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Abstract: Drug transporters and drug-metabolizing enzymes are primarily known for their role in
the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they
also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network
analyses have revealed a “Remote Sensing and Signaling Network” of multispecific, oligo-specific,
and monospecific transporters and enzymes involved in endogenous metabolism. This includes
many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing
on the gut−liver−kidney axis, we identified the endogenous metabolites potentially regulated by
this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of
thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids,
and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear
receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites.
This included metabolites that were associated with multiple, distinct loci, indicating coordinated
regulation between multiple genes (including drug transporters and drug-metabolizing enzymes)
of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated
in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The
overall results support the existence of close relationships, via interactions with signaling metabolites,
between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and
Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential
for drug−metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and
the ADME protein network.

Keywords: transporters; enzymes; ADME; metabolomics; SNPs; pharmacogenomics; fatty acids;
eicosanoids; homeostasis; OAT; OATP; MRP

1. Introduction

Genome-wide association studies (GWAS) have been used to identify single nucleotide
polymorphisms (SNPs) that are linked to phenotypes [1]. The phenotypic traits examined
include disease states, drug efficacy, and many others, indicating that GWAS can be used
to gain further insight into the genetic causes of many conditions [2–5]. With the increased
generation of large omics datasets, GWAS have also been used to link SNPs to multiple
intermediate phenotypes with metabolomics and proteomics [6,7].

While much of the research in this area has focused on identifying differences caused
by disease states or other lifestyle factors, GWAS on healthy patients can elucidate the
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endogenous role of genes by associating specific SNPs to levels of endogenous metabo-
lites. Recent studies have combined GWAS and metabolomics on the plasma and urine
of participants to identify potential interactions between proteins and metabolites [8–10].
Here, we focused on SNPs in genes of multi-, oligo-, and monospecific transporters and
“drug” metabolizing enzymes (DMEs), many of which are best known for their handling of
pharmaceutical products, and their associations with circulating endogenous metabolites.
The choice of genes was partly influenced by recent data indicating that these multi-, oligo-,
and monospecific transporters and enzymes are found in or near hubs in co-expression net-
works, especially along the gut−liver−kidney axis, suggesting an important endogenous
role [11].

Drug transporters and DMEs are among the most studied proteins in pharmacology
because of their roles in the ADME (absorption, distribution, metabolism, excretion) of
pharmaceutical products [12]. Many of the multispecific drug transporters and DMEs have
the capacity to handle structurally diverse drugs, while their more oligo- and (relatively)
monospecific counterparts may transport or modify as few as one or two substrates [13–15].
GWAS have linked SNPs in these genes to changes in drug toxicity, efficacy, and distribu-
tion [16,17].

However, the multispecific nature of these proteins is not limited to pharmaceutical
products [18]. Mainly in model organisms but also in humans, endogenous metabolites,
including those with well-defined signaling roles, have also been identified as likely in vivo
substrates of these proteins (e.g., OAT1, OAT3), often supported by in vitro studies [19]. In
GWAS, other results have demonstrated that SNPs in transporter and enzyme genes are
associated with endogenous metabolites participating in biochemical pathways, like amino
acid catabolism, glycolysis, ketone body metabolism, and others [9,10,20–22].

Understanding the full range of endogenous substrates of drug transporters and DMEs
can help uncover the physiological metabolic processes that are perturbed when a patient
takes drugs. In drug−metabolite interactions (DMI), a drug competes with a metabolite for
access to a transporter or enzyme, and thus shifts metabolism by impacting the intracellular
and extracellular concentration of the endogenous substrate [23]. Pharmacogenomic studies
have focused on the implications of polymorphisms in these genes with respect to drug
handling, but the “natural” function of these genes and its potential impact on drug-induced
diseases or drug side effects has received comparatively little attention.

The Remote Sensing and Signaling Theory proposes that the primary function of drug
transporters and DMEs, together with closely related genes, is to help optimize levels of
endogenous metabolites in bodily fluids and tissues by mediating inter-organ and inter-
organismal (e.g., gut−microbe−host) communication through small molecule metabolites
and signaling molecules [11]. This mechanism, while now experimentally supported in
model organisms [24–28], is also supported in humans [29]. Many endogenous metabolites
have signaling capabilities that contribute to the regulation of the expression and/or
function of other membrane transporters and enzymes by activating nuclear receptors,
creating feedback loops [30].

Furthermore, many of these proteins share substrates with one another and are ex-
pressed in multiple epithelial tissues, suggesting the possibility of remote communication
via these proteins, thereby mediating organ crosstalk [31]. Transporters are regulators of
entry (uptake) and exit (efflux) of compounds into the epithelial tissues and body fluids
they separate. For example, solute carrier organic (SLCO), solute carrier 22 (SLC22), and
ATP-binding cassette subfamily C (ABCC) transporters are expressed in many of the same
barrier epithelia tissues, like the proximal tubule (blood−urine), hepatocyte (blood−bile),
and choroid plexus (blood−cerebrospinal fluid), and share many common pharmaceutical
and endogenous substrates, suggesting that they may be jointly involved in the regulation
of these substrates across multiple organs [32]. Indeed, SLC22 and ABCC proteins are
among the many “drug transporter” families that were identified as hubs in the aforemen-
tioned co-expression gut−liver−kidney network of ~600 proteins—largely consisting of
multi-, oligo-, and monospecific transporters, enzymes, and nuclear receptors (including
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many ADME proteins)—and presented as a preliminary “Remote Sensing and Signaling
Network” [11].

The focus of this study is to identify the metabolites and metabolic pathways regulated
by these and related proteins in this Remote Sensing and Signaling Network. An additional
focus is to determine if evidence for drug−metabolite interactions (DMIs) can be found—
given the overlap in proteins of the Remote Sensing and Signaling Network (mediating
endogenous small molecule homeostasis) and the ADME protein network (mediating the
metabolism and elimination of drugs). The scale of potential DMIs at the level of the
major human drug transporters, like organic anion transporter 1(OAT1) and organic anion
transporter 3 (OAT3), has recently become evident as well [23].

While a limited number of in vitro cell-based assays and in vivo rodent experiments
have been performed to uncover the role of drug-handling proteins in metabolic processes,
these experiments can be technically challenging, time-consuming, and labor-intensive—
and each has limitations in their application to humans. Virtual screening can aid in
this process, but for many proteins, particularly membrane-bound human transporters,
determining substrate−transporter interactions has proven to be challenging in part due
to the lack of crystal structures [33]. Though lacking in specific mechanisms of action,
by using SNP associations with metabolomics data, it is possible to prioritize potential
protein−metabolite interactions in humans to evaluate further the possible physiological
role of hundreds of genes.

