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Abstract

Practices used to address economic forecasting problems have undergone
substantial changes over recent years. We review how such changes have
influenced the ways in which a range of forecasting questions are being
addressed. We also discuss the promises and challenges arising from access to
big data. Finally, we review empirical evidence and experience accumulated
from the use of forecasting methods to a range of economic and financial
variables.
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1. INTRODUCTION

Methods for selecting a forecasting model, estimating its parameters, and evaluating the precision
of the model’s forecasts have improved in fundamental ways over the past 20 years. This review
provides a critical survey of how these developments have helped address practical questions of
critical importance to economic forecasters and points to some of the remaining issues.

Our review of the state of economic forecasting emphasizes a few key points. First, economic
forecasting is fundamentally a decision problem, and thus the economics underlying the forecast-
ing problem deserves to play a prominent role. A good forecast is one that generates low expected
loss when used in economic decisions. The costs of different mistakes—typically different magni-
tudes of over- and underpredictions of the outcome—must therefore be considered in selecting a
forecasting model, estimating its parameters, and generating forecasts. Policy makers, individual
households, or firms can only trade off between alternative forecasting methods if they understand
their underlying loss functions. This point may seem obvious, but in practice the vast majority of
empirical studies on economic forecasting resorts to assuming squared error loss without dedi-
cating much time to addressing whether this loss function is sensible for the decision problem at
hand.

Viewing economic forecasting as a decision theoretic problem that can be informed by observed
data implies that forecasting becomes an estimation problem. For example, the point forecasting
problem becomes equivalent to the statistical problem of estimating a parameter of the conditional
probability distribution of the outcome. This insight means that we can draw on a large body of
literature on how to select among forecasting models, how to estimate their parameters, and how
to evaluate the resulting forecasts.

Forecasting models that are simple enough to lend themselves to empirical estimation must
be strongly condensed representations of a far more complex—and possibly changing—data-
generating process (DGP). The correct perspective is therefore to regard all forecasting models as
being misspecified. This means that estimation of forecasting models by methods such as maximum
likelihood may not be a good approach, and other estimation methods should reasonably be
considered.

Evaluation of a particular forecasting method is undertaken by considering its expected loss, or
risk.! The notion of “risk” used in this context is different from its meaning in finance. A forecasting
method’s risk depends on the unknown parameters of the DGP and will of course also depend
on the forecaster’s loss function. In most forecasting problems, the underlying DGP is a function
of a large number of parameters, making a full examination of risk difficult in practice. However,
as shown below, the risk perspective offers important insights. When models and parameters are
unknown, individual forecasting approaches may have attractive risk functions for certain values
of the parameters of the DGP, but offer a less attractive risk profile when evaluated at other values.

A key point in the review is therefore that there is almost never a single forecasting approach
that uniformly dominates all other alternatives to forecasting. Indeed, suppose we knew the true
process that generated a particular data series, but did not know the values of the parameters. Then
there would be no model uncertainty. However, the need to estimate model parameters means
that simpler, misspecified models might actually produce better forecasts than the true model
with estimated parameters. This is an important insight and helps explain why, in practice, no
single method dominates economic forecasting and why some methods seem to work better for
certain types of variables (e.g., persistent variables such as price inflation or wages) than for other

!Early work highlighting the importance of the forecast user’s loss function to the evaluation of economic forecasts includes
Granger & Pesaran (2000), Pesaran & Skouras (2002), and Skouras (2007).
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variables (e.g., real economic growth) that correspond to very different values for the parameters
of the DGP.

Accounting for model misspecification and parameter estimation error leads to a second key
point, namely that different forecasting methods often can be combined to produce improved
forecasts. Model or forecast combination has been used to deal with a variety of issues, ranging
from model instability to the effect of uncertainty about the best forecasting model, the pres-
ence of parameter estimation error, or the pooling of information from different surveys or data
sources. In practice, we often cannot distinguish statistically between a group of models with sim-
ilar forecasting performance, so it makes sense to combine forecasts from these models, rather
than arbitrarily attempt to identify a single best model.

A third key point is that forecast evaluation and model comparison are an important part
of the forecasting process and can be conducted at a higher level of rigor today than in earlier
years. Historically, common practice was to report estimates of different methods’ risk—typically
sample averages—and, possibly, use an informal ranking to compare the risk of different forecasting
methods, in all cases without accompanying standard errors. In the past 20 years, a large literature
has developed test statistics and limit theory that allow us to evaluate and compare different
models’ forecasting performance. Forecast comparisons can be undertaken even for very large
sets of models and can be used to control for the effects of data mining arising from the search for
a superior prediction model across multiple specifications.

We hope that our review addresses the types of questions that economic forecasters are likely to
ask. We further hope that it will stimulate readers to ask new critical questions. We have therefore
structured our review around a set of key practical issues, each of which is raised and then addressed.
Invariably, these questions are related, so we cross-reference some of the important issues that
arise across different areas.

First, however, we provide a framework for understanding the economic forecasting problem
that is broad enough to explain many of the central issues that are outstanding in the economic
forecasting literature.

2. FOUNDATIONS FOR ECONOMIC FORECASTING

This section provides the theoretical foundation for the forecasting problem, offering a unified
perspective on many of the most important issues that arise. We refer back to this section exten-
sively in our subsequent analysis.

2.1. Economic Forecasting as a Decision Problem

To represent the economic forecasting problem, let f;,,, be the h-period-ahead forecast at time 7
of some outcome variable, y,;;. Though f;1,, and y,; are often scalars, they can also be vectors,
typically of the same dimension as we have a forecast for each outcome. At a given point in time,
t, the forecast fi15, = f (2 is a function of data observed at time ¢, 2, = {x;, y-}._,, so the data
available for construction of the forecast given a sample of 7' observations are zr = {x;, y;},.

A key object in generating as well as evaluating forecasts is the loss function, L(f7 457, Y7 +5)-
This is a mapping from f € F and y € ) to a subset of R, typically R*. Alternatively, if f,.; isa
distribution forecast (as opposed to a point forecast), the loss function is typically referred to as a
scoring rule (see Gneiting & Raftery 2007 for further discussion of scoring rules).

The decision theoretic approach to constructing an economic forecast typically results in
searching for a model that makes the sample average loss as small as possible, given the ob-
served data. Given a data sample z7 = {x,, y,}7_,, this can be accomplished by choosing the
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forecasting model f(z,) that minimizes the sample average loss:

T-h
(T=5)" Y L(f(@), yisa). )
t=1
Alternatively, we might instead employ a structural economic model to generate a forecast f(z,)
at any time ¢.

The hope, either way, is to obtain a forecasting model with the property that the forecast that
arises from Equation 1 approximates f*(z7) = argmin syex E [L(f(27), y745)]. This is the fore-
cast that makes the expected loss, calculated at the present point in time, 7", as small as possible
among all forecasting methods in the set 7. Because we are interested in forecasting the future out-
come, yr 4, given information up to time 7', z7, in calculating this expected loss, we would prefer
the expectation to be taken over the random variables generated by y; 4, given zr. To characterize
the optimal forecast, denote the joint density of (y74s, 27) as py;., = (¥, 2|6), where 6 € © are
unknown parameters of the DGP, and note that p,, , ., (y.210) = py,,, 120 (¥]27, 0)py (216).
The conditional expectation of the loss, given the data 27, can then be written

By oy [L] = / L(FGT), )Py sater (12 6)dy. @

The optimal forecast is the function f(z7) € F that minimizes Equation 2.
For some loss functions, a solution can be found for the optimal forecast, f*(z7). As an example,
consider the popular mean squared error (MSE) loss function

L(fGr). yr+5) = (y146 — f@1)) 3)

Under MSE loss, the optimal forecast is the conditional mean of yr,,, ie., f*(zr) =
Ey; y1zr [7144], which depends on both z7 and 6. Such “optimal” forecasts, though unique for
any known DGP, are functions of the unknown parameters, 6, and thus will typically be estimated
by functions of the observed data.

2.2. Risk for Forecasting Methods

More generally, because the estimates of the forecasting models are functions of the full data set,
we might consider the unconditional expectation—or risk—of the estimated forecasting method
computed as of the time the forecast is constructed, i.e.,

R(f.6) = / LfGT), y140)pyrapier (Y127, 0) ey (210)dy dz. S

As defined in Equation 4, the risk is a function of the forecasting method, f(-), the parameters
of the joint density for the data, 6, and the loss function, L. The best forecasting model can then
be defined as the function f(-) € F that minimizes risk as defined in Equation 4.

Minimizing Equation 4 requires searching over a function space, F. Less parametric ap-
proaches, such as those typically used for data mining such as sieves or kernel estimation, can
be viewed as attempts to reduce risk by searching over a wide space of models, F. Assuming that
the underlying basis in sieve models has been judiciously chosen (e.g., the logistic function in a
neural net), theoretical results show that by including sufficiently many terms, these models can
approximate very general sets of functions arbitrarily well (see Hornik et al. 1989). In practice,

2We refer to this as the DGP; candidates for f(z) are referred to as models.
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of course, these models must themselves be approximated with a finite number of terms and es-
timated parameters, so there will be a trade-off between the costs to increasing risk through the
estimation of many terms and the decline in risk from being better able to capture nonlineari-
ties in the forecast model. These methods have not gained widespread traction in the economics
profession, perhaps due to their somewhat black box approach to generating a forecast and their
reputation for overfitting. However, economic constraints (e.g., monotonicity) can be used to con-
strain the search associated with these methods and rule out economically implausible estimates.
Undoubtedly, these methods will receive further consideration in future work. Hastie et al. (2009)
provide a terrific introduction to statistical learning methods, and Bai & Ng (2009) and Rossi &
Timmermann (2015) provide applications to economic and financial forecasting problems.

