an impurity 

(Silicone oil) 
Hydrogarnet as an impurity 

(M:E=4:1) 

P (GPa) a (Å) V  (Å3) P (GPa) a (Å) V  (Å3) 

ambient 12.57(1) 1984.51(7) ambient 12.57(1) 1987.11(1) 

0.1(1) 12.561(8) 1982.38(1) 0.1(1) 12.51(7) 1959.01(7) 

0.5(1) 12.53(5) 1968.62(5) 0.9(2) 12.50(6) 1956.03(7) 

1.1(2) 12.50(1) 1954.48(1) 1.8(2) 12.46(2) 1935.65(3) 

2.4(2) 12.44(2) 1928.98(2) 3.4(3) 12.38(3) 1898.42(3) 

3.6(3) 12.37(7) 1896.45(7) 3.8(3) 12.377(8) 1896.13(1) 

5.4(4) 12.2(1) 1851.0(1) 

 

 
Figure 4.8 The refined unit cell volumes of hydrogarnet under pressure. Closed and open 
symbols correspond to pressure medium of alcohol mixture and silicone oil, respectively. 
Black and gray line indicate BM EoS fitting results of alcohol mixture and silicone oil, 
respectively. 

 
A small amount of hydrogarnet was observed in the hemicarboaluminate 

sample (Fig. 4.4 and 4.5).  Since the crystal structure of hydrogarnet is cubic, it is 
relatively easy to calculate its unit cell volume in spite of its small quantity.  The 
(211), (321), and (400) peaks were selected for calculation.  This volume-pressure 
result showed a perfect linear relationship over the entire pressure range in both 
pressure media (Fig. 4.8).  The lattice parameters are summarized in Table 4.4.  
The BM EoS accounts well for the sets of data obtained with both silicone oil and 
methanol and ethanol solution pressure medium, and yielded a bulk modulus 
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K0=69(4) and 72(4) with the pressure derivative K0´, fixed at 4.0.  In addition, the 
sample was found to reversibly transform to its initial state.  
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4.2.3 Monocarboaluminate 
 

As summarized in Table 4.1, the basic structures of carbon-containing AFm 
phases have been determined and refined for several subtypes using powder or 
single-crystal x-ray diffraction [186, 187, 195, 207-210].  The resulting charge 
imbalance gives the main layers a net positive charge, with the result that the 
interlayer spacing is much greater than in portlandite due to the need to intercalate 
charge-balancing anions.  The layer thicknesses indicate that the CO3

2- ions are 
oriented sub-parallel to the principal layers in monocarboaluminate but 
perpendicular to them in hemicarboaluminate.  In all these CO3

2- containing 
phases, some octahedral cavities contain a CO3

2- ion while others contain varying 
combinations of H2O molecules and OH- ions.  Francois et al. [186] reported 
detailed atomic structures of the ordered type of monocarboaluminate using 
single-crystal x-ray diffraction: among the five water molecules contained in the 
interlayer, two can be considered as only slightly bonded, and strong hydrogen 
bonds between O atoms in carbonate groups and water molecules provide 
cohesion of the interlayer (Fig. 4.9).  In addition, the planar 2-

3CO  groups are 
themselves tilted by 21.8(9) degree with respect to the planes formed by the 
principal calcium aluminate layers.  The disordered monocarboaluminate structure, 
which has a pseudo-hexagonal symmetry, was also solved through single-crystal 
x-ray diffraction [187].  The main difference between these two modifications is 
the presence or absence of a center of symmetry and the order of stacking layers.  
When the structure is centrosymmetric, P1 , the compound is disordered and 
pseudo-hexagonal.  When the structure is non-centrosymmetric P1, the structure is 
ordered but with a less pronounced pseudo-hexagonal nature.  In the structure of 
Fe-containing monocarboaluminate, the carbonate location is different.  While the 
carbonate bonds to the main layer in Al-containing monocarboaluminate, it is 
weakly bonded in the interlayer of Fe-containing monocarboaluminate [210].  

 
The variable interlayer contents and layer thickness of monocarboaluminate 

at varying temperature were studied by Fischer and Kuzel [196] are shown in 
Table 4.1.  In the temperature range 95-130 °C (i) the interlayer molecular water 
of the compound is released in two steps and (ii) the crystallinity degrades.  As the 
crystallinity deteriorates, the corresponding diffraction peak of lamellar distance 
becomes diffuse.  A lower hydrate with the approximate composition 4 8C ACH  and 
a layer thickness of c’=7.2 Å is formed at 100 °C, and at 130 °C a phase of 
composition 4 6C ACH  with the interlamellar peak of 6.3 Å appears, which 

corresponds to the phase whereby all the interlayer water molecules have been lost.  
After that the x-ray reflections become progressively more diffuse until the phase 
is amorphous at 250 °C.  
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Figure 4.9 Crystal structure of monocarboaluminate [187]. Same graphical notation in 
Fig. 4.1 is used. Brown sphere indicates a carbon atom. 

 
The stability of monocarboaluminate and hemicarboaluminate has an 

impact on the bulk chemistry of cements in terms of the formation of ettringite 
[188, 189, 211].  Sections 4.2.1 and 4.2.2 describe structural behavior of 
strätlingite and hemicarboalumiante under hydrostatic pressure where both AFm 
phases experienced pressure-induced dehydration, resulting in an abrupt volume 
contraction around 1.5 GPa.  Reported in this section is a study of the behavior of 
the monocarboaluminate.  In addition, the pressure-volume behavior and bulk 
modulus of the monocarboaluminate are computed and compared with those of 
hemicarboaluminate. 

 
The monocarboaluminate was synthesized from calcium carbonate and 

tricalcium aluminate.  Both materials were mixed in a 1:1 molar ratio and agitated 
in double distilled, CO2 free water with water/solid ratio of 10 at 25 °C.  After 14 
days, the solid was filtered under nitrogen and subsequently dried in a desiccator 
over saturated calcium chloride [188].  Ambient condition phase identification 
were carried out at beamline 12.2.2 of the Advanced Light Source [38], using a 
synchrotron monochromatic x-ray beam with a 400.7570 mm sample to detector 
distance, x-ray wavelength of 0.6199 Å, and exposure time of 300 sec.  
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Figure 4.10 Measured x-ray diffraction patterns of monocarboaluminate (λ = 0.4965Å) 
with silicone oil. Bottom peaks indicate reference peak positions from [187]. The 
numbers indicate measured pressure (GPa) corresponding to each x-ray pattern. The (D) 
means data collected in decompression.  

 
For this high-pressure experiment, a 357.1010 mm sample to detector 

distance and x-ray wavelength of 0.4965 Å were used.  Exposure times of 600 sec 
were sufficient to give adequate signals for high-pressure powder diffraction 
patterns.  The tested pressure range was 0.1-4.3 GPa, and diffraction patterns were 
collected with incremental rising and falling pressure.  The MAR345 image plate 
detector was used in order to perfectly define the background, to observe very 
weak diffraction peaks, and to improve the accuracy of the integrated intensities 
by achieving a better powder average. 

 
The ambient and high pressure x-ray diffraction pattern of 

monocarboaluminate is shown in Fig. 4.10.  The positions and relative intensities 
of ambient x-ray reflections of the monocarboaluminate agree with the data of 
Francois et al. [186].  Thirty-six diffraction peaks were used to refine the unit-cell 
volume.  Ambient crystallographic data of monocarboaluminate is shown in Table 
4.5.  The refined crystal structure is triclinic symmetry with parameters a = 5.77(2) 
Å, b = 8.47(5) Å, c = 9.93(4) Å, α = 64.6(2) °, β = 82.8(3) °, γ = 81.4(4) °, and V = 
433(3) Å3.  Because of the high-resolution synchrotron x-ray diffraction, more 
diffraction peaks than the one calibrated with Z=1/2 [195] appeared.  Thus by 
using the 4 11O-C ACH  data [186] (i.e., ordered-monocarboaluminate of triclinic 

crystal system, P1/P1 space group, and Z=1) as a starting refinement structure, the 
lattice parameters and volume of ambient monocarboaluminate were successfully 
refined.  
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Table 4.5 High pressure x-ray diffraction results of monocarboaluminate (Silicone oil). 
Monocarboaluminate experiment 

(Silicone oil) 

P (GPa) a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å3) 

ambient 5.77(2) 8.47(5) 9.93(4) 64.6(2) 82.8(3) 81.4(4) 433(3) 

0.2(1) 5.76(2) 8.49(3) 9.92(3) 64.6(2) 82.4(3) 81.3(3) 433(3) 

0.5(1) 5.73(1) 8.46(3) 9.89(3) 64.8(2) 82.4(3) 81.3(3) 428(2) 

0.9(1) 5.72(1) 8.45(3) 9.87(3) 64.8(2) 82.4(3) 81.2(3) 426(2) 

1.6(2) 5.71(2) 8.41(3) 9.83(4) 65.0(2) 82.2(3) 81.2(3) 422(3) 

2.4(2) 5.69(2) 8.37(4) 9.78(4) 65.1(2) 82.3(3) 81.1(3) 416(3) 

3.1(3) 5.66(3) 8.34(5) 9.74(5) 65.2(3) 82.3(4) 81.3(4) 412(4) 

4.3(3) 5.64(5) 8.27(9) 9.66(9) 65.4(5) 82.7(8) 80.4(8) 403(7) 

3.7(3) 5.64(5) 8.26(8) 9.68(8) 65.3(5) 82.7(8) 80.4(8) 404(7) 

2.6(2) 5.64(3) 8.35(6) 9.73(6) 65.2(3) 82.4(5) 80.9(5) 410(5) 

0.1(1) 5.77(2) 8.48(4) 9.93(4) 64.7(2) 82.4(3) 81.2(3) 434(3) 

 

(a) (b)  
Figure 4.11 Variation of (a) axial and (b) angular lattice parameters of mono-
carboaluminate under pressure. Closed and open symbols correspond to refined 
parameters measured during compression and decompression, respectively. 

 
The calculated lattice parameters of lengths and angles as a function of 

pressure are shown in Table 4.5 and Fig. 4.11.  In the diamond anvil cell, the error 
ranges of calculated unit-cell volume increased at high pressure.  This might be 
due to its lower symmetry of monocarboaluminate or to a peak broadening effect 
in the diamond anvil cell.  Thus a weighted linear least-squares fit with errors was 
applied to the data to assess both pressure and volume errors [154] .  The pressure-
normalized volume data were fitted by the 2nd and 3rd order BM EoS [99]. 

 
In contrast with the hemicarboalumiante and strätlingite, the data did not 

show any abnormal compressibility or amorphization effect, thus the bulk 
modulus of monocarboaluminate could be calculated over the whole pressure 
range.  However, since the unit-cell volume of the sample experienced some 
degree of unexpected volume contraction during the unloading process, only 
loading points were selected to compute the bulk modulus, K0 and its first 
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derivative, K0 .  The initial volume for BM EoS at the point of a convergence was 
estimated at a value of 433(2) Å3 [202], which is exactly same as the refined 
ambient volume.  Finally, the 2nd and 3rd order BM EoS were fitted to the 
experimental points with R2 = 0.991 and 0.990 fitting convergence, as shown in 
Fig. 4.12.  In the 3rd order BM EoS the bulk modulus of 53(5) GPa with its 
derivative of 5.02 were obtained.  When the first pressure derivative, K0, is fixed 
at 4.0 (i.e., the 2nd order BM EoS), it yields a bulk modulus of 54(4) GPa.  
 

(a) (b)  
Figure 4.12 (a) Refined unit cell volumes of monocarboaluminate under pressure. (b) F-f 
plot of monocarboaluminate. The 2nd and 3rd order BM EoS fittings give the bulk 
modulus of 54(4) GPa and 53(5) GPa. 
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4.2.4 Tricalcium aluminate 
 

Development of greener methods for the production of concrete requires 
determination of the physical properties and exact mechanism of clinker materials.  
Despite extensive research conducted to date, questions regarding these properties 
and mechanisms remain elusive.  The third component in ordinary Portland 
cement clinker is tricalcium aluminate; Ca3Al2O6 (C3A in cement chemistry 
notation) with an amount ranging from 0-15 weight%.  Because of the high heat it 
emits and rapid hydration, even a relatively small amount can lead to a significant 
effect on the early hydration characteristics of a cement paste and the long-term 
sulfate resistance of concrete.  To control the immediate reaction of C3A with 
water and its rapid hydration, gypsum is added to the clinker [1, 107].  Production 
clinkers contain cubic or orthorhombic forms of C3A, alone or in combination.  
The orthorhombic modification is also known as the prismatic, dark interstitial 
material, which occurs if sufficient alkali is available.  In addition, its formation 
appears to be favored also by rapid cooling and by bulk compositions potentially 
able to yield a relatively high proportion of aluminate [212]. 

 

 
Figure 4.13 Crystal structure of tricalcium aluminate [213]. Light blue tetrahedra, dark 
blue spheres and red spheres indicate aluminates, calcium and oxygen atoms. 

 
For the cubic form of C3A, in 1967 Burdick and Day discovered the 

fourfold coordination of aluminum [214].  Later on, Mondal and Jeffery defined 
its detailed atomic structure using single-crystal x-ray diffraction [213]; a=15.263 
Å, space group Pa3 and Z=24; the structure is built from Ca+2 ions and eight rings 
of six AlO4 tetrahedra of formula -18

6 18Al O  in a unit cell (Fig. 4.13).  The unit cell of 
C3A contains 24 Ca3Al2O3 units.  The asymmetric unit contains 2 Ca3Al2O3 units.  
The Ca atoms occupy 56 body-centering positions of (1/8,1/8,1/8) and its 
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symmetry-related positions.  The presence of the holes in the structure facilitates 
the action of water in the hydration process [213, 215].  The 48 Al atoms and the 
remaining 16 Ca atoms occupy the corners of the pseudo-cells.  The six AlO4 
tetrahedra in the Al3O18 ring are tilted alternately to each side of the ring.  Since 
some Ca coordinations to O atoms are rather irregular, the presence of short Ca-O 
bonds indicates a certain amount of strain to assist the break up of the structure 
under the action of water and the production of hydroxyl, hydroxylated aluminate, 
and calcium ions in solution.  

 

 
Figure 4.14 Measured x-ray diffraction patterns of tricalcium aluminate (λ = 0.6199Å) 
with silicone oil. Bottom peaks indicate reference peak positions from [213]. The 
numbers indicate measured pressure (GPa) corresponding to each x-ray pattern. The (D) 
means data collected in decompression.  

 
With the increasing interest in the advanced applications of cementitous 

materials at the nano-scale, calculation of elastic constants is essential because 
many other parameters related to mechanical properties can be derived from them.  
In addition, C3A agglomerates may be preserved unhydrated in mature cement 
pastes, and therefore affect to the global mechanical properties of the cement paste.  
Velez et al. found a value of the Young’s modulus of C3A; E = 145(10) GPa using 
the nanoindentation method and E = 190(10) GPa from resonance frequency 
technique [216].  Manzano et al. have computed the elastic constants and 
reactivity of C3A by first-principles [171].  In this section, high pressure x-ray 
diffraction is used to investigate the crystal structure of the C3A to pressures up to 
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4.8 GPa.  In addition, the measurements are supported by first-principles 
calculations in later section. 

  
The pure C3A was purchased from CTL group (http://www.c-t-l.com).  