Here, we combined genomic data targeting SNPs in drug transporter, DMEs, and
related genes with non-targeted plasma metabolomics of over 2500 patients from the
Framingham Offspring Cohort Exam 8 to link SNPs in these genes to the levels of circulating
endogenous metabolites. Because the majority of circulating molecules are unknowns,
we performed directed, non-targeted LC-MS approaches to specifically capture and assay
small, polar, bioactive metabolites, including free fatty acids, eicosanoids and oxylipins,
bile acids, fatty acid esters of hydroxy fatty acids, and other related metabolites of known
and unknown chemistries. These types of metabolites have been shown to signal via cell
surface G-protein coupled receptors (GPCRs) and nuclear receptors and be critical for a
host of physiologic processes [34,35].

This work represents a step forward in understanding the individual and combined
roles of ADME and other genes in endogenous metabolic processes. Of the several in-
teractions reported here, some have been confirmed by independent in vivo or in vitro
experiments, indicating that many novel SNP-metabolite associations likely have a func-
tional protein-ligand relationship. We found metabolites that were linked to multiple
SNPs on distinct genomic loci containing genes expressed in different cells and tissues,
which raises the possibility of transporter- and/or DME-mediated remote communication
via small molecule metabolites. We also analyzed the existing pharmaceutical GWAS to
determine DMIs that may occur in patients with genes harboring certain SNPs involved in
metabolism. The results indicate that a wide range of DMIs can result at the interfaces of
the Remote Sensing and Signaling (protein) network and the ADME (protein) network.

2. Materials and Methods
2.1. Sample Population

Genotyping was performed on the Framingham Heart Study (FHS) Offspring Cohort
Exam 8 (Table 1) [36].
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Table 1. Summary statistics of surveyed participants. Participants are from the Framingham Offspring
Cohort Exam 8.

Category Value

Participants 2886
Men 1315
Women 1571 (54.4%)
Age 66 ± 9 years
Body Mass Index (BMI) 28.3 ± 5.4 kg/m2

2.2. Gene List

The initial gene list for targeted SNP-metabolite associations was constructed based on
the Remote Sensing and Signaling Network reported previously based on a co-expression
analysis [11]. This network included solute carrier (SLC), ATP-binding cassette (ABC), and
several DME families. Among the DME families were subfamilies such as cytochrome
P450s (CYPs), uridine 5’-diphospho-glucuronosyltransferases (UGTs), and sulfotransferases
(SULTs). This list of multi-, oligo-, and monospecific proteins overlaps considerably with
genes known to be involved in the absorption, distribution, metabolism, and excretion
(ADME) of drugs. The list was enlarged by considering other transporters and DMEs
involved in ADME, as well as related transporters and enzymes based on their roles in
ADME, handling of endogenous small molecules, or sequence homologies. In total, this
resulted in the consideration of 1131 genes (Supplementary Table S1).

2.3. SNP Identification

SNPs were included in the analysis if they were mapped to genes from Supplementary
Table S1 using SnpEff [37]. Each SNP was associated with a reference SNP cluster ID (rsID)
or a position on a chromosome. Those SNPs with an rsID were present in dbSNP version
151. All SNPs are in hg19 allele reference format.

2.4. Imputation

Several genotyping arrays (Affymetrix) were used to identify SNPs for the popu-
lation. SNPs were imputed using Minimac3. SNPs associated with genes within an
initial list of 1131 genes containing drug transporters and drug metabolizing enzymes
(Supplementary Table S1) were queried.

2.5. Metabolomics Analysis

Metabolomic studies were performed using directed, non-targeted liquid chromatogra-
phy-mass spectrometry (LC-MS) approaches to specifically capture and assay small polar
“bioactive” metabolites. These were deemed to have a higher likelihood of interacting with
cell surface receptors involved in signaling. These include free fatty acids, eicosanoids
and oxylipins, bile acids, and fatty acid esters of hydroxy fatty acids, among hundreds of
unidentified related metabolites [34,35]. Metabolite levels are used as continuous traits with
a mean of 0 and standard deviation of 1. Identified metabolites were confirmed through
internal standards.

2.6. Statistical Analysis

SNP−metabolite p-values were determined using linear mixed models (LMM) with
an additive genetics model, where 0, 1, and 2 indicate the number of effect alleles for each
SNP in the targeted set. The BOLT-LMM algorithm was used to account for age, gender,
and other factors [38]. Each metabolite-SNP association had a p-value, and only statisti-
cally significant associations are reported here. Overall, 673,141 statistically significant
SNP-metabolite associations were detected. The p-value cutoff for significance was set at
4.9 × 10−12.
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2.7. Genomic Loci

Genomic loci were defined by grouping SNPs that were located within 250,000 base
pair windows. SNPs on the same chromosome more than 250,000 base pairs apart were
considered to be on different genomic loci. Genes were then mapped to genomic loci if any
portion of the gene was within 10,000 base pairs of the genomic locus. For loci without
any genes within 10,000 base pairs, the nearest gene was associated with the locus. The
GRCh37 build was used for all mapping. Genomic plots were generated using FUMA [39].
Manhattan plots were generated using Assocplots [40].

2.8. Tissue-Specific Enrichment

Tissue-specific enrichment for genes within genomic loci was calculated using the
TissueEnrich web-based tool (https://tissueenrich.gdcb.iastate.edu, accessed on 3 May
2021) [41]. Supplementary Table S1 was used as the background gene list, and the 178 genes
within the genomic loci were used as the input gene list. Tissue expression was determined
using the Human Protein Atlas.

2.9. Disease and Pharmaceutical Variant Associations

The “Variant and Clinical Annotations”, “Variant, Gene, and Drug Relationship Data”,
and “Clinical Variant Data” files were downloaded from the PharmGKB database (https:
//www.pharmgkb.org/downloads, accessed on 23 August 2022) [42].

3. Results
3.1. 77 Genomic Loci Are Linked to Circulating Levels of Small, Polar Bioactive Molecules

Plasma and DNA from each participant in the Framingham Offspring Exam 8 Cohort
were analyzed to identify relationships between specific genes and endogenous metabolites
(Figure 1). We focused on bioactive small, polar molecules, aiming to capture endogenous
small molecules that bind receptors involved in signaling. These include eicosanoids, fatty
acids, and sex steroids that are known to interact with G-protein coupled receptors (GPCRs)
and nuclear receptors (NRs) [43,44].

