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Sufficient Conditions for Passivity and Stability of Interconnections of
Hybrid Systems using Sums of Storage Functions

Roberto Naldi and Ricardo G. Sanfelice

Abstract—Building from recent results on passivity for a
class of hybrid systems, we investigate the properties of negative
feedback interconnections of such systems. We establish links
between the passivity properties of the individual subsystems
and passivity, stability, and asymptotic stability of their in-
terconnection. As a main difference to the continuous time
counterpart, it is found that the sum of the two storage
functions of two individual hybrid subsystems may not be a
storage function for their interconnection. This issue motivates
exploring additional sufficient conditions that guarantee that
passivity and stability of the interconnected system hold using
the individual storage functions. Throughout the paper, an
application and examples illustrate the definitions and the
results obtained.

I. INTRODUCTION

Dissipativity and its special case, passivity, have been
successfully employed to design feedback control laws and to
investigate the stability properties of closed-loop dynamical
systems. In fact, they provide a useful physical intuition, in
term of energy supplied and dissipated by a system, which
relates nicely to Lyapunov and L2 stability theories. For
continuous-time systems, passivity and dissipativity notions
as well as sufficient conditions linking to stability and asymp-
totic stability are reported in several textbooks, including [1],
[2], [3], [4]. Passivity-based control techniques, based on
energy considerations, have been also proposed and applied
to stabilize different physical systems [5]. More recently, the
concept of passivity and dissipativity has been investigated
also for switching systems [6], [7], [8], complementary
mechanical systems [9], impulsive dynamical systems [10],
and hybrid systems [11], [12]. In [12], in particular, the
case of hybrid systems in which the energy dissipation may
only happen along either the continuous or the discrete time
dynamics has been considered, deriving two weak notions
of passivity, respectively flow-passivity, in which dissipation
happens along flows, and jump-passivity, in which dissipa-
tion happens along jumps.
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Dissipativity and passivity have also been shown to be
useful tools to investigate the stability properties of inter-
connected systems. More specifically, for continuous-time
systems, a fundamental result is the fact that the (negative)
feedback interconnection of two passive systems is passive
[2], [1]. Interestingly, this property can be established using
the sum of the two individual storage functions. More
recently, passivity and dissipativity concepts have been em-
ployed to analyze interconnections of different classes of
systems, including, in particular, hybrid systems. In [10],
results pertaining to the (negative) feedback interconnection
of dissipative impulsive dynamical systems have been pro-
posed. The definition of interconnected system employed
therein, allows for the dissipativity inequalities to hold when
considering the sum of the two individual storage functions
as a storage function for the interconnection. Asymptotic
stability of large-scale interconnections of hybrid systems
is investigated in [11] by considering the notions of dis-
sipativity and detectability. In [11], the hybrid system is
decomposed into a number of subsystems and then recon-
stituted by defining interconnection constraints. In [13], the
interconnection of hybrid systems is investigated and input-
output stability properties, based on the notion of input-to-
state stability and the small gain theorem [3], are derived.

In this paper, by considering the hybrid-specific notion
of passivity for hybrid systems proposed in [12] and the
definition of feedback interconnection of hybrid systems
in [13], we derive sufficient conditions linking passivity
properties of hybrid systems to passivity and stability of
their interconnection. When the passivity properties hold
during jumps, it is shown how the sum of the individual
storage functions may not be a storage function for the
interconnection. This fact, which represents an important
difference with respect to continuous-time systems, derives
from the fact that the interconnected system may encounter
situations in which only one of the two subsystems is allowed
to jump. Accordingly, sufficient conditions are derived to
establish passivity, 0-input stability and asymptotic stability
of the interconnection by considering the sum of the two
storage functions. The results are obtained by considering
the cases in which, for each individual subsystem, the
passivity properties hold either only during flows or jumps
(or along both regimes). An application, considering an
actuated bouncing ball, and several examples illustrate the
main results.
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Fig. 1. Motivational application.

