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a b s t r a c t

Systems which specifications change abruptly and statistically, referred to as Markovian-jump systems,
are considered in this paper. An approximate method is presented to assess the asymptotic stability, with
probability one, of nonlinear, multi-degree-of-freedom, Markovian-jump quasi-nonintegrable Hamilto-
nian systems subjected to stochastic excitations. Using stochastic averaging and linearization, an ap-
proximate formula for the largest Lyapunov exponent of the Hamiltonian equations is derived, from
which necessary and sufficient conditions for asymptotic stability are obtained for different jump rules.
In a Markovian-jump systemwith unstable operating forms, the stability conditions prescribe limitations
on time spent in each unstable form so as to render the entire system asymptotically stable. The validity
and utility of this approximate technique are demonstrated by a nonlinear two-degree-of-freedom os-
cillator that is stochastically driven and capable of Markovian jumps.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The operation of complex dynamic systems is often accom-
panied by abrupt changes in their configurations caused by com-
ponent or interconnection failure, or by the onset of environ-
mental disturbance. When these sudden changes in the operating
rules occur in accordance with a Markov process, the associated
stochastic system is referred to as a Markovian-jump system [1,2].
Indeed, important examples include most high-integrity or safety-
critical systems such as nuclear power plants, integrated com-
munication networks, and large-scale flexible space structures.
Since Markovian-jump systems were first introduced a few dec-
ades ago, issues concerning stability, optimal control, filtering, and
robustness have been examined in the literature. However, most
published results are only applicable to linear systems. Far less is
known about nonlinear Markovian-jump systems, particularly for
multi-degree-of-freedom (MDOF) systems. Development of
methodology for the analysis of nonlinear MDOF Markovian-jump
systems is thus much deserving.

A basic issue in system design is stability. An unstable system
may burn out, disintegrate, or saturate and becomes unusable.
Several important criteria for stochastic stability of Markovian-
jump systems [3–5] have been established. Using Lyapunov ex-
ponents, necessary and sufficient conditions for moment stability
of linear systems have been derived [6]. The equivalence of dif-
ferent second-moment stability concepts has been established [7].
Feng et al. [8] proposed conditions for exponential mean-square
stability of linear Markovian-jump systems. Costa and Fragoso [9]
obtained conditions for mean-square stability of linear systems
subjected to additive noise. Stability analysis using Lyapunov
functions was considered [10,11]. In addition, sufficient conditions
for almost sure stability of linear Markovian-jump systems were
derived [12]. Some results for stability of neural Markovian-jump
networks were reported in [13,14]. However, these earlier studies
focused mainly on the moment stability of linear systems. The
purpose of this paper is to investigate the stochastic stability of
nonlinear MDOF Markovian-jump systems.

An approximate method is presented in this paper to assess the
asymptotic stability of nonlinear, MDOF, Markovian-jump quasi-
nonintegrable Hamiltonian systems subjected to stochastic ex-
citations. In a nonintegrable system, energy is the only constant of
motion [15]. The organization of this paper is as follows. In Section
2, the equations of Markovian-jump quasi-nonintegrable sto-
chastically-driven Hamiltonian systems are examined. The utility
of Lyapunov exponents in determining asymptotic stability with
probability one is reviewed in Section 3. Stochastic averaging
[16,17] is applied to Markovian-jump systems in Section 4, which
permits the reduction of the Hamiltonian equations to a one-di-
mensional Itô equation governing the approximate energy envel-
ope. In Section 5, the Itô equation of energy is linearized and its
Lyapunov exponent is decomposed into a weighted sum of the
Lyapunov exponents associated with different forms of the system.
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Conditions for asymptotic stability of nonlinear MDOF Markovian-
jump systems are obtained in Section 6, where computation of
equilibrium probabilities is also discussed. In Section 7, utility and
reliability of the method thus developed are demonstrated by a
nonlinear two-degree-of-freedom oscillator driven by Gaussian
white noise, wherein comparison with direct system simulation is
made and detailed calculations are provided. A summary of find-
ings is given in Section 8. Throughout the paper, an effort is made
to clarify the theoretical development in practical terms.
2. Problem formulation

The equations of motion of an n-degree-of-freedom dynamical
system are composed of n second-order differential equations in
the generalized displacements. These second-order equations can
always be recast as n2 first-order differential equations, in the
usual state space or in the Hamiltonian phase space. Consider an
n-degree-of-freedom, stochastically driven, nonlinear Hamiltonian
system with Markovian jumps governed by