We analyzed the plasma levels of thousands of unique metabolites and their asso-
ciations with SNPs contained within a set of 1131 genes. Many of these genes were
taken from a previously constructed co-expression network that is believed to reflect
their roles mediating endogenous small molecule inter-organ communication, as de-
scribed in the Remote Sensing and Signaling Theory (RSST). The original list of genes
consisted of solute carrier (SLC) transporters, ATP binding cassette (ABC) transporters,
DMEs, including CYPs, SULTs, and UGTs, and other drug-related genes that have multi-,
oligo-, and monospecific substrate specificity and are expressed in the gut, liver, kid-
ney, and other tissues (Supplementary Table S1). Their known substrates include a wide
range of metabolites, signaling molecules, antioxidants, vitamins and cofactors, and gut
microbe-derived metabolites.

https://tissueenrich.gdcb.iastate.edu
https://www.pharmgkb.org/downloads
https://www.pharmgkb.org/downloads
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Plasma collected from 
each member of cohort

Plasma analyzed for small, 
polar, bioactive molecules  

with metabolomics

DNA collected from 
each member of cohort

SNPs detected with 
microarray

SNP-metabolite associations 
between endogenous metabolites 

and drug-handling and related genes 
in a putative Remote Sensing and 

Signaling Network

2886
participants

Figure 1. Schematic for data acquisition and subsequent analysis. Plasma was collected from each
patient and analyzed by liquid chromatography/mass spectrometry, which sought to capture small,
polar, bioactive molecules presumed most likely to be involved in signaling via cell surface and other
receptors. DNA was collected from participants and SNPs within a subset of genes were associated
with the levels of plasma metabolites.

In total, 673,141 statistically significant SNP-metabolite associations were reported,
covering 8634 unique SNPs and 7326 unique metabolites (Figure 2A). The surveyed metabo-
lites ranged from mass to charge ratios (M/Z) of 225.110 to 649.3938, and retention time
(RT) values ranged from 0.6690834 to 6.988375 s. Each SNP was mapped to a genomic
locus based on its position in the GRCh37 build of the human genome, as described in
the Methods. We identified 77 distinct genomic loci, which covered 284 unique genes
(Supplementary Table S2). Each genomic locus was associated with a different set of genes,
SNPs, and metabolites (Figure 2B–G). Genomic locus 15, containing the UGT1A genes,
and genomic locus 54, containing regions relating to SLCO1B1, SLCO1B3, SLCO1B7, and
SLCO1A2, were associated with 42% and 33% of the total interactions, respectively. This
is consistent with the functions of these genes, as they are known, largely from in vitro
work, to be among the most multispecific transporters and enzymes of xenobiotics and
metabolites, with dozens of unique substrates. The significant associations are reported in
Supplementary Table S3.
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A

B C

D E

F G

Figure 2. The targeted SNP association study linked SNPs in drug-related genes, like enzymes and
transporters, to the circulating levels of small, polar, bioactive molecules. (A) Manhattan plot showing
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the targeted SNP-metabolite associations on the genome. The chromosome and relative genomic
location are marked on the x-axis, and the log-scaled p-value is marked on the y-axis. Each point
in the plot represents an association between the SNP and a measured metabolite. (B) Schematic
showing the unique genes associated with genomic locus 70, where an edge represents a gene located
within or near the genomic locus, as described in the Methods. (C) The 77 distinct loci were associated
with 284 unique genes, including pseudogenes. Loci were associated with different numbers of
unique genes ranging from 19 to 1. (D) Schematic showing the unique SNPs associated with genomic
locus 9, where an edge represents an SNP located within the genomic locus. (E) With respect to SNPs,
8634 unique SNPs were detected, with nearly each loci containing unique SNPs. Some genomic loci,
such as genomic loci 47 and 54, were associated with over 1000 distinct SNPs. The number of unique
SNPs for each locus ranged from 1149 to 1. (F) Schematic showing the unique metabolites associated
with genomic locus 5, where an edge represents a statistically significant association. (G) 7326 unique,
small, polar, bioactive metabolites were measured in the plasma of the participants. Genomic loci 15
and 54 were associated with the highest number of unique metabolites (2059 and 3014, respectively).
Unique metabolites associated with each locus ranged from 3014 to 1

3.2. Tissue-Specific Enrichment of Genes with SNPs Shows Overrepresentation of Liver Genes

Of the ~1000 surveyed genes, 178 contained SNPs that were present in our study and
significantly associated with at least one endogenous metabolite. Tissue-specific enrichment
revealed that the liver, breast, kidney, gallbladder, duodenum, and small intestine were over-
represented within these genes (Figure 3A), using the 1131 genes from Supplementary Table
S1 as the background set. The liver was the most highly enriched organ (adjusted negative
log-scaled p-value = 17.1) with 61 tissue-specific genes (Figure 3B). In the pharmaceutical
literature, the tissues enriched with these genes are traditionally associated with ADME,
with some exceptions. While not traditionally associated with drug ADME, the breast
plays a role in the regulation of small molecule metabolites as it contains epithelial tissue
that separates the blood and milk and expresses important DMEs of the glutathione S-
transferase (GST) and UGT2B families. The next most enriched tissue was the kidney,
followed by the gall bladder and intestinal tissues. The 178 metabolite-associated genes
were largely enriched in the gut, liver, and kidney, consistent with previously identified
roles in remote sensing and signaling of small, polar, bioactive metabolites and signaling
molecules across the gut−liver−kidney axis [11] (Figure 3C,D).
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A B

C

D

Figure 3. Tissue-specific enrichment reveals over-representation of organs active in ADME (A) The
genes with significant associations with metabolites were compared to the reference genes listed in
Supplementary Table S1. The liver, breast, kidney, gallbladder, duodenum, small intestine, urinary
bladder, bone marrow, and seminal vesicle all had significant enrichment. (B) Genes enriched in the
liver. (C) Genes enriched in the kidney. (D) Genes enriched in the small intestine.