The paper is organized as follows. Section II introduces a
motivational application pertaining to an actuated bouncing
ball. Section III presents the main definition of passivity and
of (negative) feedback interconnection. Passivity properties
of the interconnected system are investigated in Section
IV. Stability and asymptotic stability are then addressed in
Section V.

II. MOTIVATIONAL APPLICATION

We consider the mechanical system depicted in Figure
1(a), which consists of a ball bouncing on a fixed horizontal
surface. The motion of the ball can be affected by two
mechanical actuators, one able to apply a force to the ball
while flowing and the other one controlling the speed of the
ball at impacts (similar actuation is considered in the systems
in [14]). The mechanical system of interest can be described
by the following hybrid system:

HBB

⎧⎪⎪⎨
⎪⎪⎩

ẋ = F (x, vc) :=

[
x2

−γ + vc

]
x ∈ C

x+ = G(x, vd) :=

[
x1

−�x2 − vd

]
(x, vd) ∈ D

(1)
with state x = [x1, x2]

� ∈ R
2, inputs vc, vd ∈ R, fixed

restitution coefficient � ∈ [0, 1), gravity constant γ > 0 and
sets C and D given by

C :=
{
x ∈ R

2 : x1 ≥ 0
}

D :=
{
(x, vd) ∈ R

2 × R : x1 = 0, x2 ≤ 0, vd ∈ U(x2)
}

(2)
where U : R → R defines the constraint set for the input
vd1 which is given by x2 �→ U(x2) := {vd ∈ R : vd

2 ≤
(1 − �2)x2

2}; namely, the applied input at impacts is upper
bounded by the ball’s velocity.
For the above hybrid system, by considering a natural

notion of passivity (see Definition 1 in the upcoming section),
it is possible to show the following property.

Proposition 1 System (1) with inputs vc and vd, and outputs

yc = hc(x) := x2, yd = hd(x) := �x2 (3)

is passive with respect to the compact set A = {(0, 0)}
with storage function V : R

2 → R≥0 given by V (x) :=
1
2x2

2 + γx1.

Motivated by the passivity properties shown in Proposition
1, we consider now the negative feedback interconnection

of two actuated bouncing balls (1)-(3), denoted as HBB, 1

and HBB, 2, respectively. For notational simplicity, in the
following we denote with z = [z1, z2]

� ∈ R
2 the state of

HBB, 2 and we use the subscripts 1 and 2 to denote inputs
and outputs of HBB, 1 and HBB, 2, respectively.
The negative feedback interconnection of HBB, 1 and

HBB, 2 can be then obtained by choosing vc1 = ṽc1 − yc2,
vc2 = ṽc2 +yc1, vd1 = ṽd1−yd2 and vd2 = ṽd2 +yd1 where
ṽc1, ṽc2, ṽd1, ṽd2 are additional inputs.1 By considering the
results in [13] for the interconnection of hybrid systems, the
interconnected system can be written as a new hybrid system
HBB, 12 (see Figure 1(b)) given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −γ − z2 + ṽc1

ż1 = z2

ż2 = −γ + x2 + ṽc2

⎫⎪⎪⎬
⎪⎪⎭

x ∈ C and z ∈ C

x+
1 = x1

x+
2 = −�x2 + �z2 − ṽd1

z+
1 = z1

z+
2 = −�z2 − �x2 − ṽd2

⎫⎪⎪⎬
⎪⎪⎭

(x, ṽd1 − yd2) ∈ D and
(z, ṽd2 + yd1) ∈ D

x+
1 = x1

x+
2 = −�x2 + �z2 − ṽd1

z+
1 = z1

z+
2 = z2

⎫⎪⎪⎬
⎪⎪⎭

(x, ṽd1 − yd2) ∈ D and
(z, ṽd2 + yd1) /∈ D

x+
1 = x1

x+
2 = x2

z+
1 = z1

z+
2 = −�z2 − �x2 − ṽd2

⎫⎪⎪⎬
⎪⎪⎭

(x, ṽd1 − yd2) /∈ D and
(z, ṽd2 + yd1) ∈ D

(4)
Let V1 and V2 be given by V1(x) = 1

2x2
2 + γx1 and

V2(z) = 1
2z2

2 + γz1. According to Proposition 1, HBB, 1

is passive with respect to A with inputs vc1 and vd1, outputs
yc1 and yd1, and storage function V1, whileHBB, 2 is passive
with respect to A with inputs vc2 and vd2, outputs yc2