At the other end of the spectrum are more parametric methods, which specify the set of
models F to be known up to a finite-dimensional parameter 8 so that F is f(zr, ) for 8 € B.
The parametric approach results in a much simpler search problem. Both nonparametric and
parametric methods, as well as intermediate methods, are often used to construct forecasting
models.

Regardless of the estimation approach, no single optimal forecasting method will be uniformly
dominant even in the simplest of forecasting situations. To illustrate this, consider again the case
with MSE loss, Equation 3, for which the optimal forecast is the conditional mean. When the
DGP is known, the optimal forecast becomes a parameter of the conditional distribution of y7
given z7 (namely, the conditional mean). We know from the extensive literature on estimating
conditional means that different estimation procedures yield risk functions whose rankings cross
for different values of 6. Some estimation methods are therefore better for certain parts of the
parameter space, ®, whereas other estimation methods work better in other regions of ©.

Several aspects of the construction of a forecast model beyond estimating the vector of unknown
parameters of the forecasting model, f(-), such as model selection and model averaging can be
considered as complicated parameter estimation methods. To see this, consider a linear model
with two predictors, one of which is always included, whereas a model selection method is used to
choose whether to include the second variable. The estimator for the parameter associated with
the second predictor is simply 6, = 1(g(2) € G)s, where 6, is the least squares estimator when
both variables are included and 1(g(z) € G) is an indicator variable that equals 1 if the variable is
selected and zero if it is excluded.

2.3. Risk for the Linear Regression Model

To allow us to be more specific about the broad issues discussed so far, consider a simple linear
regression model with normally distributed innovations. Specifically, assume that the joint DGP
for the predictors and the dependent variable takes the form

2
. PO
Y ) ~indN [ (M) (S )
Xy Mo ny P
The parameters of the model are 6 = (u,, p., o}?, 2., X.). Using the matrix
1 -x,z!
0 I,
to rotate the data in Equation 5, we can write
-x,x! . = X2 LI S0 St AN
Yith yx 2y X ) indN Hy yx iy M 9y yx Hy Hyy ) ()

Xt Moy ' 0 Ex
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Thus, it follows that y.la, ~indN (uy — Z,, 27 (0 — ), oyz -5, 2! s and x, ~ind
N (i4y, =,). Moreover, the rotated random variables in Equation 6 are orthogonal. Note also
that the conditional distribution of y,, given z, is a function of only a subset of 6.

The expected loss conditional on the observed data, 2, is given by

E‘)’TM‘ZT [L(f(zl)vy1+b)] = / L(f(z'l.)’y)p}’TJr}y\ZT(ythv Q)d)’

= [ LGGr Dby ater 11000y %)
Under MSE loss, this is given by
By e LG yra = [0 = FGF pry ey (rlz O, ®)
which is minimized at
fr) = Elyrwlzr] = Elyrwler] = 8'%r, )

where #7 = [1,xr] and B = [, — £, S iy, — %y 2] = B(0). This expression clearly shows
that the parameters of the optimal forecasting model, 8, are a function of the parameters of the
DGP, 6, as we would expect.

The forecast in Equation 9 is the unique optimal forecast. However, this forecast is also infea-
sible as it depends on the unknown population parameters, B. In practice, 8 is unknown, and we
have to rely on an estimate of B to construct the forecast. There are multiple candidates for such
an estimator. The most obvious one is the ordinary least squares (OLS) estimator for 8, which
depends on all of zr = {y,, 2}, not just x7 as in the optimal forecast. Setting # = 1 and using
BoLs = (Z,T: 61 x,xz’)*l(Z,T:B1 X,Y:+1), we can construct the forecast

fer) = Bonser =2 (Ywal) (L) (10)

where all summations in this section are t = 0 to 7' — 1. This is a function of all of z7.
With the use of in-sample evaluation, the expected loss is

2

B [T“ > (e - BaLsxt)z} = [T—‘ > (ere1 = (Bors — B, } (an
= T3 Bely — E[(Bors — ) (T Y u)) (br — B)]
—o? TR [(thsm)’ (Cxx) (2 x)]
— o1 =T k).

Note that adding more parameters (increasing k) improves the in-sample fit and thus reduces the
expected loss.
This result can be contrasted with what happens for the case with out-of-sample evaluation.
To this end, note that the risk associated with this linear OLS forecast is given by
Eyp poar LLCf T ), yra)] = / L(Bovs )Pyr () |2 0)psy (216)dydz. (12)

Under MSE loss, this simplifies to

E)’T+b-zz [L(f(ZT)v yren)l = /(J’ - Bé)LSx)ZPyTM\Z(J’ |z, 0)py (z|0)dydz. 13)
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For the DGP in Equation 5, the MSE loss in Equation 13 simplifies to
E [(yT+b - /%LSXT)Z} =E [SZTM — (Bovs — B xr 27 (Bors — ﬁ)] . 14)
Conditional on the observed data, x = {xo, ..., 27}, the out-of-sample MSE loss is
E [827+1 — (Bovs — B)xra (Bovs — ﬁ)lx] =0’ + E(BoLs — B)xr - (BoLs — B)lx
o’ + Etr [(30Ls — B)(BoLs — B) xr |x]
ol +1r [az (Z xtxt/>_l xr x’T:|
o (1 + (Z xtx;)A xr) : a5s)

Using this expression, the unconditional out-of-sample MSE loss associated with the OLS forecast

becomes

E |:02 (1 + (Z xtx;)fl xT)] =0’ (1 +E [x'T (Z x,x;)A xTD (16)
—o? (1 +T'Etr [(T*l 3w~ £+ 2)71 xTx’TD

o? (1 + T 'Etr [(z +0,(T )™ xTx'T])
=0’ (1+ T "Etr [ araf ]
+ T 'Ewr [0,,(T-I/Z)E—Iu/z—l—'xm;])

R

o’ (1+ T 'tr[25'=x])
=o' (1+ T 'tr(Lk))
o (1+T k).

In sharp contrast to the case with in-sample evaluation (Equation 11), the out-of-sample risk is
seen to increase in &, the number of unknown parameters that have to be estimated. The second
term, o2k/ T ,is due to estimation error and will vanish in large samples. However, estimation error
can be importantin finite samples as we next demonstrate through a set of Monte Carlo simulations.

2.4. Monte Carlo Simulations

We illustrate the methods discussed up to this point through a simple Monte Carlo experiment
that uses the linear forecasting model and MSE loss setting from Section 2.3. The experiment,
further described in the Appendix, assumes that there are 10 potential predictors of the outcome
variable. The predictors are mutually correlated, joint normally distributed random variables, and
independent over time. The outcome is also assumed to be normally and independently distributed
over time, and it depends on either # = 3 or # = 6 nonzero coefficients for the 10 predictors, so
that 10 — % predictors enter with a zero coefficient and thus are irrelevant.

A single parameter, «, varies the strength of the predictors over the outcome; this is best
understood in terms of a hypothesis test of whether all 10 predictors, as a group, have predictive
power over the outcome, i.e., a test that all coefficients, apart from the constant, are zero. When
k =3 for o < 2.5, the power of this test is less than 80%. For values of o > 3, the power is nearly
one. In this case, the parameters are nonlocal, and it is statistically much easier to distinguish
nonzero parameters from those that are equal to zero.
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We consider forecasts generated by the following methods: (#) OLS using all possible pre-
dictors, () the complete subset regression (CSR) approach to forecast combination with # = 3
predictors included,’ (¢) a weighted average of forecasts computed over all possible estimators
using weights based on the Akaike information criterion (AIC), (d) the single best model chosen
by the AIC, and (e) the least absolute shrinkage and selection operator (LASSO) and post-LASSO
methods.*

Figure 1 plots the risk functions for these methods, i.e., the MSE values as a function of o, which
tracks the predictive power of the predictors with nonzero coefficients. Figure 1a,b assumes & = 3
predictors with nonzero coefficients, whereas Figure 1c,d assumes # = 6 nonzero coefficients.
Thus, more predictors are relevant in the bottom panels than in the top panels, where, conversely,
predictive ability is more sparse. The strength of the nonzero predictors is varied across the left
and right columns of the figure; the left column represents the case with weak (local) predictors,
whereas the right column assumes strong predictors.’ For each case, we use 100 observations to
estimate the forecasting models.

Figure 1 clearly demonstrates that there is no uniformly dominant forecasting method. Meth-
ods such as the LASSO and CSR, which shrink the estimated coefficients, are preferred for small
values of the coefficients (i.e., for small values of «). However, for larger values of the coefficients,
the biases in these methods kick in, and their MSE rises. Still, these methods work well for most of
the range of values for which the predictors are sufficiently weak that it is not statistically obvious
that they should be included (Figure 14,c).

In situations in which some predictors are clearly useful, methods that attempt to determine
which variables to include perform better than shrinkage methods such as the LASSO and CSR.
However, for intermediate values of « for which pretests for inclusion of the relevant predictors
are neither quite weak nor have power near one to identify the relevant predictors, there is a hump
in the MSSE of such pretest methods as well as in the MSE of the model selection method. When
k = 3, the pretest or model selection methods are strictly preferred to the OLS kitchen sink
forecasts based on inclusion of all 10 predictors despite OLS having nice theoretical properties
(i.e., being the minimum variance unbiased, minimax method). This result does not hold uniformly
when k = 6, and a larger fraction of the predictors is relevant from a forecasting perspective.