3.3. Unidentified Metabolites Are Potentially Regulated by Distinct Genomic Loci

Considering that most of the metabolites surveyed were unidentified (chemical iden-
tity unknown, but unique mass/charge ratio (MZ) and retention time (RT) combination),
we aimed to understand which genomic loci worked collaboratively to regulate or modulate
the levels of metabolites rather than focus on the metabolic role of the compound. Depend-
ing on the tissue expression and cellular localization of the implicated genes, these could be
useful examples in determining potential cases of inter and/or intra-organ communication
and lead to a more mechanistic view. We identified five metabolites that were associated
with four distinct genomic loci (Table 2). Metabolite 1116529 was the only metabolite not as-
sociated with both genomic loci 28 or 29 and was uniquely associated with genomic loci 15,
19, 48, and 54 (Figure 4). Thus, we presented the genomic-regional plots with the implicated
SNPs associated with metabolite 1116529 as an example (Figure 5). Metabolite 1116529
was associated with loci containing regions related to the UGT1A, UGT2B7, ABCC2, and
SLCO1B1 genes, which are all multispecific hepatic proteins known to handle metabolites
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and drugs. Genomic locus 15 includes several genes (UGT1A6/7/8/9/10), so it is difficult
to associate any single gene with the resulting changes. Nonetheless, the UGT1A genes
are primarily expressed in the kidney and liver. Two other implicated genes, UGT2B7 and
ABCC2, are also mainly expressed in the kidney and liver, whereas SLCO1B1 is expressed
only in the liver.

Table 2. Five of 7326 unidentified metabolites are associated with four unique combinations of
genomic loci. These metabolites are associated with four unique combinations of genomic loci. The
mass-to-charge ratio (MZ) and the retention time (RT) of each of the five metabolites are listed and
indicate that metabolites 1272586 and 1291919 are likely to be very similar compounds. Genomic loci
28 (ACSL6), 29 (SLC22A4/5), 46 (SLC16A9), and 54 (SLCO1B1/3/7, SLCO1A2) are associated with more
than one metabolite, and genomic loci 4 (SLC44A5), 15 (UGT1A6/7/8/9/10), 19 (UGT2B), and 31 (ECI2)
appear only once. The full list of genes associated with each locus is presented in Supplementary
Table S2.

Genomic
Locus 1

Genomic
Locus 2

Genomic
Locus 3

Genomic
Locus 4 mtb MZ RT

4 28 29 54 1,380,594 284.2233 4.248833
15 19 48 54 1,116,529 607.3553 3.428667
28 29 46 54 1,272,586 282.2076 3.878833
28 29 31 46 1,291,919 282.2085 3.959
28 29 46 54 1,592,026 310.2399 5.155334
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locus 15 contains regions relating to the UGT1A genes, genomic locus 19 contains regions relating to
the UGT2B7 gene, genomic locus 48 contains regions relating to the ABCC2 gene, and genomic locus
54 contain regions relating to the SLCO genes.
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all panels of the figure, the SNPs associated with the levels of circulating metabolite 1116529 are
represented by points, where purple points refer to the top lead SNP, and other SNPs are represented
by points colored by their r2 value. The r2 value, which represents phenotypic variation, is high in
these regions and reference SNPs that have previously been analyzed. The nearest mapped genes are
shown below each plot.

Even if unidentified, it is still possible to glean some hints of a metabolite’s potential
physiological role(s). The function of these proteins (uptake transporter, efflux transporter,
and glucuronidation enzymes) and their different sites of expression within the liver (apical
plasma membrane, basolateral plasma membrane, and cytosol) and kidney (apical plasma
membrane, cytosol) support the view that these proteins work together to regulate the
levels of metabolite 1116529 along the liver−kidney axis. We also investigated phenotypes
related to the SNPs in these genomic loci from dbSNP and the GWAS catalog and found
that the SNPs associated with this metabolite were linked to disorders of bilirubin excretion,
serum 25-hydroxyvitamin-D levels, and testosterone levels [45,46]. In addition to this
metabolite, there are several other examples of unidentified metabolites associated with
multiple genomic loci. With respect to these, 79 metabolites were linked to three distinct
loci, including 25 unique combinations; 606 metabolites were linked to two distinct loci; and
6636 metabolites were associated with only 1 genomic locus (Supplementary Figure S1).

3.4. Circulating Eicosanoids, Fatty Acids, and Bile Acids Are Impacted by SNPs in 18
Genomic Loci

While all 7326 measured metabolites had a unique metabolite ID, most had not had
their chemical identity confirmed. However, 98 metabolites were identified by name,
including eicosanoids, fatty acids, and several other signaling molecules. Even in this
subset, some metabolites have not been unambiguously identified, but their general class is
known. For example, EIC_45 represents a putative eicosanoid [35]. By limiting our analysis
to the associations involving these identified metabolites, 762 SNP-metabolite associations
were analyzed (Supplementary Table S4). These associations spanned 18 genomic loci, with
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genomic locus 54 being associated with 62 identified metabolites, the most of any genomic
loci surveyed here (Figure 6).
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Figure 6. A total of 762 SNP-metabolite associations with identified metabolites were reported, with
18 unique genomic loci and 98 identified metabolites. Values in the heatmap represent the log of the
p-value of each SNP-metabolite association, with a lower value indicating a stronger relationship
between the genomic locus and the metabolite. For improved visualization, the identity of the
metabolites in the x-axis has been shortened to include only the first 50 characters. The colorbar
showing log-scaled p-values has been adjusted to improve visualization, and the highest values go
beyond -100. The full names for each identified metabolite are present in Supplementary Table S4.

3.5. A Putative Eicosanoid Is Independently Associated with SNPs in Phase I and II Drug
Metabolism and Transporter Genes

As mentioned in previous sections, we were interested in those metabolites that were
associated with multiple genomic loci, as they may be examples of genes involved in
inter-organ or intra-organ communication contributing to the systemic levels of particular
metabolites. The eicosanoid EIC_311 was the only identified metabolite associated with
three unique genomic loci (Genomic loci 41, 54, 72) (Figure 7). These loci contained SNPs
in the CYP3A5, SLCO1B1/SLCO1A2, and SULT2A1 genetic regions, respectively. These
proteins are primarily expressed in the liver and serve critical roles in drug metabolism.
CYP3A5 is a Phase I drug-metabolizing enzyme, SULT2A1 is a Phase II drug-metabolizing
enzyme, and SLCO1B1/SLCO1A2 are drug transporters (Phase III drug handling), suggest-
ing that these genes may have a combined role in regulating this eicosanoid. Some of these
genomic regions have also been linked to blood metabolite levels, urine metabolite levels in
chronic kidney disease, and cholelithiasis/cholecystitis [22,47,48]. In addition to EIC_311,
eight identified metabolites were also associated with two distinct genomic loci (Table 3).
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Figure 7. Several identified metabolites were associated with multiple distinct loci. Genomic loci are
indicated by blue nodes. All green and purple nodes are identified metabolites. For improved
visualization, only those associated with multiple distinct loci are shown in purple and have
their identities shown in the figure. The identities for all the green metabolite nodes are listed
in Supplementary Table S4. Notably, the eicosanoid EIC_311 is associated with 3 distinct genomic
loci, consisting of genomic locus 41 (containing regions relating to the CYP3A genes), genomic locus
54 (containing regions relating to the SLCO genes), and genomic locus 72 (containing regions relating
to the SULT2A1 gene).