and yd2 with storage function V2. Following results for
continuous-time systems [2], [1], which guarantee that the
negative feedback interconnection of two passive systems is
passive (property that can be established using the sum of
the individual storage functions) the hybrid system HBB, 12

is expected to be passive with inputs vc = [ṽ�c1, ṽ�c2]
� and

vd = [ṽ�d1, ṽ�d2]
�, outputs yc = [yc

�
1 , yc

�
2 ]� and yd =

[yd
�
1 , yd

�
2 ]� and storage function V (x, z) = V1(x) + V2(z).

However, this property does not seem to hold for HBB, 12.
In fact, along jumps, when (x, ṽd1−yd2) ∈ D and (z, ṽd2+
yd1) /∈ D, since vd1 = ṽd1 − yd2, we obtain2

V (G(x, vd1), z) − V (x, z) = V1(G(x, vd1)) − V1(x)

= 1
2 (−�x2 − (ṽd1 − �z2))

2 − 1
2x2

2

≤ �x2(ṽd1 − �z2) = ṽd1yd1 − yd1yd2

1Such a negative interconnection could emerge in a feedback control
setting where the speed of the two balls are measured quantities, or in the
hypothetical setting where ball HBB, 1 introduces viscous friction on the
motion of HBB, 2, while HBB, 2 introduces negative viscous friction on
the motion of HBB, 1 both along flows and jumps; see Figure 1(b).

2When both systems jump simultaneously, namely (x, ṽd1 − yd2
) ∈

D and (z, ṽd2 + yd1
) ∈ D, passivity can be established by consid-

ering the sum of the two storage functions. In fact, in such a case,
V (G(x, vd1), G(z, vd2)) − V (x, z) = vd

�yd.



while, when (x, ṽd1 − yd2) /∈ D and (z, ṽd2 + yd1) ∈ D,

V (x, G(z, vd2)) − V (x, z) = V2(G(z, vd2)) − V2(z)

= 1
2 (−�z2 − (ṽd2 + �x2))

2
− 1

2z2
2

≤ �z2(ṽd2 + �x2) = ṽd2yd2 + yd1yd2 .

Now assume ṽd1 = ṽd2 = 0 and note that, from the definition
of D, when (x, −yd2) /∈ D and (z, yd1) ∈ D, the product
yd1yd2 is allowed to be larger or equal than zero and hence
the function V may increase at jumps. Note that the fact
that V1(x) + V2(z) is not a storage function for HBB, 12

does not imply that passivity may not follow by considering
a different storage function. It is worth to note, however,
that this fact represents an important difference with respect
to continuous-time systems for which such a property holds
true [2]. In this paper, we present conditions under which
the interconnection has passivity properties certified by the
sum of the systems storage functions.3

III. PRELIMINARIES

A. Notation

Throughout this paper, R and R≥0 denote the field of real
and positive real numbers, respectively. For x ∈ R

n, |x| and
|x|∞ denote respectively the Euclidean and the infinity norm
and, given a closed set A, subset of R

n, |x|A = miny∈A |x−
y| denotes the distance to A from x. Given a set S, S̄ denotes
its closure. At times, for convenience, we may refer to a
vector [x�, y�]� as (x, y). Given a set S ⊂ R

n × R
m, we

denote Π0(S) := {x ∈ R
n : (x, 0) ∈ S} and Π(S) :=

{x ∈ R
n : ∃u ∈ R

m s.t. (x, u) ∈ S}.