Ambient phase identification and the high pressure x-ray diffraction experiment 
were carried out at beamline 12.2.2 of the Advanced Light Source [38].  For 
ambient x-ray diffraction, a 350.8130 mm sample to detector distance, x-ray 
wavelength of 0.6199 Å, and exposure time of 300 sec were chosen.  The ambient 
x-ray result is shown in the bottom diffraction pattern of Fig. 4.14.  The peak 
positions and relative intensities of the pattern exactly matched with those 
determined by Mondal and Jeffery [213].  High pressures were generated using a 
two-screw DAC.  Same sample-to-detector distance (350.8130 mm) and x-ray 
wavelength (0.6199 Å) were selected for the high-pressure experiments.  Exposure 
times of 600 sec were sufficient to give adequate signals for high-pressure powder 
diffraction patterns.  The tested pressure range was 0.1-4.8 GPa, and diffraction 
patterns were collected with incremental rising and falling pressure.  The series of 
x-ray diffraction patterns taken at different pressures is shown in Fig. 4.14.  The 
(*) peak indicates strong diffraction peak from the ruby in the DAC which is, of 
course, not shown in the ambient x-ray diffraction pattern.  At ambient pressure, 
25 diffraction peaks were used to refine the unit-cell volume.  Although the 
weaker peaks of C3A disappeared during increasing pressure, 14 peaks were used 
to calibrate its volume at 4.8 GPa, which is an adequate and this number of peaks 
is enough to calibrate the accurate unit-volume of simple cubic crystal system.  

 
Table 4.6 High pressure x-ray diffraction results of tricalcium aluminate (Silicone oil). 

Tricalcium aluminate experiment 
(Silicone oil) 

P (GPa) a (Å) V  (Å3) 

ambient 15.259(6) 3552(1) 

0.1(1) 15.258(6) 3552(1) 

0.4(1) 15.256(6) 3551(1) 

1.2(2) 15.202(9) 3513(2) 

2.9(3) 15.135(9) 3467(2) 

3.6(3) 15.11(2) 3447(3) 

4.8(4) 15.06(1) 3415(2) 

4.1(3) 15.09(2) 3435(3) 

3.5(3) 15.12(2) 3454(3) 

2.9(3) 15.14(3) 3468(5) 

0.2(1) 15.27(3) 3559(5) 
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(a) (b)  
Figure 4.15 (a) Refined unit cell volumes of tricalcium aluminate under pressure. (b) F-f 
plot of tricalcium aluminate. The 2nd and 3rd order BM EoS fittings give the bulk modulus 
of 110(3) GPa and 102(6) GPa. 

 
Ambient and high pressure crystallographic data of C3A are summarized in 

Table 4.6.  At ambient pressure the refined crystal structure is a symmetry group 
of Pa3 with parameters a = 15.259(6) Å and V=3552(1) Å3.  There results agree 
well with those obtained by Mondal and Jeffery, which gives a = 15.263(3) Å and 
V=3556(2) Å3.  The refined lattice parameters at different pressures are shown in 
Table 4.6 and Fig. 4.15.  In the DAC, the error ranges of calculated unit-cell 
volume increased at high pressure.  This might be due to the peak broadening 
effect in the DAC as discusses in previous section.  Again the weighted linear 
least-squares fit with errors was applied to the data to assess both pressure and 
volume errors [154].  The pressure-normalized volume data were fitted by the 2nd 
and 3rd order BM EoS.  Since the crystal structure of C3A is a simple cubic, the 
finite strain EoS is the ideal equation of state for C3A under hydrostatic pressure.  
The initial volume, V0, for finite strain EoS at the point of a convergence was 
estimated at a value of 3552.6 Å3, which is the same as the refined ambient 
volume.  Finally, the 2nd and 3rd order BM EoS were fitted to the experimental 
points with R2 = 0.998 fitting convergence, as shown in Fig. 4.15.  In the 3rd finite 
strain EoS, the bulk modulus of 110(3) GPa with its derivative of 9.5 were 
obtained.  The 2nd order BM EoS gives a bulk modulus of 102(6) GPa.  

 



104 
 

4.3 First-principles Calculations on Calcium Aluminate Oxides 
 
4.3.1 Monocarboaluminate 
 

Previous x-ray diffraction experiments on hemicarboaluminate and 
strätlingite found that dehydration occurs under hydrostatic compression.  This 
makes the crystal stiffer and yields larger isothermal bulk modulus at pressures 
above 1.5 GPa.  However, this phenomenon was not found in 
monocarboaluminate.  Its bulk modulus (K0=54 GPa) is almost four times larger 
than that of hemicarboaluminate (K0=14 GPa) and this stiffness seems to prevent 
dehydration.  This can be one of the reasons of increase in mechanical 
performance of concrete attained by the use of limestone.  Nevertheless, detailed 
atomic structure of monocarboaluminates could not be refined because of the 
extremely small sample sizes and complexity of the crystal structure.  Thus the 
detailed atomic structure under high pressure remained undefined, especially the 
locations of the interlayer water molecules and orientation angle of anionic 
carbonation group under pressure.  In this section, the crystal structures of two 
monocarboaluminate hydrates, with 5 interlayer waters (5 water MC) and 2 
interlayer waters (2 water MC) are investigated using first-principles calculations.  
Like in the case of calcium silicate hydrates, two different exchange-correlation 
functionals were tested.  The accuracy for these systems was investigated by 
comparing results with previous experimental crystallography data.  The relation 
between crystallographic information and structural behavior under pressure has 
been resolved.  Furthermore, full elastic tensor coefficients, averaged mechanical 
properties, and static bulk moduli of both monocarboaluminate hydrates have been 
computed. 
 

Density functional theory (DFT) has been used to address the elasticity of 
both fully and partially hydrated monocarboaluminate phases.  The identical DFT 
calculation with section 3.3 was performed using LDA and GGA [85] exchange-
correlation functionals with a plane-wave energy cut-off of 1600 eV.  The 
reference valence configurations and core radii for GGA and LDA 
pseudopotentials were chosen as 3s2, 3p6, 4s2, r_c = 1.2Å for Ca, 2s2, 2p6, 3s2, 3p1, 
r_c = 1.1Å for Al, 2s2, 2p4, r_c = 0.8Å for O, 2s2, 2p2, r_c = 0.8Å for C, and 1s1, 
for H.  We have used a converged k-points grid of 4 × 2 × 2 [98]. 

 
Before calculating structural and elastic properties, structural optimizations 

were performed at zero pressure.  As a starting crystal structure, the ordered 
monocarboaluminate was used for a 5-water monocarboaluminate hydrate (5 
water MC) [186].  A previous study demonstrated that structures with 16 and 17 
water molecules have weak hydrogen bonds [186] (Fig. 4.8).  Therefore, the 
weakly bonded molecules are removed to generate a partially hydrated 
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monocarboaluminate (2 water MC).  In addition, a water molecule of oxygen 
number of 14 is also removed to be consistent with the reported chemical formula 
of 2 water MC, 4 8C ACH  [217].  Atomic positions and lattice parameters were 
optimized until atomic forces were smaller than 10-4 eV/Å and total energy 
converged within 10-6 eV.  The final residual stress components of the optimized 
structure were less than 0.1 kbar.  The relaxed lattice parameters and fractional 
atomic positions of both materials are summarized in appendix Table A4 and A5. 

 

(a)  (b)   
Figure 4.16 (a) Geometrically optimized 5 water monocarboaluminate projected along 
[100]. (b) Water and hydroxyl group distribution in calcium aluminate principal layer. 
Calcium-aluminate ions are shown as dark blue octahedral, silicate/aluminate ions in 
interlayers are shown as light blue tetrahedra, and oxygen ions are represented as red 
spheres. Water and hydroxyl groups are denoted with red spheres and black sticks for 
oxygen and hydrogen atoms, respectively. 

 

(a) (b)  
Figure 4.17 (a) Geometrically optimized 2 water monocarboaluminate projected along 
[100]. (b) Water and hydroxyl group distribution in calcium aluminate principal layer. 
Same graphical notation in Fig. 4.15 is used. 

 
The optimized crystal structures are shown in Figs. 4.16 and 4.17.  Lattice 

parameters and unit cell volume from structures relaxed using the LDA functional 
compare more favorably with high pressure single-crystal [186] and ambient 
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pressure x-ray diffraction data.  However, the LDA tilting angle between the 
carbonate group and the parallel layers is 9.6 °, which is quite smaller than the 
GGA angle, 19.1 ° and the experimental value, 21.8 °.  Detailed crystallographic 
analysis of the 2 water MC does not exist for comparison.  However, the 
experimentally observed interlayer spacing of 7.2 Å is only 3 % larger than the 
LDA result, 6.97 Å.  Figure 4.18 shows experimental and simulated x-ray 
diffraction patterns for the 5 water MC and the 2 water MC structures.  Because of 
the small unit cell volume and lattice parameters of the 2 water MC, the peak 
positions of x-ray diffraction pattern shifted.  The weak (010) peak in optimized 
structures of 5 water and 2 water MC is overlapped with a strong (011) peak in x-
ray spectra of Francois et al.  Except that, overall x-ray profile of our crystal 
model is similar with the reference.  The simulated x-ray profile of 2 water MC 
can be used in identifying the partially hydrated monocarboaluminate in concrete 
systems.  In experiment, the x-ray pattern is more diffuse than simulated one.  This 
might be due to the disorder of hydrogen or water molecules in real system.  This 
will be discussed in more detail in discussion section.  

 

 
Figure 4.18 X-ray diffraction patterns of optimized monocarboaluminates and from the 
single-crystal x-ray experiment [218]. Weak (010) peak is overlapped with strong (011) 
peak in the reference x-ray profile of [218]. 
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Figure 4.19 Comparison between high pressure x-ray diffraction patterns of 
monocarboaluminates and simulated patterns from first principles calculations. Hydrogen 
or water disorder makes experimental x-ray profile more diffuse. 

 
Table 4.7 First-principles calculation results of monocarboaluminate containing 5 water 

molecules (LDA, GGA). 
5 water monocarboaluminate LDA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) E (Ry) 

-1.8 5.954 8.558 9.762 67.86 82.03 80.75 453.13 -698.15 

-1.4 5.933 8.529 9.714 67.90 82.01 80.86 448.04 -698.15 

-0.8 5.909 8.495 9.675 67.90 81.98 80.84 442.57 -698.15 

-0.3 5.894 8.463 9.650 67.90 81.86 80.90 438.60 -698.15 

0.4 5.861 8.426 9.601 67.88 81.85 80.91 431.94 -698.15 

1.3 5.827 8.390 9.547 67.88 81.93 80.99 425.38 -698.14 

1.9 5.810 8.361 9.519 67.89 81.86 81.05 421.44 -698.14 

2.7 5.783 8.335 9.475 67.82 81.95 81.09 416.16 -698.13 

3.5 5.756 8.305 9.442 67.79 81.95 81.25 411.28 -698.12 

5.0 5.722 8.269 9.375 67.53 81.99 80.77 403.11 -698.1 

5 water monocarboaluminate GGA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) E (Ry) 

-0.6 5.850 8.607 10.110 64.66 82.50 80.87 453.13 -1300.5 

-0.3 5.837 8.573 10.040 64.95 82.34 80.77 448.04 -1300.5 

0.0 5.829 8.526 9.955 65.34 82.27 80.77 442.57 -1300.5 

0.3 5.819 8.499 9.900 65.55 82.21 80.74 438.60 -1300.5 

0.9 5.800 8.458 9.807 65.88 82.10 80.69 431.94 -1300.5 

1.5 5.781 8.411 9.721 66.18 82.07 80.72 425.38 -1300.5 

1.9 5.768 8.384 9.673 66.33 82.07 80.73 421.44 -1300.4 

2.5 5.747 8.352 9.605 66.59 82.07 80.77 416.16 -1300.4 

3.2 5.729 8.319 9.548 66.75 82.07 80.79 411.28 -1300.4 

4.3 5.697 8.260 9.463 66.91 82.08 80.90 403.11 -1300.4 
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Table 4.8 First-principles calculation results of monocarboaluminate containing 2 water 

molecules (LDA, GGA). 
2 water monocarboaluminate LDA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) E (Ry) 

-1.5 5.966 8.361 9.170 71.03 79.75 79.75 422.07 -594.7 

-1.1 5.932 8.350 9.111 71.19 79.43 79.50 416.26 -594.7 

-0.8 5.896 8.415 8.960 71.79 78.66 79.48 410.48 -594.7 

-0.6 5.890 8.311 8.956 71.86 78.63 79.29 404.77 -594.7 

0.1 5.918 8.530 8.672 71.97 75.82 77.68 399.09 -594.71 

0.6 5.898 8.459 8.637 72.15 75.95 77.77 393.42 -594.71 

1.2 5.868 8.398 8.618 72.29 75.86 77.68 387.83 -594.7 

1.7 5.864 8.180 8.663 72.16 77.38 78.70 382.26 -594.69 

2.2 5.826 8.092 8.684 72.14 77.47 78.81 376.78 -594.68 

2 water monocarboaluminate GGA computation 

P (GPa) a (Å) b (Å) c (Å) α (º) β (º) γ (º) V (Å3) E (Ry) 

-1.0 5.864 8.565 10.140 64.86 80.92 79.49 451.49 -1196.9 

-0.7 5.853 8.501 10.080 65.18 80.89 79.43 445.61 -1196.9 

-0.5 5.843 8.436 10.014 65.50 80.96 79.45 439.78 -1196.9 

-0.2 5.826 8.380 9.958 65.77 80.93 79.41 433.99 -1196.9 

0.1 5.814 8.313 9.904 66.15 80.86 79.26 428.22 -1196.9 

0.6 5.805 8.251 9.849 66.38 80.76 79.09 422.52 -1196.9 

0.8 5.797 8.163 9.838 66.68 80.43 78.38 416.84 -1196.9 

1.2 5.777 8.096 9.802 66.98 80.46 78.26 411.23 -1196.9 

1.6 5.758 8.042 9.745 67.23 80.55 78.30 405.62 -1196.9 

2.1 5.740 7.987 9.690 67.46 80.66 78.36 400.09 -1196.9 

 
Static equilibrium structures at arbitrary pressures were obtained using 

damped variable cell shape molecular dynamics.  Figure 4.19 shows three 
simulated x-ray diffraction patterns from LDA structures together with 
experimental x-ray patterns previously obtained at similar hydrostatic pressures.  
The overall shape and relative intensity of the main peaks are in good agreement, 
although calculated peaks are slightly shifted due to smaller d-spacings or 
different pressures.  Computed lattice parameters for the same structure at 
different pressures are shown in Fig 4.20.  As indicated in Fig. 4.21, LDA and 
GGA compression curves for the 5 water MC structure compare well with the 
experimental data, with the LDA giving a better agreement.  GGA overestimates 
its volume at ambient.  The general behaviors of calculated parameters are very 
similar to the experimental behaviors.  LDA predicted the c parameter to be 5 % 
smaller but the angle α to be 3 % larger, showing a correlation between these 
parameters.  They compensate for each other and produce volumes similar to the 
experimental volume, i.e., only 0.3 % smaller in the pressure range investigated.  
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(a) (b)  
Figure 4.20 Comparison of (a) axial and (b) angular compressibilities of 5 water 
monocarboaluminate from high pressure experiment and LDA and GGA simulation. 

 

 
Figure 4.21 Variation of unit cell volume of 5 water monocarboaluminate from high 
pressure x-ray diffraction experiment and LDA and GGA calculation. 
 

Then elastic coefficients for these structures were calculated based on a 
stress-strain relation as discussed in chapters 2 and 3.  Strains of ± 0.5 % have 
been applied to get the coefficients.  Due to the low symmetry, it has 21 
independent elastic coefficients.  

 
6

1
i ij j

j

C 

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       - (4.1) 
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This has been done by applying strains to the lattice vectors and calculating the 
resulting stress tensor [88, 219].  The atomic positions were re-optimized in each 
fixed strained configuration. The applied Lagrangian strains of 1


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where the indices are given in Voigt notation.  Sufficiently small strains of δ = 
±0.5 % were applied, so that the elastic coefficients could be obtained from taking 
averages of four and two values for off-diagonal and diagonal coefficients in Eqn. 
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(4.2), respectively.  Table 4.9 compares computed elastic constants for 5 water and 
2 water MC with LDA and GGA.  