Table 3. Eight identified metabolites are associated with two distinct genomic loci. Only one
identified metabolite, an eicosanoid identified as EIC_311, was associated with three distinct loci, but
eight others were associated with two, suggesting a more specific regulation. Some metabolites are
presented twice because their identities are expected to be the same despite minor differences in their
MZ or RT values.

Identity Genomic
Locus 1

Genomic
Locus 2 MZ RT

Eicosanoid_13,14-dihydro-15-keto-tetranor-PGE2
[M-H] 3 32 297.1744 1.816083

Eicosanoid_12-HHTrE [M-H+Acetate] 47 54 339.2178 3.669167
Eicosanoid_12-HHTrE [M-H+Acetate] 47 54 339.2197 3.766292
Putative_N-Oleoyl-L-serine 2 54 368.2847 6.353979
Putative_N-Oleoyl-L-serine 2 54 368.286 6.253
Endocannabinoid_Oleoyl Ethanolamide
[M-H+Acetate] 2 70 384.3096 6.401
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Table 3. Cont.

Identity Genomic
Locus 1

Genomic
Locus 2 MZ RT

Endocannabinoid_Oleoyl Ethanolamide
[M-H+Acetate] 2 70 384.3174 6.479625

Putative_Androstan-3-ol-17-one 3-glucuronide 41 53 465.2491 2.152167
Putative_Androstan-3-ol-17-one 3-glucuronide 41 53 465.2492 2.0535
Putative_Androstan-3-ol-17-one 3-glucuronide 41 53 465.2498 2.2015
Putative_5a-Androstan-3a,17b-diol-17b-
glucuronide 19 53 467.2574 2.035

Putative_5a-Androstan-3a,17b-diol-17b-
glucuronide 19 53 467.2634 1.89625

Putative_Chenodeoxycholic acid
24-acyl-b-D-glucuronide 19 54 567.3177 2.890625

Putative_Chenodeoxycholic acid
24-acyl-b-D-glucuronide 19 54 567.3182 2.76575

Putative_1,3,5(10)-Estratrien-3,17b-diol
diglucosiduronate 41 54 623.3406 2.713333

Putative_1,3,5(10)-Estratrien-3,17b-diol
diglucosiduronate 41 54 623.342 2.58075

Putative_1,3,5(10)-Estratrien-3,17b-diol
diglucosiduronate 41 54 623.3441 2.540667

3.6. Conjugated Sex Steroids Are Strongly Associated with SLC22 Genes

While our main focus was on the potential shared function of genomic loci in regulat-
ing circulating metabolites, the associations between genomic loci and identified metabo-
lites represented potential physiological roles for the implicated genes. The strongest asso-
ciations in our study were between genomic locus 53 and conjugated sex steroids (Figure 8).
This genomic locus contains a cluster of genes in the SLC22 family that are best known for
their role in organic anion transport [49]. Recent functional studies have shown that five
conjugated sex steroids directly interact with SLC22A24 in vitro, as well as in GWAS [50].
Here, we report that four similar metabolites (Putative_5a-Androstan-17b-ol-3-one glu-
cosiduronate, Putative_Androstan-3-ol-17-one 3-glucuronide, Putative_Androstan-3-ol-17-
one 3-glucuronide, and Putative_4-Androsten-17b-ol-3-one glucosiduronate) are associ-
ated with the genomic locus containing regions relating to SLC22A6, SLC22A8, SLC22A9,
SLC22A10, SLC22A24, and SLC22A25. The strongest associations involve Putative_5a-
Androstan-17b-ol-3-one glucosiduronate. The SNPs rs78176967, rs142131421, rs113939203,
and rs113497640, which had log-scaled p-values between −225 and −280, suggesting a
strong functional relationship between one or many of the genes expressed on this locus
and this metabolite.
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Among endogenous molecules detected by our metabolomics approach, we found that 
genomic locus 41, which contained CYP3A4, CYP3A5, and others in the CYP3A family, 
was associated with multiple identified metabolites, including bile acids, sex steroids, 
eicosanoids, and prostaglandins. Furthermore, the multispecific SLCO drug transporters 
in genomic locus 54 were associated with 62 metabolites, mainly eicosanoids and fatty 
acids. Genomic locus 70 harbored 16 genes, mainly in the CYP4F family, and was associ-
ated with 15 metabolites, mostly eicosanoids and fatty acids. Although multiple types of 
genes are included in locus 70, such as GPCRs, we expect these associations to be due to 
functional changes in the CYP4F family. The CYP4F family is heavily involved in the me-
tabolism of fatty acids and their derivatives [52]. The fact that many of the associations in 

Figure 8. Genomic locus 53, containing SLC22 genes, is associated with conjugated sex steroid
hormones. (A) The SLC22 genes, SLC22A6, SLC22A8, SLC22A9, SLC22A10, SLC22A24, and SLC22A25
are highly associated with circulating levels of 5a-Androstan-17b-ol-3-one glucosiduronate, 4a-
Androstan-17b-ol-3-one glucosiduronate, Androstan-3-ol-17-one 3-glucuronide, and 5a-Androstan-
3a,17b-diol-17b-glucuronide. The specific associations between SNPs and identified metabolites
are listed in Supplementary Table S4. (B) The chemical structure of 5a-Androstan-17b-ol-3-one
glucosiduronate is shown as a representative example of the metabolites potentially regulated by
these transporter genes. (C) The SNPs shown are associated with the levels of any implicated
metabolites, where purple points refer to the top lead SNP, and other SNPs are represented by points
colored by their r2 value. The r2 value, which represents phenotypic variation, is high in these regions
and reference SNPs that have previously been analyzed. The nearest mapped genes are shown below
each plot. SNPs, which are not in linkage disequilibrium of any significant independent lead SNPs in
the selected region, are colored grey.