̇ = ∂
∂ ( )

q
H
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where = …i j n, 1, 2, , ; = …k m1, 2, , ; qi, pi are respectively the
generalized displacements and momenta; = ( … )q qq , , n1 and

= ( … )p pp , , n1 . In accordance with the summation convention, the
repeated indices j and k in Eq. (2) are summed over their re-
spective ranges. In the above equations, = ( )H H q p, is the Ha-
miltonian, ( )s t is a finite state Markov jump process, ε is a small
parameter, ε ( )[ ( )] ∂

∂
c q p,ij

s t H
pj
denote the jump nonlinear damping, and

ε ( )[ ( )]f qik
s t1/2 denote the jump amplitudes of excitations. The sto-

chastic excitations ( )w tk are independent zero-mean Gaussian
white noise processes with correlation functions

τ δ τ[ ( ) ( + )] = ( )E w t w t D2k l kl .
The Markov process ( )s t points to the model or form in which

the system operates [18], and it takes discrete values from a finite
set = { … }S l1, 2, , with transition probability
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where (Δ )o t represents an infinitesimal expression of order higher
than Δt . The conditional probability { ( + Δ ) = ( ) = }P s t t j s t i de-
notes the probability that the system takes the form j at time

+ Δt t given that it has the form i at time t . λ ≥ 0ij are the tran-
sition densities from model i to model j if ≠i j while

∑λ λ= −
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Note that ( )( )c q p,ij
l and ( )( )f qik

l are changed to ( )( )c q p,ij
u and

( )( )f qik
u as ( )s t jumps from l to u( ∈l u S, ). For each s ( ∈s S), ( )( )c q p,ij

s

and ( )( )f qik
s have the same function form however different values

of parameters.
It is assumed that the Markov process ( )s t is irreducible and

ergodic [19]. That means any form represented by = { … }S l1, 2, ,
is accessible and, as time progresses, the system will revisit a
previous form with probability one. From a practical viewpoint,
this assumption can be made without loss of generality because
failure of components in a system is normally followed by repair
and restoration at a later time. Under this assumption, the process
( )s t has an equilibrium distribution as → ∞t irrespective of the

initial distribution.
A system governed by Eqs. (1) and (2) is referred to as a Mar-

kovian-jump quasi-Hamiltonian system. To be sure, an exact so-
lution of these Hamiltonian equations is preferred. Owing to a lack
of general methods to solve nonlinear equations, the primary
concern herein is an assessment of asymptotic stability, with
probability one, of the system. A secondary purpose is to look into
restrictions for stabilizing a system that possesses some unstable
operating forms.
3. Mathematical preliminaries

In the investigation of stochastic stability, the concept of “sta-
bility with probability one” or “almost sure stability” is frequently
used. There is a connection between Lyapunov exponents and
asymptotic stability with probability one. Let = ( )x q p, denote the
2n-dimensional vector of canonical variables. The trivial solution

=x 0 of the Markovian-jump system is stable with probability one
if, for any x0 and initial distribution of ( )s t

ε‖ ( )‖ < =
( )‖ ‖→ ≥

⎧⎨⎩
⎫⎬⎭P txlim sup 1

5tx 0 00

The trivial solution =x 0 is asymptotically stable with prob-
ability one if Eq. (5) is satisfied and, in addition,

{ }‖ ( )‖ = =
( )‖ ‖→ →∞

P txlim lim 0 1
6tx 00

In the absence of Markovian jumps, a theorem by Oseledec [20]
provides a means for determining asymptotic stability with
probability one. Specifically, let the Markov process be arbitrarily
fixed at ( ) =s t u where ≤ ≤u l1 . When the system is linearized
about the trivial solution =( )x 0u , the Lyapunov exponents are
generated by

Λ = ‖ ( )‖ ( )→∞
( )

t
txlim

1
ln 7t

u

where ( )( ) tx u is solution of the linearized system operating only in
the form u. Lyapunov exponents are generalizations of eigenva-
lues. A necessary and sufficient condition [20] for asymptotic
stability, with probability one, of the trivial solution =x 0 is that
the largest Lyapunov exponent be negative.