B. Passivity Definitions

In this work, we consider hybrid systems H as in [15]
given by

H

⎧⎪⎪⎨
⎪⎪⎩

ẋ ∈ F (x, vc) (x, vc) ∈ C
x+ ∈ G(x, vd) (x, vd) ∈ D
yc = hc(x)
yd = hd(x)

(5)

with state x ∈ R
n, input v =

[
vc

�, vd
�

]�
∈ R

mc+md in
which vc ∈ R

mc and vd ∈ R
md are respectively the inputs

for flows and jumps. The sets C ⊂ R
n × R

mc and D ⊂
R

n×R
md define the flow and jump sets, respectively; the set-

valued mappings F : R
n×R

mc ⇒ R
n and G : R

n×R
md ⇒

R
n define the flow map and jump map, respectively. Finally,

we let y =
[
yc

�, yd
�

]�
∈ R

mc+md be the output where yc,
yd are assigned via functions of the state hc : R

n → R
mc

and hd : R
n → R

mc .
For this class of hybrid systems, we consider the following

concept of passivity (see [12]). Below, the functions hc, hd,
and a compact set A ⊂ R

n satisfy hc(A) = hd(A) = 0.

3In [10], the passivity of interconnections of impulsive dynamical systems
can be certified by considering the sum of the individual storage functions.
In fact the notion of interconnection used therein, allows only simultaneous
jumps of the individual systems, which ensures that such a property holds.

Definition 1 (see Def. 2 in [12]) A hybrid system H for
which there exists a function V : R

n → R≥0, called a
“storage function,”

• continuous on R
n;

• continuously differentiable on a neighborhood of Π
(
C

)
;

• satisfying for some functions ωc : R
mc × R

n → R and
ωd : R

mc × R
n → R

〈∇V (x), ξ〉 ≤ ωc(vc, x)
∀(x, vc) ∈ C, ξ ∈ F (x, vc)

(6)

V (ξ) − V (x) ≤ ωd(vd, x)
∀(x, vd) ∈ D, ξ ∈ G(x, vd)

(7)

is said to be
• passive with respect to a compact set A if

(vc, x) �→ ωc(vc, x) = v�c yc (8)
(vd, x) �→ ωd(vd, x) = v�d yd. (9)

It is then called flow-passive (respectively, jump-
passive) if it is passive with ωd ≡ 0 (respectively,
ωc ≡ 0).

• strictly passive with respect to a compact set A if

(vc, x) �→ ωc(vc, x) = v�c yc − ρc(x)
(vd, x) �→ ωd(vd, x) = v�d yd − ρd(x),

where ρc, ρd : R
n → R≥0 are positive definite with

respect to A. It is then called flow-strictly passive (re-
spectively, jump-strictly passive) if it is strictly passive
with ωd ≡ 0 (respectively, ωc ≡ 0).

• output strictly passive with respect to A if

(vc, x) �→ ωc(vc, x) = v�c yc − y�
c ρc(yc)

(vd, x) �→ ωd(vd, x) = v�d yd − y�
d ρd(yd),

where ρc : R
mc → R

mc , ρd : R
md → R

md are func-
tions such that y�

c ρc(yc) > 0 for all yc �= 0 and such
that y�

d ρd(yd) > 0 for all yd �= 0, respectively. It is then
called flow-output strictly passive (respectively, jump-
output strictly passive) if it is output strictly passive
with ωd ≡ 0 (respectively, ωc ≡ 0).

C. Stability Notions
Given an input (vc, vd), a solution to H is defined by a

state trajectory φ that satisfies the differential and difference
inclusions with constraints in (5). Both the input and the
state trajectory are functions of (t, j) ∈ R≥0 × N :=
[0,∞) × {0, 1, 2, . . .}, where t keeps track of the amount
of flow while j counts the number of jumps of the solution.
These functions are given by hybrid arcs and hybrid inputs,
which are defined on hybrid time domains. A hybrid time
domain is a subset E of R≥0 ×N that, for each (T, J) ∈ E,
E ∩ ([0, T ]× {0, 1, ...J}) can be written in the form⋃J−1

j=0 ([tj , tj+1], j) for some finite sequence of times 0 =
t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ . A hybrid arc φ is a function
on a hybrid time domain. The hybrid time domain of φ
is denoted by domφ. A hybrid arc is such that, for each
j ∈ N, t �→ φ(t, j) is absolutely continuous on intervals of
flow Ij := {t : (t, j) ∈ domφ } with nonzero Lebesgue
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Fig. 2. The hybrid system H12 resulting from the negative feedback
interconnection between H1 and H2.

measure. A hybrid input u is a function on a hybrid time
domain that, for each j ∈ N, t �→ u(t, j) is Lebesgue
measurable and locally essentially bounded on the interval
Ij . A solution φ is maximal if it cannot be further extended
and complete if its hybrid time domain is unbounded.
We consider the following stability definitions for hybrid

systems when their input is set to zero.