3.7. SNPs in Drug Transporter and DME Genes Are Pleiotropic and Linked to Multiple
Identified Metabolites

Within our subset of surveyed genes were several that are known to be functionally
related to multiple classes of drugs. For example, CYP3A4 is among the most promiscuous
of the DMEs with hundreds of drug substrates and dozens of endogenous substrates [51].
Among endogenous molecules detected by our metabolomics approach, we found that
genomic locus 41, which contained CYP3A4, CYP3A5, and others in the CYP3A family,
was associated with multiple identified metabolites, including bile acids, sex steroids,
eicosanoids, and prostaglandins. Furthermore, the multispecific SLCO drug transporters in
genomic locus 54 were associated with 62 metabolites, mainly eicosanoids and fatty acids.
Genomic locus 70 harbored 16 genes, mainly in the CYP4F family, and was associated with
15 metabolites, mostly eicosanoids and fatty acids. Although multiple types of genes are
included in locus 70, such as GPCRs, we expect these associations to be due to functional
changes in the CYP4F family. The CYP4F family is heavily involved in the metabolism of
fatty acids and their derivatives [52]. The fact that many of the associations in this work
have been validated in other studies suggests that the novel associations will prove useful
in determining potential metabolic roles for the implicated genes.
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3.8. Implicated SNPs in Endogenous Metabolism Have Been Reported to Impact Drug Handling

As mentioned, many of the SNPs linked to the metabolites in our study have been
previously associated with the efficacy or toxicity of different drugs. This begets the
question of potential drug−metabolite interactions (DMI). This might also be expected
because many of the aforementioned genes are at the interfaces of the Remote Sensing and
Signaling (protein) Network and the overlapping ADME protein network. Variant−drug
relationships were downloaded from the PharmGKB database and compared to our data
to predict potential DMIs. Ten SNPs were present in both our study and the PharmGKB
database and were associated with at least one drug (Figure 9). The most common SNP
was rs4149056, which is present within the SLCO1B1 region. In addition to being linked
to 50 unique identified metabolites (Supplementary Table S4), this SNP is also associated
with affecting 21 unique drugs, including simvastatin, lopinavir, and doxorubicin. Most
of the SNP-drug pairs associated with SNPs in our study were present in genomic locus
54, which is consistent with its role in the regulation of endogenous metabolites. Indeed,
SLCO1B1/SLCO1A2 are well-known as multispecific drug transporters with a wide array of
both xenobiotic and endogenous substrates [53]. In addition to genomic locus 54, genomic
locus 70 (containing CYP4F genes) had the second most associations, with 14 unique
metabolites and 6 unique drugs. As we discuss below, the use of SNPs linked with both
drug handling and endogenous metabolism is likely to be useful for predicting clinically
relevant drug−metabolite interactions.
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Figure 9. Some SNPs in ADME genes are involved in the regulation of both drugs and endogenous
metabolites. (A) Certain SNPs are associated with levels of multiple identified metabolites in our
study and with several drugs from other independent studies. Rs4149056, an SNP that impacts the
function of SLCO1B1, is the most frequent SNP with respect to metabolites and drugs. (B) rs887829
(UGT1A1) is an example of an SNP that is associated with three different drugs and identified
metabolites that are all related to bilirubin (Supplementary Table S4). The SNP is shown as a pink
node, the drugs are blue nodes, and the identified metabolite IDs are shown as orange nodes.
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4. Discussion

The Remote Sensing and Signaling Theory emphasizes the role of multi-, oligo-, and
monospecific transporters, enzymes, and regulatory proteins in the homeostasis of endoge-
nous metabolites, signaling molecules, antioxidants, and other small molecules with “high
informational content” in bodily fluids and tissues by mediating inter-organ and inter-
organismal (gut microbe-host) communication [11]. These transporters and enzymes lead
to the availability of these metabolites and signaling molecules in specific tissues and body
fluids, often “setting up” the classical signaling events by GPCRs, nuclear receptors, and ki-
nases. Since many of the molecules involved in signaling via cell surface and nuclear recep-
tors are small, polar, bioactive metabolites (e.g., free fatty acids, eicosanoids, bile acids, fatty
acid esters of hydroxy fatty acids), we utilized non-targeted LC-MS methods that specifi-
cally capture these and other physiologically important molecules [34,35]. This approach
also allowed us to explore both known and unknown chemistries of circulating molecules.

Many aspects of Remote Sensing and Signaling Theory are supported in model or-
ganisms, including mice and flies [24,25,27,28,54–56], and are beginning to be supported
in human studies [23,29]. Key to the theory is the development of as comprehensive a
parts list as possible—consisting, for instance, of interacting transporters and enzymes
with their metabolite substrates. One approach to identifying the Remote Sensing and
Signaling (protein) Network has been through the creation and analysis of cross-tissue
co-expression networks of multi-, oligo- and monospecific transporters, enzymes, and
nuclear receptors [11]. This led to a preliminary gut−liver−kidney Remote Sensing and
Signaling (protein) Network involved in endogenous metabolism that included, as hubs,
many well-known SLC and ABC “drug” transporters and DMEs among its ~600 nodes.
Thus, it was not surprising that there was similarity and overlap with a smaller network
that specifically integrated ADME proteins [11]. However, it is important to keep in mind
that the apparent physiological objective of the Remote Sensing and Signaling Network is
the mediation of endogenous small molecule homeostasis, while a large part of what the
ADME network is presumed to mediate is the metabolism and elimination of drugs.

That said, a major goal here was to define the metabolites and signaling molecules
regulated or modulated by multi-, oligo- and monospecific transporters and enzymes
in this Remote Sensing and Signaling Network. However, because of the considerable
overlap in proteins of the Remote Sensing and Signaling Network and the ADME protein
network, it was possible to consider whether drug−metabolite interactions might occur at
the interfaces of the two networks [23].

Determining substrates of transporters or enzymes is typically done with in vitro as-
says or in vivo animal experiments [57]. In silico methods using experimental or predicted
protein structures have also been used to predict potential substrates, most notably for
enzymes [58–60]. Unfortunately, for membrane-bound transporters, there are compara-
tively few crystal structures available, so protein-based predictions are more difficult to
generate [33,61]. GWAS or targeted SNP-association studies in tandem with metabolomics
represent another method for determining potential small molecules that may interact with
proteins in a direct or indirect way and can suggest a physiological role for these proteins
in the modulation of plasma metabolite levels (Figure 1) [62]. Although in vitro or in vivo
experiments are required to confirm the interactions, these results can, as described in this
study, help broaden the list of potential in vivo interactions of endogenous metabolites with
human transporters and drug-metabolizing enzymes. Treating metabolite levels themselves
as phenotypes can provide insight into the endogenous metabolic roles of genes and the
intermediate processes they may participate in [7,9,10,20].