The difference between in- and out-of-sample risk is the reason why model selection is not a
straightforward problem to solve. Many methods attempt to deal with this issue: The AIC adjusts
the in-sample loss estimate to get closer to out-of-sample loss, whereas cross-validation attempts
to estimate the out-of-sample loss directly. Other methods such as the BIC (Bayes information
criterion) and LASSO take different approaches based on the belief that a more parsimonious
model is likely to be preferred.

3. IMPORTANCE OF THE CHOICE OF LOSS FUNCTION

Ideally, the loss function used to construct a forecasting model should be tailored to the economic
costs of over- or underpredicting the outcome and thus requires a good understanding of the

3This approach is further described in Section 6.

#The post-LASSO method uses the LASSO method to choose which variables to include in the regression, and then re-
estimates the model using OLS with the selected variables.

SFor the experiments with nonlocal parameters (Figure 1b,d), we remove the CSR and LASSO methods, which are biased
and hence have larger risk.

®We exclude these methods from Figure 15,d because their MSE becomes very large.
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Figure 1

Risk functions for different forecast methods: ordinary least squares (OLS) using all possible predictors (horizontal gray line), the
complete subset regression (CSR) approach to forecast combination with ¥ = 3 predictors included (yellow dashed-dotted line), a weighted
average of forecasts computed over all possible estimators using weights based on the Akaike information criterion (W-AIC; purple
dotted line), the single best model chosen by the Akaike information criterion (AIC; red dashed line), and the least absolute shrinkage and
selection operator (LASSO) (green solid line) and post-LASSO (blue solid line) methods. Other abbreviation: MSE, mean squared error.

economics underlying the forecasting situation. We next provide two examples of issues that may
be relevant for the loss function used by the forecaster.

For a monetary policy maker, the loss function could involve not only the magnitude of the
forecast error (i.e., the difference between the outcome and the forecast), but also the level of the
outcome itself, or other state variables, as the cost of erring varies with the underlying economic
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state. In their study of the Federal Reserve’s Greenbook forecasts, Patton & Timmermann (2007)
find that the Federal Reserve tends to provide conservative forecasts of economic growth (which
is consistent with a loss function that penalizes underpredictions less than it penalizes overpre-
dictions). However, they also find that this matters particularly in states with low or moderate
economic growth. Overpredictions of economic growth in states with low growth could be par-
ticularly costly because the Federal Reserve would fail to apply appropriately aggressive monetary
policy measures in such circumstances.

As a second example, for a company engaged in sales forecasting, there may be important tech-
nological and economic constraints related to the possibility (and cost) of expanding production
or managing inventories. The effect on customer behavior in case the firm produces too little
and is unable to supply enough products is another concern. Engineering data along with data
on customer behavior would therefore appear to be important for constructing the firm’s loss
function.

As suggested by these examples, the derivation of a loss function is in many regards analogous
to the elicitation of priors in Bayesian analysis. For example, one can imagine controlling the
relative costs of small and large forecast errors through a single parameter and controlling the
degree of asymmetry through another parameter. This approach is followed in the construction
of the EKT error loss function suggested by Elliott et al. (2005):

Lersii) = [a + (1 = 2)1ers1y < 0)] lerruel” 17)

Here €,11; = yr+1 — fi+1: Is the one-step-ahead forecast error at time # + 1. The parameter «
controls the degree of asymmetry, with @ = 1/2 representing the symmetric case. The parameter
p, which Elliott et al. (2005) set to 1 or 2, controls whether the cost of forecast errors grows
linearly or quadratically in |e|. The EKT loss nests popular loss functions as special cases: p = 2
and o = 1/2 yield MSE loss, whereas p = 1 and & = 1/2 result in mean absolute error loss.

Financial forecasting is one area where loss functions have proven relatively straightforward to
motivate and construct. A single investor is often assumed to have mean variance or power utility
over final wealth. Provided that a mapping from forecasts to portfolio weights can be established,
the loss function is fully specified.

Example 1 (risk-averse investor’s choice of stock position). Consider the single-period port-
folio decision of an investor who can invest in risk-free bonds, with a guaranteed payoff of zero,
or in risky stocks, with a future payoff of y,,;. Let the investor’s portfolio allocation to stocks be
w, and assume that the investor’s initial wealth at time ¢ is W, = 1. The investor’s wealth at time
t + 1 is then given by W4 = @,y,4+1. Under mean-variance preferences, the investor’s objective
is to maximize expected utility given current information, Z,:

E[UW ) 2] = EIWa|Z] — %Vm’(VVH_] | Zy). (18)

Here a reflects the investor’s risk aversion, and E[W;1|Z,], Var(W,,1|Z,;) is the conditional mean
and conditional variance of ¥, 4, given currentinformation, Z,. Both these moments will generally
depend on wy, so the forecasting problem involves modeling both these conditional moments. For
the simple forecasting model

YVegl = U+ 2 + 141, Erp1 (0’ ng)v

where z, is a variable observed by the investor at time 7, the investor’s first-order condition yields

the optimal stock holding as

M+ 2
ac?

(19)

wz*(zt) =
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The loss function is important for the estimation of the parameters of the forecasting model.
Most empirical forecasting studies rely on standard loss functions that are common to estimation,
such as MSE or mean absolute error loss. This approach may be appropriate in some situations. For
example, in cases with a linear forecasting model and data thatare jointly normal in the outcome and
predictor variables, under MSE loss the forecasting model minimizes the equivalent of the negative
of the maximum likelihood estimator (MLE). Assuming that the model is known and the variables
arejointnormally distributed, the MLE is an efficient estimator of the model parameters, regardless
of the loss function. One can then proceed by simply plugging the maximum likelihood parameter
estimates into the optimal forecast for the problem that still involves the correct loss function.

The assumptions of a known DGP and joint normally distributed variables are unlikely to
hold for many empirical applications. This has important implications for how we approach the
forecasting problem. If we do not know the correct DGP, maximum likelihood estimation might
not be efficient, and it may be better to use the loss function to estimate the parameters of the
model. Access to longer data sets would tend to make this point more important because the
increased efficiency of the parameter estimates in a longer sample means that differences between
maximum likelihood and loss-based estimators can grow larger.

The loss function also matters for how we evaluate a sequence of forecasts.

Example 2. Under MSE loss, the one-step-ahead forecast error e,11, = y;+1 — fi+1), should be
orthogonal to all information in the forecaster’s information set, a condition that can be tested
through the orthogonality regression

et = V6 + 2y, (20)

where v, € Z, is any variable known to the forecaster at time #, and #, is unpredictable conditional
on Z;: Elu,4117Z;] = 0. Under MSE loss, no unknown parameters of the loss function enter into
the forecaster’s first-order condition Ele,;y|v,] = 0, so forecast efficiency implies testing that
8 = 0, or, more generally, by testing for absence of predictability of the conditional mean of the
forecast error, e, 1,. Of course, such tests remain tests of the joint null of MSE loss and efficient
use of information by the forecaster. Rejections of the null could arise because either of these
conditions fails.

When the loss function depends on unknown parameters that have to be estimated, the joint
hypothesis testing problem becomes clearer because any test of forecast efficiency now depends
not only on the loss function belonging to a certain family, but also on the parameter estimates
of this loss function. To see this, consider the case with so-called quad-quad loss that arises as a
special case of Equation 17 with « € (0, 1) and p = 2. Elliott et al. (2008) show that the null of
forecast efficiency can be tested through a modified orthogonality regression

Crilr = (1- 20‘)|€z+1|r| + 08 4wy (21)

Comparing Equations 20 and 21, it follows that under asymmetric loss (@ # 0.5), the standard
orthogonality regression that assumes MSE loss (Equation 20) will suffer from an omitted variable
bias. This happens because of the absence of the term (1 — 2a)|e,41)|, which picks up the omitted
variable bias in the forecast error resulting from asymmetric loss. In practice, « is unknown, and any
test of § = 0 in Equation 21 will depend on the estimated value for the asymmetry parameter, «.
Finally, we provide a note of caution. Even if the forecaster’s loss function is well understood,
forecasts are often used as inputs in complex decisions involving multiple outcomes and nonlinear
effects, examples of which include value-at-risk calculations and stress testing of banks. In such
situations, it can be difficult to formalize the exact decision rule for mapping forecasts to actions,
and this introduces a tension between inference about predictive accuracy and decision making.
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4. USING ECONOMIC THEORY TO COMPUTE FORECASTS

Economic theory has the potential to play an important role in many steps in the economic
forecasting problem. At its most primitive, setting up the loss function requires understanding the
basic trade-offs between forecast errors of different signs and magnitudes and thus presupposes a
clear understanding of the economics underlying the forecasting problem. The risk measure in
Equation 4 depends directly on this understanding. Economic theory also can be used to limit
the size of F, the set of models to consider, in three ways. First, theory can provide guidance on
which variables to consider (model selection). Second, economic theory might be suggestive of
the functional form used by the forecasting model (e.g., linear versus nonlinear). Third, economic
theory can be used to impose constraints on the parameters or moments of the forecasting model
(parametric restrictions). Such considerations tend to reduce the space of models F considered in
the search. Alternatively, if a structural model is employed to construct the forecasts, the model
itself arises as a result of economic theory. We discuss these points further below.