Definition 2 (see Def. 3 in [12]) A compact set A ⊂ R
n is

said to be
• 0-input stable if for each ε > 0 there exists δ > 0
such that each maximal solution pair (φ, 0) to H and
φ(0, 0) = ξ, |ξ|A ≤ δ, satisfies |φ(t, j)|A ≤ ε for all
(t, j) ∈ domφ;

• 0-input pre-attractive if there exists μ > 0 such that
every maximal solution pair (φ, 0) to H and φ(0, 0) =
ξ, |ξ|A ≤ μ, is bounded and if it is complete satisfies

lim
(t,j)∈dom φ,t+j→∞

|φ(t, j)|A = 0;

• 0-input pre-asymptotically stable if it is 0-input stable
and 0-input pre-attractive.

When every maximal solution is complete, the prefix “pre”
can be removed. Asymptotic stability is said to be global
when the attractivity property holds in C ∪ D.

IV. PASSIVITY OF FEEDBACK INTERCONNECTIONS OF
HYBRID SYSTEMS

Given two hybrid systems, H1 and H2, we are interested
in investigating the properties of the hybrid system H12

obtained as the negative feedback interconnection of H1

and H2, having4 mc1 = mc2 = mc, md1 = md2 = md.
Following the definition of a typical negative feedback inter-
connection (see [2] for interconnections of two continuous-
time systems), H12 is defined as in Figure 2 by considering
the following assignments:

vc1 = ec1 := ṽc1 − yc2, vc2 = ec2 := ṽc2 + yc1,
vd1 = ed1 := ṽd1 − yd2, vd2 = ed2 := ṽd2 + yd1

(10)

in which ṽc1, ṽc2 ∈ R
mc , ṽd1, ṽd2 ∈ R

md are the inputs for
the interconnection.

4In the following, we will denote with subscript i vectors (state, inputs
and outputs) and other objects (functions, parameters, etc.) belonging to the
hybrid system Hi, i ∈ {1, 2}.

Accordingly, for the interconnection H12 we denote with
x = [x�

1 , x�
2 ]� ∈ R

n1 × R
n2 the state, with vc =

[ṽ�c1, ṽ�c2]
� ∈ R

2mc and vd = [ṽ�d1, ṽ�d2]
� ∈ R

2md the
inputs and with yc = [yc

�
1 , yc

�
2 ]� ∈ R

2mc and yd =
[yd

�
1 , yd

�
2 ]� ∈ R

2md the outputs.
Following [13], the interconnection H12 can be written as

a hybrid system H with data (C, F, D, G, hc, hd) given by

C := {(x, η) : (x1, η1) ∈ C1, (x2, η2) ∈ C2 } ,
F (x, η) := [F1(x1, η1)

�, F2(x2, η2)
�]�,

D := {(x, η) : (x1, η1) ∈ D1 }∪
{(x, η) : (x2, η2) ∈ D2 } ,

G(x, η) := [G̃1(x1, η1)
�, G̃2(x2, η2)

�]�,

where

G̃1(x1, η1) :=

{
G1(x1, η1) (x1, η1) ∈ D1

x1 otherwise

G̃2(x2, η2) :=

{
G2(x2, η2) (x2, η2) ∈ D2

x2 otherwise

and hc(x) := [hc1(x1)
�, hc2(x2)

�]�, hd(x) :=
[hd1(x1)

�, hd2(x2)
�]�.

A. Passivity
For two hybrid systems that are flow-passive as in Def-

inition 1, we have the following passivity result of the
interconnection H12.