Both Eq. (7) and the stability condition can be applied to
Markovian-jump systems. However, the important result by Ose-
ledec [20] cannot be used easily. The barrier lies indetermination
of the largest Lyapunov exponent, which is not straightforward
even for a system without Markovian jumps. In this paper, the n2
quasi-nonintegrable Hamiltonian equations are first reduced by
stochastic averaging to a one-dimensional Itô equation governing
the energy envelope [21,22]. The Lyapunov exponent associated
with the linearized Itô equation of energy is then used as an ap-
proximation of the largest Lyapunov exponent of the original
system.
4. Energy envelope by stochastic averaging

The Hamiltonian system governed by Eqs. (1) and (2) is as-
sumed nonintegrable. There is only one independent integral of
the motion, i.e., the Hamiltonian H which, in general, is equal to
the energy envelope or total energy of the system. Theoretically
speaking, Eqs. (1) and (2) are equivalent to the following Itô sto-
chastic differential equations:
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where ( )B tk are standard Werner processes such that
σ ( ) = ( )[ ( )] [ ( )]dB t f w t dtik

s t
k ik

s t
k . Let the Markov jump process be arbi-

trarily fixed at ( ) =s t u where ≤ ≤u l1 . Then, a stochastic differ-
ential for H can be derived from Eqs. (8) and (9) using the Itô
differential rule [23] so that
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Owing to the small parameter ε, the above relation indicates
that H is a slowly varying process while the generalized dis-
placements q1,…, qn and generalized momenta p2,…, pn are usually
rapidly varying processes with respect to time. By a theorem of
Khasminskii [24], H converges to a one-dimensional diffusion
process as ε → 0. The Itô equation for this diffusion process is
obtained by time averaging of Eq. (10). The effect of stochastic
averaging is to average out the rapidly varying processes so as to
yield an equation for the slowly varying process H , which is es-
sential for describing the long-term behavior of the system.

Time averaging of Eq. (10) can be conducted by traditional
methods [16,17] because the system only takes the form u. Upon
stochastic averaging, the Itô equation for the slowly varying pro-
cess H is obtained as

σ= ( ) + ¯ ( ) ( ) ( )( ) ( )dH m H dt H dB t 11u u

In the above expression, ( )B t is a standard Werner process and
the drift coefficient ( )( )m Hu and diffusion coefficient σ̄ ( )( ) Hu are
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where = ( … … )q q p pz , , , , ,n n1 2 is of order −n2 1; the region of
integration is Ω = { ( … … ) ≤ }H q q p p Hz: , , , 0, , ,n n1 2 ; and the
parameter
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Note that Eq. (11) is only valid when ( ) =s t u. As Markovian
jumps are allowed, ( )s t takes values from = { … }S l1, 2, , . Then,
Eq. (11) can be extended so that

σ= ( ) + ¯ ( ) ( ) ( )[ ( )] [ ( )]dH m H dt H dB t 15s t s t

where the drift and diffusion coefficients ( )[ ( )]m Hs t , σ̄ ( )[ ( )] Hs t change
as ( )s t jumps. In this interpretation, the Markovian-jump system
governed by Eqs. (8) and (9) possesses an energy envelope given
approximately by the solution H of Eq. (15). In the next section, the
Lyapunov exponent of the linearized equation of energy is
evaluated.

5. Linearization and Lyapunov exponents

The Itô Eq. (15) can be linearized about =H 0, which yields
σ= ( ) + ¯ ( ) ( ) ( )[ ( )] [ ( )]dH m Hdt HdB t0 0 16H
s t

H
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where ( )[ ( )]m 0H
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Observe that the solution of Eq. (16) is
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Since Eq. (16) is one-dimensional, it has only one Lyapunov
exponent, which will be constructed in two steps.

In the first step, let the Markov jump process be arbitrarily
fixed at ( ) =s t u where ≤ ≤u l1 . Then, Eq. (18) simplifies to

σ σ( ) = ( ) − ( ¯ ) + ¯ ( )
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The definition of Lyapunov exponent in Eq. (7) involves the
norm ‖ ‖x , which intuitively is the distance of the system from the
origin =x 0 in the Hamiltonian phase space. In general, the Ha-
miltonian H is equal to the total energy, and therefore H1/2 is also a
measure of the distance of the system from the trivial solution

=x 0. Thus Eq. (7) may be modified as [21,22]

Λ = ( )→∞ t
Hlim

1
ln 20t

1/2

while = ( )H H q p,1/2 1/2 need not be a homogeneous function of
degree one as required for a norm, the above equation provides a
streamlined and fairly accurate method for generating Lyapunov
exponents.