Economic theory may be suggestive of which variables to include. In particular, equilibrium
theory may suggest that factors that determine households’ and firms’ first-order conditions should
influence economic dynamics. Theory may also help identify the nature of the shocks (e.g., tech-
nology or preference shocks or shocks to government activity) that will most affect economic
growth. Although an understanding of the source of the economic shocks may not be helpful in
producing point forecasts, this information can potentially be useful when generating probability
forecasts and evaluating risks.

Economic theory is perhaps less likely to provide specific predictions about which functional
forms to use in the prediction model. Although economic theory frequently assumes linearity
or relies on linearized models, this is more a matter of tractability rather than a direct result of
economic restrictions or properties of the assumed technology or preferences. However, mono-
tonicity or sign constraints on the coefficients of the forecasting model may prove helpful. For
example, one may want to impose that the coefficient on valuation ratios such as the dividend-price
ratio or the book-to-market ratio is positive in a forecasting model for stock market returns (see
Campbell & Thompson 2008).

Pettenuzzo et al. (2014) develop a Bayesian approach that constrains the forecasts of stock
market returns through restrictions either on the conditional expected excess return on stocks
(over T-bills)—which has to be positive to ensure that investors are willing to hold risky stocks—
or on the conditional expected excess return per unit of risk, which can be constrained by the “price
of risk” in the economy. Empirically, they find that imposing such restrictions on the forecasting
models leads to improvements in forecasts of US stock market returns.

Structural economic models can be used directly either to construct forecasts or to provide
restrictions on forecasts. Larger-scale structural models are employed for a variety of purposes.
Examples include the FRB/US model used by the Federal Reserve and Moody’s Analytics macroe-
conomic model. Such models have the ability to construct counterfactual predictions as well as
forecasts.

Dynamic stochastic general equilibrium (DSGE) models form a class of models that have
proven particularly popular among central banks and economic researchers seeking stronger
economic foundations for their forecasting models. These models incorporate intertemporally
optimizing household and firm decisions and combine them with monetary and fiscal policy deci-
sion rules along with assumptions about shocks to technology and monetary and fiscal policy.” By

7Smets & Wouters (2003) provide a particularly influential study in this literature (see also the recent survey in Del Negro &
Schortheide 2013).
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leaning heavily on economic theory, DSGE models ensure that a set of internally consistent model
forecasts are being generated. Moreover, these models are well suited for understanding the eco-
nomic reasons for specific forecasts. They can also be used to analyze the effect on predictions of
changes to economic policy; this helps explain their popularity among central banks.

DSGE models make simplifying assumptions in their representation of the economic dynamics,
and inevitably this can adversely affect the resulting forecasts. Some economic constraints are also
more likely to hold in the long run and may notbe helpful in predicting short-run dynamics. Indeed,
several empirical studies have found that DSGE forecasts frequently get beaten by survey forecasts
or even by simpler time-series models. Del Negro & Schorfheide (2013, p. 86) summarize the
literature as follows: “The empirical evidence in the literature suggests that DSGE model forecasts
are comparable to standard autoregressive or vector autoregressive models but can be dominated
by more sophisticated univariate or multivariate time series models.”

5. OPPORTUNITIES, LIMITATIONS AND CHALLENGES
POSED BY BIG DATA

Improved access to vast data structures—often called big data—has facilitated new lines of analysis
in many areas of economics, such as applied microeconomics, high-frequency finance, and studies
of the impact of news events such as monetary policy announcements. A key question is how access
to big data is likely to affect practices in economic forecasting.

Most forecasting problems involve two dimensions, namely a time-series dimension (7°) and
a cross-sectional dimension (K), where the former refers to the number of observations available
for estimation (i.e., the sample length), and the latter typically refers to the number of potential
predictors.

5.1. Big(ger) T

From a forecasting perspective, a bigger T offers the hope for more precise model estimates
and improvements in our ability to choose between competing forecasting models. In practice,
however, two factors tend to limit the benefits from a bigger 7" in many economic applications.
First, often larger samples mean sampling the data at a higher frequency. Second, longer data
sets often mean that estimates are constructed from data far in the past and of less relevance for
forecasting today. This problem of model instability is discussed in Section 7. We next discuss
these issues in turn.

Access to more frequently observed data—sometimes observed tick by tick—has allowed us
to estimate models for high-frequency movements in variables such as stock prices, currencies,
and interest rates and has facilitated important progress in our understanding of high-frequency
movements in financial markets. The literature on high-frequency estimation and prediction of
financial market volatility has made important progress over the past 15 years. We note that market
microstructure effects and limits to liquidity for individual assets mean that there are also limits
on how far we can push the sampling frequency. For example, sampling much more frequently
than every five minutes may, for many assets, introduce more noise in the observed prices than
is desirable from an estimation point of view. Still, such high-frequency data have enabled us to
compute real-time (daily) estimates and forecasts of the risk of individual assets as well as portfolios
and, it is fair to say, make up one of the great success stories of recent years (for a survey of volatility
forecasting, see Andersen et al. 2006).

It is less obvious that access to data measured at, e.g., the daily frequency will help us produce
more accurate forecasts of macroeconomic aggregates such as inflation or the unemployment rate.
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Much of the variation in economic variables is related to the economic cycle, and an increased
frequency of observation does not increase the number of cycles we observe and hence could have
limited impact on our ability to produce better forecasting models.

Although this point shows that there are limits to how useful high-frequency data can be to
our ability to predict macroeconomic variables over fixed horizons such as one month or one
quarter ahead in time, other arguments give rise to more optimism. First, many macroeconomic
variables (e.g., GDP) are measured with considerable error and get revised over time, so it is
possible that financial variables, established in fluid and transparent markets, contain information
that complements the information already contained in the macroeconomic variables of interest.
Second, financial variables are forward looking and so, although driven also by factors other
than forecasts of macroeconomic fundamentals, might contain information that is helpful for
forecasting the latter.

Exploring such questions, a recent literature on estimation with mixed data sampling (MIDAS)
addresses whether variables observed at a high frequency such as daily interest rates or daily stock
price movements can be used to generate improved forecasts of less-often observed variables such
as quarterly GDP or monthly inflation (see Andreou et al. 2011). Andreou et al. (2013) use a rich
set of daily variables and find that it can be used to generate some improvements in quarterly GDP
forecasts. Pettenuzzo et al. (2015) add variables observed at the daily frequency to a specification
for dynamics in the volatility equation for inflation and industrial production growth. They find
that the addition of interest rate variables, a daily business cycle proxy, and information from stock
markets can be used to generate improved out-of-sample density forecasts, whereas the benefits
from using such information to improve the accuracy of point forecasts tend to be weaker.

With more frequently observed data sets also come new challenges such as irregularly sampled
variables observed at different frequencies (i.e., daily stock prices, weekly payroll figures, monthly
unemployment rates, and quarterly GDP growth). The Kalman filter can be used to handle many
of the practical issues. One particularly interesting application is the construction of a daily measure
of the business cycle. Building on work by Aruoba et al. (2009) that uses a Kalman filter to estimate
a common factor model, the Federal Reserve Bank of Philadelphia now provides daily updates to
the estimated business cycle measure, which is treated as a latent process that is correlated with
observable variables. A related literature on nowcasting uses the same notion of “jagged edge”
data (Banbura et al. 2011) sampled at different frequencies to produce estimates of the current
(unobserved) state, which itself follows some process that can be used to predict the next period’s
state and so may be useful for forecasting purposes.

The other way to get a bigger T is by getting a longer time series of data. However, problems
of model instability become more apparent in longer samples. Model instability, or heterogeneity
in the DGP, can cause problems for our ability to find a good forecasting model. Even for mild
unmodeled heterogeneity, we do not have a limit result that suggests that Equation 1 converges
to Equation 4, as we would like when making a forecast at time 7 . Instead, we would have a
result that Equation 1 converges to the average risk over the sample period. Given sufficiently
strong heterogeneity, this might be problematic. For extreme levels of variability in the DGP,
such as large, discrete breaks in the DGP, past data can be of limited use in constructing useful

8Revisions to data observed at different points in time pose additional challenges to macroeconomic forecasting. Macroeco-
nomic series such as GDP are subject to revisions over time as more accurate estimates become available or new methodologies
(e.g., weighting schemes) get introduced. This means that care has to be exercised with regard to which “vintage” of a par-
ticular variable is being modeled and predicted and even with regard to modeling the joint process for different vintages (see
Croushore & Stark 2001 for further discussion of this point).
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forecasting models to be used at the end of the sample (time 7°) unless these breaking processes
can be modeled.

5.2. Bigger K

A bigger K (i.e., more potential predictors) is the big data effect most consistent with what we
observe in practice in much of economic forecasting. Larger sets of predictors offer both op-
portunities and challenges. On the one hand, it is possible that some of the new predictors have
genuine predictive power over the outcome, in which case these variables might be included in the
forecasting model. On the other hand, a larger K increases the dimension of the set of predictors
and hence the dimension of the set of potential forecasting models, 7, making it more difficult to
identify the best forecasting model.