Theorem 1 If, for each i ∈ {1, 2}, Hi is flow-passive with
respect to the compact set Ai ⊂ R

ni with storage function
Vi(xi), then the hybrid system H12 is flow-passive with
respect to the compact set A12 = A1 × A2 ⊂ R

n1 × R
n2

with storage function V (x) = V1(x1) + V2(x2).

The above result is showing how, for the special case
of flow-passive hybrid systems, passivity of the negative
feedback interconnection can be established by considering
the sum of the two individual storage functions. This fact
reveals an interesting analogy between flow-passive hybrid
systems and their continuous-time counterpart. Next, we
show how Theorem 1 can be applied to establish passivity
for a modified version of the motivational application.

Example 1 (Motivational Application (revisited)) Consider
the actuated bouncing ball HBB defined in (1). Denote with
HBB� the hybrid system HBB when the input vd = 0. Using
Proposition 1, it can be easily shown that HBB� is flow-
passive according to Definition 1 with respect to the compact
set A = {(0, 0)} by considering the input vc and the output
yc defined in (3). Applying Theorem 1, the negative feedback
interconnectionHBB�, 12, which corresponds to (4) (in which
the interconnection along jump has been removed due to
ujump = 0), is flow-passive with input vc = [ṽc1, ṽc2]

�,
output yc = [yc1, yc2]

� = [x2, z2]
� and storage function

V (x, z) = 1
2x2

2 + γx1 + 1
2z2

2 + γz1. �

Unfortunately, as suggested in Section II, the jumps of the
individual subsystems may not allow for their interconnec-
tion to be passive. The following conditions will be employed



hereafter to derive additional passivity results for the hybrid
system H12

5.
(C1) For all x1, x2, ṽd1, ṽd2 such that (x1, ṽd1 −
hd2(x2)) ∈ D1 and (x2, ṽd2 + hd1(x1)) /∈ D2

−hd1(x1)
�hd2(x2) ≤ ṽ�d2hd2(x2) ; (11)

(C2) For all x1, x2, ṽd1, ṽd2 such that (x1, ṽd1 −
hd2(x2)) /∈ D1 and (x2, ṽd2 + hd1(x1)) ∈ D2

hd1(x1)
�hd2(x2) ≤ ṽ�d1hd1(x1) . (12)

These conditions permit establishing the following result
for the interconnection of hybrid systems that are passive or
jump-passive.

Theorem 2 If, for each i ∈ {1, 2}, Hi is passive (jump-
passive) with respect to Ai ⊂ R

ni with storage function
Vi(xi), and (C1)-(C2) hold true for H12, then the hybrid
system H12 resulting from the negative feedback intercon-
nection of H1 and H2 is passive (respectively jump-passive)
with respect to the compact set A = A1 ×A2 ⊂ R

n1 ×R
n2

with storage function V (x) = V1(x1) + V2(x2).

Theorem 2 exploits (C1)-(C2) to establish passivity of
the negative feedback interconnection of hybrid systems for
which, in particular, the passivity property holds during
jumps. In fact, conditions (C1)-(C2) ensure that the passivity
inequalities continue to hold in all those situations in which
only one of the two subsystems jumps.

V. 0-INPUT STABILITY PROPERTIES OF FEEDBACK
INTERCONNECTIONS OF HYBRID SYSTEMS

We relate different forms of passivity to stability and
asymptotic stability with zero input, that is, for the hybrid
system H12 with vc = 0, vd = 0

H0
12

⎧⎪⎪⎨
⎪⎪⎩

ẋ ∈ F (x, 0) (x, 0) ∈ C
x+ ∈ G(x, 0) (x, 0) ∈ D
yc = hc(x)
yd = hd(x)

(13)

Below, let X be defined as X := Π0(C) ∪ Π0(D) ∪
G(Π0(D), 0).