 
Table 4.9 summarizes the computed LDA and GGA elastic coefficients for 

5 water and 2 water monocarboaluminates.  The isothermal bulk modulus is 
obtained by fitting a finite strain expansion to the calculated free energy versus 
volume relation.  The Helmholtz free energy versus volume relation is expanded 
in a power series in terms of the Eulerian strains.  As discussed in previous chapter, 
the Helmholtz free energy, F, is identical with the internal energy, E (F=E-TS) 
since T = 0 K.  The Birch-Murnaghan equation of state corresponds to a finite 
strain expansion to third power in the strain [99].  

 
3 22 2 2

- - -
3 3 3

'0 0
0 0

0 0 0

9
( ) -1 -1 6 - 4

16

V K V V V
E V E K

V V V

      
                                         

  - (4.5), 

 
The fitting gives the reference volume, isothermal bulk modulus at zero pressure, 
and its pressure derivative at 0 GPa.  Then, the RVH and HS bound values were 
computed based on elastic coefficients, Cij, determined by first-principles 
calculations.  The computed averaged mechanical properties for 5 water and 2 
water MC structures are summarized in Table 4.9.  
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Table 4.9 Calculated elastic coefficients of monocarboaluminate. 
Monocarboaluminate computation 

5w MC 2w MC 5w MC 2w MC 

(GPa) LDA GGA LDA GGA (GPa) LDA GGA LDA GGA 

c11 94.2 107.3 84.3 83.2 K_Voigt 57.0 42.2 46.1 27.9 

c12 36.6 27.3 30.7 14.8 K_Reuss 55.9 37.5 44.5 20.4 

c13 38.0 27.6 31.5 13.9 K_RVH 56.5 39.8 45.3 24.1 

c14 -7.2 -8.2 -8.8 -8.0 G_Voigt 32.7 34.8 29.6 24.9 

c15 8.1 6.8 8.2 8.2 G_Reuss 30.6 31.0 25.3 17.9 

c16 2.8 4.0 6.7 8.7 G_RVH 31.7 32.9 27.5 21.4 

c22 83.8 70.8 63.5 44.6 E_RVH 80.1 77.4 68.5 49.6 

c23 43.0 18.6 31.0 12.1 v_RVH 0.3 0.2 0.2 0.2 

c24 -2.6 -3.4 -8.6 -7.5      

c25 1.2 3.1 -1.6 5.2      

c26 -4.1 -4.3 -1.9 5.8      

c33 99.8 55.0 80.7 41.5      

c34 -1.6 -7.1 2.9 -7.1      

c35 -4.0 -4.8 1.7 2.9      

c36 -4.3 0.6 3.0 3.5 

c44 31.7 43.5 47.4 43.7 

c45 -2.1 -0.5 -2.9 -3.5 

c46 -2.8 -1.3 -5.0 -1.8 

c55 35.4 36.9 28.3 20.3 

c56 0.5 2.0 -2.2 -7.2 

c66 43.2 40.2 27.2 17.6 
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(a) (b)  

(c) (d)  
Figure 4.22 Directional Young’s modulus of monocarboaluminates in conventional 

orthogonal coordinate system ( Z c
 

,Y c a
  

 and X Y Z
  

) : results for 5 water MC 

using (a) LDA and (b) GGA functionals and for 2 water MC using (c) LDA and (d) GGA 
functionals. Scale bars indicate Young’s modulus in GPa. Anisotropy decreases by 
addition of water molecules in the interlayer region. 

 
Last, the Young’s modulus for uniaxial compression along arbitrary 

directions was computed like the cases of tobermorite 14 Å and 9 Å.  The general 
definition of the directional Young’s modulus in terms of unit vectors, n̂  along the 
compression axis is: 

 

-1

1
ˆ ˆ ˆ ˆ[ : ( )]ani T

E
n C n n n


  

      - (4.6) 

 
Magnitudes of the LDA and GGA Young’s modulus for monocarboaluminate 
hydrates are represented in colors on the surface of spheres (Fig. 4.22).  X, Y, and 
Z directions are defined by the conventional setting of triclinic crystal system 
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( Z c
 

, Y c a
  

, and X Y Z
  

).  The large structural anisotropy of mono-

carboaluminate hydrates is evident in this figure.  The softest direction of [011] 
was computed as the direction perpendicular to the principal layer.  
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4.3.2 Tricalcium aluminate 
 

In this section, the results of first-principles calculation on tricalcium 
aluminate will be presented.  Density Functional Theory (DFT) [86, 220] 
calculations were performed using GGA [85] for exchange-correlation energy.  
All pseudopotentials are generated by Vanderbilt Ultrasoft pseudopotential which 
allows a low-energy cutoff and high accuracy of large-scale calculations [166].  
The configurations of reference and core radii for pseudopotentials have been 
taken as 3s2, 3p6, 4s2, and r_c = 1.2 Å for Ca, 2s2, 2p6, 3s2, 3p1, and r_c = 1.1 Å for 
Al, and 2s2, 2p4, and r_c = 0.8 Å for O, respectively.  

 
Because the system size is large (264 atoms in a unit cell), a γ-point 

sampling of the Brillouin zone was selected for k-point integration.  Calculations 
of elastic properties required precisely relaxed atomic positions and highly 
converged total energies, forces, and stresses.  Therefore, a plane-wave cutoff 
energy of 1000 eV for the wave functions and geometry optimization convergence 
criterion of 10-5 eV for the total energy were used.  The achieved residual stress 
components were less than 1 kbar. 

 

(a) (b)  
Figure 4.23 (a) Geometrically optimized tricalcium aluminate projected along [100]. (b) 
Geometrically optimized structure of Al6O18 ring. Light blue tetrahedra, dark blue 
spheres and red spheres indicate aluminates, calcium and oxygen atoms. 

 
Before calculating structural and elastic properties, structural optimizations 

were performed to equilibrate the structure at zero pressure and arbitrary stress 
states.  This optimization is computationally expensive but important to avoid 
possible metastable states and to ensure that the relaxed structure is in the region 
where linear elasticity holds.  Thus, atomic positions and lattice parameters were 
fully relaxed.  Although cubic symmetry was not enforced, unit-cell angles 
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remained equal to 90 ° and lattice parameters remained essentially equal, 
indicating that a simple cubic symmetry was always found after relaxation.  

 
The relaxed lattice parameter, a, is 15.39 Å, which is 0.8 % larger than that 

obtained by Mondal and Jeffery [213].  This slight overestimation of the cell 
parameter is typical of the GGA functional [221, 222].  Fractional atomic positions 
of Mondal and Jeffery and the relaxed cell are summarized in appendix Table A6.  
Referred to its symmetry group of Pa3, the coordinations of only 14 atoms are 
summarized instead of 264 atoms.  The calculations herein show an excellent 
agreement with the experimental data.  The optimized crystal structure and six-
member ring of AlO4 tetrahedra are graphically shown in Fig. 4.23.  

 
The components of the elastic constant tensor were calculated using stress 

vs strain relations where the Nielsen-Martin stresses were obtained after fully 
relaxing structures at a certain pressure [183, 223].  Starting from these pre-
compressed states with lattice parameters (a,b,c) A

  
, the lattice parameters of the 

strained unit cell (a',b',c') A'
  

 are obtained from the relationship  A'= 1+ε A
  

, where 

1


 is the unit matrix and ε


 is a Lagrangian strain tensor. Due to the cubic 
symmetry, C3A has only three independent elastic moduli tensor coefficient: C11, 
C12, and C44.  Thus two different strains of 1


 and 4


 were applied [183, 224]: 
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where the indices are given in Voigt notation.  Strains of different magnitude (δ = 
0.5, 1, 1.5, and 2%) and pressure P was subtracted from calculated stresses 1 , 2 , 
and 3  before the components of the stress tensor were extracted from the 
following linear relationship: 
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Strains of different magnitude enabled us to extract the linear dependent of stress 
on strain.  From the linear fitting of the computed points, the intercepts of each 
three lines give 169.8, 68.3, and 53.7 GPa for C11, C12, and C44, respectively.  The 
calculated elastic constants are summarized in Table 4.10. 
 

Table 4.10 Calculated elastic coefficients of tricalcium aluminate. 
Tricalcium aluminate GGA  

Applied strain 0.50% 1.00% 1.50% 2.00% at zero pressure -3% to 3% [225] 

a (Å) 15.39 15.38 

V (Å3) 3645.2 3638.1 

C11 (GPa) 168.3 168.7 167.9 165.7 169.8 172.1 

C12 (GPa) 68.9 69.4 69.9 70.1 68.3 68.3 

C44 (GPa) 53.4 53.1 53.1 52.6 53.7 56.1 

K_RVH (GPa) 102 102.5 102.6 101.9 102.1 102.9 

G_RVH (GPa) 51.99(1) 51.7(1) 51.4(1) 50.6(1) 52.5(1) 54.4 

E_RVH (GPa) 133.1 132.7 132.2 130.3 134.4 138.7 

v_RVH (GPa) 0.28 0.28 0.29 0.29 0.28 0.28 

 
Like in chapter 3, two different bulk moduli have been theoretically 

computed.  The first uses calculated components of the elastic constant tensor to 
compute RVH averages.  This method gives bounds on the bulk modulus (K) of 
isotropic poly-crystalline aggregates and shear (G) modulus.  From the computed 
K and G, Young modulus (E) and Poisson ratio (η) are also calculated (Table 
4.10).  The second method is based on the analysis of the total energies of 
uniformly compressed states [99, 226].  In this case Eulerian strains are used and a 
finite strain equation of state is fit to the energy vs volume or pressure versus 
volume relation.  Figure 4.24 shows GGA prediction line based on five 
computational data points up to 10 GPa and the fitting curve.  This gives K0 = 
106.0 GPa, K0´ = 3.8, and V0 = 3647.4 Å3.  Manzano et al. applied first method to 
compute elastic constants and mechanical properties of C3A (Table 4.10).  In this 
study, both methods have been applied to compare with high pressure 
experimental results and previous simulation by Manzano et al. [225]. 
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Figure 4.24 Variation of unit cell volume of tricalcium aluminate from high pressure x-
ray diffraction experiment and GGA calculation. RVH bulk modulus from [225] is used 
for pressure-volume relation. 
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4.4 Discussion on Elastic Properties of Calcium Aluminate Oxides and 
Calcium Aluminate Hydrated Oxides 
 

Calculated bulk modulus and its first derivative of all samples are 
summarized in Table 4.11.  Under high pressure, both strätlingite and 
hemicarboaluminate show a sudden volume contraction around 1.5 GPa.  Previous 
high pressure studies in materials containing large channels have shown that some 
pressure-transmitting medium can infiltrate into structural channels and cause a 
volume discontinuity [182, 227].  These studies have shown that the high pressure 
behavior is highly dependent on the molecular size of the pressure-transmitting 
medium.  To determine the pressure medium effect on the abrupt volume 
contraction on AFm phases, the behavior of hemicarboaluminate was checked 
with two different pressure media and it was determined that the pressure medium 
does not affect the abnormal pressure behavior of AFm phases.  
 

Table 4.11 Bulk modulus, its first derivative and ambient volume of calcium aluminate 
hydrates according to the Birch-Murnaghan equation of state. 

  
Strätlingite 

(Silicone oil) 
Hemicarboaluminate 

(Silicone oil) 
Hemicarboaluminate 

(M:E=4:1) 
Monocarboaluminate 

(Silicone oil) 

P range 0.1-1.5 1.5-3.4 0.1-1.1 1.1-5.4 0.1-1.8 1.8-4.2 0.1-4.3 

3rd EoS 

K0 (GPa) - 100(11) - 32(7) 9(2) 30(3) 53(5) 

K0' - 3.8 - 4.19 13.6 4 5.02 

V0 (Å
3) - 1035.67 - 1361.25 1418.94 1351.57 433 

2nd EoS 
K0 (GPa) 23(2) 100(3) 15(2) 32(2) 14(1) 31(1) 54(4) 

V0 (Å
3) 1077.30 1035.67 1418.04 1361.25 1418.94 1351.57 433 

 
 Although the ambient sample began with two hydration stages of 
hemicarboaluminate, these two basal peaks, at 8.193 Å for 4 0.5 12C AC H  and 7.63 Å 

for 4 0.5 11.25C AC H , merge together into one intense peak under pressure (Fig. 4.6).  

This might be explained if the fully-hydrated hemicarboaluminate ( 4 0.5 12C AC H ), 

initially mixed with 4 0.5 11.25C AC H , moves towards 4 0.5 11.25C AC H  once the pressure 
attains a certain level.  Moreover, the basal reflection decreased stepwise to 
another hydration stage, i.e. 7.26 Å of 4 0.5 10.5C AC H  (Table 4.1), indicating that this 
might reflect pressure-induced dehydration.  
 

Another possibility is that, with changing pressure, the re-orientation of the 
carbonate groups can occur.  The interchangeable ions in hemicarboaluminate 
include both OH and CO3; the planar carbonate groups are assumed to be oriented 
normal to the plane of the calcium aluminate layer.  Because of this orientation, 
which is not very economical in filling space, Balonis and Glasser noted that its 
physical density is lower than that of a hypothetical parallel arrangement of planar 
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carbonate groups [195].  In monocarboaluminate, the carbonated group is sub-
parallel to the main layer (tilted by 21.8 ° from the main layers) [186, 187].  A 
pressure-induced change in the orientation of the carbonate group could explain 
the gradual discontinuity with rising pressure.  Unlike strätlingite’s perfect-bilinear 
pressure-volume behavior, hemicarboaluminate shows gradual abnormal pressure-
volume behavior.  Thus gradual abnormal compressibility of hemicarboaluminate 
could result from the re-orientation of carbonate groups or from an entirely 
different cause; pressure-induced dehydration.  
 

To verify the two hypothesis, the hemicarboaluminate samples were 
measured in two different pressure transmitting media: hygroscopic 4:1 
methanol:ethanol solution and non-hygroscopic silicone oil.  If the reorientation of 
carbonate group of hemicarboaluminate is the dominant process, the type of 
pressure medium should not affect the final structure upon unloading.  However, if 
pressure-induced dehydration is the dominant mechanism the chemical nature of 
the pressure medium must have a pronounced effect on the crystal structure at 
ambient pressure when the sample is unloaded because the hygroscopic medium 
will not allow water to return into the interlayer region while the non-hygroscopic 
medium would permit the recovery of the original crystal structure once the 
pressure is removed.  Figure 4.4 show hysteresis of the hemicarboaluminate when 
a hygroscopic medium is used, while the results given in Fig. 4.5 indicate that the 
crystal structure returns to the original state once the sample is unloaded with the 
non-hygroscopic medium.  These experimental results seem to favor the 
hypothesis that pressure-induced dehydration occurs. Considering the 
characteristic that the dehydration of hemicarboaluminate is likely happen at 35 °C 
[195], it can be assumed that the hygroscopic pressure medium could rapidly 
extract water molecules from the interlayer region.  It could accelerate the 
pressure-induced dehydration especially at the low pressure range.  

 
Per formula unit of strätlingite, the interlayer unit ([AlSi(OH)8·H2O]-) 

contains only one water molecule.  Considering the hypothesis of pressure-
induced dehydration, the stiffness of the crystal should increase once water 
molecules move out from the calcium aluminosilicate framework.  This 
phenomenon is confirmed by the experimental results shown in Fig. 4.2, where an 
increase in stiffness is observed for pressures greater than 1.5 GPa.  

 
From a mechanical point of view, a noteworthy characteristic of this 

pressure-induced dehydration is that the frameworks of the crystals are preserved 
throughout the dehydration.  The slight rearrangements of structural elements, 
even if several weak interlayer water bonds are broken, are not sufficient to 
destroy the crystal framework of the sample; which transforms from strätlingite to 
‘metasträtlingite’.  It is possible, therefore, to calculate its bulk modulus at each 
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hydration stage.  Based on this assumption, two stage bulk modulus of each 
hydration stage were calculated.  Using the method developed by Jeanloz [202], 
the initial volume of the second stage at ambient pressure was estimated and 
regression curve at each stage gave excellent fit. 