Define Λ( )u as the Lyapunov exponent of Eq. (16) when ( ) =s t u.
Substitute Eq. (19) into Eq. (20) to obtain
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As → ∞t , the first and the last terms in the above expression
vanish [21,22] and, as a consequence,

σΛ = − ( ¯ )
( )

( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥m

1
2

1
2 22

u
H
u

H
u 2

In the second step of evaluating the Lyapunov exponent of Eq.
(16), the Markov process ( )s t is permitted to have transitions. In
the time window [ ]t0, , let ( ) =s t u for a total duration of Tu. Since
the system must operate in one of the forms represented by

= { … }S l1, 2, , , = Σ
=

t T
u

l
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and Eq. (18) can be expressed as
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Substitute Eq. (23) into Eq. (20) to yield, upon simplification,
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Combine Eqs. (22) and (24) to obtain

∑Λ = Λ
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25u
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Thus the Lyapunov exponent Λ of Eq. (16) has been expressed
as a weighted sum of the Lyapunov exponents Λ( )u associated with
different forms of the system. The coefficient of Λ( )u is the fraction
of time that ( ) =s t u in the long run. Are these coefficients
convergent?
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6. Stability and stationary probabilities

As described earlier, the Markov process ( )s t can be assumed
irreducible and ergodic without practical loss of generality. Under
this assumption, the transition probabilities of ( )s t reach an
equilibrium distribution as → ∞t independent of the initial dis-
tribution [19]. Denote by ( )P ue the stationary or equilibrium
probability that ( ) =s t u, where ≤ ≤u l1 . Recall from Eq. (3) that

( + )P u t t i t, ,0 0 denotes the transition probability that the system
takes the form u at time +t t0 given that it has the form i at t0.
Existence of an equilibrium distribution implies that

∑( + ) = ( ) ( ) =
( )→∞ =

P u t t i t P u P ulim , , , 1
26t

e
u

l

e0 0
1

Since ( ) = ( )
→∞

P u T tlim /e
t

u , Eq. (25) can now be written as

∑Λ = ( )Λ
( )=

( )P u
27u

l

e
u

1

As a result, the Lyapunov exponent Λ of Eq. (27) is a convex
linear combination [25] of the Lyapunov exponents associated
with different forms of the system, weighted by the stationary
probabilities of the Markov jump process ( )s t .

How is Λ related to the Lyapunov exponents of the system
governed by Eqs. (1) and (2)? Since Eq. (16) is the linearized
equation of energy envelope, Λ is an approximation of the largest
Lyapunov exponent of the original nonlinear MDOF system. Like-
wise, Λ( )u is an approximation of the largest Lyapunov exponent of
the original system when it operates only in the form ( ) =s t u [21].
Thus a necessary and sufficient condition for asymptotic stability
with probability one [20] of the trivial solution =x 0 of the system
governed by Eqs. (1) and (2) is

∑Λ = ( )Λ <
( )=

( )P u 0
28u

l

e
u

1

Numerical simulations suggest that the above stability condi-
tion is fairly reliable.

If all operating forms of the system are asymptotically stable
with probability one, then Λ <( ) 0u for all u and, from Eq. (27),
Λ < 0 and the entire system is also asymptotically stable. This is an
obvious deduction using Eq. (28). A Markovian-jump system can
be asymptotically stable even when some operating forms are
unstable. The linear inequality (28) specifies a convex subspace
[25] for the allowable stationary probabilities ( )P ue (but not for λij)
for ≤ ≤u l1 . Because ( ) = ( )

→∞
P u T tlim /e

t
u , the allowable stationary

probabilities impose limitations on occupancy time in each un-
stable form so as to render the entire system asymptotically stable.
This is just one example demonstrating the utility of Eq. (28). In
optimization of Markovian-jump nonlinear systems requiring
asymptotic stability, the functional form of Eq. (28) as a convex
linear inequality allows it to be conveniently used as a constraint.

The use of Eq. (27) requires evaluation of Λ( )u and ( )P ue for
≤ ≤u l1 . The Lyapunov exponents Λ( )u can be systematically cal-

culated by Eqs. (18) and (22). It remains to describe how the sta-
tionary probabilities ( )P ue can be computed. In an irreducible and
ergodic Markov process ( )s t , it can be shown [19, 26] that the
stationary probabilities governing equilibrium behavior are given
by the algebraic equations

∑ λ( ) = ≤ ≤
( )=

P u i l0, 1
29u

l

e ui
1

where λui are the transition densities of the process ( )s t . This
completes the discussion on evaluation of Λ in Eq. (28). From a
different perspective, Eq. (28) can be used to construct stability
boundaries by imposing Λ = 0. In fact, stability boundaries can be
generated numerically as a function of various system parameters
rather than just the stationary probabilities. This will be illustrated
by a numerical example in the next section.