The following conditions will be employed hereafter to
derive stability results for the hybrid system H0

12.
(Cs1) hc1(x1)

�hc2(x2) ≥ 0 for all x1, x2 such that
(x1, −hc2(x2)) ∈ C1 and (x2, hc1(x1)) ∈ C2;
(Cs2) hd1(x1)

�hd2(x2) ≤ 0 for all x1, x2 such that
(x2, hd1(x1)) ∈ D2;
(Cs3) hc1(x1)

�hc2(x2) ≤ 0 for all x1, x2 such that
(x1, −hc2(x2)) ∈ C1 and (x2, hc1(x1)) ∈ C2;
(Cs4) hd1(x1)

�hd2(x2) ≥ 0 for all x1, x2 such that
(x1, −hd2(x2)) ∈ D1.

5Note that for the case in which inputs of H12 are zero, in-
equalities (11)-(12) in (C1)-(C2) become hd1(x1)�hd2(x2) ≥ 0 and
hd1(x1)�hd2(x2) ≤ 0. Those inequalities have to be evaluated for
different values of x1, x2 which depend on the definition of the sets D1

and D2.

Theorem 3 Given a compact set A12 = A1 ×A2 ⊂ R
n1 ×

R
n2 , if at least one of the following conditions is satisfied
for each i ∈ {1, 2}, then A12 is 0-input stable for H0

12:
1) The hybrid system Hi is flow-passive with respect to

Ai with storage function Vi that is positive definite on
Xi with respect to Ai;

2) The hybrid system Hi is passive (jump-passive) with
respect to Ai with storage function Vi that is positive
definite on Xi with respect to Ai and (C1)-(C2) hold
with ṽd1 = 0 and ṽd2 = 0 for H0

12;
3) The hybrid system H1 is flow-passive (jump-passive)
with respect to A1 with storage function V1 that is
positive definite on X1 with respect to A1 and H2 is
jump-passive (flow-passive) with respect to A2 with
storage function V2 that is positive definite on X2 with
respect to A2 and (Cs1)-(Cs2) (respectively, (Cs3)-
(Cs4)) hold true;

4) The hybrid system H1 is passive (flow-passive) with
respect to A1 with storage function V1 that is positive
definite on X1 with respect to A1 and H2 is flow-
passive (passive) with respect to A2 with storage
function V2 that is positive definite on X2 with respect
to A2 and (Cs2) (respectively, (Cs4)) holds true;

5) The hybrid system H1 is passive (jump-passive) with
respect to A1 with storage function V1 that is positive
definite on X1 with respect to A1 and H2 is jump-
passive (passive) with respect to A2 with storage
function V2 that is positive definite on X2 with respect
to A2 and (Cs1) (respectively, (Cs3)) holds true.

The results in Theorem 3 are linking the passivity proper-
ties of each individual subsystems to 0-input stability of the
interconnection. In particular, regarding item 1), note once
again how the case of flow-passive hybrid systems does not
require any additional conditions. On the other hand, when
passivity properties involve jumps, appropriate conditions are
required to take into account situations in which only one of
the two subsystems jumps.
The following example shows how Theorem 3 can be

employed to establish 0-input stability of the interconnection.

Example 2 Consider two hybrid systems Hi, i ∈ {1, 2},
given by

Hi

⎧⎨
⎩

ẋi = −aixi + biui (xi, ui) ∈ Ci

x+
i = ui (xi, ui) ∈ Di

yci = ydi = xi,
(14)

where Ci := {(xi, ui) : ui (xi − εiui) ≤ 0 }, Di :=
{(xi, ui) : ui (xi − εiui) ≥ 0 }, ai, bi, εi > 0 and xi, ui ∈
R. Let Vi(xi) = 1

2x2
i and note that, on Ci,

〈∇Vi(xi), fi(xi, ui)〉 =
−aix

2
i + bixiui = biyciui − aix

2
i

(15)

and that, on Di,

Vi(gi(xi)) − Vi(xi)〉 ≤
1

2εi

uixi −
1
2x2

i = 1
2εi

uiydi −
1
2x2

i

(16)



since, for points in Di, we have uixi ≥ εiu
2
i . Then,

according to Definition 1, each Hi is strictly passive with
respect to Ai = {0} by defining vci = biui, vdi = 1

2εi

ui,
ρci(s) = ais

2, ρdi(s) = 1
2s2 for all s ≥ 0. In particular,

each system is flow-passive when vdi = 0, which, in turn,
using item 1) of Theorem 3 implies that A = {0} × {0} is
0-input stable for H0

12. �

A. 0-Input Asymptotic Stability
The following theorem states that asymptotic stability

of the interconnection can be established by considering
either the strict passivity property or the flow-strict passivity
property of the two individual subsystems.