 
Table 4.12 The summary of high pressure x-ray diffraction and atomistic simulation 

results of hydrogarnet. 

  
Powder 

XRD 
Powder 
neutron 

Single-
crystal 

XRD 

Powder 
XRD 

(M:E=4:1) 

Powder 
XRD 

(Silicone oil) 

Ab 
initio  

Ab initio 
Hartree-

Fock  

Ab 
initio 

B3-LYP 

  [228] [229] [230] This study [231] [232] [232] 

a (Å) 12.57 12.57 12.57 12.57(1) 12.57(7) 12.65 12.71 12.65 

3rd 
EoS 

K0 (GPa) 66(4) 52(1) 58(1) 77(5) 58(5) 56(1) 67 68 

K0' 4.1(5) 4 4.0(7) 1.4 13.5 3.6(1) 4.1 4 

V0 (Å
3) 1985.9(3) 1985(3) 1987.6(1) 1984.51(7) 1987.11(1) 2021.8 2051.8 2024.2 

2nd 
EoS 

K0 (GPa) - - - 69(4) 72(4) - - - 

V0 (Å
3) - - - 1987.11(1) 1984.51(7) - - - 

 
 Although there is still some controversy about the effects of impurities on a 
high-pressure experiment, a comparison of the reported bulk modulus of 
hydrogarnet with the results obtained in this study showed agreement within an 
acceptable error range (Table 4.12) [204-206].  Given that the amount of 
hydrogarnet is very small compared to hemicarboaluminate, the bulk modulus 
obtained for hydrogarnet is less accurate than values obtained from single-crystal 
high-pressure experiment [204].  However, since the volume-pressure behavior of 
hydrogarnet does not show any anomalous compressibility, it is safe to assume 
that the abnormal compressibility of AFm phases is due to the existence of loosely 
bonded interlayer water molecules. 
  

Interestingly monocarboaluminate has no significant dehydration effect.  
The interlamellar distance of 7.59 Å gradually decreased, however, a single 
diffraction peak was newly observed at 0.9 GPa (Fig. 4.10).  The exact peak 
position is 6.7311 Å, which disappeared when it was fully relaxed.  Considering 
the stepwise hydration of monocarboaluminate, this feature also might be due to 
the pressure-induced dehydration. Since very small amounts of 
monocarboaluminate dehydrated (i.e., the interlamellar distance is still remained 
same), the newly emerging peak was not included in calculating the bulk modulus.  
This minute amount of dehydration might be due to the movement of number 16 
and 17 water molecules from the interlayer (Fig. 4.9).  Based on the previous 
study on the refinement of atomic structure of the monocarboaluminate, these two 
waters are not directly connected to the calcium and aluminum oxide polyhedra 
[186].  On the other hand, the remaining 13, 14, 15 interlayer water molecules 
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form strong hydrogen bonds with an O atom of a carbonate group, which makes 
cohesion between the interlayer and principal layer (Fig. 4.9).  Thus these two 
weakly bonded interlayer waters might be partly moved out from the interlayer of 
the samples causing an abrupt contraction of its interlamellar distance.  Otherwise, 
considering the d-spacing data from the thermal dehydration of 
monocarboaluminate [196] (Table 4.1), the 6.6Å diffraction peak corresponds to 
that of 4 6C ACH , which is similar in position to the newly emerging peak at 0.9 
GPa.  Because this dehydrated monocarboaluminate does not have any water 
molecules in its interlayer region, only a small portion of the samples might 
experience full dehydration.  Note that the interlamellar distance cannot be directly 
compared with the experimental points because the peak itself is moving under 
pressure (i.e., the newly emerging peak should be compared with interlamellar 
distance of 4 6C ACH  under 0.9 GPa, not under ambient pressure.). 

 

 
Figure 4.25 Pressure-volume behavior of monocarboaluminate and hemicarboaluminate. 
The lines show 2nd order BM EoS fitting results.  

 
 Comparison of the bulk modulus of monocarboaluminate with 
hemicarboaluminate is summarized in Table 4.11.  According to the previous 
discussion, hemicarboaluminate might experience two complex pressure 
behaviors; pressure-induced dehydration at about 1.0 GPa and re-orientation of 
carbonate group.  Thus, after the de-hydration of the hemicarboaluminate, it still 
shows a nonlinear pressure behavior due either to the re-orientation of carbonate 
groups or to additional dehydration.  These effects make the abnormal value of 
pressure derivative, K0, 13.6.  In addition, the hydrogen bonds in 
hemicarboaluminate increase in strength as the interlayer space contracts, which 
yields an almost double bulk modulus relative to that of hemicarboaluminate at 
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ambient.  One observation of note is that the pressure-volume curve of 
monocarboaluminate has a similar slope with that of dehydrated 
hemicarboaluminate (i.e., after some degree of dehydration of 
hemicarboaluminate; Fig. 4.25.).  In this stage, although the exact atomic position 
of carbonate group in hemicarboaluminate has not been identified yet, the 
direction of the group can become parallel to the main layer due to the pressure 
effect.  This re-orientation of carbonate group can contribute to the abnormal 
pressure behavior.  Eventually it will make a similar structural framework with 
monocarboaluminate except the alternating existence of carbonate group.  
However, although the similar curve of dehydrated hemicarboaluminate and 
monocarboaluminate is particularly noteworthy above 1 GPa, the bulk moduli of 
the dehydration of hemicarboaluminate and monocarboaluminate are still quite 
different: 32(2) and 54(4) GPa, respectively.  From this observation it can be 
concluded that the occupancy of carbon groups in the interlayer plays a key role in 
their bulk moduli of carbon containing AFm phases. 
 

This difference can be also explained by an applied regression method on 
the hemicarboaluminate.  The bulk modulus of second-phase hemicarboaluminate 
is a result of fitting the experimental points to the ‘initial’ point of 1.1 GPa, i.e., 
this yields the bulk modulus at 1.1 GPa with abnormal pressure derivative K0.  
Thus if it contains any interlayer water or perpendicular carbonate groups at 1.1 
GPa, the actual bulk modulus at a higher pressure will be definitely greater than 
32(2) GPa.  
 

Figure 4.12 shows the difference between loading and unloading data 
points of monocarboaluminate.  Differences might be due to experimental error 
(i.e., the relaxation time of silicone oil was not sufficient to equilibrate the 
solution) or additional dehydration induced by pressure during the unloading 
process.  As shown, the dehydration effect is relatively weak for 
monocarboaluminate because of its intrinsically lower compressibility.  In addition, 
although there can be some time-delayed dehydration effect during the unloading 
process, the dehydration effect is perfectly reversible.  This is completely 
consistent with the previous research on strätlingite and hemicarboaluminate in a 
non-hygroscopic pressure medium.  

 
 An exceptionally high bulk modulus was computed for the 
monocarboaluminate.  It is less compressible not only when compared to other 
AFm phases (strätlingite and hemicarboaluminate) but also to ettringite 
(Ca6Al2(SO4)3(OH)12.26(H2O), trigonal, a = 11.23 Å, c = 21.44 Å, bulk modulus: 
27(7) GPa, [42]), and portlandite (Ca(OH)2, hexagonal, a = 3.5853(7) Å, c = 
4.895(3) Å, bulk modulus: 37.8(1) GPa, [233]).  In addition, the bulk modulus is 
still larger than that of dehydrated hemicarboaluminate.  Therefore, the bulk 
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modulus of AFm phases is more dependent on its atomistic structural framework 
than the type of charge-balancing anion species in their interlayer region or the 
number of interlayer water molecules.  This supports the fact that 
monocarboaluminate is stable not only thermodynamically but mechanically, 
because of its strong hydrogen bonds with sub-parallel carbonate groups in its 
interlayer.  
 

Table 4.13 Computed elasticity of monocarboaluminate hydrates and tricalcium 
aluminate from first-principle calculations. 

 

5w MC 2w MC C3A 

LDA GGA Exp. LDA GGA GGA Exp. 

3rd EoS 

K0 (GPa) 55.9 34.5 53(5) 25.0 23.1 106 102(6) 

K0' 4.2 6.5 5.02 9.2 5.0 3.8 9.5 

V0 (Å
3) 435.1 441.9 433 402.1 431.1 3647.4 3549(1) 

2nd EoS 
K0 (GPa) 56.2 37.9 54(4) 29.0 23.8 108 110(3) 

V0 (Å
3) 435.1 441.9 433 402.1 431.1 3647.4 3549(1) 

RVH 

K (GPa) 56(1) 39.8(2) - 45(1) 24(4) 102 - 

G (GPa) 32(1) 33(2) - 28(2) 21(3) 51.99 - 

E (GPa) 80.1 77.4 - 68.5 49.5 133.1 - 

v 0.3 0.2 - 0.22 0.2 0.28 - 

     Most reliable results of monocarboaluminate are in bold.  
 
Table 4.7 and 4.13 summarizes DFT calculation on monocarboaluminate 

hydrates and tricalcium aluminate.  For monocarboaluminate, although GGA 
lattice parameters differ by less than 1% from experimental values, the computed 
unit cell volume is 2 % larger.  The LDA volume is more accurate, ~1 % larger.  
This better agreement happens despite differences in the structural details, such as 
smaller c lattice parameter, and larger alpha angles.  The GGA and LDA predicted 
rather different structures for the 2 water MC system.  Since there is no reported 
crystal structure for 2 water MC (except interlayer spacing), the accuracy of the 
LDA and GGA functionals is addressed for the 5 water MC system.  The quality 
of results depends on the ability of the exchange-correlation functional to mimic 
many-body electronic interactions in a system.  The LDA tends to overbind 
structures and underestimate lattice parameters and compressibility, while the 
GGA does the opposite [234-236].  

 
Figure 4.18 and 4.19 show good agreement between experimental and 

simulated x-ray diffraction patterns.  Not only peak positions but also relative peak 
intensities are well reproduced in the calculations.  Experimental diffraction 
patterns have less small peaks, which suggest some hydrogen or water disorders.  
The overall, this agreement ensures that the atomic arrangement and structure are 
maintained at high pressures.  The occurrence of diffused peaks in high-pressure 
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experiment can also be from pressure-transmitting medium (silicone oil was used 
in previous test to maintain the crystal in hydrostatic pressure), which can enter 
into the crystal structure and especially dissipate short-range diffraction peaks.  
This effect is well known in high-pressure experiments, especially for those 
crystals with complex layered structures with large interlayer spacing.  
Calculations do not show such pressure-medium effect. 

 

 
Figure 4.26 Variation of unit cell volume of 5 water and 2 water monocarboaluminates 
from LDA and GGA calculation. 

 
As shown in Fig. 4.26, the LDA and GGA high-pressure behaviors of 5 

water MC are similar with that from previous experiments.  In general, the 
expanded GGA volume (~2 %) causes underestimation of the isothermal bulk 
modulus.  In this case, the discrepancy is rather large producing an 
underestimation of ~29 % (37.9 GPa versus 54 GPa from experiments).  The 
accuracy of LDA calculations is expected to improve upon introduction of 
vibrational effects by means of the quasi-harmonic approximation (QHA).  
Vibrational effects are particularly important in considering the water molecules in 
the interlayer region. 

  
For hemicarboalumiante and strätlingite pressure-induced dehydration was 

observed irrespective of the type of pressure-transmitting medium.  A contraction 
in volume and a significant increase on bulk modulus was observed as a result of a 
pressure-induced dehydration and re-orientation of anionic carbonate group (from 
perpendicular to parallel to the main layer).  Although no significant change in 
behavior in 5 water MC was observed, partial dehydration might occur around 1 
GPa; therefore, the variation of tilting angle of the carbonate group might provide 
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a clue to the anomalous behavior.  In our simulation study, the LDA tilting angle 
varied from 9.6 ° to 8.9 ° while pressure changed 0 to 5 GPa.  That indicates the 
carbonated group of the 5 water MC was slightly re-oriented to the parallel 
direction to the layers.  However, since this angle change was not significant, it 
can be safely assumed that pressure-induced dehydration has more dominant effect 
on the anomalous behavior of hemicarboaluminate rather than the tilting of 
carbonate group.  
 
 LDA and GGA elastic coefficients computed by applying infinitesimal 
strains at 0 GPa (not at high pressure) display similar trends (see Table 4.9).  The 
coefficient corresponding to longitudinal strains parallel to the axis with compact 
atomic arrangement C11, is larger than those resulting from strains along the Y and 
Z axes.  This is consistent with the expectation that layered structures are softer in 
the direction perpendicular to the layers.  In addition, the difference between Ko, 
the bulk modulus derived by fitting equations of state to the compression curve, 
and KRVH, the bulk modulus of the isotropic poly-crystalline aggregates, is 
negligible except the case of 2 water MC LDA computation (Table 4.13).  Those 
from 2nd order finite strain EoS are larger than those from a 3rd order finite strain 
EoS.  This is due to the smaller K0 values (4.0) used in the fitting of the 2nd order 
EoS.  As previously noted, LDA K0 values using 2nd and 3rd order finite strain 
EoSs are quite accurate (less than 3%).  
 
 DFT calculations are powerful in predicting structural properties for 
systems where no data exists.  Thus, the general trends on crystal structure under 
pressure for the 2 water MC system (Table 4.8) can be reliable.  For both LDA and 
GGA calculations, the 2 water MC system is more compressible, and the cause of 
this smaller bulk modulus is the smaller number of water molecules in the 
interlayer region.  The larger hydrogen bond-length in the 2 water MC results in a 
softer structure (Fig. 4.16 and 4.17).  The water molecules in the 5 water MC 
structure are more packed in the interlayer region which makes this structure less 
compressive.  
 

Figure 4.22 shows highly anisotropic LDA and GGA Young’s modulus for 
both the 5 and 2 water MC.  The significant anisotropy of the 2 water MC 
structure is partially lessened by addition of water in the interlayer region in 5 
water MC.  The soft elastic coefficient perpendicular to the layers of the 5 water 
MC system stiffens and becomes more similar to the other longitudinal strain 
coefficients, which decreases the anisotropy of this layered structure.  The more 
anisotropic 2 water MC structure produces a wider range of Young’s modulus as a 
function of direction (color bars in Fig. 4.22) and smaller mechanical properties 
such as KRVH, GRVH, and E.  
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In tricalcium aluminate experiment, isothermal bulk modulus was 
determined from the equation of state parameters.  Thus, calculations were 
performed to simulate isotropic experimental conditions and direct comparison 
between experimental and computational pressure versus volume is possible as 
summarized in Table 4.13 and Fig. 4.24.  Slightly larger value of K0, 106 GPa, is 
obtained by fitting BM EoS, than by computing the RVH average of K0, 102 GPa.  
This difference is expected, since VRH averages correspond to the bulk modulus 
of a isotropic poly-crystalline aggregate.  The level of agreement between theory 
and experiments is precisely what is expected from GGA-PBE calculations: larger 
equilibrium volumes and smaller bulk modulus when compared with experiments.  
Consistent results were obtained for the relaxed structure and elastic constants 
determined by Manzano et al. (Table 4.10).  Accordingly, computed mechanical 
properties agree well with those of Manzano et al. within 3% error range.  
 

High pressure x-ray diffraction has the unique ability to directly observe the 
pressure-volume behavior of a unit crystal, making it possible to obtain the bulk 
modulus and its pressure derivative of the crystal.  However, the diffraction 
resolution in DAC is not always sufficient to refine the structure, especially for 
such complex structure at high pressures.  In addition, this pressure behavior in 
DAC depends on the type of pressure-transmitting medium and various pressure-
induced reactions [237].  Thus atomic-level calculations will give us additional 
explanation on high-pressure experimental data.  