It should be pointed out that rigorous analysis of the errors
committed by stochastic averaging has not been reported in the
open literature. As such, analytical quantification of the degree of
approximation associated with Eq. (28) cannot be made. While it
is believed that Eq. (28) provides a reliable formula for de-
termining asymptotic stability with probability one, its accuracy
can only be examined by comparison with direct simulations.
7. Illustrative example

To demonstrate the utility and perhaps reliability of the
method presented in this paper, consider a nonlinear two-degree-
of-freedom oscillator that is capable of independent Markovian
jumps and governed by
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where β [ ( )]
k

s t , α [ ( )]
k
s t , [ ( )]fk

s t ( = )k 1, 2 are coefficients with Markov
jump; ( )w tk are independent zero-mean Gaussian white noise
processes with power spectral density D2 k. The Markov process

( )s t takes discrete values from a finite set = { … }S l1, 2, , with
transition probability defined in Eq. (3). By inspection, the system
kinetic energy is = ( ̇ + ̇ )T x x /22 1

2
2
2 and the dynamic potential is

ω ω= ( + ) + + ( − )U x x ax x b x x/2 /41
2

1
2

2
2

2
2

1 2 1 2
4 .

Let =q xi i and = ̇p xi i. The Hamiltonian is

ω ω= + = ( + ) + ( + ) +

+ ( − ) ( )

H T U p p q q aq q

b
q q

1
2

1
2

4 32

2 1
2

2
2

1
2

1
2

2
2

2
2

1 2

1 2
4

As a Hamiltonian system, Eqs. (30) and (31) can be expressed as

β α

β α

̇
̇
̇
̇

= − ∂
∂

+ + + ( )

− ∂
∂

+ + + ( )
( )

[ ( )] [ ( )] [ ( )]

[ ( )] [ ( )] [ ( )]

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

q

q

p

p

p
p

H
q

p q p f q w t

H
q

p q p f q w t
33

s t s t s t

s t s t s t

1

2

1

2

1

2

1
1 1 1 1

2
1 1 1 1

2
2 2 2 2

2
2 2 2 2

Since ( )U q q,1 2 is not separable, the Hamiltonian system is
nonintegrable. Upon stochastic averaging, Eq. (15) for the energy
envelope of system (33) is obtained, for which
Ω = {( ) + ( ) ≤ }q q p p U q q H, , : /2 ,1 2 2 2

2
1 2 , and

{ } { }∫

{ } { }

β α β α

( ) = ( )

=
( )

− + − +

+ +
( )

Ω

( ) [ ( )= ]

( ) ( ) ( ) ( )

( ) ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

m H m H

T H
q p q p

f D q f D q
p

dq dq dp

1

1

34

u s t u

u u u u

u u

1 1 1
2

1
2

2 2 2
2

2
2

1
2

1 1
2

2
2

2 2
2

1
1 2 2
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{ } { }∫
( )

σ σ¯ ( ) = ¯ ( ) =

( )
+

Ω

( ) [ ( )= ]

( ) ( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥ 35

H H

T H
f D q p f D q q

p
dq dq dp

1
2 2

1

u s t u

u u

2 2

1

2
1 1

2
1
2

2

2
2 2

2
2
2

1
1 2 2

∫( ) =
( )Ω

T H
p

dq dq dp
1

361
1 2 2

Evaluate the above integrals by using the change of variables:

ω
θ

ω
θ= =

( )
q

r
q

r
cos , sin

371
1

2
2

It can be checked that

{ } { }

∫

( )

π
ω ω

β β θ

α

ω
θ

α

ω
θ θ

ω
θ

ω
θ θ

( ) =
( )

− + ( )

− + ( )

+ +

π
( ) ( ) ( )

( ) ( )

( ) ( )

⎪ ⎪
⎪ ⎪

⎡

⎣
⎢⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝
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⎞
⎠
⎟⎟