By uncovering the molecular mechanisms of these proteins in physiological processes,
we can improve our understanding of the roles of the hundreds of genes conventionally
associated with drug ADME (absorption, distribution, metabolism, elimination), as well as
others involved in broader aspects of small molecule homeostasis. We argue their role in
endogenous small molecule homeostasis is their major role in humans and other organ-
isms [49,55], but because of the tremendous pharmaceutical and toxicological relevance
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of these genes, their role in endogenous physiology has largely been neglected. Here, we
identified 77 genomic loci containing 284 unique genes (Figure 2) that were associated
with the circulating levels of at least one endogenous, polar, bioactive molecule of the kind
known to bind signaling receptors on the cell surface and in the nucleus.

Many of the surveyed genes are known to play a major role in drug metabolism and
work together along the gut−liver−kidney axis (Figure 3) [56,63,64]. Typically, drugs
are absorbed and enter the bloodstream via intestinal transporters. They then enter the
liver through hepatic transporters, where the majority of enzymatic drug metabolism
occurs. The modified compounds are then cleared or re-introduced to the bloodstream by
efflux transporters. If the modified compounds re-enter the bloodstream, they are taken
up, metabolized by DMEs in the kidney, and ultimately cleared into the urine by renal
transporters or re-introduced into the bloodstream. The same occurs for many small polar
metabolites, signaling molecules, antioxidants, nutrients, natural products, gut microbe-
derived metabolites, and vitamins. Thus, the remote communication between proteins
expressed across these and other organs via small molecules is crucial to the regulation of
endogenous metabolism and crosstalk along organ axes or organ systems, as is evident in
bile acid and urate homeostasis [15,65]. Defective inter-organ communication involving
metabolite transporters, as in the case of OCTN2, also considered a drug transporter, can
lead to potentially lethal diseases such as Systemic Carnitine Deficiency [66].

While mainly studied for their roles in the ADME of drugs, here we show a number
of examples of many of the same ADME proteins jointly contributing to the regulation of
a single endogenous metabolite or multiple metabolites. As we have shown, this could
involve as many as four transporters and/or enzymes (Figures 4 and 5, Table 1) of the Re-
mote Sensing and Signaling Network potentially overlapping with drug-handling proteins
in the ADME network regulating a single metabolite. For example, among unidentified,
unique metabolites, five metabolites were associated with four distinct loci. In addition,
there were 79 metabolites associated with 3 distinct loci, including 25 distinct combina-
tions of loci. Although most of these metabolites have yet to be fully defined in terms of
chemical identity, the loci that influence their circulating levels include multi-, oligo-, and
monospecific transporters and enzymes, including well-known drug-handling proteins.
For instance, among the identified metabolites, the eicosanoid EIC_311 was associated with
SNPs in or relating to the SLCO1B1, CYP3A5, and SULT2A1 genes, which are, respectively,
a Food and Drug Administration (FDA) highlighted transporter, a Phase I DME and a
Phase II DME, all on separate chromosomes (Figure 7). These genes are heavily involved in
ADME and implicated in remote sensing and signaling via co-expression analysis and/or
in vitro interactions with drugs and metabolites [11]. Understanding the full extent of the
role of these genes can also help better understand drug−metabolite interactions (DMIs).
DMIs are often ignored in reference to drug side effects and adverse drug reactions, which
can potentially be mitigated through better dosing of drugs, so as to not overly perturb the
Remote Sensing and Signaling Network involved in small molecule homeostasis across
cells, tissues, organs, and organ systems.

While most of the SNP-metabolite associations involved unidentified metabolites, the
98 identified metabolites and their associations with specific SNPs include well-known
physiological protein−metabolite interactions (Figure 6). For example, the UGT1A locus,
which encodes multispecific enzymes involved in Phase II drug metabolism, is also known
to modify bilirubin and mutated in human Gilbert’s Syndrome, and that interaction is
reflected in our results [67]. Likewise, SLC22A9/10/24/25, which appears to be relatively
monospecific or oligospecific in one of the SLC22 transporter subgroups [49], was associated
with conjugated sex steroids (Figure 8). The role of SLC22A24 in human steroid metabolism
and disease has been previously reported [50]. The CYP3A, CYP4F, and CYP2C genes,
including multispecific and oligospecific enzymes, are known to generate and degrade
signaling eicosanoids and fatty acids, which is reflected in our results here [68–71]. The
multispecific hepatic “drug” transporter OATP1B1 (SLCO1B1), associated with statin
myopathy [72], also had several associations with a wide array of small molecules, including
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eicosanoids, bile acid conjugates, and fatty acids, which is consistent with its known
function [73]. FAAH, an enzyme that might be considered oligospecific, is known to
modulate the levels of endocannabinoids in tissues, and in this study, we show it also
influences the levels of endocannabinoids in plasma [74].

These existing relationships suggest that many unexplored associations between
SNPs and identified metabolites may be of great physiological and clinical importance.
Among the unexplored relationships with no existing literature to date are those be-
tween steroid 5-alpha reductase 2 (SRD5A2) and xanthine dehydrogenase (XDH) with
Allo_Tetrayhydrocortisol in genomic locus 11, the SLC17 family (transporters of phosphate
and other organic anions) with acetyltryptophan in genomic locus 32, and several others.
Although we are able to associate a gene family with a class of metabolites, more in-depth
studies would be required to confirm the mechanistic relationship between these proteins
and metabolites, as well as their joint role in regulating certain metabolic pathways. The
identification of the very large number of unnamed metabolites will also allow the design
of more functional assays to better define the metabolic role of drug transporters and DMEs
and their potential role in DMIs.