 
The calculations were performed under ‘static’ conditions.  This is not quite 

a 0 K calculation since vibrational zero-point energy, Ezp, is not included.  Its 
effect on structural properties is sometimes significant.  Finite temperature effects 
included according to the quasi-harmonic approximation are also important by less 
important than the zero-point motion effect.  There is by now a substantial body of 
information showing that LDA plus finite temperatures calculations based on the 
quasiharmonic approximation (QHA) and first-principles phonons reproduce 
experimental data more accurately than GGA+QHA [181].  However, without the 
vibrational effects, LDA and GGA calculation reported in this section results in 
good agreement with experiments.  
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4.5 Chapter Summary 
 

This chapter presented experimental and theoretical results on the following 
AFm phases that are often present in a hydrated cement paste: strätlingite, 
hemicarboaluminate, and monocarboaluminate.  In hemicarboaluminate and 
strätlingite containing interlayer water molecules, major changes in the volume 
discontinuity take place at ~2.0 GPa hydrostatic pressure, regardless of the type of 
pressure-transmitting medium.  The sudden changes of the c-lattice parameter are 
in good agreement with the previous studies of the layer thickness of different 
hydration stages caused by temperature variation.  In the case of 
hemicarboaluminate, the re-orientation of perpendicular direction of planar 
carbonate group could influence its sudden volume contraction although the 
experimental results seem to indicate that the pressure-induced dehydration is the 
prevalent mechanism especially with a hygroscopic pressure medium.  This 
pressure-induced dehydration caused significant changes in the bulk modulus so a 
two stage bulk modulus was calculated.  

 
In contrast to strätlingite and hemicarboaluminate, monocarboaluminate did 

not show any significant dehydration or amorphization effect at elevated pressure.  
In comparing the calculated bulk modulus of monocarboaluminate, 54(4) GPa 
with that of hemicarboaluminate, 32(2) GPa, not only did the charge-balancing 
anion species and the number of interlayer water molecules play a key role in 
determining its mechanical properties, but its atomistic structural framework also 
contributed.  The newly emerging diffraction peak and difference between some 
loading and unloading points indicate that there is a small degree of pressure-
induced dehydration effect under hydrostatic pressure for both 
hemicarboaluminate and monocarboaluminate.  But for monocarboaluminate, it 
had little effect on its bulk modulus because of its framework that consists of 
strong hydrogen bonds between interlayer waters and O atoms in carbonate groups.  
 

Given the importance of monocarboaluminate for AFm phases, accurate 
knowledge of elastic properties of this phase is a central ingredient for 
understanding and modeling carbon uptaken concrete. Using first-principles 
calculations, the static elasticity of both fully and partially hydrated 
monocarboaluminate phases were calculated.  The optimized static structures are 
in generally good agreement with experimental data at ambient conditions.  
Compressive behavior, elastic coefficients, isothermal bulk modulus, aggregate 
bulk and shear moduli, and Young’s modulus for arbitrary directions were 
computed.  Static LDA results agree better with high pressure experimental data 
than static GGA results.  Irrespective of the exchange-correlation functional used, 
the more hydrated the structure the less compressible it becomes.  Both 
monocarboaluminates have highly anisotropic Young’s moduli because of the 
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layered nature of the structures.  Adding more water can notably decrease this 
anisotropy and increase both bulk moduli computed from static compression 
curves and polycrystalline average.  

 
This study did not include free energy contributions from zero-point motion 

or thermal excitations.  Improved agreement between LDA results and 
experimental data is expected when these are included.  Nevertheless, high 
pressure x-ray diffraction and static first-principle calculations proved to be an 
ideal combination of investigative tools for elasticity of cementitous materials.  
Overall, the mechanical properties of AFm phases are significantly different, 
dependent on the number of interlayer water molecules and the type of anion 
species.  Especially the occupancy of carbonate group plays a key role in case of 
carbon containing AFm phases.  Small additions of carbonate can significantly 
influence the stability and mechanical properties of the AFm phases.  

 
In addition, the combination of experimental and theoretical studies shows 

a great performance on tricalcium aluminate, one of major clinker materials.  
Because the experimental bulk modulus agrees well with the computed one, it can 
be suggested that the other computed elastic properties are reliable as well.  In 
addition, in Portland cement clinker various cations can be substituted in the large 
interstitial holes of the tricalcium aluminate structure.  However, it is quite 
challenging for experiments to carry out these substitutions.  The experimental and 
computational consistence reported herein can be applied to further computational 
approach to understanding effects of impurities on clinker properties at the atomic 
scale [238]. 
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5. X-ray Absorption Experiments to Measure Pressure-induced Density 
Variation of Alkali-Silica Reaction Gel 
 
5.1 Alkali-Silica Reaction Gel 
 

The use of certain reactive aggregates containing amorphous or poorly 
crystalline silica in concrete can result in a chemical reaction in which silica from 
the aggregates reacts with alkali hydroxides dissolved in the pore solution of 
hydrated cement.  The product of this reaction is known as alkali-silica reaction 
(ASR) gel.  ASR gel is highly hygroscopic and is capable of irreversibly absorbing 
large amounts of water.  This leads to volumetric expansion of the gel which can 
cause expansion and cracking of the concrete and eventual failure of the structure 
[134, 239, 240].  It is believed that ASR gel has a disordered atomic structure 
dominated by Q3 silicate tetrahedra in NMR spectrum [134, 239, 240].  It has 
been proposed that this structure is similar with that of the crystalline phases: 
hydrous Na kanemite (NaHSi2O5·3H2O) [239-241] and K kanemite 
(KHSi2O5·3H2O)  [61] but with much greater overall disorder [61, 242].   

 
Understanding of mechanical behaviors of ASR gel is a fundamental step to 

developing prevention and mitigation methods and to analyzing impact caused by 
a mismatch of elastic integrity of composite concrete.  However, measuring the 
mechanical properties of ASR gel is difficult due to the amorphous nature of the 
gel.  In addition, it is not easy to conduct a classical x-ray absorption experiment 
as the gel absorbs low amounts of x-ray.  For example, as discussed in the 
previous chapters, synchrotron monochromatic x-ray allows a direct and accurate 
way to measure lattice volumes or densities of crystalline hydration products in 
cement.  Also Brillouin spectroscopy was successfully applied to ettringite and 
portlandite to compute full elastic constants and averaged mechanical properties 
[243, 244] which yields consistent results with x-ray diffraction measurements 
[42].  In contrast, non-crystalline materials pose special challenges because of 
poorly defined atomic structure. Thus, the mechanical test on ASR gel has not 
been done yet and is still an experimental challenge.  

 
The purpose of the research in this chapter is to take advantage of recent 

progress obtained in the characterization of amorphous materials using high 
energy x-ray absorption methods to analyze the ASR gel [46-48, 245].  As a result, 
isothermal bulk modulus of the gel will be measured.  The pressure behavior of 
the gel gives some insights into its nanostructure and expansion mechanism.   
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5.2 High Pressure X-ray Absorption Experiment on Alkali-Silica 
Reaction Gel 
 
5.2.1 Chemical Compositions and Density of Alkali-Silica Reaction Gel 
 

Centimeter sized pieces of ASR gel were collected from the Furnas Dam 
located on the Rio Grande River in Minas Gerais, Brazil [246] shown in Fig. 5.1 
(a).  The portland cement used in the construction of the dam was manufactured 
close to the site of the dam and contained a total equivalent alkali content of 
0.60%.  Although this is quite a low equivalent alkali content, the locally mined 
quartzite used as the concrete aggregate slowly reacted with the alkali under the 
moist environmental conditions of the dam.  In 1995, the symptoms of ASR, 
including map cracking, and staining, were first observed [247].  The ASR gel 
formed near the aggregates migrated through the porous hydrated cement matrix 
and created large macroscopic clusters which protruded out of cracks on the 
surface of the dam.  The gel fragments used in this study were hand-picked from 
gallery walls in the dam.  The fragment of ASR gel shown in Fig. 1 is 
semitransparent.  It is identical to the sample used in the studies of  Hou et al. 
[248] (sample FG1) and the Tambelli et al. [249] (bulk gel A). 

 

(a) (b)  
Figure 5.1 (a) ASR gel fragment collected from the Furnas dam. (b) Measured x-ray 
diffraction patterns of ASR gel at ambient condition (λ = 0.6199 Å). The broad hump of 
8-14° indicates disordered crystal structure.  

 
The density of 11 pieces of alkali-silica reaction gel was determined using 

the Archimedean method.  The pieces had a weight ranging between 2.3 and 0.2 g 
and their average density was 2.06  0.05 g/cm3.  The highly disordered nature of 
the ASR gel was confirmed by synchrotron x-ray diffraction as shown in Fig. 
5.1(b).  The pattern contains a weak basal peak with a d-spacing of about 10 Å and 
a broad peak with a d-spacing of about 1.7 Å due to the sample as well as several 
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weak sharper peaks indicating the presence of minor unidentified crystalline 
phases which is in agreement with the results of Hou et al. [248].  

 
Table 5.1 Chemical composition of ASR gel (Major oxide weight %). 

 
SiO2 K2O Na2O CaO H2O 

ASR gel 69.2 12.2 2.7 0.9 15 

 
The major oxide composition of the collected gel was found using a Philips 

PW2400 wavelength-dispersive x-ray fluorescence (XRF) spectrometer.  0.5 g of 
sample was finely ground and mixed with 3.5 g of lithium tetraborate as a flux.  
The mixture was then fused at high temperature (>1000°C) in a platinum crucible.  
The obtained melt was cooled to form a glass disc which was then used for the 
analysis.  The result of the XRF measurement is contained in Table 5.1.   
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5.2.2 Application of X-ray Absorption Method  
 
Since volume or density of crystalline materials can be measured by an x-

ray diffraction method, this has become the method of choice for an extremely 
large number of materials including hydration products in cement [40, 42, 148].  
On the other hand, using diffraction to determine the density of non-crystalline 
materials is not so straight forward due to the lack of translational symmetry in 
their structure.  Lately a number of x-ray methods have been developed for the 
determination of density [47, 49, 250], primarily for the study of amorphous 
materials at high pressure.  For example, the density of GeO2 glass as a function of 
pressure inside a diamond anvil cell (DAC) using the x-ray absorption method 
[48].  However, it was not clear that this method would be sufficiently accurate for 
a low-Z, complex, non-crystalline material like ASR gel since the sample is very 
thin (about 20 µm) compared to the two diamond anvils (5 mm) making the vast 
majority of the absorption occur in the diamonds.  Recently, however, it was 
demonstrated that combining x-ray diffraction and the absorption method using a 
two hole configuration of gasket with two reference materials can provide 
sufficiently accurate densities with SiO2 glass which is also a low-Z noncrystalline 
material [245].  In following, the recently developed technique and its application 
to ASR gel will be introduced. 
 

 
Figure 5.2 Transmitted x-ray contour profile measured by a diode with a monochromatic 
x-ray beam of 20 keV. The profile was measured by scanning in a step of 40 µm and 40 
µm in x and y direction with x-ray beam size of 10 × 10 µm. 
 

The x-ray absorption experiment has been performed at 12.2.2 beamline of 
Advanced Light Source [38].  An x-ray beam size of 10 × 10 μm was used for our 
measurements.  The transmitted x-ray intensity after the DAC was monitored by a 
photodiode for the absorption measurements.  Diffraction patterns were collected 
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using a MAR345 image plate detector for the diffraction measurements at a 
distance of 236.9 mm from the sample.  A monochromatic x-ray beam with energy 
of 20 keV was selected.  A rhenium gasket was indented to 22 μm thickness with 
400 μm culet-size diamond anvils.  Two holes of 80 μm diameter were drilled in 
the indentation at positions equidistant from the center as shown in Fig. 5.2.  ASR 
gel was finely ground and loaded into one of the holes.  The other hole was filled 
with NaCl that was used for thickness and absorption calibration.  X-ray 
diffraction and absorption data were measured at pressures ranging from ambient 
to about 15.9 GPa (Fig 2 and 3).  The pressure at each point was determined from 
the unit cell volumes of NaCl [99] and rhenium [251].  Figure 5.4 (a) and (b) show 
calibrated pressures of two reference materials.  There is a slight discrepancy of 
applied pressures in two holes and the gap is significant in unloading process.  The 
discrepancy will be discussed in more detail in later section.  
 

 
Figure 5.3 Measured x-ray diffraction patterns of ASR gel (λ = 0.6199 Å). The pressures 
were determined by x-ray diffraction peaks of Re at ASR gel sample hole. The wide 
range of hump was shifting as pressure increases. Top three patterns (D) were measured 
during decompression. 
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(a) (b)  
Figure 5.4 Measured volumes of NaCl (a) and rhenium (b). Corresponding pressures are 
computed from the equation of state of NaCl [99] and rhenium [251]. 
 

As shown in Fig. 5.2, x-ray transmission intensities of the ASR, rhenium 
and NaCl were precisely determined by the photodiode.  According to the 
absorption law, the transmission intensity can be expressed as below, 
 

- -
0

Dia Dia Dia ASR ASR ASRt t
ASRI I e e         - (5.1) 

- -
0

Dia Dia Dia NaCl NaCl NaClt t
NaClI I e e         - (5.2) 

Re Re Re- -
Re 0

Dia Dia Diat tI I e e          - (5.3) 
 

Here, I, μ, ρ, and t denote the intensity of x-rays, mass absorption 
coefficient, density, and thickness of sample, respectively.  Subscripts 0, Dia, Re, 
and ASR represent incident x-rays, the two diamond anvils, rhenium, and the ASR 
gel, respectively.  The mass absorption coefficients are considered to be known if 
the energy of monochromatic x-rays is far away from the absorption edges of a 
material.  For example, total attenuation with coherent scattering of ASR gel is 
shown in Fig. 5.5 [252].  Also densities of two reference materials (rhenium and 
NaCl) can be measured from x-ray diffraction method as discussed before.  

 
There are two assumptions for computing density of the gel. First one is the 

constant 
-

0
Dia Dia DiatI e  

 term within the culet. And second one is same thickness 

across the gasket at each pressure (i.e.  Re NaCl ASRt t t t    ).  Then the thickness of 
gasket can be computed from Eqn. (5.2) and (5.3),  
 

Re

Re Re

ln( / )

-
NaCl

NaCl NaCl

I I
t

   
       - (5.4) 
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The computed thickness variation is shown in Fig. 5.6 (a).  The error of 
applied pressure was chosen from the difference of refined pressures in both holes 
(Fig. 5.6 (b)).  Last, by substituting the computed thickness into Eqn. (5.1) and 
Eqn. (5.2), the density of ASR gel can be expressed as: 
 

ln( / )NaCl ASR NaCl NaCl
ASR

ASR

I I t

t

 



     - (5.5) 

 

 
Figure 5.5 Total attenuation with coherent scattering of ASR gel as a function of phonon 
energy. Data was reproduced from NIST standard reference database [252]. 
 

(a) (b)  
Figure 5.6 (a) Thickness variation of the gasket as a function of pressure. (b) Applied 
pressures in two holes in DAC. The pressure was determined from Re and NaCl peaks of 
each holder. 
 

Fig. 5.7 (a) shows the density determined using this method as a function of 
pressure up to 15.9 GPa.  The error for the pressure was determined from the 
difference of the pressures determined in the two holes.  The whole experimental 
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results are summarized in Table 5.2.  The thickness of the gasket at 0.2 GPa was 
found to be 21.3(1) μm where the error is estimated from the variation of 
transmitted intensity.  The measured densities at ambient pressure of NaCl and Re 
were found to be: 2.169(2), 21.04(4) g/cm3.  The density determined with this 
method for ASR gel is 2.93(7) g/cm3.  This value is sensibly higher than that 
obtained by the Archimedean method.  In the analysis of the x-ray absorption data 
we fixed the starting (ambient) density of ASR gel to the value of 2.06(5) g/cm3 
from the Archimedean method which correspond to an effective mass absorption 
coefficient of 4.49 cm2/g, where the standard deviations were estimated by the 
error propagation method [154].  
 