Dealing with the increased dimension of predictors requires strategies to reduce the effect of
estimation error that arises from attempting to incorporate more variables in the model. One
approach is to use a few, judiciously chosen, linear combinations of the predictors in the forecast-
ing model. The most prominent approach, which has generated a large literature over the past
20 years, is to use dynamic factor models. Dynamic factor models summarize the information
from a potentially vast array of predictors through the first few principal components, F;, of the

individual predictors a;;, i = 1,..., K:
xp, =N F,, i=1,...,K. (22)
Here F, = (Fy;, ..., F;;) isaset of g common factors, with 4 much smaller than the original value

of K, which can run in the hundreds—typically ¢ is of the order of five or ten—and A; are the
factor loadings, which are assumed to be constant over time. Estimates of the common factors,
along with lagged values of the dependent variable, are then used as conditioning information in
the forecasting model:

np "y
)’t=a+2l3;LiFt+ZViLi}’t+5n (23)
i=1 i=1
where np and 7, are the number of lags of the common factors and the dependent variable. This
approach has proven very popular in practice. Important progress has been made in terms of
understanding the theoretical properties of forecasting models that include estimated common
factors (see Stock & Watson 2006 for a summary) and their ability to deal with certain forms of
instability (Stock & Watson 2002).
Another strand in the forecasting literature assumes that only a small subset of the predictors
x;; € X, truly enter into the prediction model (this assumption is known as sparseness). Assuming
MSE loss and certain sparseness conditions, estimation of the forecasting model proceeds by
minimizing the penalized loss function

np

T-1
T (e = B +A )1, (4)
t=0 i=1

where A > 0 determines the penalty from inclusion of additional variables in the forecasting
model. The combination of a squared loss function with an absolute value penalty term yields a

?Other approaches for constructing aggregate summary measures that can be used as predictors have been proposed. D’Amuri
& Marcucci (2012) use Google searches to construct an index of Internet job search intensity, which they use to predict monthly
unemployment in the United States. They find that models that add this search index variable perform better in out-of-sample
forecasts of future unemployment than models that exclude this variable.
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solution with the property that many of the parameter estimates for f; are set to zero, making
this an estimation procedure and a model selection procedure in one. Efficient algorithms have
been developed to find the important predictor variables (see Tibshirani 1996). These are known
as LASSO regressions and can handle situations in which K > 7. More recent methods such as
the elastic net of Zou & Hastie (2005) adjust the metric for the penalty, and there is also work on
how to choose the penalty coefficient A (see Belloni & Chernozhukov 2011). Chudik et al. (2016b)
discuss the choice of penalty function and propose a new approach—multiple testing with one
covariate at a time?—for dealing with the multiple testing problem involved in model selection.

The objective in Equation 24 assumes squared error loss and penalizes the estimates in a way
that is consistent with an expectation that many of the predictors have zero coefficients. One
might consider using a similar approach for different loss functions, noting that the forecaster’s
loss function should dictate the choice of penalty function in such cases.

The jury is still out on which of these approaches—dynamic factor models versus LASSO
sparseness regressions—works best, or if they should even be viewed as alternatives. Results from
LASSO estimation are not invariant to adding linear combinations of the original K variables, so
one approach is to simply add the principal components and see if they get included by the LASSO
algorithm.'® An alternative strategy is to not treat these methods as competing alternatives, but
instead try to combine the individual forecasts. This leads to the question of model combination,
which is covered in Section 6.

Other issues arise when interest lies in forecasting a possibly large-dimensional vector of de-
pendent variables. Standard vector autoregression (VAR) methods are not well suited for this, but
Bayesian methods have been developed to handle large-dimensional VARs. Another interesting
approach that can be used to ensure coherence between individual forecasts is the global VAR
model proposed by Pesaran et al. (2004). This approach has been used with success in empirical
forecasting (see, e.g., Chudik et al. 2016a for a recent application to output prediction). Forecast-
ing with dynamic panels that allow for cross-sectional dependencies is another promising way to
go, although such methods are only in their infancy at the present time.

6. MODEL SELECTION VERSUS FORECAST COMBINATION

If the DGP were known, in most forecasting situations we could obtain efficient estimates of 6
by maximum likelihood and use these to construct a forecasting model. However, a premise that
is broadly accepted in forecasting analysis is that all forecasting models are misspecified. Such
model misspecification arises for a number of reasons: (#) The underlying (joint) DGP for the
outcome of interest and the predictor variables often undergoes change and so is difficult to track
accurately through time; (b) the functional form of the mapping from predictors to the outcome is
unknown and difficult to pin down; (¢) the identity of the best predictors is unknown and subject
to a complex search; and (4) the parameters of the forecasting model are estimated with error.
Importantly, model misspecification is not easily sidestepped as the complexity of the problem
of selecting and estimating a forecasting model can only be expected to grow over time with the
arrival of new information.

Concerns such as these suggest that we might not attempt to identify and use a single “best”
forecasting model. In fact, even if we knew the predictors and functional form of the true forecasting
model, the presence of parameter estimation error means that simpler, smaller models with fewer

10In a recent application to inflation forecasting, Medeiros & Mendes (2015) find that the principal components do not
necessarily get selected by the LASSO approach when added to a larger set of individual predictor variables.
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parameters to estimate might produce better forecasts in finite samples. Similarly, the effect of
individual predictor variables might be sufficiently small (“local to zero” ) that the additional signal
value gained from their inclusion in a particular forecasting model is outweighed by the effect of
parameter estimation error.

These are reasons why it is often unlikely that a single forecasting model always dominates all
other alternative specifications. In such situations, a viable alternative is to use forecast combination
or model combination. Forecast combination treats a set of underlying forecasts, fi, ..., f,,asany
other data available for generating a consolidated forecast, f°(fi, ..., f», 2). Linear forecasting
schemes of the form f¢ = wy+ w; fi + w22 + -+ + w, f,, are particularly popular. Often the
weights @ = (wo, @1, ..., ®,)are estimated by OLS or obtained by some weighting scheme such
as using the inverse of the MSE of the forecasts relative to the average MSE. Weighting schemes
such as these introduce estimation error into the combined forecast.!!

One alternative is to use equal weights on the forecasts (i.e., settingwy = 0andw; = ... = w, =
1/n) (for a survey of forecast combination, see Timmermann 2006). Empirically, it has proven
surprisingly difficult to come up with forecast combination schemes that perform better than
simple equal-weighted averages (see Genre et al. 2013 for a comparison of different combination
schemes for survey forecasts of a range of macroeconomic variables). Undoubtedly, this reflects
that clearly poor models are usually trimmed from the set of models being combined. However, it
may also reflect that many forecasting methods lead to forecasts with similar error variances and
similar covariances, perhaps due to the presence of a large, common unexplained component in
the forecast error. In this case, there is little scope for improvements by deviating from the simple
equal-weighted average of forecasts.

In settings with many potential predictors, each of which has a “small” (local to zero) effect
on the future outcome, the trade-off between omitted variable bias—resulting from the exclusion
of potential predictor variables—and estimation error—due to the inclusion of additional weak
predictors—takes a particularly interesting form. Elliott et al. (2013) show that in such settings it
can be favorable to combine over forecasts generated by models that include only a small, &, fixed
set of predictors such as five or ten variables. In a setting with K possible predictors, there are
nx = K!/(k'(K — k)!) different k-variate models. For example, there will be as many different
models that include one predictor as models that exclude one predictor from the model, and thus
include K — 1 variables. However, when K is large relative to T, the (kitchen sink) model that
includes all, or almost all, possible predictors tends to produce very poor out-of-sample forecasts
due to the effect of estimation error.

In empirical work for stock returns (Elliott et al. 2013) and inflation rate, GDP growth, and
unemployment rate forecasts (Elliott et al. 2015), Elliott et al. find that the CSR forecasts perform
very well compared to univariate ARIMA (autoregressive integrated moving average) or common
factor models. Equal-weighted combinations appear to work as well as alternative combination
schemes that estimate the weights of the individual forecasting models and do not sample the
models at random if the total number of models is too large to allow all possible models with &
predictors to be included in the combination.

Forecast combination can be used to incorporate insights from very different forecasting meth-
ods. DSGE-based forecasts (described in Section 4), data-based machine learning methods, and
forecasts from surveys represent very different approaches to modeling and incorporating very

"Tn situations with large sets of prediction models, attempting to estimate the combination weights becomes even more
difficult although in principle one could use methods such as LASSO to select a smaller subset of forecasts and then estimate
the weights on this subset.
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different information sources. Given such differences, it would seem like a good idea to combine
different approaches. This has been done. For example, Wright (2013) proposes a “democratic
prior” approach that incorporates information from long-run Blue-Chip survey forecasts into the
prior of a VAR. This anchoring of the priors seems to lead to improved forecasting performance
over simply using a Bayesian VAR.

Model combination methods have been used to generate density forecasts, particularly in the
Bayesian literature. Bayesian model averaging methods have been in use for some time. These
utilize a linear combination scheme based on the individual models’ marginal likelihood. Let
p(yIM;, Z) be the predictive density for y; given model M; and the data, Z, with p(M;|Z) the
posterior probability for model M; given the data, Z. Then the Bayesian model average is a
weighted average of the individual models’ densities:

7

P12 =D p(yIM;, 2)p(Mi| 2). 25)

i=1

The combination weights in this equation sum to 1 but do notaccount for any correlations between
models. An alternative weighting scheme is proposed by Geweke & Amisano (2011), who suggest
choosing combination weights o, = (@i, . .., w,,)" to maximize the weighted log score (LS)

t—1 m m
w, = argmaXZlog (Z Wi exp(LS,H,,-)) s.t. Zwi, =1,w,;>0 for i=1,...,m.
=1 i=1 i=1
Geweke & Amisano point out that this weighting scheme does not require that the true model
is included in the set of models under consideration—an assumption that is of course unlikely to
hold. In an empirical application to density forecasting for stock returns, they find that a variety
of models get nonzero weights, suggesting that the approach genuinely diversifies across different
model specifications.