The SNPs in genes that are not known to be functionally related to the ADME of drugs
or the handling of endogenous metabolites indicate that certain SNPs can indirectly impact
the levels of plasma metabolites independent of transport and enzymatic activity. Of the
three genomic loci (8, 49, and 56) that do not contain any transporters or enzymes, each
has a different potential mechanism for regulating the levels of circulating compounds.
The polycystic kidney disease 2-like 1 (PKD2L1) gene in genomic locus 49 was linked to 91
metabolites, including 3 named eicosanoids. This gene codes for a calcium channel that
is involved in signaling, development, and taste, yet, its direct association with any polar
bioactive molecules has yet to be reported [75]. It is expressed in numerous tissues, and the
relatively large number of unique metabolites it is associated with suggests that general
calcium signaling can have important consequences on the plasma metabolome. Genomic
locus 56 contained HNF1A (hepatocyte nuclear factor 1 alpha), a nuclear receptor activated
by signaling ligands, HNF1A-AS1, and C12orf43. The open reading frame gene is understud-
ied, but HNF1A and HNF1A-AS1 play roles in transcriptional regulation. Indeed, HNF1A
regulates many ADME-related genes in metabolically active organs and thus can impact
circulating metabolite levels (amino acids, bicarbonate, sugars) [76,77]. Genomic locus 8
contains NOS1AP, a gene that binds to NOS1 for signaling purposes [78]. We examined
SNPs in the NOS1 gene but found no significant metabolite associations. This suggests that
NOS1AP, perhaps through the regulation of NOS1-mediated signaling, can modulate more
complex interactions that ultimately lead to altered levels of plasma metabolites.

The field of pharmacogenomics is expected to play a major role in personalized
medicine in the future, as drug administration and dosage can be more appropriately
determined with knowledge of a patient’s genome [79,80]. Many drugs are taken up into
the liver by drug transporters (e.g., SLCO family) and then metabolized by Phase I and
Phase II DMEs before being eliminated through drug transporter-mediated mechanisms,
such as members of the SLC22 family in the kidney. It is important, however, to understand
the potential metabolic dysregulations that can stem from existing drugs and entities in the
drug development pipeline.

Drug targets differ depending on the intended function, but the proteins involved in
the ADME processes overlap greatly with those regulating key processes in endogenous
physiology (e.g., bilirubin metabolism, eicosanoids, bioenergetics). Indeed, the Remote
Sensing and Signaling Theory argues that drugs often “hijack” endogenous pathways
involved in remote organ communication and gut microbe-host communication. Thus,
common adverse drug reactions, drug side effects, and drug-induced metabolic diseases
may be caused by the competition between drugs and metabolites at the level of so-called
drug transporters and drug metabolizing enzymes involved in key biochemical pathways.
By comparing the previously determined role of SNPs via the PharmGKB database, we
related our analysis to potential drug-metabolite interactions. For example, the rs4149056



Metabolites 2023, 13, 171 20 of 24

SNP in the SLCO1B1 gene affects drug response, as well as several bioactive molecules.
If a patient has this SNP, treatment with a drug impacted by this SNP may exacerbate
the metabolic consequences. Within our dataset, we identified 10 SNPs with evidence of
potential drug−metabolite interactions (Figure 9). As knowledge of the role of ADME
genes in endogenous metabolic processes increases, more will likely be identified.

It is worth emphasizing again that the untargeted metabolomics approach used here
focused on small, polar, bioactive metabolites, both identified and unidentified, likely to
interact with GPCRs, nuclear receptors, and other signaling proteins—and that they were
significantly associated with SNPs in multiple distinct genomic loci. We have also presented
Remote Sensing and Signaling Theory as a framework for understanding communication
between organs through the regulated expression and function of multispecific, oligospe-
cific, and (relatively) monospecific proteins, such as drug transporters, drug-metabolizing
enzymes, and their relatives [11,81,82]. The broad substrate specificity of “drug” trans-
porters and “drug” metabolizing enzymes mainly refers to pharmaceutical products—often
with very different structures and mechanisms of action, but this multi-specificity likely also
applies to endogenous metabolites, as is clear with the organic anion transporters (OATs),
SLC22A6 and SLC22A8 [19]. It is useful to note here that oligospecific and monospecific
close relatives of the well-known drug transporters (OATs and organic cation transporters
(OCTs)) are strongly implicated in the handling of metabolites like urate (SLC22A12) and
carnitine (SLC22A5, SLC22A15/16). This fact emphasizes a main concept in the Remote
Sensing and Signaling Theory—that multi-, oligo-, and monospecific transporters and
enzymes work within and between organs to optimize endogenous metabolism in cells,
tissues, organs, and multi-organ systems [18,19,83].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13020171/s1, Supplementary Figure S1: Five unique
metabolites were associated with 4 unique loci, 79 unique metabolites were associated with 3 unique
loci, 606 unique metabolites were associated with 2 unique loci, and 6636 metabolites were asso-
ciated with one locus. Supplementary Table S1: Original list of genes selected for targeted SNP
associations. These genes include transporters, enzymes, and related proteins that are known to
handle small molecules or related to proteins that do. Supplementary Table S2: Genomic locus and
gene assignments that the detected SNPs associated with circulating metabolites map to. Genes
are listed by their HUGO gene nomenclature committee (hgnc) symbols. ENSEMBL gene IDs are
also listed in a separate column. The start and end position of each gene on the chromosome is
listed. All positions come from the GRCh37 build. Supplementary Table S3: All unique statistically
significant SNP-metabolite associations detected are listed. Snp: Single nucleotide polymorphism.
Snp_cpra: Single nucleotide polymorphism with chromosome position and reference and alternate
alleles. mtb: Metabolite id. MZ: Mass to charge ratio. RT: Retention time. chr: Chromosome. pos:
Position. ref: Reference allele. alt: Alternative allele. pvalue: p-value indicating statistical strength of
association between SNP and metabolite. beta: Beta coefficient for fit. se: Standard error. alt_freq:
Alternative frequency. Supplementary Table S4: All unique statistically significant SNP-metabolite
associations involving identified metabolites. Identity: Putative endogenous metabolite with the
unique combination of MZ and RT. Genomic Locus: Assigned genomic locus listed in Supplementary
Table S2. Snp: Single nucleotide polymorphism. Snp_cpra: Single nucleotide polymorphism with
chromosome position and reference and alternate alleles. mtb: Metabolite id. MZ: Mass to charge
ratio. RT: Retention time. chr: Chromosome. pos: Position. ref: Reference allele. alt: Alternative allele.
pvalue: p-value indicating statistical strength of association between SNP and metabolite. LogP:
Logarithmic value of p-value. beta: Beta coefficient for fit. se: Standard error. alt_freq: Alternative
frequency. Mass_error: Error bars for accuracy of mass to charge ratio. RT_error: Error bars for
accuracy of retention time. SMILES (if available): For each entry in identity, the isomeric SMILES
sequence is listed. For metabolites with unknown identity (e.g., EIC_311), NA is listed.
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