Table 5.2 High pressure x-ray absorption results of ASR gel. The data of last five rows 
were collected during decompression. 

ASR gel x-ray absorption experiment 

Pressure 
(GPa) 

ρNaCl 

(g/cm3) 
ρRe 

(g/cm3) 
ρASR 

(g/cm3) 
νASR/νASR,0 

Thickness 
(μm) 

μNaCl/μRe μASR/μRe 

0.2 (1) 2.169 (2) 21.04 (4) 2.06 (4) 1.00 (3) 21.3 (1) 20.958 (1) 21.078 (1) 

1.6 (7) 2.178 (2) 21.12 (4) 2.19 (6) 0.97 (3) 21.2 (1) 20.678 (5) 20.772 (5) 

2.0 (6) 2.226 (2) 21.14 (4) 2.21 (7) 0.96 (4) 21.1 (1) 20.596 (4) 20.698 (4) 

2.5 (12) 2.262 (2) 21.17 (4) 2.27 (8) 0.93 (4) 21.0 (2) 20.40 (1) 20.50 (1) 

3.0 (1) 2.307 (2) 21.20 (4) 2.30 (7) 0.92 (4) 21.0 (2) 20.388 (9) 20.49 (1) 

4.0 (1) 2.350 (2) 21.25 (4) 2.36 (7) 0.90 (4) 21.0 (2) 20.48 (1) 20.587 (1) 

4.3 (7) 2.375 (2) 21.27 (4) 2.38 (7) 0.89 (3) 20.9 (1) 20.168 (7) 20.269 (8) 

5.6 (12) 2.427 (3) 21.34 (4) 2.42 (8) 0.88 (4) 20.7 (1) 19.810 (5) 19.913 (6) 

6.6 (13) 2.465 (3) 21.39 (4) 2.43 (8) 0.87 (4) 20.6 (1) 19.794 (4) 19.903 (4) 

7.2 (11) 2.502 (3) 21.43 (4) 2.46 (5) 0.86 (3) 20.5 (1) 19.608 (4) 19.718 (4) 

7.7 (14) 2.555 (3) 21.45 (4) 2.44 (9) 0.87 (3) 20.5 (1) 19.648 (2) 19.773 (2) 

8.3 (12) 2.606 (3) 21.45 (4) 2.51 (9) 0.84 (4) 20.4 (1) 19.295 (4) 19.417 (4) 

9.8 (2) 2.673 (3) 21.56 (4) 2.57 (9) 0.83 (4) 20.3 (1) 19.344 (5) 19.470 (5) 

11.5 (5) 2.733 (3) 21.66 (4) 2.63 (8) 0.80 (3) 20.2 (1) 19.354 (1) 19.481 (1) 

12.7 (1) 2.801 (3) 21.72 (4) 2.66 (6) 0.79 (3) 20.2 (1) 19.483 (4) 19.620 (5) 

14.3 (1) 2.870 (3) 21.80 (4) 2.74 (5) 0.77 (2) 20.2 (1) 19.527 (8) 19.666 (8) 

15.9 (4) 2.947 (3) 21.88 (4) 2.82 (6) 0.75 (2) 20.1 (1) 19.461 (7) 19.601 (7) 

9.7 (15) 2.752 (2) 21.56 (4) 2.65 (8) 0.80 (3) 20.1 (1) 18.748 (1) 18.871 (2) 

7.1 (20) 2.604 (2) 21.42 (4) 2.44 (9) 0.86 (4) 20.2 (1) 18.708 (3) 18.835 (3) 

5.5 (21) 2.513 (2) 21.34 (4) 2.49 (6) 0.85 (3) 20.2 (1) 18.630 (4) 18.729 (4) 

2.6 (1) 2.436 (2) 21.18 (4) 2.33 (5) 0.91 (3) 20.3 (1) 18.488 (4) 18.598 (4) 

0.1 (4) 2.168 (2) 21.04 (4) 2.33 (8) 0.91 (4) 20.5 (2) 18.521 (8) 18.578 ) 
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(a) (b)  
Figure 5.7 (a) Pressure dependence of the density of ASR gel. (b) Molar volume ratio of 
ASR gel as a function of pressure. The 2nd and 3rd BM EoS fitting results are shown in 
solid and dash line, respectively. 
 

It should be noted that at high pressures, greater than about 30GPa, the 
accuracy of density determination from x-ray absorption measurements could 
deteriorate because the thickness of the gasket in a diamond anvil cell is not 
perfectly uniform due mainly to elastic deformation of the diamonds [46, 47].  In 
this study the maximum applied pressure was 15.9 GPa, and the anvil deformation 
or irregularity of the thickness of gasket was found to be negligible.  However, 
during the unloading process, there was a significant pressure difference between 
the two holes.  This is probably due to the rhenium, which has extruded to some 
extent, not relaxing elastically while the sample and NaCl do.  This leads to an 
excess volume in the two holes which results in different pressures due to the 
NaCl and the sample having different compressibilities.  Because of this the 
unloading data points were excluded in the calculation of the bulk modulus. 
 

Molar volume ratio of amorphous material can be computed from the 
reciprocal value of the density.  Figure 5.7 (b) represents the variation of molar 
volume ratio of ASR gel.  It is revealed that the ratio decreases almost linearly 
from 0.2 to 15.9 GPa.  Thus it can provide data points of P versus V/V0 for 
calculating an isothermal bulk modulus.  The converted molar volume variation is 
fitted using the third order isothermal Birch-Murnaghan equation of state (BM-
EoS) in which (ρASR, P=0) / (ρASR, P≠0) is used instead of (VP≠0) / (VP=0) [99].  The 
modified equation of state is 
 

 
7 /3 5/3 2/3

'
0 0

0 0 0

3 3
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2 4
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  
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  - (5.6) 

 
where P is pressure, ρ is measured density, ρ0 is density at zero pressure, K0 is the 
isothermal bulk modulus at zero pressure, and K0´ is the first derivative of the bulk 



139 
 

modulus at zero pressure.  Figure 5.7 (b) and 5.8 show fitting results.  It gives K0 = 
33(2) GPa (fixed K0´ = 4, R2 = 0.986) and K0 = 34(2) GPa (K0´ = 3.6, R2 = 0.988). 
 



140 
 

5.3 Discussion on Measured Bulk Modulus of Alkali-Silica Reaction Gel 
 

In x-ray absorption measurement, 
-

0
Dia Dia DiatI e  

 should be reasonably 
estimated to obtain density of a material.  By applying the absorption law of two 

reference materials of NaCl and rhenium, the 
-

0
Dia Dia DiatI e  

 term and thickness of 
gasket were accurately determined in our experiment.  The applied pressure in 
ASR gel was calibrated by volume of rhenium using the equation of state of 
rhenium [251].  In addition, the pressure applied in reference material of NaCl was 
refined by volumes of NaCl [99].  Although there is a slight difference of applied 
pressure between the two holes as shown in Fig. 5.6 (b), it should be noted that 
pressures are not necessary to be the same for both holes, whereas the thicknesses 
should be the same as described in experimental principle.  The thickness 
decreased almost linearly with pressure as shown in Fig. 5.6 (a).  The average 
error in thickness is 0.1 μm, which was calculated from deviations in x-ray 
transmission intensities and in densities of crystalline materials by x-ray 
diffraction. 
 

 
Figure 5.8 Normalized pressure F as a function of Eulerian strain f with 3rd and 2nd order 
BM EoS fitting results. 
 

In addition, accurate chemical compositions and water contents should be 
known to compute the ideal value of mass absorption coefficient of a material.  
Based on the XRF data (Table 5.1), the mass absorption coefficient of our ASR 
gel is 3.157 cm2/g and yields a density of 2.93(7) g/cm3 from Eq. (5.5) for ASR gel 
at the pressure of 0.2 GPa.  This does not agree well with the density that we 
measured at ambient pressure using the Archimedean method (2.06(5) g/cm3).  It 
might be due to variations in sample stoichiometry.  An extremely small amount 
of powdered sample from the interior of the gel fragments was used for the x-ray 
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measurements to minimize the effect of externally attached impurities while a 
relatively large piece of sample was necessary for the XRF measurements.  This 
may have resulted in the chemical composition determined from the XRF 
measurements being different to that of the samples used for the high-pressure 
measurements.  An alternative explanation might be that the gel could have 
become compacted to some extent when it was loaded into the tiny sample 
chamber.  However, this does not make a large difference to the elastic properties 
because of the fact that it is not density but density ratio that is used to determine 
the compressibility.  That means the denominator in Eqn. (5.5) is cancelled out in 
the molar volume ratio.  Thus modified mass absorption coefficient (4.490 cm2/g) 
based on the density value from the Archimedean method was selected.  The test 
results are summarized in Table 5.2. 
 

The Birch-Murnaghan equation of state assumes that the sample is 
subjected to a hydrostatic stress. Any uniaxial stress generated by using two 
opposed anvils might cause additional error in the computation of the isothermal 
bulk modulus [253].  In order to try to quantify any uniaxial strain lattice 
parameter of NaCl independently from the (111), (200), and (220) reflections were 
calculated.  Any uniaxial strain would be apparent from differences between these 
values.  The calculated lattice parameters are virtually identical with less than 
0.2% deviation.  Therefore it can be safely assumed that the uniaxial stresses do 
not directly affect the absorption measurements and this could be due to a random 
orientation of compacted sample in a sample holder.  
 

From the density variation measured from Archimedean method, it can be 
inferred that the gel is locally homogeneous and its variability at the 
meso/macroscale is probably due to heterogeneous composition of the aggregate 
material in the concrete.  However, amorphous silica has a bulk modulus of 40(3) 
GPa with the density of 2.20(3) g/cm3 [254].  It is larger than the bulk modulus of 
ASR gel determined by x-ray absorption (i.e., K0 = 33(2) GPa when K0´ = 4).  
Thus it can be concluded that amorphous silica becomes compressible as it 
incorporates water molecules and alkali ions during ASR.  On the other hand, the 
measured bulk modulus of ASR gel is larger than those determined by measuring 
synthetic alkaline-calcium silica gels with 0.8 M Ca(OH)2 content [255].  
However, it is important to note that the density of the gels from the dam is 80% 
higher than that of the synthetic gels analyzed by Phair et al. [255].  
 

Although it contains 15% water, there is no pressure-induced instability 
which was observed in some soft calcium aluminate hydrates in cement system as 
discussed in chapter 4.  In certain AFm phases, water molecules in interlayer 
regions become unstable under pressure and cause pressure-induced dehydration, 
especially in highly compressible hydrated materials.  On the other hand, the 
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density of ASR gel increases significantly (about 40%) and nearly linearly up to 
16 GPa.  No discontinuous changes (e.g. phase transition) are observed.  Thus the 
stable behavior under high pressure indirectly supports the idea of incorporation of 
water molecules not within interlayer but between nano-particles [241].  The 
probable reason is that water molecules within interlayer region tend to be 
unstable under pressure especially within highly compressible framework.  Last, 
the amorphous material or melt is usually more compressible than the 
corresponding crystalline solid due to the large change in the intermediate-range 
structure and increment of coordination number at higher pressure [47].  But the 
lack of experimental or theoretical study on mechanical properties of Na/K 
kanemite makes a systematic comparison with ASR gel difficult.  
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5.4  Chapter Summary 
 

Understanding of elastic properties of ASR gel is a key step in the 
development of science based prevention and mitigation procedures to combat the 
structural problems caused by the occurrence of the ASR in concrete structures. 
However, due to its amorphous structure, it is quite difficult to directly measure it.  
From x-ray absorption method, the mechanical properties of amorphous ASR gel 
have been successfully determined. Comparing with amorphous silica, lower 
density (2.06(5) g/cm3) and higher compressibility (K0=33(2) GPa) of the ASR gel 
suggest that incorporated water and alkali ions could cause volume growth and 
make the gel soft.  The expanded volume with the higher compressibility would 
allow the gel migrating readily through the porous hydrated cement matrix.  In 
addition, no pressure-induced instability supports the idea of incorporation of 
water between nano-particles, rather than within interlayer spacing of ASR gel.  
 

It is not clear what the role of calcium ions or alkali content is in ASR 
expansion [256, 257].  A determination of the elastic properties of different 
compositional ASR gel will make an interesting subject for future study.  The x-
ray absorption method might also prove useful for the determination of the 
compressibility of many of the amorphous or poorly crystalline phases in concrete.  
For example: C-S-H gel and geopolymer gel which are main binders in 
conventional and green concrete. 
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6. Conclusions 
 

 The complexity of concrete research is from the lack of experimental data 
at a fundamental level.  This study focuses on understanding of structural 
properties of materials which determines overall mechanical performance of 
concrete.  Major findings in this work are given below: 
 
Calcium silicate hydrates 
 C-S-H gel is poorly crystalline but similar to crystalline materials of 
tobermorite and jennite.  From experimental and theoretical studies on tobermorite 
phases, structural mechanism under pressure was investigated.  The most reliable 
mechanical properties of calcium silicate hydrates are as follows: 
 
Experimental results (number in parenthesis indicates measured pressure range): 

Ca4Al6O15(OH)2·5H2O (Normal) : K0 = 71(4) GPa (0.1-6.0 GPa) 
Ca4Al6O15(OH)2·5H2O (Anomalous) : K0 = 63(2) GPa (0.1-4.5 GPa) 
Ca5Al6O16(OH)2 : K0 = 115(14) GPa (0.1-8.5 GPa) 
Ca9Al6O18(OH)6·8H2O : K0 = 64(2) GPa (0.1-3.2 GPa) 

 
First-principles calculations: 

Ca5Al6O16(OH)2·7H2O : K = 57 GPa, G = 32 GPa, E = 80 GPa, ν = 0.3 
Ca5Al6O16(OH)2 : K = 57 GPa, G = 32 GPa, E = 80 GPa, ν = 0.3 
Ca9Al6O18(OH)6·8H2O : K = 63 GPa, G = 28 GPa, E = 73 GPa, ν = 0.3 

 
The incompressibility of layer direction, perpendicular to Ca-O layers, 

determines the overall bulk modulus of tobermorite phases.  In the case of 
tobermorite 9Å, the gap between experiment and simulation can be explained by 
the infiltration of pressure-transmitting medium into the small interlayer space or 
the mechanical influence of Al substitution.  Except the 9 Å case, there is excellent 
agreements in tobermorite 14 Å and 11 Å and jennite regarding pressure-volume 
behavior, especially with LDA approximation. This suggests that other elastic 
properties including elastic tensor coefficient, shear and Young’s modulus, and 
Poisson’s ratio from first-principle calculations are fairly reliable.  
 
Calcium aluminate hydrates 
 Pressure-volume behavior of AFm phases was measured by high pressure 
x-ray diffraction.  The hemicarboalumiante and strätlingite experience pressure-
induced dehydration at low pressure (less than 2 GPa).  However, 
monocarboaluminate which has a full occupancy of carbon oxide group in its 
interlayer has the largest bulk modulus among all crystalline minerals in concrete.  
The high incompressibility of monocarboaluminate indirectly suggests the high 
thermodynamical stability which is also confirmed by first-principles calculation.  
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As in the cases of tobermorite and jennite, LDA approximation accurately predicts 
the pressure-volume behavior of monocarboaluminate.  The calculation also 
confirms that dehydrated monocarboaluminate is highly anisotropic thus 
mechanical properties are lower than those of fully hydrated monocarboaluminate.  
The full occupied water molecules in the monocarboaluminate tend to attenuate 
the anisotropic feature of the layer structure and make the crystal incompressible.  
As a clinker material, the mechanical characteristic of tricalcium aluminate is also 
investigated by high pressure x-ray experiment and first-principles calculation.  
The most reliable mechanical properties of calcium aluminate hydrates and 
calcium aluminate oxide are below. 
 