Empirically, model and forecast combination has proven to be one of the few forecasting meth-
ods with a broad ability to improve forecasting performance across a large range of economic and
financial variables. Its appeal derives from the existence of many forecasts with broadly similar
forecasting performance—in which case a “portfolio” of these offers diversification gains. More-
over, in situations in which the relative performance of various forecasting models changes over
time, combination approaches that use estimated weights can allow the weights to shift, better
emphasizing models with improved performance at the cost of models whose performance is de-
teriorating, a point emphasized by Pettenuzzo & Timmermann (2016). Such model instability is
discussed directly below.

7. DEALING WITH MODEL INSTABILITY

Model instability refers to the situation in which the DGP, p,, ., -, (y, 2|0), varies over time. This
could result from either the density changing or the parameters of the forecasting model changing
over time, or both. Constant changes in the makeup of the economy, with new industries replacing
old, and changes in regulations mean that it may not be reasonable to assume that the DGP is
constant for very long periods of time.

The obvious problem that arises from model instability is that estimates of the forecasting
model from past data are not necessarily useful for forecasting today. Although sample analogs
of risk such as Equation 1 still may converge to the average risk (Equation 4), the latter object
might not have any meaningful interpretation at a single value for  when 6 is varying over time.
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Similarly, the estimate for 8 in a forecasting model might be good on average over the full data
sample, but not at time 7" where we make our forecast.

Model instability appears to be pervasive. Stock & Watson (1996) find that instability was
present for the majority of time-series forecasting models fitted to a range of macroeconomic
variables. Clements & Hendry (1998) rate model instability as a key influence on the performance
of macroeconomic forecasting models.

In the presence of such model instability, a number of practical issues arise. First, can we detect
the presence—and, perhaps, timing and nature—of such model instability? Second, how should
forecasts be constructed when there is time variation in the DGP?

To begin, consider our ability to detect parameter instability, which is the topic of a large
literature. Although many of the tests are designed for particular models of instability (e.g., the
standard SupkF test for a single break, covered in Andrews 1993), typically these tests have power
against a wide variety of models for the time variation in the parameters. For a wide variety of
models for the break process, Elliott & Miiller (2006) show that optimal tests for breaks have
similar power against different forms of model instability. It follows that a test for breaks against a
particular model is not indicative of that model being the correct representation of the DGP. On
a more positive note, many break tests are useful in detecting whether there is model instability
in the first place—they just cannot identify the exact form of this instability.

When model instability is suspected (or tests reject the null of stability), there are two main
strategies for building a forecasting model. First, we could attempt to model the instability para-
metrically. The chief challenge to the parametric approach comes from choosing which model
of instability is likely to be the correct one. The majority of the work in forecasting has operated
under the assumption that the correct model has been chosen, rather than addressing how to
choose the correct model. Second, we could use more robust procedures for generating a forecast,
which do not require taking a stand on the form of the instability.

Let us consider parametric modeling approaches to instability. The difficulty here is that there
exists a large set of candidate models for the instability. For example, the parameters might change
values at some unknown pointin time in a one-off change, or they might vary each period. Between
these possibilities are models that shift less frequently but by larger (discrete) amounts.

Specifically, the parameters could undergo changes every period and follow a mean-reverting
process,

Yer1 = By + €141,

B = B + K(E — Be—1) + 1y, (26)

where k > 0 is the speed of mean reversion, and k = 0 corresponds to a random walk model (see
Engle & Watson 1985 for an analysis of this type of model).

Alternatively, the parameters could change less frequently but in a more discrete manner as
captured by a regime switching process,

IBZ = :3:,7
Pr(s;p1 = jls: = i)= pij 27)
s, € {1,..., K}. This model assumes repeated regimes for the parameters. Alternatively, the

parameters could simply be drawn from a nonrepeated change-point process, as assumed by Chib
(1998). This amounts to assuming that Pr(s,; = k|s, =k — 1) = pz_; > 0, whereas p;; = 0 for
j <k—2andfork > j, which means that the process cannot go back from the current state to an
earlier one. Rather, if it leaves the current state, it must exit to a new state. The number of states
can therefore be expected to grow in proportion with the sample size under this specification.
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Allowing for time variation in second moments has proven important for both economic and
financial variables. A popular approach is to assume a stochastic volatility process of the form

Yir1 = Ba; + \/}TzSHh g1~ N(0,1), (28)
log(h,) = o + yilog(h,—1) + w41, w1 ~ N(0,0,).

Models with stochastic volatility have proven popular in macroeconomic forecasting (see Clark
2011 and Clark & Ravazzolo 2015 in the context of density forecasting).

Alternatively, Markov switching models with regime switching in both the mean and variance
parameters can be used:

Yi+1 = ﬂy,xt + 05,1415 Erp1 ™ N((), 1)- (29)

Approaches such as Equations 26-29 are fully parametric in that they assume a fully specified pro-
cess (including functional form and distribution) for changes to the parameters. Such approaches
take into account the insight that if breaks affected the DGP in the past, then forecasts of future
outcomes ought also to account for the possibility of future breaks, particularly at long forecast
horizons (see Giacomini & Rossi 2009 for a related discussion and Giacomini & Rossi 2015 for a
survey of forecasting under model instability).

In the context of a single break, one approach is to attempt to test for the presence and most
likely location of the break. Estimates of the parameters of the forecasting model can then be
based on only the data after the break (postbreak estimation). This approach is unlikely to work
well if the location of the break is close to the end of the sample so that there are only few data
points with which to train the postbreak estimation. Alternatively, one can use a procedure that
attempts to trade off bias and variance effects by including prebreak data so as to minimize the
expected loss of the forecast (Pesaran & Timmermann 2007).

When it is expected that there are multiple but rare breaks, one could consider attempting to
estimate the most recent break and base forecasts on the recent stable period. Bai & Perron (1998)
provide methods for estimating the break points. Pesaran & Timmermann (2002) suggest an alter-
native method based on reversing the time series. A third possibility is to use multiple estimation
windows and average across the windows based on the inverse of the associated MSE values, as-
signing less weight to estimation methods that yield relatively poor forecasting performance (see
Pesaran & Timmermann 2007).

Robust methods that do not rely on estimating the number of breaks include the use of a
rolling window estimator, discounted least squares methods, and intercept corrections. The idea
behind rolling windows is that “old” data get excluded in the estimation and so do not cause biases
in the parameter estimates. Rolling window estimates tend to be more volatile than full-sample
(recursive) estimates, which make more efficient use of all data in situations in which the parameters
do not change much over time. Rolling window estimates can also critically depend on how the
length of the estimation window is set, and there appear to be no procedures for addressing this
important issue in practice.

Discounted least squares, in the context of a univariate autoregression, is the same as exponential
smoothing, which is popular when there are few or no covariates. There is a wide variety of methods
for exponential smoothing (see Hyndman et al. 2008 for a book-length examination). The idea
of discounting is similar to that of rolling regressions; however, instead of having a zero-one
cutoff for including past data, the weight on past data declines the further back it is in the past.
Intercept corrections adjust the forecast using the past forecast error to “correct” the forecast. The
main difficulty here is that the past forecast, although under some conditions being an unbiased
estimator of the bias due to ignoring the parameter instability, is also a noisy estimate of this effect
and can add greatly to the risk of the forecast.
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One approach for handling model instability that seems to work well in practice is to consider a
variety of model specifications and then use an equal-weighted average of the forecasts generated
by the different approaches. For example, Clark & McCracken (2010) combine forecasts of output,
inflation, and short-term interest rates across VAR specifications that allow for model instability
in a variety of ways (e.g., by using recursive lag selection, rolling estimation windows, and inter-
cept corrections). Equal-weighted averages of such forecasts are found to be consistently good.
Rossi (2013) also finds that equal-weighted forecast combinations produce relatively good out-
of-sample forecasts. Pettenuzzo & Timmermann (2016) confirm these findings but further find
that a variety of forecast combination schemes—such as equal-weighted combination, Bayesian
model averaging, and the optimal pool of Geweke & Amisano (2011)—produce accurate out-of-
sample forecasts of the distribution of inflation and growth in industrial production when applied
to density forecasts from models that allow for stochastic volatility, time-varying parameters, and
regime shifts.

8. DENSITY VERSUS POINT FORECASTS

Density forecasts provide a full summary of forecast uncertainty, which is invaluable in many
situations. In practice, public agencies have therefore moved toward providing density forecasts.
For example, the Bank of England reports a “fan chart” forecast for inflation as does the IMF in their
World Economic Outlook publication. Fan charts use different shades of colors to illustrate bands
of quantiles starting from the median forecast and fanning out toward coverage of an increasingly
likely range of outcomes for variables such as the inflation rate measured over increasing forecast
horizons.!?

A common suggestion is that density forecasting offers a superior approach to point forecasting
because such forecasts are not tied to a particular loss function. In practice, however, the data must
be employed to select the model and estimate the parameters, all of which involves the addition of a
loss function that may not bear any relation to the point forecasting problem that the density is used
for. In turn, given such a loss function and an estimate of the density forecast, py, ., (y|27,0),
we can use Equation 2 to construct a point forecast.