Theorem 4 Given a compact set A12 = A1 ×A2 ⊂ R
n1 ×

R
n2 if either of the following conditions hold:
1) There exist ρ′d1 : R

n1 → R≥0 positive definite with
respect to A1, ρ′d2 : R

n2 → R≥0 positive definite with
respect to A2 such that, for each i ∈ {1, 2}, Hi is
strictly passive with respect to Ai with storage function
Vi that is positive definite on Xi with respect to Ai,
and
−hd1(x1)

�hd2(x2) ≤ −ρ′d2(x2) ∀x1, x2 :
(x1, −hd2(x2)) ∈ D1 and (x2, hd1(x1)) /∈ D2 ,

(17)
hd1(x1)

�hd2(x2)
� ≤ −ρ′d1(x1) ∀x1, x2 :

(x1, −hd2(x2)) /∈ D1 and (x2, hd1(x1)) ∈ D2 ;
(18)

2) For each i ∈ {1, 2}, Hi is flow-strictly passive with
respect to Ai with storage function Vi that is positive
definite on Xi with respect to Ai, and
2.a) for each r > 0, there exist γr ∈ K∞, Nr > 0

such that for every solution φ to H0
12, |φ(0, 0)|A ∈

(0, r], (t, j) ∈ domφ, t + j ≥ T imply t ≥
γr(T ) − Nr;

then A12 is 0-input pre-asymptotically stable for H0
12. Fur-

thermore, if, for each i ∈ {1, 2}, Vi is radially unbounded,
then the 0-input pre-asymptotic stability property of A12

holds globally.

Example 3 For each i ∈ {1, 2}, consider the hybrid system

Hi

{
ẋi = Fi(xi, vci) = Axi + Bvci xi ∈ Ci

x+
i = Gi(xi) = Rxi xi ∈ Di

(19)

with state xi = [pi, vi]
� ∈ R

2, input vci ∈ R,

A =

[
0 1

−a1 −a2

]
, B =

[
0
1

]
, R =

[
1 0
0 −eR

]
,

sets
Ci =

{
xi ∈ R

2 : pi ≤ 0
}
∪{

xi ∈ R
2 : pi ≥ 0, vi ≤ v̄

}
,

Di =
{
xi ∈ R

2 : pi ≥ 0, vi ≥ v̄
}
∩{

xi ∈ R
2 : vi(βvi − αpi) ≤ 0

}
with v̄, a1, a2 ∈ R>0, eR ∈ [0, 1], α = eR/a2, β =
(e2

R−1)(1+a1)/(2a1a2). For the above system the following
passivity result holds true.

Proposition 2 Let P be the solution to the Lyapunov equa-
tion A�P + PA = −I2. Then, for each i ∈ {1, 2, }, system
(19) is flow-strictly passive with respect to the compact set
Ai = {(0, 0)} with storage function Vi(xi) := 1

2x�
i Pxi,

input vci, output yci = hc(xi) := 2B�Pxi, and function
ρc(xi) := x�

i xi.

Now, consider the negative feedback interconnection H12

obtained by considering the assignments in (10). Using
Theorem 4, we have the following result.
Proposition 3 The set A12 = A1 × A2 is 0-input pre-
asymptotically stable for H12.

�

VI. CONCLUSION

By considering hybrid specific notions of passivity, where
dissipation is allowed to happen only along flows or jumps,
we presented sufficient conditions to establish passivity, sta-
bility, and asymptotic stability of the (negative) feedback in-
terconnection of hybrid systems using, as a storage function,
the sum of storage functions of the individual subsystems.
The differences and analogies with respect to continuous-
time systems have been pointed out. An application, consid-
ering a mechanical system, and different examples have been
employed to illustrate the results.
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