⎛

⎝
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⎞

⎠

⎟⎟⎟

⎤

⎦

⎥⎥⎥
38

m H
T H

F H

G H

r f D f D
d

2
,

cos sin ,

2
cos sin

u u u

u u

u u

1 2
0

1 2

1

1
2

2 2

2
2

2

4 1

2
1

1
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2 2

2
2

2
2
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{ } { }∫

( )

σ π
ω ω ω

θ
ω

θ

θ θ

¯ ( ) =
( )

+

× ( )

π
( )

( ) ( )
⎡⎣ ⎤⎦

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

39

H
T H

f D f D
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cos sin
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u
u u

2

1 2
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1

1
2

2 2
2
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2
2
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∫π
ω ω

θ( ) =
( )

π

T H r d
2

401 2
0

2

for which

θ
ω ω

θ θ
ω

θ
ω

( ) = − + − −
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⎛
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⎞
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⎛
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⎞
⎠⎟F H Hr
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1 sin 2

4
cos cos

41
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θ
ω ω

θ θ
ω

θ
ω

( ) = − + − −
( )

⎛
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⎞
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⎞
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42
4
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and r is the solution of the equation

ω ω
θ θ

ω
θ

ω
− + − − =

( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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r a br
2

1 sin 2
4

cos cos
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It follows from Eq. (22) that

{ } { }
β β

ω ω
ηΛ = − + + +

( )

( ) ( ) ( )
( ) ( )⎧

⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎛

⎝
⎜⎜
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⎠
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f D f D1
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1
6

44
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where η is independent of the form u and is given by

∫ ∫η
ω ω θ

θ
ω ω θ

θ=
+ ( ) + ( ) ( )

π π −
⎪

⎪

⎪

⎪⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭a

d
a

d
1

1 / sin 2

1
1 / sin 2 450 1 2

2
0

1 2

1

Given the transition densities λij of the inherent Markov pro-
cess ( )s t , stationary probabilities ( )P ue can be computed from Eq.
(29). An approximation of the largest Lyapunov exponent Λ of
system (33) is then obtained by Eq. (27). Numerical results are
given explicitly for a 2-form jump process and a 3-form jump
process.
8. Two-form system

In this case, =l 2 and = { }S 1, 2 . In Eqs. (30) and (31), assume
that ω = 11 , ω = 1.52 , =D 0.011 , =D 0.012 , and

β β β β= − = = = ( )( ) ( ) ( ) ( )0.01, 0.001, 0.02, 0.002 461
1

2
1

1
2

2
2

= = = = ( )( ) ( ) ( ) ( )f f f f1, 1, 0.5, 0.5 471
1

2
1

1
2

2
2

The above specifications indicate an increase in damping and a
decrease in the amplitudes of random excitations when the sys-
tem takes the form ( ) =s t 2. From Eq. (44),

Λ = > Λ = − < ( )( ) ( )0.0047 0, 0.0049 0 481 2

Thus the form ( ) =s t 2 is asymptotically stable with probability
one while the form ( ) =s t 1 is unstable.

Prescribe the transition densities of the Markov jump process
( )s t by a transition matrix λ= [ ]A ij which, because of Eq. (4), must

have the form

λ λ
λ λ

= =
−

− ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

v v
v vA

49
11 12

21 22

1 1

2 2

There are only two parameters >v 01 and >v 02 to be specified,
and the stationary probabilities ( )P 1e , ( )P 2e can be readily com-
puted from Eq. (29). Thereafter the largest Lyapunov exponent Λ
of the system is obtained numerically by Eq. (27). It is found that Λ
is a monotonic decreasing function of v1 and a monotonic in-
creasing function of v2. In Fig. 1, the variation of Λ with v1 is shown
for four arbitrarily fixed values of v2. In every case, Λ → Λ2 as

→ ∞v1 while ∂Λ ∂ <v/ 01 . This is not surprising: the transition
density λ = v12 1 out of the unstable form ( ) =s t 1 and into the
stable form ( ) =s t 2 increases as v1 is increased. Systems re-
presented by points A, B, C and D will be used in Fig. 3 for direct
simulations. In Fig. 2, the variation of Λ with v2 is displayed for
four arbitrarily fixed values of v1. It is observed that Λ → Λ1 as

→ ∞v2 while ∂Λ ∂ >v/ 02 , and the observation can be explained by
analogous reasoning.