In addition, the provision of density forecasts is important in situations with many forecast
users whose loss functions are heterogeneous. For example, consider a public weather forecasting
service tasked with predicting whether it will rain tomorrow. A density forecast is the conditional
probability that it will rain tomorrow; point forecasts are either {rain, no rain}. Users will forecast
rain when this probability is greater than the utility gain from forecasting a sunny day (utility from
correctly forecasting a sunny day minus the utility from incorrectly forecasting it) as a proportion
of the utility gain from forecasting sun plus the utility gain from forecasting rain. A conditional
forecast of say a 40% chance of rain might lead those whose day would be ruined by rain (e.g., they
were driving a long way to the beach or having an outdoor party) to make alternative arrangements;
thus, their forecastis rain given thatan incorrect forecast of sun is relatively costly. For people going
to the (indoor) shopping mall who are indifferent between rain and sun, their forecast is a sunny
day because the conditional probability of rain is below their relative utility (0.5) of a sunny day.

Reporting density forecasts in a way that allows users to construct their point forecasts also
poses challenges. For binary outcomes such as many weather forecasts, a single number defines
the conditional density. When the density forecast is a parametric density, the parameters of the

12 An interesting development in the recent forecasting literature is the use of downside risk measures. For example, the IMF
World Economic Outlook reports balance of risks (coefficients of skewness) for a selection of risk factors.
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density can be presented. More often, though, features of the density are presented instead. For
example the Bank of England’s density forecast for inflation is a histogram with a number of other
distribution features (mean, median, mode, skewness) reported. Obviously, a histogram suppresses
information that could be useful in computing the optimal forecast.

Density forecasts depend on estimates of unknown parameters and hence require a loss function.
"This loss function may not be related to the forecast user’s loss function. In the binary problem in
which loss is over two outcomes and the density forecast is the conditional probability of one of
the outcomes, there is a direct link between the scoring rule used to estimate the forecast density
and the users’ individual utility functions. Shuford et al. (1966) and Schervish (1989) show that
proper scoring rules are weighted averages of the individual utility functions of users. For more
general problems, the relationships between the scoring rules popular in the literature and the
underlying loss functions for individual users is not clear. Thus, it could well be that the scoring
rule used provides a poor estimate of the feature of the conditional distribution that some users
wish to construct.

One area in which density forecasting has been particularly important is in the Bayesian fore-
casting literature. The posterior predictive density is naturally obtained as part of the Bayesian
analysis and so is typically readily available to be used to form out-of-sample forecasts and for
model evaluation (see Karlsson 2013 for a summary of the extensive Bayesian literature).

9. EVALUATING AND COMPARING FORECASTING PERFORMANCE

It is common to evaluate forecasts out of sample by splitting a data sample with 7" observations
into an initial estimation sample of length R, used for parameter estimation and model selection,
and an out-of-sample period of length P =7 — R, used to evaluate the forecasts. The practice
of evaluating forecast models using out-of-sample evaluation reflects the desire to obtain a better
estimator for a forecast method’s risk than that provided by an in-sample estimator. In-sample
methods estimate the risk using the same data as that used to estimate the forecasting model. This
provides an estimator whose in-sample loss is smaller on average than the true risk because the
estimated model parameters have been obtained by minimizing the estimate of this measure.

Out-of-sample experiments generally assume that the parameters of the forecasting model, f;,
are updated using a fixed, rolling, or expanding estimation window. Under the fixed estimation
scheme, an initial data sample 7 = 1,..., R is used to estimate the parameters that do not get
updated subsequently. Under the rolling estimation scheme, a fixed window of the data (of length
w) up to the present pointin time, 7 = t—w+1 : 7, is used to estimate the parameters. As new data
are observed, old observations are therefore dropped. Under the expanding estimation scheme,
all data from the initial time up to the present T =1, ..., r are used to estimate the parameters.

Risk can be estimated from out-of-sample data by computing the sample average. Even in
recent work in many fields, it is typical to report these sample estimates without construction of
standard errors. West (1996) shows how to construct standard errors accounting for the estimation
error in the construction of the forecasts for a wide range of possible loss functions and regression
models. In many situations (e.g., under MSE error where the forecasts are constructed from linear
regressions), estimation error plays no role and standard (robust) error measures are appropriate.
This work has been generalized in a number of papers. However, asymptotic results remain to be
developed for many practical forecasting problems.

9.1. Comparing Models Out of Sample

Pairwise comparisons of two models’ out-of-sample forecasting performance are commonly con-
ducted using the approach of Diebold & Mariano (1995). Specifically, let L(fir1(Bir), yr41)s
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t = R, ..., T —1, be a sequence of one-step-ahead losses associated with a particular model
(model 1) whose parameter estimates, By, only use information available at time 7. In the case of
MSE loss, L(fltH\z(Elz)aJ’Hl) = (Yrs1 — ﬁt+1\t(Blf))2~ Similarly, let L(erH\z(BZz)»J/rH) be the se-
quence of losses generated by a competing forecasting model (model 2). Then the loss differential,
dy41, is given by

dip1 = L(fer\z(Elt)a)’rH) - L(ﬁt+l|t(32t)syt+l)~ (30)
To conduct a test of equal expected loss for models 1 and 2, Hy : E[d,4;] = 0, Diebold &
Mariano (1995) propose using a robust ¢-test for the intercept in a regression of d,,; on a constant.
A sufficient condition ensuring that the Diebold-Mariano test is well behaved is that the loss
differentials (d;1) are covariance stationary.

Under the out-of-sample estimation schemes, recursive updates to $;; may result in important
learning-induced nonstationarities in d,,;. We would expect such effects to be quite small if the
initial estimation scheme is long relative to the length of the evaluation sample. However, if this
condition is not satisfied, alternative procedures for forecast evaluation can be used. Specifically,
West (1996) and McCracken (2007) develop methods that can be used in the comparison of non-
nested and nested forecasting models accounting for recursive updates to the parameter estimates
of linear regression models.

To see the difference between the nested and non-nested case, consider two forecasting models:

Yi+1 = ﬂixlz + €141, (31)

’
Yer1 = Brxa + €241

In situations in which both xj, and x,, contain elements that are not included in the other set,
the two models are non-nested. Conversely, if x;, C x,,, the two models are nested with model 1
being the small model and model 2 being the large model.

The results of McCracken (2007) show that the distribution (and thus critical values) of the
resulting test statistic for the null that the two models have equal expected loss depends on the
method used to estimate the parameters of the models (fixed, rolling, or expanding estimation
window) and the proportion of the overall sample, 7', used for initial estimation (R) and forecast
evaluation (P = T — R), respectively. For nested models, the critical values used in the model
comparison also depend on the relative dimension of the small and large forecasting models, i.e.,
dim(xy,) — dim(y,).

A somewhat surprising result that arises from these studies is that it is possible for a large
forecasting model to perform worse (e.g., produce larger MSE values) in a given sample than the
small forecasting model, yet at the same time be deemed to be the best forecasting model. This
situation may arise because the hypothesis of equal expected loss is evaluated at the probability
limits of the parameters estimates 8; = p lim(8;,), i.e.,

Hy : E[L(fir+1:(B1): yrse)] = E[L(f2r411:(B2): y141)]- (32)

The null in Equation 32 implies that the additional regressors included in the large model have
zero coefficients. If this holds, the large model can be expected to perform worse than the small
model in a given sample simply because the large model has more parameters to estimate. The
smaller model (model 1) gains efficiency by correctly imposing that the additional parameters
equal zero. In other words, the large model is more adversely affected by estimation error than
the small model. This means that the distribution for the relative forecasting performance of the
small versus the large model gets shifted to the left. In cases with many additional parameters to
estimate, this effect can be strong enough that the 95% right-tail critical values of the distribution
for the test statistic are negative. The reason is that a large model found to underperform in a
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given sample can be judged to be significantly better than the smaller model, when evaluated at
the limit of the two sets of parameter estimates, because it underperformed by less than we would
have expected if the additional parameters of the large model truly were zero in the population.

Giacomini & White (2006) propose a different approach to comparing equal expected loss.
They replace the null hypothesis in Equation 32 that compares the two models’ expected loss at
the probability limits of the parameters with a null of equal expected loss evaluated at the current
parameter estimates:

Hy : EIL(firr1B1), yie0)) = ELL(frr1(Bar), yes)]- (33)

Again the object underlying their test is an observed sequence of forecasts from two models.
Giacomini & White assume that these forecasts are generated using rolling window estimators."?
This assumption preserves the effect of estimation error on the two forecasts and also enables
them to establish the distribution of the sequence of losses generated by the two forecasts. The
difference between the null hypotheses in Equations 32 and 33 is far from trivial. As an example,
suppose that the finite-sample bias in the small model (model 1) arising from the omission of
relevant predictor variables exactly cancels out against its smaller estimation error (relative to
model 2). Then the null hypothesis in Equation 33 should not be rejected, whereas the null in
Equation 32 should be rejected as the estimation sample expands and estimation error vanishes
because the additional predictors included by the large model actually contain useful information.
Stated differently, tests based on Equation 33 may set the bar higher for the large model than tests
based on Equation 32 because the former requires that the large model outperforms the smaller
forecasting model by a sufficiently large margin so as to make up for the larger model’s greater
estimation error.

The null in Equation 33 compares two models’ forecasting performance using sequences of
parameter estimates. This means that the null will change if the same models are maintained but
their parameters are estimated differently. For example, model 1 may be preferred over model 2
if a rolling estimation window of 100 observations is being used, whereas the reverse may hold if
the rolling estimation window is instead 500 observations. This highlights that Equation 33 really
tests the equivalence of the performance of pairs of forecasting methods as opposed to comparing
specific models. Not only the models but also how they are implemented makes a difference when
testing the null. In fact, Equation 33 can be used to test the relative accuracy of the same model,
estimated using different methods or using rolling estimation windows of different lengths (e.g.,
200 versus 500 observations).