Experimental results (number in parenthesis indicates measured pressure range): 

Ca4Al2(CO3)(OH)12·5H2O : K0 = 54(4) GPa (0.1-4.3 GPa) 
Ca4Al2(CO3)0.5(OH)13·5.5H2O : K0 = 15(2) GPa (0.1-1.1 GPa) 

      : K0 = 32(2) GPa (1.1-5.4 GPa) 
Ca2Al2SiO7·8H2O : K0 = 23(2) GPa (0.1-1.5 GPa) 

            :K0 = 100(3) GPa (1.5-3.4 GPa) 
Ca3Al2O6 : K0 = 110(3) GPa (0.1-4.8 GPa) 

 
First-principles calculations: 

Ca4Al2(CO3)(OH)12·5H2O : K = 57 GPa, G = 32 GPa, E = 80 GPa, ν = 0.3 
Ca4Al2(CO3)(OH)12·2H2O : K = 45 GPa, G = 28 GPa, E = 69 GPa, ν = 0.3 
Ca3Al2O6 : K = 102 GPa, G = 52 GPa, E = 133 GPa, ν = 0.3 

 
The confirmed experimental and computational consistence stimulates a 

future research on static and thermodynamic properties of other clinker materials 
such as alite and belite using first-principles calculation.  
 
Alkali-Silica Reaction Gel 
 Compressibility of amorphous ASR gel was measured by combining x-ray 
diffraction and absorption methods.  Indirectly measured densities at different 
pressures were fitted by the Birch-Murnaghan equation of states.  The obtained 
bulk modulus of the gel is 33(2) GPa and 34(2) GPa (K0´=3.6) from 2nd and 3rd 
BM EoS, respectively.  The computed density and bulk modulus explain the 
expansion mechanism of transforming amorphous silica to ASR gel.  Imbibing 
water and alkali ions into the silica make the gel softer and volumetric expanded.  
In addition, stable pressure behavior suggests the incorporated water molecules in 
the ASR gel may reside not inside its interlayer but between nano-particles.  
 
Future research 

Despite great mechanical performance and low price of ordinary concrete, 
the production of cement requires a considerable amount of energy and CO2 
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emission which is responsible for up to 7-10% of anthropogenic CO2 emissions 
worldwide.  Along with the sustainable issue on cement, static and thermodynamic 
properties of clinker materials are the key material properties to understand the 
complex chemical process during the manufacture of cement.  The material 
properties will be useful for not only understanding the chemical process but 
developing green cement with low environmental impact.  However, it is quite 
challenging to carry out experiments on these.   

 
The excellent agreement of experiment and theoretical calculation of 

tricalcium aluminate suggests a methodology to get accurate static properties.  
This can be also applied to compute thermodynamic properties.  For instance, ab 
initio molecular dynamics simulation on cementitous crystals will allow 
investigating not only static properties but thermodynamic properties such as 
entropy variation and heat capacity.  Furthermore, development of accurate 
empirical potentials for C-S-H and AFm phases can be used to study nano-particle 
cluster of C-S-H as well as large systems of material assemblies with thousands or 
millions of atoms with low computational cost.  The accurately computed elastic 
constants in this research will be valuable parameters to assess the potential 
functions.  
 
 The most important material in concrete is unquestionably C-S-H.  The 
combination of x-ray diffraction and absorption method as discussed in chapter 5 
is also applicable to the density measurement of synthetic C-S-H at varying Ca/Si 
ratio.  This will give an insight on the interpretations of the deformation properties 
of C-S-H with the effect of the length of silicate chain and/or abundance of Ca 
ions in C-S-H.  
  
 In concrete, strength of composite materials rests on the interactions 
between C-S-H and aggregates. The modification of the force by atomistic 
manipulation (e.g., ionic substitutions in C-S-H) can increase the mechanical 
performance of composite materials.  In addition, understanding of the interaction 
of C-S-H with water is important for controlling time-dependent behavior of 
concrete (i.e., creep and shrinkage) of which is still unsettled problem in concrete 
design.  As a new approach, molecular level study on the mechanism of the time-
dependent behaviors of cement paste will be a stimulating research topic in future.   
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Appendix: Geometrically optimized atomic coordinates of crystals in 
concrete 

 
Table A1. Relaxed atomic coordinates of tobermorite 14 Å. 
Tobermorite 14 Å LDA Tobermorite 14 Å GGA 

a (Å) b (Å) c (Å) α (º) β (º) γ (º) a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

7.115 7.703 25.28 90.00 90.00 123.56 6.789 7.507 28.650 90.26 89.76 123.32 

Fractional coordinates Fractional coordinates 

X Y Z X Y Z 

Ca 0.778 0.417 0.304 Ca 0.732 0.432 0.284 

Ca 0.213 0.470 0.796 Ca 0.241 0.420 0.786 

Ca 0.713 0.970 0.704 Ca 0.741 0.919 0.714 

Ca 0.278 0.917 0.196 Ca 0.232 0.932 0.216 

Ca 0.806 0.883 -0.029 Ca 0.947 1.016 0.001 

Ca 0.306 0.382 0.529 Ca 0.479 0.525 0.501 

Ca 0.345 0.446 0.206 Ca 0.247 0.438 0.219 

Ca 0.749 0.493 0.710 Ca 0.762 0.431 0.718 

Ca 0.249 0.993 0.790 Ca 0.262 0.931 0.781 

Ca 0.845 0.946 0.294 Ca 0.746 0.938 0.281 

O 0.889 0.624 0.143 O 0.739 0.519 0.128 

O 0.212 0.550 0.612 O 0.236 0.510 0.633 

O 0.712 0.050 0.888 O 0.736 0.011 0.867 

O 0.389 0.124 0.357 O 0.237 0.018 0.372 

O 0.844 0.239 0.140 O 0.736 0.188 0.157 

O 0.233 0.237 0.638 O 0.240 0.177 0.655 

O 0.733 0.737 0.863 O 0.739 0.678 0.845 

O 0.344 0.739 0.360 O 0.235 0.688 0.343 

O 1.042 0.511 0.219 O 0.972 0.549 0.209 

O 0.452 0.577 0.701 O 0.482 0.530 0.710 

O 0.952 0.077 0.800 O 0.983 0.031 0.790 

O 0.541 0.011 0.281 O 0.471 0.049 0.291 

O 0.591 0.311 0.204 O 0.504 0.315 0.207 

O 0.006 0.355 0.701 O 0.014 0.297 0.711 

O 0.506 0.855 0.799 O 0.514 0.799 0.789 

O 0.091 0.811 0.296 O 0.004 0.815 0.293 

O 0.815 0.248 0.977 O 0.868 0.211 0.949 

O 0.254 0.116 0.455 O 0.390 0.265 0.450 

O 0.754 0.616 0.045 O 0.900 0.765 0.050 

O 0.315 0.748 0.523 O 0.361 0.697 0.550 

O 0.903 0.954 0.099 O 0.758 0.876 0.126 

O 0.254 0.921 0.607 O 0.285 0.881 0.623 

O 0.754 0.421 0.893 O 0.786 0.383 0.876 

O 0.403 0.454 0.402 O 0.255 0.376 0.374 

O 0.571 0.833 0.166 O 0.502 0.822 0.204 
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O 0.011 0.883 0.695 O 0.017 0.810 0.702 

O 0.511 0.383 0.805 O 0.517 0.310 0.798 

O 0.071 0.333 0.334 O 0.001 0.321 0.296 

O 1.009 0.061 0.201 O 0.968 0.058 0.210 

O 0.456 0.108 0.698 O 0.483 0.053 0.708 

O 0.956 0.608 0.802 O 0.983 0.555 0.792 

O 0.509 0.561 0.299 O 0.468 0.558 0.290 

O 0.217 0.881 0.086 O 0.159 0.885 0.130 

O 0.623 0.903 0.603 O 0.665 0.856 0.625 

O 0.123 0.403 0.897 O 0.168 0.362 0.874 

O 0.717 0.381 0.414 O 0.656 0.384 0.370 

O 1.068 0.752 0.966 O 0.899 0.778 0.939 

O 0.658 0.886 0.471 O 0.529 0.779 0.446 

O 1.158 0.386 0.029 O 1.031 0.287 0.054 

O 0.568 0.252 0.535 O 0.407 0.278 0.561 

O 0.427 0.773 1.001 O 0.517 0.876 0.995 

O 0.927 0.273 0.499 O 0.944 0.363 0.513 

O 0.223 0.196 -0.049 O 0.342 0.296 -0.017 

O 0.722 0.696 0.549 O 0.855 0.803 0.519 

O 0.487 0.206 0.027 O 0.745 0.385 0.016 

O -0.013 0.706 0.473 O 0.249 0.888 0.484 

O 0.415 0.532 0.106 O 0.299 0.458 0.132 

O 0.790 0.477 0.610 O 0.783 0.432 0.631 

O 0.290 0.977 0.890 O 0.284 0.931 0.870 

O 0.915 1.032 0.394 O 0.797 0.958 0.368 

Si 0.836 0.414 0.177 Si 0.742 0.397 0.177 

Si 0.228 0.431 0.667 Si 0.248 0.383 0.679 

Si 0.728 0.931 0.833 Si 0.747 0.884 0.821 

Si 0.336 0.914 0.323 Si 0.241 0.897 0.323 

Si 0.941 0.761 0.089 Si 0.889 0.762 0.106 

Si 0.358 0.791 0.586 Si 0.387 0.739 0.605 

Si 0.858 0.291 0.914 Si 0.890 0.245 0.894 

Si 0.441 0.261 0.411 Si 0.384 0.262 0.394 

Si 0.839 1.027 0.153 Si 0.743 0.984 0.176 

Si 0.237 1.033 0.662 Si 0.257 0.975 0.674 

Si 0.737 0.533 0.838 Si 0.757 0.476 0.826 

Si 0.339 0.527 0.347 Si 0.242 0.484 0.324 

H 0.323 1.008 0.062 H 0.291 0.952 0.109 

H 0.696 0.835 0.581 H 0.792 0.918 0.602 

H 0.196 0.335 0.919 H 0.292 0.413 0.897 

H 0.823 0.508 0.438 H 0.789 0.453 0.392 

H 0.969 0.599 0.968 H 1.016 0.742 0.936 

H 0.782 0.964 0.422 H 0.607 0.831 0.415 

H 1.282 0.464 0.078 H 1.109 0.335 0.085 
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H 0.469 0.099 0.532 H 0.527 0.245 0.564 

H 0.325 0.623 1.013 H 0.448 0.733 0.983 

H 0.825 0.123 0.487 H 0.969 0.250 0.505 

H 0.340 0.210 -0.023 H 0.497 0.323 -0.005 

H 0.840 0.710 0.523 H 1.009 0.829 0.505 

H 0.611 0.200 0.006 H 0.821 0.365 -0.012 

H 0.111 0.700 0.494 H 0.325 0.867 0.511 

H 0.549 0.562 0.082 H 0.441 0.452 0.128 

H 0.944 0.504 0.608 H 0.939 0.451 0.627 

H 0.444 1.004 0.893 H 0.442 0.954 0.872 

H 1.049 1.062 0.418 H 0.940 0.952 0.372 

H 1.144 0.805 0.929 H 0.834 0.752 0.907 

H 0.500 0.839 0.487 H 0.409 0.816 0.449 

H 1.000 0.339 0.013 H 0.909 0.322 0.052 

H 0.644 0.305 0.571 H 0.337 0.251 0.593 

H 0.311 0.801 0.990 H 0.585 0.974 0.968 

H 0.811 0.301 0.510 H 1.085 0.473 0.531 

H 0.204 0.318 0.002 H 0.317 0.390 0.002 

H 0.704 0.818 0.498 H 0.835 0.907 0.503 

H 0.581 0.356 0.039 H 0.825 0.541 0.026 

H 0.082 0.856 0.461 H 0.328 1.043 0.474 

H 0.502 0.723 0.133 H 0.360 0.610 0.128 

H 0.779 0.587 0.587 H 0.807 0.567 0.621 

H 0.279 1.087 0.913 H 0.306 1.066 0.879 

H 1.002 1.223 0.367 H 0.858 1.109 0.372 
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Table A2. Relaxed atomic coordinates of tobermorite 9 Å. 
Tobermorite 9 Å LDA Tobermorite 9 Å GGA 

a (Å) b (Å) c (Å) α (º) β (º) γ (º) a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

11.901 7.544 9.668 97.03 91.33 90.93 11.247 7.364 9.620 98.54 91.87 90.52 

Fractional coordinates Fractional coordinates 

X Y Z X Y Z 

Ca 0.378 0.101 0.878 Ca 0.374 0.104 0.902 

Ca 0.878 0.602 0.881 Ca 0.873 0.603 0.903 

Ca 0.622 0.898 0.119 Ca 0.627 0.897 0.097 

Ca 0.122 0.399 0.122 Ca 0.126 0.396 0.098 

Ca 0.493 0.463 0.504 Ca 0.495 0.442 0.504 

Ca 0.007 0.037 0.496 Ca 0.005 0.058 0.496 

Ca 0.368 0.609 0.885 Ca 0.366 0.604 0.884 

Ca 0.868 0.107 0.884 Ca 0.867 0.100 0.881 

Ca 0.632 0.393 0.116 Ca 0.633 0.400 0.119 

Ca 0.132 0.891 0.115 Ca 0.134 0.896 0.116 

O 0.374 0.128 0.384 O 0.378 0.155 0.388 

O 0.869 0.626 0.383 O 0.872 0.642 0.385 

O 0.631 0.874 0.617 O 0.628 0.858 0.615 

O 0.126 0.372 0.616 O 0.122 0.345 0.612 

O 0.491 0.641 0.125 O 0.501 0.658 0.115 

O 0.991 0.141 0.128 O 1.002 0.152 0.115 

O 0.509 0.359 0.872 O 0.498 0.348 0.885 

O 0.009 0.859 0.875 O -0.001 0.842 0.885 

O 0.268 0.642 0.126 O 0.266 0.640 0.118 

O 0.768 0.142 0.125 O 0.766 0.143 0.119 

O 0.732 0.358 0.875 O 0.734 0.357 0.881 

O 0.232 0.858 0.874 O 0.234 0.860 0.882 

O 0.387 0.424 0.278 O 0.407 0.441 0.277 

O 0.888 0.927 0.283 O 0.905 0.937 0.278 

O 0.612 0.573 0.717 O 0.595 0.563 0.722 

O 0.113 0.076 0.722 O 0.093 0.059 0.723 

O 0.187 0.911 0.381 O 0.175 0.946 0.378 

O 0.685 0.401 0.381 O 0.676 0.416 0.378 

O 0.815 0.099 0.619 O 0.824 0.084 0.622 

O 0.313 0.589 0.619 O 0.325 0.554 0.622 

O 0.393 0.766 0.362 O 0.391 0.790 0.356 

O 0.893 0.269 0.361 O 0.898 0.279 0.360 

O 0.607 0.231 0.639 O 0.602 0.221 0.640 

O 0.107 0.734 0.638 O 0.109 0.710 0.644 

O 0.486 0.146 0.138 O 0.498 0.142 0.137 

O -0.014 0.648 0.143 O -0.001 0.640 0.142 

O 0.514 0.852 0.857 O 0.501 0.860 0.858 

O 1.014 0.354 0.862 O 1.002 0.358 0.863 
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O 0.263 0.156 0.134 O 0.264 0.164 0.132 