In Fig. 1, it is noted that points A, B, C and D are associated with
( )v v,1 2 given respectively by ( )2.5, 1 , ( )3, 2 , ( )1.5, 3 , and ( )2, 5 .
Using Eq. (49), specification of ( )v v,1 2 defines a transition matrix A
for the 2-form system. Based upon the analysis of this paper, Λ < 0
for systems A, B and they are predicted to be asymptotically stable.
Similarly, Λ > 0 for systems C , D and they are predicted unstable.
Direct simulations are conducted on the four systems represented
by A, B, C and D. Indeed, the displacement-time graphs for q1
shown in Fig. 3 confirm the analytical predictions.

In the previous section, it has been mentioned that stability
boundaries can be constructed by imposing Λ = 0. Instead of
graphing the stability boundaries as a function of the transition
probabilities, it is decided to plot the stability boundaries in the
β β( )( ) ( ),1

1
2

1 plane for different jump rules. Recall that ( ) =s t 1 is
unstable and ( ) =s t 2 is stable in the 2-form system. As the
damping coefficients β ( )

1
1 , β ( )

2
1 are increased, it is more likely for the

entire Markovian-jump system to become asymptotically stable. In
Fig. 4, stability boundaries are shown for three different transition
matrices A1, A2, A3, specified in accordance with Eq. (50) by
( ) = ( )v v, 1, 11 2 , ( ) = ( )v v, 5, 11 2 , ( ) = ( )v v, 1, 51 2 respectively, and
for the form ( ) =s t 1. It is seen that the stability boundaries and
stability regions are intimately connected with the jump rules.



Fig. 1. The largest Lyapunov exponent Λ of 2-form system (33) versus v1 for =v 12 ,
=v 22 , =v 32 , and =v 52 . Systems represented by points A, B, C and D are used in

Fig. 3 for direct simulations.

Fig. 2. The largest Lyapunov exponent Λ of 2-form system (33) versus v2 for =v 11 ,
=v 21 , =v 31 , and =v 51 .
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9. Three-form system

In this case, =l 3 and = { }S 1, 2, 3 , the Markov process may be
regarded as an extension of the 2-form jump process considered
earlier, and all previous parameters except the damping coeffi-
cients remain unchanged. The new damping coefficients and ad-
ditional parameters are:

β β β β= − = = − = ( )( ) ( ) ( ) ( )0.02, 0.001, 0.005, 0.002 501
1

2
1

1
2

2
2

β β= = = = ( )( ) ( ) ( ) ( )f f0.02, 0.003, 0.5, 0.5 511
3

2
3

1
3

1
3

From Eq. (44),

Λ = > Λ = > Λ = − < ( )( ) ( ) ( )0.0072 0, 0.0014 0, 0.0051 0 521 2 3

Thus the form ( ) =s t 3 is asymptotically stable with probability
one while the forms ( ) =s t 1 and ( ) =s t 2 are unstable.
Prescribe the transition densities of the Markov jump process
( )s t by the transition matrix

λ λ λ
λ λ λ
λ λ λ

= =
−

−
− ( )

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

v v v
v v v
v v v

A
2

2
2 53

11 12 13

21 22 23

31 32 33

1 1 1

2 2 2

3 3 3

where, for simplicity, it is assumed that λ λ= = vij ik i so that the
transition densities into different forms are equal. There are only
three parameters v1, v2, v3 to be specified, and computation of the
largest Lyapunov exponent Λ of the system is streamlined. In
Fig. 5, the variation of Λ with v1 is shown for four arbitrarily fixed
values of =v v2 3. It is found that Λ is a monotonic decreasing
function of v1. However, Λ converges to a limit between Λ2 and Λ3
as → ∞v1 while ∂Λ ∂ <v/ 01 . This is not surprising: the Markov
jump process reaches an equilibrium state going between the
forms ( ) =s t 2 and ( ) =s t 3 as v1 is increased because λ λ= = v12 13 1.
Systems represented by points A, B, C and D will be used in Fig. 7
for direct simulations. In Fig. 6 the variation of Λ with v3 is dis-
played for four arbitrarily fixed values of =v v1 2. It is observed that
Λ converges to a limit between Λ1 and Λ2 as → ∞v3 while
∂Λ ∂ >v/ 03 , and the observation can be explained in a similar way.