The ability to put standard errors on comparisons of different models’ forecasting
performance—sometimes called horse races—represents a major improvement in the literature
on forecast evaluation. However, key challenges remain. First, the results established by West
(1996) and Clark & McCracken (2001) are limited to a small set of estimators and forecasting
models and exclude a variety of nonlinear, nonparametric, and Bayesian approaches, as well as
forecasting methods that involve model selection. Similarly, although the approach advocated by
Giacomini & White (2006) is conceptually elegant, in practice the reliance on a rolling window
estimator can lead to substantial drops in statistical power. In situations with weak predictors,
using an expanding estimation window rather than a rolling window can lead to somewhat better
forecasting performance. However, models estimated in this manner cannot be evaluated using
Equation 33.

BWith rolling regressions, their result motivates the Diebold & Mariano (1995) method as asymptotically appropriate.
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9.2. In-Sample Versus Out-of-Sample Forecast Evaluation

In-sample evaluation methods use the same data sample to estimate the parameters of a forecasting
model and to evaluate it on. In contrast, out-of-sample evaluation models separate the samples
used to estimate (and select) the model and to evaluate it with. In part, the answer depends on
what the evaluation is used for.

In-sample forecast evaluation methods typically result in an estimated risk measure of the
form of Equation 4. When forecasting with a linear regression model with % predictors, the in-
sample MSE risk estimate is on average o?(1 — T ~'k) as in Equation 11. Conversely, the
out-of-sample expected risk for this model is roughly o?(1 + T ~'%) as in Equation 16. Hence, it
may be expected that the sample analogs to out-of-sample risk would be better estimators of the
relevant risk for forecasting.

When comparing two models, in-sample tests have asymptotic optimality properties under
standard assumptions on the DGP. However, given concerns related to data mining as well
as a desire to mimic the actual forecast procedures used, out-of-sample forecast evaluation
results are often examined. There are good reasons for this. Hansen & Timmermann (2015a)
consider a simulation experiment in which a forecaster searches across multiple models, the
set of which is obtained by considering all possible linear models formed by selecting from an
increasing list of predictors. Assuming that the statistical tests used for evaluating forecasting
performance do not correct for such model specification search—which in practice means that
conventional critical values are used to evaluate the chosen model—they find that in-sample tests
of forecasting performance tend to massively over-reject the null of no predictability even in
situations where the null is used as the DGP. Although data mining also causes out-of-sample
tests to over-reject, the effect is substantially weaker for such tests. These results suggest that,
even though over-rejections of the test for no predictability due to data mining do not disappear in
out-of-sample tests, it is considerably less likely that good out-of-sample forecasting performance
is spurious compared with similarly good performance observed in sample.

This result would seem to suggest that out-of-sample tests are to be preferred over in-sample
tests of forecasting performance. However, Inoue & Kilian (2005) and Hansen & Timmermann
(2015b) show that out-of-sample tests are associated with considerable losses in power due to their
use of a subset of the data for forecast evaluation as well as the greater estimation error resulting
from recursive estimation of the parameters.

For the case with a recursively expanding estimation window, Hansen & Timmermann (2015b)
derive the power function for comparison of two nested regression models analytically and show
that the power—the ability of the out-of-sample test to correctly detect that the large model is
“best” when this holds—gets weaker when the “hold-out” part of the data (i.e., the proportion
of the data used for forecast evaluation) is a larger proportion of the sample size. Their results
also suggest that findings of superior forecasting performance are more likely to be spurious when
the forecast evaluation sample is short and, conversely, more likely to reflect genuine predictive
ability for the larger forecasting model when the forecast evaluation sample is long.

Besides greater robustness against data mining, another benefit from inspecting a model’s
out-of-sample forecasting performance is that it offers insights into how the model’s forecasting
performance evolved over time. By plotting cumulative sums of squared forecast errors, perhaps
compared for pairs of models, one can gain insights into the stability of a model’s performance
and any periods of unusually poor or good forecasting performance.

10. DEALING WITH DATA MINING

In situations with multiple competing forecasting models, there are limitations to conducting
pairwise comparisons of forecasting performance. Most notably, even if individual comparisons
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can be conducted using tests with a certain (fixed) size, the statistical properties of a sequence
of joint pairwise tests are unclear and will depend on the joint distribution of the involved test
statistics.

In a very influential paper that addresses the multiple comparison issue, White (2000) proposes
a “reality check” procedure for testing whether at least one model, selected from a larger set of
m models, is capable of beating some benchmark specification, labeled model 0. Let dii1(B) =
L(ﬁmm(ﬁo[),y,ﬂ) — L(ﬁ,rﬂ‘,(ﬁ;ﬁ),yt“) be the loss difference between the benchmark and the
k-th model. The null that the benchmark model is not beaten by any of the competing models
takes the form

Ho: max EBldu(By)] <0, G4
where 8 = plim(By,). Three points arise from Equation 34. First, the null uses a < inequality. If the
benchmark produces a lower expected loss than the alternative models, the loss differential dj,,
will be negative, so the null is that even the best of the 7z forecasts cannot reduce the benchmark
model’s expected loss. Second, the null in Equation 34 is evaluated at the probability limits of the
parameter estimates, B;. This is similar to the null used by West (1996) and Clark & McCracken
(2001). Third, Equation 34 is a composite null that involves multiple inequalities and depends
on the joint distribution of 7 loss differentials. White establishes high-level assumptions under
which the joint distribution of the vector of (scaled) sample means (dy;41, . . ., d,11) converges in
distribution to N (0, €2), where € is an 7z x m covariance matrix. Moreover, he develops a bootstrap
procedure for sampling from this distribution under the null of equal predictive accuracy.'* These
bootstrap draws can be used to conduct inference to see whether the best model’s performance
is sufficiently far out in the right tail of the distribution of the test statistic to reject the null in
Equation 34."

The reality check approach developed by White (2000) can be used to conduct metastudies of
the existing literature, i.e., to assess whether, across all models used in published studies, there is
robust evidence of superior out-of-sample forecasting performance (relative to the benchmark)
for at least one model. It can also be used in a constructive manner by a modeler who is inter-
ested in testing if the best model, selected from a larger set of candidate models, is genuinely
able to beat some benchmark, after accounting for the multiple hypothesis testing problem in
Equation 34. The more models are included in the search, typically the higher the bar is set for
the best model to be deemed capable of outperforming the benchmark. In this way, pure data
mining can be costly as it can confound our ability to identify a genuinely good forecasting model.
The null in Equation 34 may be the relevant hypothesis if we are interested in testing market
efficiency, i.e., in analyzing whether there exists an investment strategy that, net of transaction
costs and on a risk-adjusted basis, beats holding the market portfolio.

We may also be interested in finding out how many models can beat the benchmark and
in identifying such models. Romano & Wolf (2005) develop a stepwise procedure that iterates
on White’s bootstrap to recursively identify the set of superior models, while simultaneously
controlling the probability of wrongly classifying at least one forecasting model as being superior.

In situations without an obvious benchmark to compare forecasting performance against,
Hansen et al. (2011) develop ways to recursively trim the set of models deemed to be better

4To deal with the effect of recursive estimation error that arises for forecasts generated by models with estimated parameters,
one can alternatively test a null hypothesis such as that of Giacomini & White (2006) or use the bootstrap approach proposed
by Corradi & Swanson (2007).

B Hansen (2005) provides further refinements to this procedure through his test for superior predictive ability.
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than others. Their approach uses an equivalence test for comparing models and an elimination
rule for trimming inferior models. This approach can handle large-dimensional sets of competing
forecasting models and so is useful when considering which models to drop.

11. CONCLUSION

Economic forecasting has seen many exciting new developments over the past couple of decades
related to new developments in areas such as model selection, real-time forecasting, and estimation
with large cross sections of potentially relevant predictors. Some of these developments have been
theoretical in nature—such as our improved ability to put standard errors on estimates of out-of-
sample measures of forecasting performance—whereas others have largely been driven by access
to new empirical data and computer algorithms designed to search among a vast list of variables
in the hope of identifying individual predictors that could make a difference under assumptions
of sparseness.

A common theme emerging from our review is that no single model or forecasting method can
be expected to be dominate over time and across different economic variables. Individual models
are invariably coarse approximations to a far more complex and evolving reality with biases that
shift over time. This helps explain the existence of a plethora of different approaches to forecasting,
and it also explains the success of forecast combinations in many different arenas.

Improvements to our ability to produce more real-time forecasts, often on a daily basis, remain
one of the most exciting areas of research. Access to high-frequency data sources such as scanner
data from supermarkets, credit card transactions, and factory-level activity offers the hope for
improvements in the accuracy of such forecasts along with the challenges that arise from pooling
such data sources.

APPENDIX: DETAILS OF THE MONTE CARLO SIMULATIONS
USED IN FIGURE 1

The Monte Carlo simulations used to construct Figure 1 assume a linear forecasting model
Yr41 = B'x; +¢;. The estimation sample has 100 observations, and the evaluation is for a one-step-
ahead forecast. We use 30,000 replications. We draw ¢, as a standard normal random variable
independent over time and independent of the {x;}” | random variables. We draw x, ~ N (0, %)
independent over time with ¥ being random across Monte Carlo draws. Specifically, we set
¥ = 0.1Q'Q, where each element of the K x K matrix Q is drawn from an independent normal
distribution (which is also independent of all other draws). This method ensures that ¥ is positive
definite regardless of K and results in a spread of eigenvalues of  that appears reasonable.
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