O 0.765 0.659 0.134 O 0.765 0.664 0.131 

O 0.735 0.841 0.866 O 0.735 0.836 0.869 

O 0.237 0.344 0.866 O 0.236 0.336 0.868 

O 0.158 0.556 0.399 O 0.161 0.524 0.398 

O 0.660 1.057 0.399 O 0.660 1.035 0.397 

O 0.840 0.443 0.601 O 0.840 0.465 0.603 

O 0.342 -0.056 0.601 O 0.339 -0.024 0.602 

H 0.165 0.687 0.380 H 0.153 0.649 0.374 

H 0.669 1.188 0.379 H 0.665 1.162 0.372 

H 0.831 0.312 0.621 H 0.835 0.338 0.628 

H 0.335 -0.187 0.620 H 0.347 -0.149 0.626 

Si 0.375 0.203 0.225 Si 0.384 0.214 0.226 

Si 0.876 0.706 0.230 Si 0.883 0.710 0.230 

Si 0.624 0.794 0.770 Si 0.617 0.790 0.770 

Si 0.125 0.297 0.775 Si 0.116 0.286 0.774 

Si 0.318 0.940 0.430 Si 0.313 0.966 0.429 

Si 0.815 0.441 0.431 Si 0.814 0.455 0.431 

Si 0.685 0.059 0.569 Si 0.686 0.045 0.569 

Si 0.182 0.560 0.570 Si 0.187 0.534 0.571 

Si 0.381 0.624 0.217 Si 0.388 0.639 0.211 

Si 0.880 0.124 0.216 Si 0.888 0.133 0.209 

Si 0.620 0.376 0.784 Si 0.612 0.367 0.791 

Si 0.119 0.876 0.783 Si 0.112 0.861 0.789 
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Table A3. Relaxed atomic coordinates of Jennite. 
Jennite LDA Jennite GGA 

a (Å) b (Å) c (Å) α (º) β (º) γ (º) a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

10.762 7.584 11.046 102.14 96.38 109.94 10.626 7.292 10.912 100.98 97.71 109.35 

Fractional coordinates Fractional coordinates 

X Y Z X Y Z 

Ca 0.058 0.356 0.353 Ca 0.061 0.361 0.364 

Ca 0.942 0.644 0.647 Ca 0.939 0.639 0.636 

Ca 0.430 0.795 0.343 Ca 0.417 0.799 0.365 

Ca 0.570 0.205 0.657 Ca 0.583 0.201 0.635 

Ca 0.067 0.861 0.374 Ca 0.067 0.864 0.380 

Ca 0.933 0.139 0.626 Ca 0.933 0.137 0.620 

Ca 0.428 0.288 0.335 Ca 0.425 0.291 0.351 

Ca 0.572 0.712 0.665 Ca 0.575 0.709 0.649 

Ca 0.000 0.500 0.000 Ca 0.000 0.500 0.000 

O 0.953 0.001 0.223 O 0.964 0.015 0.246 

O 0.047 0.999 0.777 O 0.036 0.985 0.754 

O 0.269 0.940 0.276 O 0.272 0.960 0.311 

O 0.731 0.060 0.724 O 0.728 0.040 0.689 

O 0.593 0.143 0.421 O 0.588 0.130 0.417 

O 0.407 0.857 0.579 O 0.412 0.870 0.583 

O 0.865 0.318 0.477 O 0.867 0.318 0.479 

O 0.135 0.682 0.523 O 0.133 0.682 0.521 

O 0.742 0.112 0.241 O 0.745 0.123 0.236 

O 0.258 0.888 0.759 O 0.255 0.877 0.764 

O 0.716 0.751 0.252 O 0.709 0.753 0.245 

O 0.284 0.249 0.748 O 0.291 0.247 0.755 

O 0.710 0.436 0.324 O 0.700 0.437 0.327 

O 0.290 0.564 0.676 O 0.300 0.563 0.673 

O 0.729 0.849 0.037 O 0.757 0.866 0.034 

O 0.271 0.151 0.963 O 0.243 0.134 0.966 

O 0.587 0.651 0.432 O 0.580 0.662 0.432 

O 0.413 0.349 0.568 O 0.420 0.338 0.568 

O 0.862 0.794 0.480 O 0.864 0.801 0.477 

O 0.138 0.206 0.520 O 0.136 0.199 0.523 

O 0.273 0.445 0.275 O 0.275 0.454 0.306 

O 0.727 0.555 0.725 O 0.725 0.546 0.694 

O 0.960 0.527 0.221 O 0.986 0.537 0.226 

O 0.040 0.473 0.779 O 0.014 0.463 0.774 

O 0.450 0.125 0.110 O 0.447 0.162 0.129 

O 0.550 0.875 0.890 O 0.553 0.838 0.871 

O 0.546 0.211 0.893 O 0.550 0.208 0.859 

O 0.454 0.789 0.107 O 0.450 0.792 0.141 

O 0.913 0.116 0.939 O 0.909 0.139 0.933 
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O 0.087 0.884 0.061 O 0.091 0.861 0.066 

O 0.769 0.531 0.964 O 0.786 0.530 0.956 

O 0.231 0.469 0.036 O 0.214 0.470 0.044 

Si 0.791 0.930 0.189 Si 0.801 0.940 0.189 

Si 0.209 0.070 0.811 Si 0.199 0.060 0.811 

Si 0.729 0.249 0.373 Si 0.726 0.247 0.372 

Si 0.271 0.751 0.627 Si 0.274 0.753 0.628 

Si 0.723 0.666 0.379 Si 0.717 0.675 0.378 

Si 0.277 0.333 0.621 Si 0.283 0.325 0.622 

H 0.218 0.914 0.190 H 0.228 0.919 0.219 

H 0.782 0.086 0.810 H 0.772 0.081 0.781 

H 0.248 0.439 0.184 H 0.243 0.439 0.214 

H 0.752 0.561 0.816 H 0.757 0.561 0.786 

H 0.863 0.481 0.219 H 0.887 0.485 0.216 

H 0.137 0.519 0.781 H 0.113 0.515 0.784 

H 0.369 0.129 0.042 H 0.368 0.151 0.055 

H 0.534 0.194 0.084 H 0.534 0.244 0.113 

H 0.456 0.207 0.906 H 0.459 0.217 0.850 

H 0.549 0.074 0.893 H 0.541 0.071 0.869 

H 0.968 0.058 0.883 H 0.960 0.075 0.879 

H 0.857 0.015 0.977 H 0.856 0.033 0.975 

H 0.682 0.416 0.951 H 0.697 0.417 0.938 

H 0.750 0.657 0.996 H 0.772 0.662 0.990 

H 0.631 0.871 0.958 H 0.632 0.849 0.945 

H 0.466 0.806 0.916 H 0.466 0.756 0.887 

H 0.544 0.793 0.094 H 0.541 0.783 0.149 

H 0.451 0.926 0.107 H 0.459 0.929 0.131 

H 0.032 0.942 0.117 H 0.040 0.925 0.121 

H 0.143 0.985 0.023 H 0.144 0.966 0.025 

H 0.318 0.584 0.049 H 0.303 0.582 0.062 

H 0.250 0.343 0.004 H 0.228 0.338 0.010 
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Table A4. Relaxed atomic coordinates of monocarboaluminate containing 5 water. 
5 water monocarboaluminate LDA 5 water monocarboaluminate GGA 

a (Å) b (Å) c (Å) α (º) β (º) γ (º) a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

5.766 8.504 9.628 68.42 81.72 80.728 5.766 8.538 9.984 65.135 82.336 80.805 

Fractional coordinates Fractional coordinates 

X Y Z X Y Z 

Al 0.005 -0.002 0.998 Al 0.003 -0.004 1.001 

Al 0.496 0.504 0.504 Al 0.494 0.503 0.506 

C 0.861 0.324 0.188 C 0.880 0.327 0.199 

Ca 0.528 0.108 0.787 Ca 0.522 0.114 0.807 

Ca 0.479 0.892 0.205 Ca 0.479 0.885 0.195 

Ca 0.018 0.618 0.300 Ca 0.014 0.623 0.314 

Ca 0.978 0.385 0.709 Ca 0.979 0.377 0.696 

H 0.177 0.231 1.029 H 0.175 0.261 0.987 

H 0.842 0.766 -0.032 H 0.833 0.726 0.023 

H 0.298 0.767 0.968 H 0.323 0.775 0.971 

H 0.701 0.227 0.031 H 0.688 0.214 0.039 

H 0.346 0.262 0.471 H 0.344 0.237 0.512 

H 0.659 0.749 0.526 H 0.650 0.771 0.494 

H 0.788 0.291 0.446 H 0.814 0.298 0.452 

H 0.211 0.726 0.545 H 0.170 0.720 0.541 

H -0.050 1.018 0.253 H -0.019 1.005 0.252 

H 0.071 0.004 0.730 H 0.023 0.006 0.739 

H 0.544 0.510 0.229 H 0.511 0.511 0.245 

H 0.440 0.488 0.780 H 0.475 0.482 0.771 

H 0.718 0.762 0.743 H 0.703 0.785 0.738 

H 0.467 0.835 0.674 H 0.450 0.863 0.683 

H 0.255 0.224 0.275 H 0.287 0.213 0.270 

H 0.538 0.170 0.313 H 0.558 0.146 0.312 

H 0.064 0.633 0.851 H 0.061 0.628 0.820 

H 0.841 0.538 0.951 H 0.858 0.524 0.927 

H 0.474 0.504 0.999 H 0.485 0.504 1.000 

H 0.210 0.479 0.039 H 0.220 0.500 0.042 

H 1.013 0.939 0.561 H 0.986 0.984 0.527 

H 0.255 1.012 0.481 H 0.249 0.998 0.472 

O 0.156 0.191 0.948 O 0.152 0.209 0.920 

O 0.856 0.805 0.052 O 0.852 0.784 0.085 

O 0.295 0.880 0.975 O 0.312 0.887 0.979 

O 0.712 0.118 0.016 O 0.693 0.109 0.021 

O 0.349 0.310 0.550 O 0.351 0.288 0.581 

O 0.643 0.698 0.451 O 0.639 0.718 0.427 

O 0.785 0.386 0.482 O 0.804 0.394 0.482 

O 0.209 0.618 0.530 O 0.185 0.608 0.531 

O 0.038 0.940 0.205 O 0.069 0.933 0.204 
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O 0.967 0.060 0.794 O 0.931 0.062 0.800 

O 0.455 0.568 0.296 O 0.423 0.572 0.303 

O 0.539 0.437 0.711 O 0.569 0.430 0.708 

O 0.627 0.861 0.670 O 0.604 0.896 0.684 

O 0.373 0.132 0.334 O 0.400 0.106 0.314 

O 0.902 0.618 0.844 O 0.905 0.599 0.819 

O 0.321 0.552 0.958 O 0.334 0.559 0.956 

O 0.180 0.924 0.574 O 0.142 0.934 0.561 

O 0.727 0.418 0.085 O 0.750 0.407 0.087 

O 0.069 0.362 0.180 O 0.076 0.385 0.197 

O 0.790 0.199 0.297 O 0.815 0.192 0.312 
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Table A5. Relaxed atomic coordinates of monocarboaluminate containing 2 water. 
2 water monocarboaluminate LDA 2 water monocarboaluminate GGA 

a (Å) b (Å) c (Å) α (º) β (º) γ (º) a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

5.766 8.213 9.065 71.628 80.564 80.661 5.766 8.365 9.945 65.807 80.909 79.391 

Fractional coordinates Fractional coordinates 
X Y Z X Y Z 

Al 0.017 -0.027 0.997 Al -0.005 -0.011 0.995 

Al 0.484 0.505 0.526 Al 0.478 0.512 0.512 

C 0.833 0.318 0.185 C 0.926 0.318 0.208 

Ca 0.545 0.098 0.776 Ca 0.501 0.141 0.821 

Ca 0.464 0.904 0.225 Ca 0.479 0.864 0.180 

Ca 0.028 0.598 0.311 Ca 0.008 0.617 0.313 

Ca 0.951 0.371 0.746 Ca 0.967 0.369 0.693 

H 0.153 0.211 1.047 H 0.057 0.284 0.979 

H 0.863 0.720 -0.019 H 0.872 0.694 0.026 

H 0.321 0.734 0.973 H 0.341 0.773 0.953 

H 0.692 0.211 0.047 H 0.694 0.200 0.062 

H 0.447 0.287 0.432 H 0.338 0.239 0.518 

H 0.619 0.733 0.581 H 0.656 0.780 0.487 

H 0.788 0.288 0.444 H 0.806 0.303 0.451 

H 0.165 0.731 0.568 H 0.135 0.731 0.543 

H -0.087 1.007 0.272 H -0.019 1.003 0.247 

H 0.086 -0.013 0.694 H -0.006 0.004 0.729 

H 0.567 0.536 0.222 H 0.489 0.475 0.271 

H 0.409 0.478 0.826 H 0.469 0.506 0.779 

H 0.489 0.468 1.039 H 0.548 0.487 1.012 

H 0.216 0.433 0.075 H 0.275 0.488 0.052 

H 1.121 1.146 0.360 H 1.026 1.058 0.451 

H 0.253 1.140 0.495 H 0.282 0.967 0.497 

O 0.166 0.163 0.957 O 0.123 0.213 0.919 

O 0.864 0.783 0.057 O 0.856 0.773 0.079 

O 0.316 0.857 0.966 O 0.313 0.891 0.960 

O 0.718 0.108 0.012 O 0.682 0.102 0.033 

O 0.349 0.300 0.535 O 0.348 0.287 0.590 

O 0.619 0.701 0.484 O 0.605 0.736 0.421 

O 0.777 0.373 0.502 O 0.791 0.397 0.489 

O 0.175 0.613 0.565 O 0.158 0.613 0.540 

O 0.020 0.926 0.219 O 0.070 0.926 0.198 

O 0.986 0.035 0.777 O 0.906 0.057 0.797 

O 0.465 0.578 0.308 O 0.420 0.563 0.311 

O 0.507 0.431 0.739 O 0.557 0.454 0.710 

O 0.327 0.518 1.010 O 0.395 0.545 0.970 

O 0.211 1.060 0.443 O 0.117 0.966 0.536 

O 0.760 0.423 0.057 O 0.827 0.376 0.085 

O 0.047 0.315 0.205 O 0.098 0.392 0.216 

O 0.704 0.217 0.293 O 0.853 0.184 0.323 
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Table A6. Relaxed atomic coordinates of tricalcium aluminate. 

 
Mondal and Jeffery [213] Tricalcium aluminate GGA 

Pa3, a = 15.263 Å Pa3, a = 15.39 Å 

 Fractional coordinates Fractional coordinates 

 
x y z  x y z 

Ca1 0 0 0 Ca1 0 0 0 

Ca2 0.5 0 0 Ca2 0.5 0 0 

Ca3 0.2561(1) 0.2561(1) 0.2561(1) Ca3 0.2516 0.2516 0.2516 

Ca4 0.3750(1) 0.3750(1) 0.3750(1) Ca4 0.3686 0.3688 0.3688 

Ca5 0.1386(1) 0.3763(1) 0.1272(1) Ca5 0.1421 0.3814 0.1271 

Ca6 0.3800(1) 0.3838(1) 0.1209(1) Ca6 0.3803 0.3764 0.1204 

Al1 0.2526(1) 0.0133(1) 0.0197(1) Al1 0.2517 0.0133 0.0192 

Al2 0.2444(1) 0.2335(1) 0.0046(1) Al2 0.2435 0.2298 0.0045 

O1 0.2777(2) 0.1241(2) 0.0103(2) O1 0.2878 0.1227 0.0103 

O2 0.4835(2) 0.1315(2) 0.2536(2) O2 0.4825 0.13 0.2649 

O3 0.2664(2) 0.2841(2) 0.1049(2) O3 0.2627 0.2823 0.1042 

O4 0.2350(2) 0.4047(2) 0.2921(2) O4 0.2357 0.4027 0.2872 

O5 0.3491(2) -0.0385(2) -0.0174(2) O5 0.3467 -0.0463 -0.0098 

O6 0.1509(2) -0.0104(2) -0.0242(2) O6 0.1515 -0.003 -0.0333 
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