In Fig. 5, it is noted that points A, B, C and D are associated with
( )v v v, ,1 2 3 given respectively by ( )4, 1, 1 , ( )1, 2, 2 , ( )1, 3, 3 , and
( )1.5, 4, 4 . Using Eq. (53), specification of ( )v v v, ,1 2 3 defines a
transition matrix A for the 3-form system. Based upon the analysis
of this paper, Λ < 0 for system A and it is predicted to be
asymptotically stable. Similarly, Λ > 0 for systems B, C , D and they
are predicted unstable. Direct simulations are conducted on the
four systems represented by A, B, C and D. The displacement-time
graphs for q1 shown in Fig. 7 clearly confirm the analytical pre-
dictions. In Fig. 8, stability boundaries are shown for three differ-
ent transition matrices A1, A2, A3, specified in accordance with Eq.
(53) by ( ) = ( )v v v, , 1, 1, 11 2 3 , ( ) = ( )v v v, , 3, 1, 11 2 3 ,
( ) = ( )v v v, , 1, 1, 31 2 3 respectively, and for the form ( ) =s t 1. It is
again observed that the stability boundaries and stability regions
are rather sensitive to changes in the jump rule.
10. Conclusions

Markovian-jump systems are practically significant since they
include many industrial plants and communication networks. In
this paper, an approximate method has been presented to assess
the asymptotic stability with probability one of nonlinear MDOF
stochastic systems which equations of motion, when cast in first-
order form, are Markovian-jump Hamiltonian equations. Using
stochastic averaging, the Hamiltonian equations of quasi-non-
integrable system are first reduced to a one-dimensional Itô
equation governing the energy envelope, from which the largest
Lyapunov exponent of the original system is estimated. Important
results reported in the paper are summarized in the following
statements.

1. An approximate formula for the largest Lyapunov exponent of
the Markovian-jump Hamiltonian equations has been derived
as a convex linear combination of the Lyapunov exponents as-
sociated with different forms of the system, weighted by the
stationary probabilities of the irreducible and ergodic Markov
jump process.

2. Approximate necessary and sufficient conditions for asymptotic
stability with probability one have been obtained as a linear in-
equality. In a Markovian-jump system with unstable operating
forms, the stability conditions prescribe limitations on occupancy



Fig. 3. Displacement-time graphs for q1 obtained by direct simulations of systems represented by points A, B , C and D in Fig. 1: (a) for system A; (b) for system B; (c) for
system C ; and (d) for system D.

Fig. 4. Stability boundaries of 2-form system (33) in the β β( )( ) ( ),1
1

2
1 plane for three

different transition matrices A1, A2, A3 specified respectively by ( ) = ( )v v, 1, 11 2 ,
( ) = ( )v v, 5, 11 2 , ( ) = ( )v v, 1, 51 2 and for the form ( ) =s t 1.

Fig. 5. The largest Lyapunov exponent Λ of 3-form system (33) versus v1 for
= =v v 12 3 , = =v v 22 3 , = =v v 32 3 , and = =v v 42 3 . Systems represented by points

A, B, C and D are used in Fig. 7 for direct simulations.
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time in each unstable form so as to render the entire system
asymptotically stable.

3. The validity and utility of the approximate method presented
herein have been demonstrated by a nonlinear two-degree-of-
freedom oscillator that is capable of independent Markovian
jumps. By comparison with direct system simulations, it has
been observed that the method is fairly reliable in assessing
asymptotic stability.

It should be mentioned that, due to the lack of general tech-
niques to treat nonlinear systems, rigorous analysis of the errors of
approximation of the method thus presented cannot be made.



Fig. 6. The largest Lyapunov exponent Λ of 3-form system (33) versus v3 for
= =v v 11 2 , = =v v 21 2 , = =v v 31 2 , and = =v v 41 2 .

Fig. 7. Displacement-time graphs for q1 obtained by direct simulations of systems represented by points A, B, C and D in Fig. 5: (a) for system A; (b) for system B; (c) for
system C ; and (d) for system D.

Fig. 8. Stability boundaries of 3-form system (33) in the β β( )( ) ( ),1
1

2
1 plane for three

different transition matrices A1, A2, A3 specified respectively by
( ) = ( )v v v, , 1, 1, 11 2 3 , ( ) = ( )v v v, , 3, 1, 11 2 3 , ( ) = ( )v v v, , 1, 1, 31 2 3 and for the form

( ) =s t 1.
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Among other things, it is hoped that this paper would point to
directions along which further research efforts can be made. One
application, however, appears attractive. In the optimization of
Markovian-jump nonlinear systems requiring asymptotic stability,
the linear-inequality stability conditions presented herein can be
conveniently used as a constraint.
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